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Abstract. — We consider maximal products of SU(2) as subgroups of a com-
pact Lie group G. We describe the adjoint representations of these subgroups
in U(n). Maximal products of SU(2) are the smallest non-abelian analogues
to maximal tori of G. We aim to study the structure of subgroups of G that
are not described by the existing decomposition of maximal tori using their
associated root data.
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1. Introduction

Élie Cartan and Hermann Weyl introduced a powerful mathematical theory
which allows us to determine a compact Lie group by its root systems and
additional data. Existing structure theory relates compact Lie groups to
maximal tori and their corresponding root systems. This theory provides a
powerful mathematical tool for dealing with the structure of subgroups of
compact Lie groups. This paper explores a parallel structure in which maximal
tori are replaced by maximal products of SU(2) and U(1) in a compact Lie
group.
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Let G be a compact Lie group. Then G contains a maximal subgroup S that
is locally isomorphic to instances of SU(2) and U(1). These subgroups S are
the smallest non-abelian analogues of maximal tori of G. Explicit examples of
these subgroups S in U(n) can be found in Section 4.

This paper works to classify these maximal subgroups of G and analyze
their adjoint representations on the complexified Lie algebra g of G. We
want an abstract description of the subgroup and adjoint representation pair
analogous to root data. This work aims to find a collection of axioms or
some combinatorial structure on a set of representations of S that allow us to
determine the adjoint representation of such a subgroup on gl. We hope that
this analysis will reveal and give us some structural insight on subgroups that
do not correspond to sub-root systems of G.

2. Background

Throughout, we will make frequent use of the compact Lie group SU(2). In
this section we will lay out the relevant foundations.

2.1. Complexified Lie Algebras
Let g be the Lie algebra of any real Lie subgroup of GL(n, C).

Definition 2.1.1. — the complexification of g is defined as gC = g⊗ C. We
extend the Lie bracket on g to gC by C-linearity.

Observation. — We can consider any n×n complex matrix in terms of its
Hermitian and skew-Hermitian components gl(n,C) = u(n) ⊕ iu(n).Thus, for
any G ⊆ GL(n,C) its complexified Lie algebra is gC = g⊕ ig.

Automatically, this gives the relations su(n)C = su(n) ⊕ isu(n) = sl(n,C)
and u(n)C = gl(n,C). We will use these equalities frequently.

Lemma 2.1.2. — Let (π, V) be a representation of g. V is irreducible under
g if and only if it is irreducible under gC.

Proof. — Observe that V must be a complex vector space. Then it is imme-
diate that V is π(g)-invariant if and only if V is π(gC)-invariant.

2.2. Representation Theory of sl(2)
It is well-known that for any compact Lie group G one can find a well-

defined G-invariant positive-definite Hermitian form on any representation of
G. Thus every representation of G is unitary. We can use this and induction
to show that every finite-dimensional representation of a compact Lie group G
is completely reducible.
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Weyl used the following fact to develop his unitary trick, which tells us that
any finite-dimensional representation of a complex semisimple Lie algebra is
completely reducible. For any complex semisimple Lie algebra gC there exists
a real Lie algebra g such that when complexified, g ⊗ C = gC, whose simply
connected form is in correspondence with the compact Lie group G. Given
a representation V of gC, we can restrict V to g and exponentiate to find a
representation of G.

We’ve already seen that sl(2) is the complexified Lie algebra of SU(2). We
can see from the fact that SU(2) is compact (alternatively, from sl(2) being
semisimple) that every finite-dimensional representation of sl(2) is completely
reducible. We’ll now look at the beautifully simple properties of the irreducible
representations of sl(2).

Let V be an irreducible representation of sl(2).

Choose the standard basis for the lie algebra sl(2)

H =

(
1 0
0 −1

)
E =

(
0 1
0 0

)
F =

(
0 0
1 0

)
which satisfies the relations

(2.2.1) [H,E] = 2E, [H,F ] = −2F, [E,F ] = H

For any semisimple Lie algebra, its representations preserve Jordan decompo-
sition. Hence the action of the semisimple element H on V is diagonalizable.
This gives us the decomposition

V =
⊕
α

Vα

where the α ∈ C are values such that ∀ v ∈ V, H(v) =αv for some α.

Let v ∈ V be an eigenvector of H with eigenvalue α, so that H(v) =αv. Then

H(F (v)) = F (H(v)) + [H,F ](v)

= F (αv)− 2F (v)

= (α− 2) · F (v)
so that F(v) is also an eigenvector of H with eigenvalue (α - 2). Similarly, we
find E(v) is an eigenvector of H with eigenvalue (α + 2).

V is irreducible, hence we have an unbroken string of eigenvalues αi that are
all congruent mod 2: α0, α0 + 2, α0 + 4, . . . , α0 + 2k.

Let n be the last element in this string, which must exist because V is finite-
dimensional, and choose v ∈ Vn. That means Vn+2 = 0, hence E(v) = 0.

