MAXIMUM OVERLAP AREA OF A CONVEX POLYHEDRON AND A
CONVEX POLYGON UNDER TRANSLATION

HYUK JUN KWEON AND HONGLIN ZHU

ABSTRACT. Let P be a convex polyhedron and @ be a convex polygon with n vertices
in total in three-dimensional space. We present a deterministic algorithm that finds a
translation vector v € R maximizing the overlap area |P N (Q + v)| in O(nlog®n) time.
We then apply our algorithm to solve two related problems. We give an O(n log3 n) time
algorithm that finds the maximum overlap area of three convex polygons with n vertices in
total. We also give an O(n log? n) time algorithm that minimizes the symmetric difference
of two convex polygons under scaling and translation.

CONTENTS

Introduction

Preliminaries

Generalized two-dimensional prune-and-search

Maximum overlap of convex polyhedron and convex polygon

Maximum overlap of three convex polygons

. Minimum symmetric difference of two convex polygons under homothety
References

O T 0o o
HHHomzms

1. INTRODUCTION

Shape matching is an important topic in computational geometry, with useful applications
in areas such as computer graphics. In a typical problem of shape matching, we are supplied
two or more shapes, and we want to determine how much the shapes resemble each other.
More precisely, given a similarity measure and a set of allowed transformations, we want to
transform the shapes to maximize their similarity measure.

There are many candidates for the similarity measure, such as the Hausdorff distance
and the Fréchet distance between the boundaries of the shapes. We can also consider the
area/volume of overlap or of symmetric difference. The advantage to these is that they are
more robust against noise on the boundary of the shapes |[Ber+98].

The maximum overlap problem of convex polytopes has been studied by many. In dimen-
sion 2, de Berg et al. [Ber+98| give an O(nlogn) time algorithm for finding a translation
maximizing the area of intersection of two convex polygons (where n denotes the total number
of vertices of the polygons). In dimension 3, Ahn et al. [ABS08] give an O(n®log" n) expected
time algorithm finding the maximum overlap of two convex polyhedra under translation. For
the same problem, Ahn et al. [ACR13| present an algorithm that runs in O(nlog®® n) time

with probability 1 — n~%®" and an additive error. For d > 3, given two convex polytopes
1

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 2

of dimension d with n facets in total, Ahn et al. [ACR13| give an algorithm that finds the
maximum overlap under translation in O(nl%/2+1 log? n) time with probability 1 —n°®) and
an additive error.

In the plane, when all rigid motions are allowed, Ahn et al. |[Ahn+07] give an approximate
algorithm that finds a rigid motion realizing at least 1 — € times the maximal overlap in
O((1/€)logn + (1/€*)log(1/€)) time. In dimension 3, Ahn et al. |Ahn+14] present an
approximate algorithm that finds a rigid motion realizing at least 1 — € times the maximal
overlap in O(e*nlog®® n) with probability 1 —n=01),

When considering the maximum overlap as a similarity measure, we obviously can only
allow area/volume-preserving transformations. However, we may want to allow scaling as a
transformation—two similar triangles are supposed to be very “similar,” though they may
have different sizes. In this case, the area of symmetric difference is a better measure of
similarity. Yon et al. [Yon+16] give an algorithm minimizing the symmetric difference of
two convex polygons under translation and scaling in O(nlog®n) expected time.

Our results. While many have studied the matching problem for two convex polytopes of
the same dimension, to our knowledge no one has examined the problem for polytopes of
different dimensions or matching more than two polytopes.

The main result in this paper is a deterministic algorithm for the problem of matching a
convex polyhedron and a convex polygon under translation in three-dimensional space.

Theorem 1.1. Let P be a convex polyhedron and Q) a convex polygon with n vertices in total.
We can find a vector v € R® that mazimizes the overlap area |P N (Q + v)| in O(nlog®n)
time.

We also present two applications of our algorithm to other problems in computational
geometry. First, we give a deterministic algorithm for maximizing the overlap of three
convex polygons under translations.

Theorem 1.2. Let P, QQ, R be three convex polygons with n vertices in total in the plane.
We can find a pair of translations (vg,vg) € R* that mazimizes the overlap area |P N (Q +
vo) N (R +wg)| in O(nlog®n) time.

We also give a deterministic O(nlog®n) time algorithm for minimizing the symmetric
difference of two convex polygons under a homothety (a translation and a scaling), which is
an improvement to Yon et al.’s randomized algorithm [Yon+16].

Theorem 1.3. Let P and () be convex polygons with n vertices in total. Then we can find
a homothety ¢ that minimizes the area of symmetric difference |P\ o(Q)| + |¢(Q) \ P| in
O(nlog®n) time.

The main ingredient in the proof of Theorem [I.1]is a new technique we introduce which
generalizes Megiddo’s prune-and-search [Meg84|. This allows us to efficiently prune among
n groups of m parallel lines.

Theorem 1.4. Let S = |J_, S; be a union of n sets of O(m) parallel lines in the plane,
none of which are parallel to the x-axis, and suppose the lines in each S; are indexed from
left to right.

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 3

Suppose there is an unknown point p* € R? and we are given an oracle that decides in time
T the relative position of p* to any line in the plane. Then we can find the relative position
of p* to every line in S in O(nlog®m + (T + n)log(mn)) time.

Organization of the Paper. In we introduce the problem of matching a convex poly-
hedron and a convex polygon under translation in three-dimensional space. In §3], we present
a core technique we use in our algorithm, which is a generalization of Megiddo’s prune-and-
search technique [Meg84]. In §4] we present the algorithm for Theorem [1.1]} In §5| we apply
our algorithm to solve the problem of maximizing the intersection of three polygons under
translation. In §6| we give the algorithm for minimizing the symmetric difference of two
convex polygons under homothety.

Acknowledgements. This paper is the result of the MIT SPUR 2022, a summer under-
graduate research program organized by the MIT math department. The authors would like
to thank the faculty advisors David Jerison and Ankur Moitra for their support and the
math department for providing this research opportunity. We thank the anonymous referees
of SoCG 2023 for providing helpful comments that increased the quality of this paper.

2. PRELIMINARIES

Let P C R? be a convex polyhedron and Q C R? be a convex polygon with n vertices
in total. Throughout the paper, we assume that () is in the xy-plane, and that the point
in P with minimal z coordinate is on the xy-plane. We want to find a translation vector
v = (7,9, 2) € R? that maximizes the overlap area f(v) = |P N (Q +v)|.