Claim. — {v, F(v), F2(v), . . . } span V.
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Proof. — Fulton and Harris provide a nice proof of this fact in Chapter 11[1].
Since V is irreducible, we need only check that the action of H, E, and F carry
the subspace W generated by the span of these vectors into itself. For F and
H this calculation is obvious.

E needs a little work. By working a few examples and using induction, we end
up with the result

(2.2.2) E(Fm(v)) = m(n−m+ 1)Fm−1(v)

Corollary 2.2.3. — All eigenspaces Vα are one-dimensional.

We understand the action of H, E, and F on any vector in V, meaning
we can completely determine V based on the number n. We use the finite-
dimensionality of V to prove the existence of both upper and lower bounds on
α for which Vα 6= 0.

Let m be the smallest power of F such that v ∈ Vn vanishes. Then, by (2.2.2),

0 = E(Fm(v)) = m(n−m+ 1)Fm−1

0 6= Fm−1

=⇒ 0 = m(n−m+ 1)

and then m ∈ N tells us that n is a non-negative integer.

We have now determined all irreducible representations of sl(2). These
are the unique (n+1)-dimensional representations Vn which exist for all non-
negative integers n and having eigenvalues under H: −n, 2−n, . . . , n−4, n−2, n.

The finite-dimensional irreducible representations of products of compact
Lie groups are (external) tensor products of the irreducible representations
of their factors. Thus this description of finite-dimensional representations of
sl(2) can be extended to a direct sum of copies of sl(2). The representations
will be the same for a direct sum of copies of sl(2) and its Lie group, a product
of copies of SU(2).

2.3. Nilpotent Orbits for sl(n)

In tackling the classification of maximal products of SU(2), it’s important
to have a way of identifying such subgroups up to conjugacy. In this section
we will present a method of defining conjugacy classes of SU(2) within U(n).

For any n ∈ Z, P(n) will be the set of partitions of n, up to permutation.

Example 2.3.1. — n=4, P(4) = {[4], [1,3], [2,2], [1,1,2], [1,1,1,1]}.
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Recall that an elementary Jordan block of type k is a nilpotent endomorphism
of Ck given by

(2.3.2) Jk =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
0 0 . . . 0 0



Given any partition [d1, d2, . . . , dk] ∈ P(n), we can form a nilpotent matrix
from the diagonal sum of elementary Jordan blocks

(2.3.3) E[d1,d2,...,dk] =


Jd1 0 . . . . . . 0
0 Jd2 . . . . . . 0
...

...
. . . . . .

...
0 0 . . . 0 0
0 0 . . . 0 Jdk



This is a nilpotent endomorphism of Cd1+d2+...+dk = Cn. Indeed E[d1,d2,...,dk]

is a nilpotent element of sl(n). PSL(n) is the adjoint group for sl(n), or the
image under its adjoint representation. So we obtain the nilpotent orbit

(2.3.4) O[d1,d2,...,dk] = PSLn · E[d1,d2,...,dk]

Proposition 2.3.5. — The set of nilpotent orbits of sl(n) are in one-to-one
correspondence with the set |P(n)| of partitions of n, up to permutation. The
correspondence sends a nilpotent element E to the partition determined by the
block size of its Jordan normal form as in (2.3.3).

Let g be any complex semisimple Lie algebra. Any semisimple subalgebra of g
that is isomorphic to sl(2) is spanned by a standard triple {H,E,F} that satisfies
the relations (2.2.1). We call these the neutral, nilpositive, and nilnegative
elements of the subalgebra, respectively. H acts semisimply and both E and F
are nilpotent.
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We define the linear map ρr : sl(2)→ sl(r + 1)

ρr(H) =


r 0 0 . . . 0
0 r − 2 0 . . . 0
...

...
. . . . . .

...
0 0 . . . 2− r 0
0 0 . . . 0 −r



ρr(E) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
0 0 . . . 0 0



ρr(F ) =


0 0 0 . . . 0
µ1 0 0 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 0
0 0 . . . µr 0


with r ≥ 0, and 1 ≤ i ≤ r, µr = i(r + 1− i)
The following lemma (stated without proof) is relevant.

Lemma 2.3.6. — The map ρr is an irreducible representation of sl(2) of
dimension r+1. Indeed, for any finite-dimensional representation π of sl(2)
there exists some non-negative integer r such that ρr ∼= π.

You may notice immediately the connection between ρr and the irreducible
representations Vn of sl(2) that we encountered previously. We’ll tie these
theories concretely in Section 3.1.

LetO be a nilpotent orbit in sl(n). By Proposition 2.3.5, there exists a partition
such that O = O[d1,d2,...,dk] .

Define another homomorphism: φO: sl(2)→ sl(n) by φO =
⊕

1≤i≤k
ρdi−1

.

By Schur’s Lemma, the image of φO is either zero or isomorphic to sl(2). For
any φO, φO(E) = E[d1,...,dk]. The map φO is the zero-map when its image
corresponds to the trivial partition [1, . . .,1].

Indeed, the image of a standard triple {H,E,F} under nonzero φO is given by
{H[d1,...,dk], E[d1,...,dk], F[d1,...,dk]}.