It is easy to observe that f(v) is continuous and piecewise quadratic on the interior of its
support. As noted in |[Ber+98; |ABS08; |ACR13|, f is smooth on a region R if P N (Q + v)
is combinatorially equivalent for all v € R, that is, if we have the same set of face-edge
incidences between P and). Following the convention of [ABSO08|, we call the polygons
that form the boundaries of these regions the event polygons, and as in [Ber+98], we call the
space of translations of () the configuration space. The arrangement of the event polygons
partition the configuration space into cells with disjoint interiors. The overlap function f(v)
is quadratic on each cell. Thus, to locate a translation maximizing f, we need to characterize
the event polygons.

For two sets A, B C R?, we write the Minkowski sum of A and B as

A+ B :={a+blac A bec B}

We will make no distinction between the translation A4 v and the Minkowski sum A + {v}
for a vector v. We also write A — B for the Minkowski sum of A with —B = {—b|b € B}.
We categorize the event polygons into three types and describe them in terms of Minkowski
sums:

(I) When @ +v contains a vertex of P. For each vertex u of P, we have an event polygon
u — Q. There are O(n) event polygons of this type.

(IT) When a vertex of) + v is contained in a face of P. For each face F' of P and each
vertex v of), we have an event polygon F' — v. There are O(n?) event polygons of
this type.

(III) When an edge of @) + v intersects an edge of P. For each edge e of P and each edge ¢’
of Q, we have an event polygon e — ¢’. There are O(n?) event polygons of this type.

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 4

The reason that convexity is fundamental is due to the following standard fact, as noted
and proved in [Ber+98; [Yon+16|.

Proposition 2.1. Let P be a d'-dimensional convex polytope and let QQ be a d-dimensional
convex polytope. Suppose d' > d. Let f(v) = Vol(P N (Q + v)) be the volume of the overlap
function. Then, f(v)"/? is concave on its support supp(f) = {v|f(v) > 0}.

As in [Avi4-96], we say a function f : R — R is unimodal if it increases to a maximum
value, possibly stays there for some interval, and then decreases. It is strictly unimodal if
it strictly increases to the maximum and then strictly decreases. Furthermore, we say a
function f : R? — R is (strictly) unimodal if its restriction to any line is (strictly) unimodal.

The following corollary of Proposition allows us to employ a divide-and-conquer strat-
egy in our algorithm.

Corollary 2.2 ([Avi+96]). For any line [parameterized by [= p + vt in RY for v # 0, the
function fi(t) = f(p+ vt) is strictly unimodal.

We also use the following two techniques in our algorithm.

Lemma 2.3 ([FJ84]). Let M be an m x n matriz of real numbers, where m < n. If every
row and every column of M is in increasing order, then we say M 1is a sorted matriz. For
any positive integer k smaller or equal to mn, the k-th smallest entry of M can be found in
O(mlog(2n/m)) time, assuming an entry of M can be accessed in O(1) time.

For our purposes, we will use this result in the weaker form of O(m + n).

Lemma 2.4 ([Cha93b]). Given n hyperplanes in R? and a region R C R?, a (1/r)-cutting
15 a collection of simplices with disjoint interiors, which together cover R and such that the
interior of each simplex intersects at most n/r hyperplanes. A (1/r)-cutting of size O(r?)
can be computed deterministically in O(nré=1) time. In addition, the set of hyperplanes
intersecting each simplex of the cutting is reported in the same time.

3. GENERALIZED TWO-DIMENSIONAL PRUNE-AND-SEARCH

In this section, we prove Theorem [I.4] our generalization of Megiddo’s prune-and-search
technique [Meg84]. This technique is of independent interest and can likely be applied to
other problems.

In [Meg84], Megiddo proves the following:

Theorem 3.1 (|[Meg84]). Suppose there exists a point p* € R? not known to us. Suppose
further that we have an oracle that can tell us for any line | C R? whether p* € I, and
if p* & 1, the side of | that p* belongs to. Let T be the running time of the oracle. Then
given n lines in the plane, we can find the position of p* relative to each of the n lines in
O(n + T'logn) time.

We are interested in a generalized version of Megiddo’s problem. Suppose, instead of n
lines, we are given n sets of parallel lines S1,5s,...,S,, each of size O(m). In addition,
suppose the lines in each S; are indexed from left to right (assuming none of the lines are
parallel to the x-axis). Again, we want to know the position of p* relative to every line in
S =, Si. Megiddo’s algorithm solves this problem in O(mn + T'log(mn)) time, but we
want a faster algorithm for large m by exploiting the structure of S.

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 5

Without loss of generality, suppose that there are no lines parallel to the y-axis. For each
i between 1 and n, suppose S; = {I7]1 lies strictly to the left of I iff @ < b}. Suppose that
p* = (z*,y*) € R% To report our final answer, we simply need to provide, for each S;, the
two consecutive indices @ and a + 1 such that p* lies strictly between (¢ and [¢™ or the single
index a such that p* € [{.

In our algorithm, we keep track of a feasible region R containing P*, which is either the
interior of a (possibly unbounded) triangle or an open line segment if we find a line [that
p* lies on. Together with R, we keep track of the 2n indices lower(i) and upper(i) such that
St =Jr, SE = {I|j € (lower(i), upper(i)]} is the set of lines intersecting R, which is also
the set of lines we do not yet know the relative position to p*. In the beginning, R = R
Each step, we find O(1) lines to run the oracle on to find a new feasible region R’ C R such

that |S®| < 17/18/S™| and recurse on R’. An outline is given in Algorithm .

Algorithm 3.1: Pseudocode for Theorem

input : A set S =", S = {l/} of O(mn) lines

output: A list of indices that indicate the position of p* to each S;

R +— R?

SR+— 8

while |S®| > 18 do

Find O(1) lines to run the oracle on

Compute the piece R’ C R containing p*

/* We guarantee that R’ intersects at most 17/18 of the lines that
intersect R */

Triangulate R’ with O(1) lines to run the oracle on

Update S® +— S¥

end

Compute relative position of p* to the remaining lines by brute force

U A W N =

© ® I o

One extra computational effort is updating S* by computing lower(i) and upper(i). Since
the feasible region is always a convex set of constant complexity, we can use binary search
on S% to find the new bounds for S* in O(log |Sf|) time. Thus, the total time involved in
this process, assuming |S%| decreases by at least ¢ = 1/18 each iteration, is

> " 0(log|Si]) + Y O(log|Sf|) + > O(log [Sf2]) + - - -
=1 =1 =1

—O(n1og(|S])) + O(nloa(~S™[)) + O(nlog(~ |S™])) + -
=0(nlog(m)) + O(nlog(m(1 — €))) + O(nlog(m(1l — €)?)) + - - -
=0(nlog®>m).

We will use the following well-known result:

Lemma 3.2 ([Cor+09]). Suppose we are given n distinct real numbers with positive weights
that sum to 1. Then we can find the weighted median of these numbers in O(n) time.