MAXIMAL PRODUCTS OF SU(2) IN COMPACT LIE GROUPS 7

Theorem 2.3.7 (Jacobson-Morozov). — Let g be any complex semisimple
Lie algebra. If E is a nonzero nilpotent element of g then E is the nilpositive
element of a standard triple in g.

Proof. — for general proof, see Sepanski Chapter 3 [4]. Observe this follows
from Jacob normal form if g = sl(2).

Theorem 2.3.8 (Kostant). — Let g be any complex semisimple Lie algebra.
Any two standard triples {H,E,F} and {H’,E,F’} with the same nilpositive
element E are conjugate under an element of the adjoint group of g.

We have outlined the correspondence between distinct partitions of n and
conjugacy classes of sl(2) for SU(2) in U(n). We see that the conjugacy class of
a particular sl(2) is completely determined by its partition, since each partition
corresponds to an E with a unique nilpotent orbit.

3. Methods

3.1. Determining Centralizers of SU(2)

Let G be a compact Lie group.

Definition 3.1.1. — A subgroup S = SU(2) × . . .× SU(2) if SU(2) * GS ,
the centralizer of S in G does not contain another SU(2).

Let H ⊆ End(V).

Recall that the centralizer of H in End(V)H is defined as

End(V )H = {g ∈ End(V )|gh = hg,∀h ∈ H}.

For any g ∈ HomH(V,V), h ∈ H we have g(hv) = h(gv) for all v ∈ V. Hence,
by definition, the centralizer of H in End(V) is

End(V )H = HomH(V, V ).

If instead we take H ⊆ GL(V), then GL(V)H = End(V,V)H∩ GL(V). The
centralizer of H in this case is precisely the matrices in the centralizer of H for
the group of endomorphisms of V that are invertible. Similarly, in the case
where H ⊆ U(V), then U(V)H = End(V,V)H∩ U(V).

In Section 2.2 we identified that the irreducible representations of sl(2) are
exactly Vn. Let H = SU(2) ⊂ U(n).
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Take a representation V of H, and decompose it into isotypic irreducible com-
ponents with highest weights ni and multiplicities ri ∈ Z+

V = V ⊕r1n1−1 ⊕ V
⊕r2
n2−1 ⊕ . . .⊕ V

⊕rk
nk−1.

By Schur’s Lemma, all H-linear homomorphisms V ⊕rini
→ V ⊕rini

must be either
isomorphisms or the zero map. The nonzero isomorphisms will be invertible
square matrices with dimension equal to the multiplicities of the isotypic
components

HomH(V, V ) =Matr1×r1 ×Matr2×r2 × . . .×Matrk×rk .

Since H ⊂ U(n), we take the intersection with the unitary matrices of each
dimension, so the centralizer of H in U(n) is

U(n)H = U(r1)× U(r2)× . . .× U(rk).

For any subgroup of U(n) we have a direct correspondence between sl(2), and
thus between its Lie group SU(2), and any partition of n. We can then read
off the centralizer of this SU(2) as simply a product of unitary groups with
dimensions equal to the multiplicities of distinct elements in the partition of
n.

Example 3.1.2. — Let n = 19, and consider the partition [2,2,3,4,4,4]. Then
the corresponding SU(2) will have centralizer U(19)SU(2) = U(2)×U(1)×U(3).

3.2. Adjoint Representations of sl(2) in gl(n)

Recall that the complexified Lie algebra of U(n) is gl(n), or the set of all n×n
complex matrices.

Observation. — the adjoint representation gln(V) = EndC(V) = V ⊗ V∗.

Consider sl(2). Each finite-dimensional representation contains corresponding
positive and negative one-dimensional weight spaces for each weight, deter-
mined by a part in the partition. By this natural symmetry, one can define
a sl(2)-invariant, symmetric, non-degenerate bilinear form for sl(2) ⊗ sl(2).
Hence the finite-dimensional representations V of sl(2) are isomorphic to their
dual representations V∗.

Thus for a finite-dimensional representation V of sl(2)

gln(V ) = V ⊗ V.
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Example 3.2.1. — Let n=4 and consider the partition [1,3]. Each part in
the partition corresponds to a (di-1)-dimensional representation with highest
weight di-1. Hence the adjoint representation of SU(2) is V = V2 ⊕ V0. Then
gln(V ) = (V2 ⊕ V0)⊗ (V2 ⊕ V0). By the Clebsch-Gordan formula (see Chapter
11 in Fulton and Harris [3]), this gives

gln(V ) = V4 ⊕ V ⊕32 ⊕ V ⊕20 .

4. Findings

Mostly using the tools that we’ve laid out, we have developed a method
for finding the adjoint representation of maximal products of SU(2) contained
within U(n). We have also made some headway in finding shortcuts that will
lead us to read off the adjoint representations of SU(2) subgroups based on
symmetry attached to certain automorphisms and counting dimensions.

The first step in classifying representations is to analyze the centralizers
of each partition. Let Z = U(n1)× . . .×U(nr) be the centralizer of a prod-
uct SU(2)× . . .×SU(2) ⊂ U(n). Any U(ni) in Z will contain an SU(2) with
corresponding partition [d1, . . . , dk] with dj ≤ ni for all j ∈ {1, . . . , k}. Each
nontrivial partition of some ni will form another factor of SU(2) in the product.