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 6

Given S® and R, we want to find R’ C R to recurse on.

Lemma 3.3. If |S®| > 18, then in O(T +n) time, we can find a region R' C R of constant
complexity containing p* so that its interior intersects no more than 17/18 of all the lines in
SE.

Proof. For convenience, we write S® = S = (I, S; = {¢/}. We first find the weighted
median of the slopes of the lines in S, where the slope of the lines of S; is weighted by
S;]/|S]. This can be done in O(n) time by Lemma [3.2]

If this slope is equal to the slope of some line in S; and |S;| > %|S|, then we can simply
divide the plane using the median line of S; and the z-axis and the interior of each quadrant
will avoid at least 1/18 of the lines of S.

Otherwise, at least 4/9 of the lines have slopes strictly greater than/less than the median
slope. Without loss of generality, we assume at least 4/9 of the lines have positive slope
and at least 4/9 of the lines have negative slope. Now let S, = Ule Sy and S_ = J;_,, S
denote the set of lines with postive/negative slope, respectively. We remove lines from the
larger of the two sets until they have the same size.

N/

FiGURE 1. P, P, are P; are represented by colors.

We partition S, U S_ into O(n) subsets P; each containing the same number of lines
from S, and S_ in the following way: going in lexicographical order by the indices of the
lines, we put a line from S; and a line from Si,; into P, until we exhaust one of the
sets (say it is Sky1). Then, we move on to put a line from the remaining S; and a line
from Si,o into P, until we exhaust one of them, and so on. Each P; is then of the form
{ZZ((ZZ)), . ,ZZ((?)HP"I/Q_l, li((ii)), . ,lf((;))ﬂpiw_l}, and can be represented by the indices (a(7), b(7))
and (c(7),d(7)) (see Figure[l)). We can compute this partition in O(n) time. For each P;, we
compute the intersection p; = (z;, ;) of the median line in P; with positive slope and the
median line with negative slope, and assign p; a weight w; = |P;|/(2]5+]). Then, the weights
of the p; sum to 1. The significance of this is that if we know the relative position of p* to
the lines z = z; and y = y;, then we know the relative position of p* to at least 1/4 of the
lines in P;, which is at least 2w; of all the lines in |S].

We find the median point ¢ = (z4,y,) of the p;’s by weight in z-coordinate in O(n) time
by Lemma . We run the oracle on the line x = z,. Let py,, Di,, - - ., br, be the points such
that we now know the relative position of p* to xy,. Then the weights of these points sum to
at least 1/2. We find the median point ¢’ = (z,y,) of these by weight in y-coordinate in
O(n) time. We run the oracle on the line y = y,. Then, for points with weights that sum to
at least 1/4, we now know the relative position of p* to the vertical line and the horizontal

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 7

line through those points. This means that we know the relative position of p* to at least

2.1 — L of all the lines in |S|. We get a new feasible region according to the two oracle

9 14 18
calls whose interior avoids at least 1/18 of the lines in S, and we triangulate it with O(1)

more oracle calls to get our desired region, in O(T + n) time total. O

Proof of Theorem[I.]] After O(logmn) recursive iterations of Lemma [3.3, we arrive at a
feasible region intersecting at most 17 lines in S, and we can finish by brute force. Therefore,
our algorithm runs in O(nlog®m + (T + n) log(mn)) time. O

Remark 3.4. A simpler and probably more practical algorithm for Lemma is simply
choosing a random line from S and S_ to intersect and run the oracle on the horizontal and
vertical line through the intersection. This method gives the same run time in expectation.

4. MAXIMUM OVERLAP OF CONVEX POLYHEDRON AND CONVEX POLYGON

In this section, we give the algorithm that finds a translation v € R?® maximizing the
area of overlap function f. Following the convention in [Ber+98|, we call such a translation
a goal placement. In the algorithm, we keep track of a closed target region R which we
know contains a goal placement and decrease its size until for each event polygon F', either
F Ninterior(R) = @ or F' O R. Then, f is quadratic on R and we can find the maximum of
f on R using standard calculus. Thus, the goal of our algorithm is to efficiently trim R to
eliminate event polygons that intersect it.

In the beginning of the algorithm, the target region is the interior of the Minkowski sum
P — @, where the overlap function is positive. By the unimodality of the overlap function,
the set of goal placements is convex. Thus, for a plane in the configuration space, either
it contains a goal placement, or all goal placements lie on one of the two open half spaces
separated by the plane. If we have a way of knowing which case it is for any plane, we
can decrease the size of our target region by cutting it with planes and finding the piece
to recurse. More precisely, we need a subroutine PlaneDecision that decides the relative
position of the set of goal placements to a plane S.

Whenever PlaneDecision reports that a goal placement is found on a plane, we can let
the algorithm terminate. Thus, we can assume it always reports a half-space containing a
goal placement.

As in Algorithm (4.1} we break down our algorithm into three stages.

Algorithm 4.1: Pseudocode for Theorem
input : A convex polyhedron P € R? and a convex polygon) € R? with n vertices
in total
output: A translation v € R? maximizing the area |P N (Q + v)|
1 Locate a horizontal slice containing a goal placement that does not contain any
vertices of P and replace P by this slice of P
2 Find a “tube” D + [, whose interior contains a goal placement and intersects O(n)
event polygons, where D is a triangle in the xz-plane and [, is the y-axis
3 Recursively construct a (1/2)-cutting of the target region D + [, to find a simplex
containing a goal placement that does not intersect any event polygon

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 8

4.1. Stage 1. In the first stage of our algorithm, we make use of [Ber+98| to simplify our
problem so that P can be taken as a convex polyhedron with all of its vertices on two
horizontal planes.

We sort the vertices of P by z-coordinate in increasing order and sort the vertices of @)
in counterclockwise order. Next, we trim the target region with horizontal planes (planes
parallel to the zy-plane) to get to a slice that does not contain any vertices of P.

Lemma 4.1. In O(nlog®n) time, we can locate a strip R = {(z,y,2)|z € [20,21]} whose
interior contains a goal placement and P has no vertices with z € [z, z1].

FIGURE 2. The slice of P with z € [z, 21].

Proof. Starting with the median z-coordinate of the vertices of P, we perform a binary search
on the levels containing a vertex of P. For a horizontal plane S, [Ber+98| Theorem 3.8] allows
us to compute the maximum overlap of P NS and @) under translation in O(nlogn)-time.
The two planes S; and S5 with the largest maximum values will be the bounding planes for
the slice containing a goal placement by the unimodality of f. Thus, by a binary search, we
can locate this slice in O(nlog®n) time. O

By Chazelle’s algorithm [Cha92|, the convex polyhedron P’ = {(z,y,2) € P|z € |29, z1]}
can be computed in O(n) time. From now on, we replace P with P’ (see Figure [2). Without
loss of generality, assume z5 = 0 and z; = 1.

The region in the configuration space where |PN(Q+wv)| > 0 is the Minkowski sum P — Q).
Since P only has two levels Py = {(z,y,2) € P|z =0} and P, = {(z,y,2) € P|z = 1} that
contain vertices, the Minkowski sum P — @) is simply the convex hull of (P, — Q)U (P — @),
which has O(n) vertices. We can compute Py — @ and P, — @ in O(n) time and compute
their convex hull in O(nlogn) time by Chazelle’s algorithm [Cha93a].

4.2. PlaneDecision. With the simplification of the problem in Stage 1, we now show that
the subroutine PlaneDecision can be performed in O(n logn) time. Let S be a fixed plane in
the configuration space. We call a translation v that achieves max,cs f(v) a good placement.
First, we can compute the intersection of S with P — @ in O(n) time by Chazelle’s algorithm
[Cha92]. If the intersection is empty, we just report the side of S containing P —). From
now on assume this is not the case.

The following lemma shows that PlaneDecision runs in the same time bound as the
algorithm that just finds the maximum of f on a plane.

Lemma 4.2. Suppose we can compute max,es f(v) for any plane S C R3 in time T, then
we can perform PlaneDecision for any plane in time O(T).

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 9

Proof. The idea is to compute max,cg f(v) for certain S’ that are perturbed slightly from
S to see in which direction relative to S does f increase.

We compute over an extension of the reals R[w]/(w?®), where w > 0 is smaller than any
real number. Let A > 0 be the maximum of f over a plane S. Let S, and S_ be the two
planes parallel to S that have distance w from S. We compute A, = max,cs, f(v) and
A_ = max,es f(v) in O(T) time. Since f is piecewise quadratic, A, and A_ as symbolic
expression will only involve quadratic terms in w. Since f is strictly unimodal on P — @),
there are three possibilities:

(1) If Ay > A, then halfspace on the side of S, contains the set of goal placements.
(2) If A_ > A, then halfspace on the side of S_ contains the set of goal placements.
(3) If A> A, and A > A_| then A is the global maximum of f.

Thus, in O(T) time, we can finish PlaneDecision. O

Finding a good placement on S is similar to finding a goal placement on the whole config-
uration space. S is partitioned into cells by the intersections of event polygons with S. We
need to find a region on S containing a good placement that does not intersect any event
polygons.

We present a subroutine LineDecision that finds, for a line [C .9, the relative position
of the set of good placements on S to [.

Proposition 4.3. For a line | C S, we can perform LineDecision in O(n) time.

FIGURE 3. The convex polyhedron [is formed by interesecting P and (Q +1).

Proof. First, we compute max,¢; f(v) and a vector achieving the maximum. We parameterize
the line [by p + vt where t is the parameter and p,v € R3. The horizontal cross-section of
I = PN (Q +1) at height ¢ has area f(p + vt). Since [is the intersection of two convex
polytopes with O(n) vertices (see Figure [3)), Chazelle’s algorithm [Cha92] computes I in O(n)
time. Then, [Avi4+96, Theorem 3.2] computes the maximum cross-section in O(n) time.
Now, by the same argument and method as in the proof of Lemma [4.2] we can finish
LineDecision in O(n) time. In the case where max,¢; f(v) = 0, we report the side of [
containing SN (P — Q). O

Whenever our subroutine LineDecision reports a good placement is found on a line, we
can let the algorithm terminate. Thus, we can assume it always reports a half-plane of S
containing a good placement.

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 10

We now present PlaneDecision. If S is horizontal, then we only need to find the maxi-
mum overlap of the convex polygons PN.S and) using De Berg et al.’s algorithm [Ber+9§],
which takes O(nlogn) time. Thus, we assume S is non-horizontal.

Algorithm 4.2: Pseudocode for PlaneDecision
input : A plane S C R?
output: A translation v € S maximizing the area |P N (Q + v)|
1 Compute SN (P — @) and set it to be our initial target region
2 Locate a strip on S containing a good placement whose interior intersects O(n) event
polygons
3 Recursively construct a (1/2)-cutting of the strip to find a triangle containing a good
placement that does not intersect any event polygon

As in Algorithm we break down PlaneDecision into three steps. We have already
explained Step 1, where we compute S N (P — @), so we begin with Step 2.

4.2.1. PlaneDecision: Step 2. We want to find a strip on S strictly between z =0 and z = 1
that intersects O(n) event polygons. Since there are no vertices of P with z-coordinate in
the interval (0, 1), there are no event polygons of type in this range, and we will only
need to consider event polygons of type and type |(I1I)}

We look at the intersection points of S with the edges of the event polygons. These
edges come from the set {e; — vj|e; non-horizontal edge of P, v; vertex of Q}. Without loss
of generality, assume that S is parallel to the y-axis. We are interested in the z-coordinates
of the intersections, so we project everything into the xz-plane. Then, S becomes a line,
which we denote by [g, and each edge e; — v; becomes a segment whose endpoints lie on
2z =0 and z = 1. Suppose each edge e; projects to a segment s;, and each v; projects to a
point z; on the z-axis. Then, we get O(n?) segments s; — z; with endpoints on z = 0 and
z =1, and the line [g that intersect them in some places.

Lemma 4.4. In O(nlogn) time, we can locate a strip R = {(x,y, z) € S|z € |20, 21|} whose
interior contains a good placement and intersects none of the edges of the event polygons.

Proof. By our setup, we want to find a segment on g whose interior does not intersect any
segment of the form s; — x;.

Since s; are projections of edges of a convex polyhedron, we can separate them into two
sets such that edges from the same set do not intersect (we take the segments that are
projections of the edges of the “front” side and “back” side, respectively), allowing the two
extremal edges to appear in both sets. We will process each set separately. This can be
done by identifying the extremal points points on the top and bottom faces of P in the x
direction, which can be done in O(logn) time.

For a set of non-intersecting segments, since they all have endpoints on the line z = 0 and
z =1, we can sort them by the sum of the z-coordinates of their two endpoints. This takes
O(nlogn) time. We further separate these segments into two sets by slope: those that make
a smaller angle than /g with the positive z-axis, and those that make a larger angle.

Suppose we now have a set of non-intersecting segments that all make larger angles than
ls with the positive z-axis, s1, 2, ..., Sn, where m = O(n). We also sort the projections

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 11

of the vertices of @), z1,...,2,, in decreasing order by z-coordinate. This can be done in
O(logn) time by identifying the extremal vertices of) in the z-direction.