Carrying on in this manner, we pick out another SU(2) from Z until the
centralizer of the product in U(n) no longer contains a nontrivial SU(2). So
the centralizer of a maximal SU(2) subgroup is some torus U(1)× . . .×U(1).
At the end of this section, we see representations of a product of a maximal
SU(2) subgroup and its centralizer. The next step is to find representatives
for H,E of the standard sl(2) triple corresponding to each partition. With this
information, it is possible to make explicit calculations.

4.1. U(4)

Table 4.1.1. Maximal Products of SU(2) in U(4)

Partition(s) Adjoint Representation

[2, 1, 1]× [1, 1, 2] (V2 ⊗ V0)⊕ (V0 ⊗ V2)⊕ (V1 ⊗ V1)⊕2 ⊕ (V0 ⊗ V0)⊕2
[2, 2]× [2, 2] (V2 ⊗ V2)⊕ (V2 ⊗ V0)⊕ (V0 ⊗ V2)⊕ (V0 ⊗ V0)
[1, 3] V4 ⊕ V ⊕32 ⊕ V ⊕20

For the rest of this section, we describe the methods used to construct this
table. Use the procedures of Section 3 to obtain Table 4.1.2 for U(4).
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Table 4.1.2. Representations of SU(2) in U(4)

Partition Adjoint Representation Centralizer

[1, 1, 2] V2 ⊕ V ⊕41 ⊕ V ⊕50 U(2)×U(1)
[2, 2] V ⊕42 ⊕ V ⊕40 U(2)
[1,3] V4 ⊕ V ⊕32 ⊕ V ⊕20 U(1)×U(1)

(*) bold indicates that this SU(2) is maximal in U(4).

We can immediately read off that the partitions [1,1,2] and [2,2] contain only
one other SU(2) in their centralizers, which also has 2 as the highest part in its
partition. The challenge now is to find representatives with which to compute
the adjoint representations of the products of SU(2).

Observation. — The isomorphism formed C2⊗C2
∼= C4 induces a Kronecker

product map U(2)×U(2) → U(4)

We can draw an analogy between the adjoint action of a product of instances of
SU(2) on U(4) and the Kronecker product of copies of C2. By the symmetry of
the tensor product, both instances of SU(2) must correspond to the partition
[2,2] in this product.

Example 4.1.1. — Consider U(2)×U(2) → U(4).

Now let’s examine the tensor product of the Lie algebra inside each factor.

Find a representative for the nilpositive element E of each SU(2) by taking the
tensor product of the standard representative for sl(2) corresponding to the
nontrivial partition [2] with the identity in the other sl(2).

E1 =

(
0 1
0 0

)
⊗
(
1 0
0 1

)
=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



E2 =

(
1 0
0 1

)
⊗
(
0 1
0 0

)
=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


Similarly, we can find H for each factor.

H1 =

(
1 0
0 −1

)
⊗
(
1 0
0 1

)
=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


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H2 =

(
1 0
0 1

)
⊗
(
1 0
0 −1

)
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


We find matrices A so that [E1, A] = 0. Let aij ∈ C.

A =


a11 a12 a13 a14
0 a11 0 a13
a31 a32 a33 a34
0 a31 0 a33


Apply H1 to find the weights corresponding to each space (represented by some
aij).

[H1, A] =


0 2a12 0 2a14
0 0 0 0
0 2a32 0 2a34
0 0 0 0


Now we find matrices A′ so that both [E1, A

′] = 0 and [E2, A
′] = 0.

A′ =


a11 a12 a13 a14
0 a11 0 a13
0 0 a11 a12
0 0 0 a11


Apply H2 to find the weights corresponding to each remaining space.

[H2, A
′] =


0 2a12 2a13 0
0 0 0 −2a13
0 0 0 −2a12
0 0 0 0


To calculate the adjoint rep of this product SU(2)×SU(2) we take a direct sum
of the tensor product of the corresponding weight spaces for a11, a12, a13, a14
in [2,2] and [2,2]

(V2 ⊗ V2)⊕ (V2 ⊗ V0)⊕ (V0 ⊗ V2)⊕ (V0 ⊗ V0).

4.1.1. Symmetry of Representations

Observe that the result of Example 4.1.1 is a representation that is symmetric
about tensor products, i.e., that Vi⊗Vk = Vk⊗Vi for representations Vi, Vk.
In fact, this occurs generally in the representation of a product of conjugate
copies of SU(2) (having the same nilpotent orbit).
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Let G be any Lie group. Let φ be an automorphism G → G. If V is the
representation of G then we can form the pullback representation φ*V.

G G

φ∗(V1 ⊗ V2) V1 ⊗ V2

φ

As vector spaces, we have equality V = φ∗V. However, the action of the
representation is different between V and φ∗V. If g acts on V, ∀v ∈ V, we
have

g · v = φ(g)v.

Let ψ be an automorphism G×G → G×G which switches the two factors G.