Let z; be the z-coordinate of the intersection of the line containing s; — x; with [g. Let
M be an m x ¢ matrix with (7, j)-th entry given by

0 Zij S 0
M;; = Zij Rij € (0, 1) .

We claim that M is a sorted matrix. To see this, consider any fixed row r and indices ¢ < j.
Then the line containing s, — x; lies strictly to the left of the line containing s, — x; since
x; > x;. This means that z,; < z,;. Thus, every row of M is in increasing order. Similarly, for
a fixed column ¢ and indices i < j, the segment s; — z. lies strictly to the left of the segment
s;j — x.. Then, if they both intersect g, we must have z;. < zj.. If s; — 2. does not intersect
ls and s; — . does, then s; — z, must lie on the left of [g and thus M;. = a < z;c = Mj..
Similarly, if s; — . intersects lg and s; — 2. does not, then s; — x. must lie on the right of Iy
and thus M. = z;. < b = Mj.. If they both do not intersect [g, then still M;. < M;, since it
is impossible to have M;. = b and M. = a. This proves our claim.

By Lemma [2.3] we can find the k-th smallest value in M in O(m + q) = O(n) time.
Thus, we can perform a binary search on these z-coordinates of the intersections of the
edges e; — v; with S. Each time we perform a LineDecision on the line with the median
z-coordinate of the remaining entries to eliminate half of the intersections. After O(logn)
iterations or O(nlogn) time, we find a strip on S containing a good placement that contains
no intersections with this group of edges.

We repeat the same procedure for the other three groups and compute the intersection
of the four strips to find a strip containing a good placement that contains no intersections
with any edge of the event polygons. 0

FIGURE 4. Projecting the configuration space onto the xz-plane. The pro-
jection of S is the magenta line segment, and the projection of the strip R
obtained form Lemma is the cyan line segment.

Our current target region, the strip R we obtained from Lemma (see Figure [4)), inter-
sects few event polygons and we can compute them efficiently.

Lemma 4.5. The interior of the region R intersects O(n) event polygons, and we can com-
pute them in O(nlogn) time.

Proof. For a vertex v of @, it contributes the O(n) event polygons of type that are the
faces of P —v. The intersection of the boundary of P — v with S is a convex polygon. Since

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 12

there are no intersections with edges of event polygons inside the strip R, at most two edges
of the convex polygon can lie inside R, one on the “front side” and the other on the “back
side.”

To compute these two segments on R, we first consider the two sorted matrices given in
the proof of Lemma that together describe the edges on the “front side” and look at the
column associated to —v. We find, for each column, the two (or zero) adjacent entries that
contain the z-coordinates of R in between. The two of the at most four that are closest to
the strip will be the endpoints of the segment that intersect the strip on the “front side.”
Computing this segment takes O(logn) time since we can use binary search on the columns
to find the desired entries. We do the same to find the segment on the “back side.” We do
this for all vertices of @ to find the O(n) intersections with the event polygons of type |(IT)|
in O(nlogn) time.

For an edge e of P, it contributes O(n) event polygons of type that form the sur-
rounding sides of a “cylinder” with base congruent to —(). Again, each of these “cylinders”
intersect the strip R in at most two faces, so there are O(n) intersections of R with event
polygons of type . We can compute these segments by performing the binary search on
the row of one of the sorted matrices associated to the edge e. The two entries immediately
below the strip and the two immediately above the strip define the at most two segments
intersecting R. Similar to the procedure above, this takes O(logn) time for each edge of P,
thus O(nlogn) time in total. O

4.2.2. PlaneDecision: Step 3. Now, we have a target region R and the O(n) intersections it
makes with the event polygons.

Lemma 4.6. In O(nlogn) time, we can find a region R' C R containing a good placement
that does not intersect any of the O(n) event polygons.

Proof. We recursively construct a (1/2)-cutting of the target region. By Lemmal[2.4] a (1/2)-
cutting of constant size can be computed in O(n) time. We perform LineDecision on the
lines of the cutting to decide on which triangle to recurse. After O(logn) iterations, we
have a target region R’ that intersects no event polygons. This procedure runs in O(nlogn)
time. U

Finally, since the overlap function is quadratic on our final region R’, we can solve for
the maximum using standard calculus. After finding max,cs f(v) and a vector achieving

it O(nlogn) time, by Lemma we can perform PlaneDecision on S in the same time
bound.

Proposition 4.7. For a plane S, we can perform PlaneDecision in O(nlogn) time.

4.3. Stage 2. With the general PlaneDecision at our disposal, we now move on to Stage
2, the main component of our algorithm. We project the entire configuration space and the
event polygons onto the xz-plane in order to find a target region D whose preimage D + [,
intersects few event polygons, where [, is the y-axis (see Figure [5)).

The non-horizontal edges of the event polygons project to segments on the strip 0 < z < 1
on the xz-plane. We characterize our desired region D in the following lemma.

Lemma 4.8. For a region D that does not intersect any of the segments that are the projec-
tions of the non-horizontal edges of the event polygons, the preimage D + 1, intersects O(n)
event polygons.

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 13

(a) Projection of P (b) Projection of Q

(c) Projection of the configuration space, and the target region D

FIGURE 5. Projecting onto the xz-plane.

Proof. For any region D on the zz-plane, the set of event polygons that the “tube” D + [,
intersects is precisely the set of projected event polygons that D intersects. Now, let D be
a region that does not intersect any segment from the projections of the event polygons.

Let sq1,89,...,8, be the segments that are the projections of the non-horizontal edges
of P, and let z,...,z, be the projections of the vertices of () on the z-axis and assume
that they are sorted by decreasing z-coordinate. Then, the projections of the non-horizontal
edges of the event polygons are precisely s; — x;.

We first split the segments into four groups. Let sy, ..., s,,, be the projections of the non-
horizontal edges of P on the “front side,” and s,,,11,...,5, be those on the “back side.”
The at most two edges visible on both the front and the back may be repeated. Then the
segments from either group are pairwise non-intersecting. Similarly, we split the vertices of
() into a front side and a backside, including the at most two vertices visible on both the
front and back in both sets. We consider the segments in the configuration space made by
one of the two groups of edges of P and one of the two groups of vertices of (). The other
three sets of segments are processed similarly.