Then say that V1 ⊗ V2 is a representation of G×G

h× g g × hψ

V1⊗V2

Claim. — The pullback isomorphism sends ψ∗(V1 ⊗ V2) = V2 ⊗ V1.

Proof. — To prove this claim, we must investigate the action of the represen-
tation and the pullback representation given by ψ on V1 ⊗ V2.
Consider the standard action

(h× g) · (v1 ⊗ v2) = (hv1 ⊗ gv2).

By definition
ψ(h× g) · (v1 ⊗ v2) = (gv1 ⊗ hv2).

There is a natural isomorphism relating V1 ⊗ V2 ∼= V2 ⊗ V1. Hence
(gv1 ⊗ hv2) ∼= (hv2 ⊗ gv1),

which gives the action of the pullback representation ψ∗

ψ∗(v1 ⊗ v2) = (v2 ⊗ v1).

We now understand how the automorphism ψ (that directly switches the
factors of a group product) acts on a representation of G. In general, the
group of automorphisms of G acts on the set of representations of G

Aut(G) ↪→ {G− representations}.
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The reason we consider the adjoint representation in particular is that the
adjoint representation g ∈ G-reps is naturally associated to G so that it is
fixed under the action of Aut(G).

We can now apply this to the case of conjugate copies of SU(2) in U(n).

Suppose we have SU(2)×SU(2) ⊂ G, with both copies of SU(2) corresponding
to the same partition.

Both SU(2) factors are conjugate, and are contained in each other’s centralizers
for which we have an explicit description. Therefore, there exists a natural
automorphism ψ which directly switches the two SU(2) factors

SU(2)′ × SU(2)
ψ−→ SU(2)× SU(2)′.

The adjoint representation is fixed under the action of Aut(G), hence its
restriction to the subgroup SU(2)×SU(2) is also fixed under Aut(G).

Thus, when we apply the pullback automorphism that switches the factors
SU(2) in the product, the pullback representation ψ∗V must equal the adjoint
representation V.

4.1.2. Adjoint Representations of Products by Dimension

Sometimes it’s simple to extrapolate the adjoint representation for a maximal
product of copies of SU(2) simply by using their adjoint representations and
counting dimension. Generally, this method works best on copies of SU(2)
with adjoint representations that have a small number of weight spaces and
relatively low multiplicities.

Starting with two copies of SU(2) or products of SU(2) that correspond with
each other’s centralizers, write out their adjoint representations. Then begin to
construct tensor products of the summands within the adjoint representation.
When constructing these products, we think of the dimension of the summand
on one side of the tensor product as the multiplicity of the summand on the
other. The multiplicity of each summand must not exceed its multiplicity in
the original adjoint representation.

Carry on in this way constructing tensor products of these summands until the
direct sum of these has the correct dimension. The following is an example of
this method.

Example 4.1.2. — Consider [2,1,1] and [1,1,2].

These SU(2)s are conjugate, so the representation of their product must be
symmetric. Both have the same representation

V2 ⊕ V ⊕41 ⊕ V ⊕50 .
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We know immediately that the representation of the product contains at least
one V0 ⊗ V0 summand since we are working with the adjoint representation
of the complexified Lie algebra of U(4). The adjoint representation of SU(2)
for the complexified Lie algebra gl(n) of U(n) must contain one summand
corresponding to the one-dimensional space C since gl(n) = sl(n) ⊕C.
We want the dimensions of the summands in our adjoint representation to add
up to 16. So far we definitely have one summand of dimension 1

V0 ⊗ V0︸ ︷︷ ︸
1

.

Now we are left with 4 V0, 4 V1, and 1 V2 on each side of the tensor product.
We also know that the representation is symmetric about tensor products.
Since we have only a single three-dimensional representation, this expands our
representation to

V2 ⊗ V0︸ ︷︷ ︸
3

⊕V0 ⊗ V2︸ ︷︷ ︸
3

⊕V0 ⊗ V0︸ ︷︷ ︸
1

.

We are now left with 1 V0 and 4 V1. The only option is

V2 ⊗ V0︸ ︷︷ ︸
3

⊕V0 ⊗ V2︸ ︷︷ ︸
3

⊕ (V1 ⊗ V1)⊕2︸ ︷︷ ︸
8

⊕ (V0 ⊗ V0)⊕2︸ ︷︷ ︸
2

.

Notice this adjoint representation has the correct dimension and is symmetric
about tensor products. From Table 4.1.1, we see this is in fact the correct
representation for [2,1,1]×[1,1,2].