Suppose that the segments we consider are si,...,S,,, and the projected vertices are
Z1,...,%q. Suppose the segments are sorted by increasing sum of the z-coordinates of their
endpoints, and that the vertices are sorted by decreasing z-coordinate. The event polygons of
type are the trapezoids or triangles between segments s; —x; and s;;; —x; for each of the
four groups of segments. For each fixed projected vertex x, the region D intersects at most
one event polygon of type for each group. Thus, D intersects O(n) event polygons of
type[(IT)] Similarly, the event polygons of type are the parallelograms between segments
s; — x; and s; — x4 for each of the four groups of segments. For each fixed segment s;, D
intersects at most one event polygon of type , thus it intersects O(n) event polygons of

type in total. O

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 14

Now it remains to efficiently find such a region D with D + [, containing a goal placement
and compute the O(n) event polygons that intersect its interior.

Lemma 4.9. In O(nlog®n) time, we can find a triangle D in the xz-plane such that the
interior of D + 1, contains a goal placement and intersects O(n) event polygons. We can
compute these O(n) event polygons in the same time bound.

Proof. The computation of D is a direct application of Theorem , where m = O(n).
Calling the oracle on a line [in the zz-plane is running the PlaneDecision algorithm on
the plane parallel to the y-axis that projects to [. We compute a triangle for each of the four
groups of segments, take their intersection, and triangulate the intersection using O(1) calls
to PlaneDecision. Thus, we can compute the desired triangle D in O(nlog®n) time.

To compute the event polygons intersecting the interior of D +- [, is simple, since we have
shown in the proof of Lemmal[4.8|that D intersects at most one projection of an event polygon
of each type in each of the four groups for a fixed vertex z; (for type or segment s;
(for type . Once we have D, we can compute these polygons by binary search on each
of the O(n) groups of O(n) non-intersecting segments to find the two between which R lies.
Also, the event polygons all have constant complexity so computing all of them takes linear
time. We can recover the event polygons from their projections and compute the planes that
contain them in linear time. Thus, this entire process can be done in O(nlogn) time. O

4.4. Stage 3. Now, we have a target region R = D + [, whose interior contains a goal
placement, and we have the O(n) event polygons that intersect it.

Lemma 4.10. In O(nlog®n) time, we can find a region R' C R containing a goal placement
that does not intersect any of the O(n) event polygons.

Proof. We recursively construct a (1/2)-cutting of the target region. By Lemma [2.4] a (1/2)-
cutting of constant size can be computed in O(n) time. We perform PlaneDecision on the
planes of the cutting to decide on which simplex to recurse. After O(logn) iterations, we
have a target region R’ that intersects no event polygons. This procedure runs in O(n log®n)
time. 0

Finally, since the overlap function is quadratic on our final region R, we can solve for the
maximum using standard calculus. This concludes the proof of Theorem [I.1]

5. MAXIMUM OVERLAP OF THREE CONVEX POLYGONS

Let P, @, R be three convex polygons with n vertices in total in the plane. We want
to find a pair of translations (vg,vg) € R* that maximizes the overlap area g(vg,vg) =
|PN(Q+vg) N (R4 vg)l.

In this problem, the configuration space is four-dimensional. An easy extension of Propo-
sition [2.1) and Corollary shows that the function of overlap area is again unimodal. This
time, we have four-dimensional event polyhedra instead of event polygons that divide the
configuration space into four-dimensional cells on which g(vg,vg) is quadratic. We call a
hyperplane containing an event polyhedron an event hyperplane, and they are defined by
two types of events:

(I) When one vertex of P, Q 4+ vg or R + vg lies on an edge of another polygon. There
are O(n) groups of O(n) parallel event hyperplanes of this type.

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 15

(IT) When an edge from each of the three polygons intersect at one point. There are
O(n?) event hyperplanes of this type.

To overcome the difficulty of dealing with the O(n?) event hyperplanes of type , we
first prune the configuration space to a region intersecting no event hyperplanes of type @
We then show that the resulting region only intersects O(n) event hyperplanes of type

Similar to Theorem [1.1| we want an algorithm HyperplaneDecision that computes, for
a hyperplane H C R*, the maximum MaX (v, wp)el 9(VQ, vg) and the relative location of the
goal placement to H. In fact, we will only need to perform HyperplaneDecision on some
hyperplanes.

Proposition 5.1. Suppose H is a hyperplane that satisfies one of the following three condi-
tions:

(1) H is orthogonal to a vector (x1,y1,0,0) for some x1,y; € R.

(2) H is orthogonal to a vector (0,0, xq,ys) for some xa,y2 € R.

(3) H is orthogonal to a vector (x1,y1, —x1, —y1) for some x1,y; € R.

Then, we can perform HyperplaneDecision on H in O(nlog®n) time.

Proof. We provide the algorithm for H orthogonal to (z1,¥,0,0) for some z1,y; € R, and
the other two types follow similarly.

We reinterpret the problem of finding max(u, vz)em 9(vg, vr) as a polyhedron-polygon
matching problem. In H, we allow R to move freely, and () moves in a line [perpendicular
to (z1,y1). We parameterize [by | = p+ vt, and form the convex polyhedron (see Figure [6])

Ipq ={(z,y,0)|(z,y) € P} N {(z,y,1)[(z,y) € (@ +p+vt)}.
By [Cha92|, I can be computed in O(n) time. In addition, the cross-section of I at ¢t = ¢,
is PN (Q+p+wvt). Then, we see that finding max(,, z)em 9(vq, vr) is the same as finding
a translation maximizing the intersection of I and R. By Theorem [I.1], this can be done in
O(nlog®n) time.
Using the formal perturbation argument in Lemma HyperplaneDecision on H can
be completed in the same time bound.

......................

P + (z-axis Q+1

FIGURE 6. The convex polyhedron Ipq is the intersection of these two objects.

O

Using Proposition [5.1) we can prune the configuration space to a region that intersects no
event hyperplanes of type [(I)] and O(n) event hyperplanes of type [(IT)|

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 16

Proposition 5.2. We can compute a 4-polytope Tpqr of complezity O(1) in O(nlog®n)
time such that

(1) the goal placement lies on Tpgr,

(2) no hyperplane of type intersects the interior of Tpor, and

(8) only O(n) event polyhedrons of type passes through Tpor.
The hyperplanes of type intersecting the interior of Tpor are obtained in the same time
bound. Furthermore, the 3-tuples of edges of P, Q and R defining the hyperplanes are also
obtained in the same time bound.

Proof. If a HyperplaneDecision reports a goal placement, we are done. Thus, we assume
that HyperplaneDecision always reports a halfspace containing a goal placement.