4.2. U(5)

Table 4.2.1. Maximal Products of SU(2) in U(5)

Partition(s) Adjoint Representation

[1, 4] V6 ⊕ V4 ⊕ V ⊕23 ⊕ V2 ⊕ V ⊕20

[2, 3] V4 ⊕ V ⊕23 ⊕ V ⊕22 ⊕ V ⊕21 ⊕ V ⊕20
[1, 1, 3]× [2, 1, 1, 1] (V4 ⊗ V0)⊕ (V2 ⊗ V0)⊕ (V0 ⊗ V2)⊕ (V2 ⊗ V1)⊕2

⊕(V0 ⊗ V0)⊕2
[2, 2, 1]× [1, 2, 2] (V2 ⊗ V2)⊕ (V2 ⊗ V0)⊕ (V0 ⊗ V2)⊕ (V1 ⊗ V1)⊕2

⊕(V0 ⊗ V0)⊕2
[1, 1, 1, 2]× [1, 2, 1, 1] (V2 ⊗ V0)⊕ (V0 ⊗ V2)⊕ (V1 ⊗ V1)⊕2 ⊕ (V1 ⊗ V0)⊕2

⊕(V0 ⊗ V1)⊕2 ⊕ (V0 ⊗ V0)⊕3
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The following is a table of adjoint representations of the complexified Lie
algebras sl(2) in complexified gl(5) corresponding to the partitions of 5, using
the methods of Table 4.1.2.

Table 4.2.2. Representations of SU(2) in U(5)

Partition Adjoint Representation Centralizer

[1, 1, 1, 2] V2 ⊕ V ⊕61 ⊕ V ⊕100 U(3)×U(1)
[1, 1, 3] V4 ⊕ V ⊕52 ⊕ V ⊕50 U(2)×U(1)
[1, 2, 2] V ⊕42 ⊕ V ⊕41 ⊕ V ⊕50 U(1)×U(2)
[1,4] V6 ⊕ V4 ⊕ V ⊕23 ⊕ V2 ⊕ V ⊕20 U(1)×U(1)
[2,3] V4 ⊕ V ⊕23 ⊕ V ⊕22 ⊕ V ⊕21 ⊕ V ⊕20 U(1)×U(1)

(*) bold indicates that this SU(2) is maximal in U(5).

In certain cases, the representatives for each sl(2) triple in the product are
clear. These are the cases in which the SU(2)s in our product have only one
nontrivial (>1) part in their partition. For instance, the SU(2) corresponding
to [3,1,1]. We can consider these cases as blocks with the block containing
the nontrivial part by itself: [3] and [1,1]. These instances of SU(2) will form
natural products with other SU(2)s whose nontrivial blocks replace part or all
of the trivial block of the original SU(2) and replace the nontrivial block with
a trivial block.

Example 4.2.1. — Consider the partitions [1,1,3] and [2,1,1,1].

Notice we can maintain the block size in both partitions, so we have blocks
given by [1,1]×[2] and [3]×[1,1,1] in the product.

Starting with [1,1,3], let

H =


0 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 −2

 E =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


Find which matrices A satisfy [E,A] = 0

A =


a11 a12 0 0 a15
a21 a22 0 0 a25
a31 a32 a33 a34 a35
0 0 0 a33 a34
0 0 0 0 a33


with aij ∈ C
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Each entry aij represents a highest weight space in the representation of this
sl(2). Find the corresponding weight for each entry by calculating [H,A]

[H,A] =


0 0 0 0 2a15
0 0 0 0 2a25

2a31 2a32 0 2a34 4a35
0 0 0 0 2a34
0 0 0 0 0


Now find which entries in A are also weight spaces for the SU(2) corresponding
to [2,1,1,1] by finding which A′ satisfy [E′, A′] = 0

E′ =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 for [2,1,1,1] A′ =


a11 a12 0 0 a15
0 a11 0 0 0
0 a32 a33 a34 a35
0 0 0 a33 a34
0 0 0 0 a33


Now

H ′ =


1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 [H ′, A′] =


0 2a12 0 0 a15
0 0 0 0 0
0 a32 0 0 0
0 0 0 0 0
0 0 0 0 0


To calculate the adjoint rep of this product SU(2)×SU(2) we take a di-
rect sum of the tensor product of the corresponding weight spaces for
a11, a12, a15, a32, a33, a34, a35 in [1,1,3] and [2,1,1,1]

(V4 ⊗ V0)⊕ (V2 ⊗ V0)⊕ (V0 ⊗ V2)⊕ (V2 ⊗ V1)⊕2 ⊕ (V0 ⊗ V0)⊕2
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4.3. U(6)

Table 4.3.1. Maximal Products of SU(2) in U(6)

Partition(s) Adjoint Representation

[1, 5] V8 ⊕ V6 ⊕ V ⊕34 ⊕ V2 ⊕ V ⊕20

[1, 2, 3] V4 ⊕ V ⊕23 ⊕ V ⊕42 ⊕ V ⊕41 ⊕ V ⊕30

[2, 4] V6 ⊕ V ⊕34 ⊕ V ⊕42 ⊕ V ⊕20
[3, 3]× [2, 2, 2] (V4 ⊗ V2)⊕ (V4 ⊗ V0)⊕ (V2 ⊗ V2)⊕ (V0 ⊗ V2)⊕ (V0 ⊗ V0)
[2, 1, 2, 1]× [2, 2, 2] (V2 ⊗ V2)⊕ (V0 ⊗ V2)⊕2 ⊕ (V1 ⊗ V2)⊕2 ⊕ (V2 ⊗ V0)

⊕(V1 ⊗ V0)⊕2 ⊕ (V0 ⊗ V0)⊕2
[3, 1, 1, 1]× [1, 1, 1, 3] (V4 ⊗ V0)⊕ (V0 ⊗ V4)⊕ (V2 ⊗ V2)⊕2 ⊕ (V2 ⊗ V0)

⊕(V0 ⊗ V2)⊕ (V0 ⊗ V0)⊕2
[1, 1, 1, 1, 2]× [4, 1, 1] (V6 ⊗ V0)⊕ (V4 ⊗ V0)⊕ (V3 ⊗ V1)⊕2 ⊕ (V2 ⊗ V0)

⊕(V0 ⊗ V2)⊕ (V0 ⊗ V0)⊕2
[1, 1, 1, 1, 2]× [1, 1, 2, 1, 1] (V2 ⊗ V0 ⊗ V0)⊕ (V0 ⊗ V2 ⊗ V0)⊕ (V0 ⊗ V0 ⊗ V2)
×[2, 1, 1, 1, 1] ⊕(V1 ⊗ V1 ⊗ V0)⊕2 ⊕ (V1 ⊗ V1 ⊗ V1)⊕2 ⊕ (V0 ⊗ V1 ⊗ V1)⊕2

⊕(V0 ⊗ V0 ⊗ V0)⊕3
[2, 2, 1, 1]× [1, 1, 2, 2] (V2 ⊗ V2 ⊗ V0)⊕ (V0 ⊗ V0 ⊗ V2)⊕ (V2 ⊗ V0 ⊗ V0)
×[2, 1, 1, 1, 1] ⊕(V0 ⊗ V2 ⊗ V0)⊕ (V1 ⊗ V1 ⊗ V1)⊕2 ⊕ (V0 ⊗ V0 ⊗ V0)⊕2

The following is a table of adjoint representations of the complexified Lie
algebras sl(2) in complexified gl(6) corresponding to the partitions of 6, using
the methods of Table 4.1.2.

Table 4.3.2. Representations of SU(2) in U(6)

Partition Adjoint Representation Centralizer

[1, 1, 1, 1, 2] V2 ⊕ V ⊕81 ⊕ V ⊕170 U(4)×U(1)
[1, 1, 1, 3] V4 ⊕ V ⊕72 ⊕ V ⊕100 U(3)×U(1)
[1, 1, 4] V6 ⊕ V4 ⊕ V ⊕43 ⊕ V2 ⊕ V ⊕50 U(2)×U(1)
[1,5] V8 ⊕ V6 ⊕ V ⊕34 ⊕ V2 ⊕ V ⊕20 U(1)×U(1)
[1, 1, 2, 2] V ⊕42 ⊕ V ⊕81 ⊕ V ⊕80 U(2)×U(2)
[1,2,3] V4 ⊕ V ⊕23 ⊕ V ⊕42 ⊕ V ⊕41 ⊕ V ⊕30 U(1)×U(1)×U(1)
[2, 2, 2] V ⊕92 ⊕ V ⊕90 U(3)
[2,4] V6 ⊕ V ⊕34 ⊕ V ⊕42 ⊕ V ⊕20 U(1)×U(1)
[3, 3] V ⊕44 ⊕ V ⊕42 ⊕ V ⊕40 U(2)

(*) bold indicates that this SU(2) is maximal in U(5).
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4.4. Adjoint Representations of Products of SU(2) with U(1)

Let G = U(n). A maximal product S = SU(2)× . . .×SU(2) ⊂ G will have
some torus as its centralizer

GS = U(1)× . . .× U(1).

We may want to find the adjoint representation of products of S with the torus
GS . Many products of SU(2) have a trivial centralizer GS = U(1) which is just
n×n scalar matrices. However, some will have a centralizer that is a product
U(1)× . . .×U(1). In these cases, the U(1) are blockwise scalar matrices with
each U(1) corresponding to a part in the associated partitions of S.

Example 4.4.1. — Consider the partition [1,2,3].

The centralizer of the corresponding SU(2) in U(6) is U(1)×U(1)×U(1).

The matrix of the centralizer is Z =


λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ2 0 0 0
0 0 0 λ3 0 0
0 0 0 0 λ3 0
0 0 0 0 0 λ3


To find the adjoint representation of S×GS , we can make explicit calculations
like those used to find the adjoint representations of products of SU(2). We
write the Lie algebra of GS explicitly exactly as we describe its torus in matrix
form since each U(1) is just described by some scalar.

Then we examine the adjoint action of the Lie algebra of the centralizer on the
weight spaces of the Lie algebra of S. Tori are abelian, hence the representations
of each U(1) will be one-dimensional.