Each event hyperplane containing an event polyhedron of a vertex of P on an edge of QQ+vg
or an event polyhedron of a vertex of)+vg on an edge of P is orthogonal to some (1, y1,0,0).
We project all these event hyperplanes into the 2-flat Spg = {(21,v1,0,0)|z1,y1 € R}. Then,
the images are O(n) groups of O(n) parallel lines. We can therefore apply Theorem
to these lines, where an oracle call on a line [is running HyperplaneDecision on the
hyperplane that projects to [on Spg, which is orthogonal to some (z1,41,0,0). Thus, by
Proposition , we can find a triangle Tpg C Spg whose interior does not intersect any
event hyperplane as described above in O(n log® n) time.

Similarly, we can find the triangles

TPR C {(070a$2792)‘x27y2 € R} and TQR C {(xbyl? —1, _y1)|l‘17y1 € R}

corresponding to the other event hyperplanes of type in O(n log® n) time. Then, the
interior of

TPQR = {(xlay17$27y2)|(x17y17070) € TPQ7 (Oa 07$2ay2) € TPR?

Ty — T2 Y1 — Y2 T2 —2T1 Yo2— U1
<2’2’2’2)€TQR}
does not intersect any event hyperplane of type and contains a goal placement.

Since the interior of Tpgr intersects no event hyperplane of type , the pairwise config-
uration of P and @, P and R, @ and R are fixed (the pairwise edge incidences are fixed).
Since any edge ep of P intersects at most two edges of () and at most two edges of R inside
Tpor, there are at most four event hyperplanes of type where ep is concurrent with an
edge of) and an edge of R. Thus, at most 4n event hyperplanes of type intersect the
interior of Tpgr. O

In the rest of the section, we fix Tpgr as in Proposition Moreover, let

f(UP’UQ) = {

|P M (Q —+ UQ) N (R -+ UR)| if (UQ,UR) < TPQR
0 otherwise.

Proposition 5.3. Let S be any m-flat in the configuration space. In O(n) time, we can find
a point in S Nsupp f, or report that S Nsupp f is empty.

Proof. Notice that supp f is a convex 4-polytope whose face are hyperplanes of type I or
type II. Let H be a hyperplane of type II intersecting the interior of Tpgr. Then H contains
a face of supp f if and only if a polygon P N Q is tangent to R in H N Tpgr. This can be

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 17

tested in constant time, so we can find all faces of supp f in O(n) time. Our problem become
a feasibility test of a linear programming of size O(n), which can be solved in O(n) time by
Megiddo’s algorithm [Meg84]. O

Proof of Theorem[1.9. Take Tpqr as in Proposition Let

|P M (Q —+ UQ) N (R -+ UR)| if (UQ,UR) c TPQR
0 otherwise.

f(UP’UQ) = {

Then f is unimodal and the maximum of f is the goal placement. Given an m-flat S, we want
to compute the maximum of f on S in O(nlog™ ') time by induction on m € {1,2,3,4}.
If m = 1, this can be done in O(n) time by Proposition 4.3l Assume that m > 1.
Then S N Tpgr can be computed in O(1) time. Given an (m — 1)-flat [C S, we can use
Proposition [5.3|and the perturbation method as in Lemma to report the relative position
of the maximum over S. There are O(n) event hyperplane intersecting S N Tpgr. Thus,
by Lemma , we can recursively construct (1/2)-cuttings to give an O(nlog™ ') time
algorithm to find the maximum of f on S. U

6. MINIMUM SYMMETRIC DIFFERENCE OF TWO CONVEX POLYGONS UNDER HOMOTHETY

A homothety ¢: R? — R? is a composition of a scaling and a translation. Let A > 0 be
the scaling factor and v be the translation vector of ¢. Then
e(A) = A +v={\p+v|pe A}
Define the symmetric difference of sets A, B C R? to be
AAB :=(AUB)\ (AN B)
=(A\ B)U(B\ A4).
Let P and @ be convex polygons with n vertices in total. We want to find a homothety
@ of () that minimizes the area of symmetric difference

h(p) = h(z,y,\) = [PAp(Q)],

where p(Q) = A\Q + (z,y).

Yon et al. [Yon+16] consider a slightly more general problem, where they minimize the
function

M) = (2= 26) [P\ 9(Q)] + 2610(Q) \ P,

where x € (0,1) is some constant. When x = 1/2, this is the area of symmetric difference
function. They give a randomized algorithm that solves this problem in O(nlog® n) expected
time. We present a faster determinisitc algorithm by relating this problem to the polyhedron-
polygon matching problem and then applying a modified version of Theorem

As in [Yon+16|, we rewrite the objective function h(yp):

hp) = 2(1 = K)[P| + 26lp(Q)] = 2[P N p(Q)]
=2(1 = K)|P| + 26]QIN* — 2|P N (Q)].
Thus, minimizing h(p) is the same as maximizing f(p) = |P N ¢(Q)| — cA\?, where ¢ =

k|Q|. Consider the cone C = {(z,y,\)|X € [0, M],(z,y) € A\Q}, where M = \/|P|/c (see
Figure [7)). Then f is negative for A > M so it is never maximized. We also put P into R?

MAXIMUM OVERLAP OF POLYHEDRON AND POLYGON 18

NN

Q C

FIGURE 7. Formation of the cone C.

by P = {(z,y,0)|(z,y) € P}. Since f(z,y,\) =|C N (P + (—z,—y,\))| — cA\?, the problem
reduces to maximizing the overlap area of the cone C' and P under translation subtracted
by a quadratic function. To show that we can still use a divide-and-conquer strategy, we
identify a region where f is strictly unimodal.

Lemma 6.1 ([Yon+16]). The closure D of the set {p € R3|f(¢) > 0} is convex. Further-
more, f(x,y,\) is strictly unimodal on D.

Proof. This follows from [Yon+16, Lemma 2.2] and [Yon+16, Lemma 2.7]. O

Although it is difficult to directly compute D, note that —P C D. With this observation,
we show that we can still find the relative position of the set of goal placements to certain
planes S in O(nlogn) time with some modifications to LineDecision and PlaneDecision.

Lemma 6.2. For any | C R?, we can compute max,e; f () or report it is a negative number
in O(n) time.

Proof. If [is horizontal, then we can apply Proposition since cA is constant. Otherwise,
we parameterize [by [= p + vt and construct the convex polyhedron I whose cross-section
I(to) at t = to has area |C'N (P + (p+vtg))| as in the proof of Proposition [£.3] It comes down
to maximizing |I(t)| — c¢(A(t))?, where A(t) is the A-coordinate of p + vt. Since +/|I(t)] is a
concave function, 1/|1(t)] — +/cA(t) is also concave, and has the same complexity as +/|1(t)].
Thus, we can apply |Avi+96, Theorem 3.2] to find the maximum of \/|I(t)] — /cA(t).
Supposed it is achieved at t'. Although ¢’ may not be where the maximum of |I(t)| — c(A(t))?
is, it tells us whether the maximum is positive. If not, we can simply terminate the process.
If it is, we know that [intersects D, and p+wvt’ € D. This allows us to use divide-and-conquer

as in |Avi+96], since we can recurse in the direction of ¢ whenever we query a point ¢ and
find £(t) < 0. O

Proposition 6.3. Let S C R3 be a plane. If S is horizontal or if S intersects the polygon
—P C D, then we can perform PlaneDecision on S in O(nlogn) time.

Proof. 1f S is horizontal, then we can apply Algorithm 4.2} If the maximum is negative, then
we simply report the side of S containing — P, otherwise we proceed as in Lemma [4.2]

Now assume S is non-horizontal and intersects —P. Let s = SN (—P). Then we know
that s C D. Let I C S be a line we want to run the subroutine LineDecision on. By

REFERENCES 19

Lemma [6.2], we can find max,¢; f(¢) or report it is negative in O(n) time. If it is the latter
case, we report the side of [containing s. Otherwise, [intersects D, and we can proceed as
in Lemma [£.2] Thus, we can still find max,es f(¢) in O(nlogn) time. Since S intersects D,
we can use Lemma to complete PlaneDecision on S. 0]

Theorem 6.4. Let P and Q) be convex polygons with n vertices in total. Suppose k € (0,1)
is a constant. We can find a homothety ¢ that minimizes

h() = 2(1 = K)|P\ p(Q)] + 2k|p(Q) \ P
in O(nlog®n) time.

Proof. We want to maximize f(z,y,\) = |C N (P + (—z,—y,\))| — c\? over R3 where
¢ = k|Q|. In order to apply our algorithm for Theorem , we need to show that we only
run PlaneDecision on horizontal planes and planes that intersect —P.

In the first stage (as outlined in Algorithm , we only run PlaneDecision on horizontal
planes.

In the second stage, we apply Theorem to the O(n) groups of O(n) lines that are
the projections of the lines containing edges of event polygons on the zz-plane. Observe
that these lines all intersect the projection of —P on the xz-plane. In each recursive step
of our algorithm, we query a horizontal (parallel to the z-axis) line and a line that goes
“between” two lines in the O(n?) lines. The planes they represent both satisfy the condition
for Proposition[6.3] Then we run PlaneDecision O(1) more times to triangulate our feasible
region. Here, we make a small modification: instead of maintaining a triangular feasible
region, we maintain a trapezoidal one by making O(1) horizontal cuts to make the region a
trapezoid.

In the third stage, we have a “tube” and O(n) event polygons that intersect it. As usual,
we recursively construct a (1/2)-cutting by Lemma [2.4] Chazelle’s algorithm [Cha93b] picks
O(1) planes intersecting the target region as the cutting, along with O(1) extra planes to
triangulate each piece. All the planes containing the event polygons intersect —P, so we
can run PlaneDecision on them. Instead of triangulating our target region, it suffices to
reduce it to constant complexity. We do this by cutting it with O(1) horizontal planes such
that the remaining region only has vertices on two levels. Then, let e be any non-horizontal
edge. With O(1) planes through e, we can cut the target region into prisms and pyramids
with triangular bases. These planes all intersect —P since they are between the two faces of
the target region containing e, and the planes containing them intersect —P.

Therefore, with slight modifications to Theorem , we obtain a deterministic O(n log® n)
algorithm for minimizing h(p). O

Theorem [I.3] follows as a direct corollary of Theorem [6.4]

REFERENCES

[ABS08] H.-K. Ahn, P. Brass, and C.-S. Shin. “Maximum overlap and minimum convex
hull of two convex polyhedra under translations”. In: Comput. Geom. 40.2 (2008),
pp. 171-177.

[Ahn+14] H.-K. Ahn, S.-W. Cheng, H. J. Kweon, and J. Yon. “Overlap of convex polytopes
under rigid motion”. In: Comput. Geom. 47.1 (2014), pp. 15-24.

[ACR13]

[Ahn-+07]

[Avi+96]

[Ber+98]

[Cha92]
[Cha93al
[Cha93b]
[Cor+09]
[FJ84]
[Meg84]

[Yon+16]

REFERENCES 20

H.-K. Ahn, S.-W. Cheng, and I. Reinbacher. “Maximum overlap of convex poly-
topes under translation”. In: Comput. Geom. 46.5 (2013), pp. 552-565.

H.-K. Ahn, O. Cheong, C.-D. Park, C.-S. Shin, and A. Vigneron. “Maximizing
the overlap of two planar convex sets under rigid motions”. In: Comput. Geom.
37.1 (2007), pp. 3-15.

D. Avis, P. Bose, T. C. Shermer, J. Snoeyink, G. Toussaint, and B. Zhu. “On
the sectional area of convex polytopes”. In: Communication at the 12th Annu.
ACM Sympos. Comput. Geom. 1996, p. C.

M. de Berg, O. Cheong, O. Devillers, M. van Kreveld, and M. Teillaud. “Com-
puting the maximum overlap of two convex polygons under translations”. In:
vol. 31. 5. Seventh International Symposium on Algorithms and Computation
(Osaka, 1996). 1998, pp. 613-628.

B. Chagzelle. “An optimal algorithm for intersecting three-dimensional convex
polyhedra”. In: SIAM J. Comput. 21.4 (1992), pp. 671-696.

B. Chazelle. “An optimal convex hull algorithm in any fixed dimension”. In:
Discrete Comput. Geom. 10.4 (1993), pp. 377-409.

B. Chazelle. “Cutting hyperplanes for divide-and-conquer”. In: Discrete Comput.
Geom. 9.2 (1993), pp. 145-158.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algo-
rithms. Third. MIT Press, Cambridge, MA, 2009, pp. xx+1292.

G. N. Frederickson and D. B. Johnson. “Generalized selection and ranking: sorted
matrices”. In: SIAM J. Comput. 13.1 (1984), pp. 14-30.

N. Megiddo. “Linear programming in linear time when the dimension is fixed”.
In: J. Assoc. Comput. Mach. 31.1 (1984), pp. 114-127.

J. Yon, S. W. Bae, S.-W. Cheng, O. Cheong, and B. T. Wilkinson. “Approxi-
mating convex shapes with respect to symmetric difference under homotheties”.
In: 32nd International Symposium on Computational Geometry. Vol. 51. LIPIcs.
Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016,
Art. No. 63, 15.

	1. Introduction
	2. Preliminaries
	3. Generalized two-dimensional prune-and-search
	4. Maximum overlap of convex polyhedron and convex polygon
	5. Maximum overlap of three convex polygons
	6. Minimum symmetric difference of two convex polygons under homothety
	References