The resulting adjoint representation of S×GS will be an (external) tensor prod-
uct of the isotypic component of the weight spaces which are acted on by the
centralizer with some one-dimensional representation C(w1,...,wk). Each factor
U(1)× . . .×U(1) acts on C(w1,...,wk) with weight wi ∈ {−1, 0, 1}, respectively.
We use the method from Example 4.4.2, which follows, to construct the table
below. The table shows the representations of products of several maximal
SU(2) subgroups S in G = U(n) and their centralizers. We let n be the sum of
the parts in the respective partitions.
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Table 4.4.1. Some Representations of S×GS in G

Partition Adjoint Representation

[1, 3] V4 ⊕ V2 ⊕ (V2 ⊗ C(1,−1))⊕ (V2 ⊗ C(−1,1))⊕ V ⊕20

[1, 4] V6 ⊕ V4 ⊕ (V3 ⊗ C(1,−1))⊕ (V3 ⊗ C(−1,1))⊕ V2 ⊕ V ⊕20

[2, 3] V4 ⊕ (V3 ⊗ C(1,−1))⊕ (V3 ⊗ C(−1,1))⊕ V ⊕22 ⊕ (V1 ⊗ C(1,−1))

⊕(V1 ⊗ C(−1,1))⊕ V ⊕20

[1, 5] V8 ⊕ V6 ⊕ V4 ⊕ (V4 ⊗ C(1,−1))⊕ (V4 ⊗ C(−1,1))⊕ V2 ⊕ V ⊕20

[2, 4] V6 ⊕ (V4 ⊗ C(1,−1))⊕ (V4 ⊗ C(−1,1))⊕ V4 ⊕ V ⊕22 ⊕ (V2 ⊗ C(1,−1))

⊕(V2 ⊗ C(−1,1))⊕ V ⊕20

[1, 2, 3] V4 ⊕ (V3 ⊗ C(0,1,−1))⊕ (V3 ⊗ C(0,−1,1))⊕ V ⊕22 ⊕ (V2 ⊗ C(1,0,−1))
⊕(V2 ⊗ C(−1,0,1))⊕ (V1 ⊗ C(1,−1,0))⊕ (V1 ⊗ C(−1,1,0))

⊕(V1 ⊗ C(0,1,−1))⊕ (V1 ⊗ C(0,−1,1))⊕ V ⊕30

Example 4.4.2. — Consider the partition [1,2,3] from Example 4.4.1.

The elements of the following matrix, A, display the weight spaces of the
corresponding sl(2), with the weights of each space given as a superscript

a011 0 a113 0 0 a216
a121 a022 a223 0 a125 a326
0 0 a022 0 0 a125
a241 a142 a343 a044 a245 a446
0 0 a142 0 a044 a245
0 0 0 0 0 a044


Then the action of the centralizer on A, [Z,A], gives


0 0 (λ1 − λ2)a113 0 0 (λ1 − λ3)a216

(λ2 − λ1)a121 0 0 0 (λ2 − λ3)a125 (λ2 − λ3)a326
0 0 0 0 0 (λ2 − λ3)a125

(λ3 − λ1)a241 (λ3 − λ2)a142 (λ3 − λ2)a343 0 0 0
0 0 (λ3 − λ2)a142 0 0 0
0 0 0 0 0 0


Z acts on the weight spaces a13, a16, a21, a25, a26, a41, a42, a43, resulting in the
adjoint representation

V4⊕(V3⊗C(0,1,−1))⊕(V3⊗C(0,−1,1))⊕V ⊕22 ⊕(V2⊗C(1,0,−1))⊕(V2⊗C(−1,0,1))

⊕(V1⊗C(1,−1,0))⊕ (V1⊗C(−1,1,0))⊕ (V1⊗C(0,1,−1))⊕ (V1⊗C(0,−1,1))⊕V ⊕30
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Compare this result to the representation for the partition [1,2,3] in Table
4.3.2. Notice that the addition of the torus into the adjoint representation
breaks up the multiplicities of some of its isotypic components. Also note that
the addition of the centralizer cannot alter the representations of the trivial
weight spaces along the diagonal.

5. Further Cases

Similar classifications can be made for all of the classical Lie groups - the
orthogonal, unitary, and quaternion groups and their compact subgroups.

Let G be any compact classical Lie group, with semisimple Lie algebra gC ⊆
gl(V ).

Then sl(2) ⊂ gC. This sl(2) is attached to a set of partitions that are in cor-
respondence with nilpotent orbits. These partitions differ somewhat from the
partitions in the case of U(n), but are not of considerably greater complexity
to handle. See Collingwood-McGovern[1] Chapter 5 for a breakdown of the
partitions for the classical Lie groups.

The combinatorial structure attached to a partition will tell us how to de-
compose a representation V of sl(2) into its isotypic components. We then
automatically have the adjoint representation of gl(V).

Since G is contained in GL(V), there exists some involution τ such that
g = (gl)τ .

We have the isotypic decomposition for the adjoint representation of gl(V)

gl(V ) =
⊕
i≥0

V ri
ni
.

We can then explicitly check which Vni are fixed by τ , giving us the adjoint
representation of sl(2) on G. Theoretically, we should be able to classify these
subgroups for all classical compact Lie groups and their products in this
manner.

We mentioned earlier that products of SU(2) are the smallest nonabelian
analogue of maximal tori in a compact Lie group. The paper "Finite Maximal
Tori" by Han and Vogan[2] provides a concise explanation of the existing
structure theory as well as their own interesting developments on the theory
of finite maximal tori.
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