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Abstract

In this paper, the homomorphism ϕ : C[B̃n] → C[Bn] → H(Sn) is studied, where
B̃n, Bn are the affine braid group and braid group of type An−1 and H(Sn) is the
corresponding Hecke algebra. By interpreting elements of the affine Weyl group as
elements of the affine braid group, we are able to describe a large commutative sub-
algebra in C[B̃n] consisting of translations in h∗. We investigate the image of this sub-
algebra in H(Sn) and show that it is the maximal commutative sub-algebra generated
by the Jucys-Murphy elements. Furthermore, we touch on previous work that show
that this result remains true when considering translations in Rn, and that furthermore
the standard basis maps onto the Jucys-Murphy elements directly.

1 Introduction

The purpose of this paper is to look at the representation theory and structure of the
Hecke algebra of type An through the lens of the commutative sub-algebra generated by
the Jucys-Murphy elements. In [1], Okounkov and Vershik describe a new method of
studying the representation theory of the symmetric group, where the relationship between
Young diagrams and irreducible representations of Sn is thoroughly motivated and comes
up naturally in the description of the representations. More specifically, there is a basis
for the irreducible representations of Sn called the GZ-basis, where each vector is uniquely
specified by the action of the Jucys-Murphy elements JM1, . . . , JMn, for all of which these
vectors are eigenvectors. Furthermore, the generated eigenvalues are exactly an order in
which to construct a Young diagram of size n, where the eigenvalue is exactly the content
of the box added. This leads to a natural description of a representation based on its
corresponding Young diagram. As described by Isaev and Ogievetsky [3], the study of
irreducible representations of Hecke algebras of type An can be carried out in the same
manner, with some differences in the exact categorization.
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The major result described in this paper appears in [5] and is the description of the image
of the map φ′ : B′n → H(Wn). More specifically, we describe the process by which one
shows that

φ′(T εi) = Xi

The paper is organized in the following manner. Section 2 offers an overview of the clas-
sification of irreducible representations of the symmetric group. Section 3 then focuses on
Coxeter groups and describes such things as Weyl groups, braid groups, and Hecke alge-
bras, as well as their affine counterparts. In particular, both their general relationship and
the specific case of type An Coxeter groups is discussed. Finally, section 4 goes through
two approaches to mapping translations in a Weyl group to the Hecke algebra H(Wn) and
describes how in both cases the Jucys-Murphy elements in the Hecke algebra arise in the
image.

2 Irreducible Representations of the Symmetric Group

2.1 Jucys-Murphy Elements

We begin by recalling the representation theory of symmetric groups as derived in [1]. First,
consider the chain of symmetric groups:

{1} = S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · ·

This chain has the property of simple branching. That is, if V,W are irreducible representa-
tion of Sn, Sn−1, respectively, then the multiplicity of W in V is at most one when viewing
V as a representation of Sn−1. This allows us to define a natural basis for the irreducible
representations of Sn, called the Gelfand-Tsetlin basis, or GZ-basis. To get this basis, start
with an irreducible representation V of Sn. Then, write V = ⊕iVi, where each Vi is an ir-
reducible representation of Sn−1. Continuing this process yields a decomposition of V into
the sum of irreducible representation of S1, which are necessarily one-dimensional. The
GZ-basis consists of a nonzero vector from each such subspace over all distinct irreducible
representation of Sn.

Let Z(n) denote the center of C[Sn]. Then, we can define the Gelfand-Tsetlin sub-algebra,
or GZ-algebra as

GZ(n) = 〈Z(1), Z(2), . . . , Z(n)〉
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By construction, this algebra is commutative. It is also the algebra of diagonal operators
on the GZ-basis. To check this, note that one can write C[Sn] = ⊕V λEnd(V λ), where V λ

is indexed over all equivalence classes of irreducible representations of Sn. Then, given
vT ∈ GZ-basis with T = (λ1, . . . , λn), consider the product PT = Pλ1 . . . Pλn , where

Now, it is useful to define the Jucys-Murphy elements JMn ∈ C[Sn] as follows:

JM1 = 0

JMi = (1 i) + (2 i) + · · ·+ (i− 1 i) for i ≥ 2

Presented below are several facts about these elements:

1. JMn ∈ Z(C[Sn],C[Sn−1])

2. GZ(n) = 〈JM1, . . . , JMn〉

The second fact is of particular importance in classifying irreducible representations of Sn.
Given an element vT of the GZ-basis, each JMi will be act by a scalar multiple, since it is
necessarily a diagonal operator. Furthermore, because GZ(n) contains projectors onto each
vT ′ , the actions of the JMi on vT is enough to uniquely define it, motivating the following
definition.
Definition 1. Given some vT in the GZ-basis, define its weight as a vector α(vT ) =
(a1, . . . , an) ∈ Cn such that

JMivT = aivT

Furthermore, we can also write the spectrum of the JM basis

Spec(n) = {α(v) : v is in the GZ-basis}

Because the weight of a vector uniquely defines it up to a constant multiple, we can also
write vα as the basis vector corresponding to α ∈ Spec(n). Furthermore, we can define a
further equivalence relation ∼ on Spec(n) by writing

α ∼ β, α, β ∈ Spec(n)

whenever vα and vβ are basis elements of the same irreducible representation of Sn, up to
isomorphism. From here, there are two quickly evident facts about Spec(n) and

|Spec(n)| = # of GZ-basis vectors

|Spec(n)/ ∼| = # of irreducible representations of Sn, up to isomorphism
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Figure 1: Young’s Lattice

2.2 Young tableaus

Before continuing with the description of irreducible representations of Sn, we first describe
Young tableaus in more detail. Given a partition n = a1 + . . . ,+ak, its corresponding
tableau is a visualization of this partition and contains k rows of blocks, where the i-th row
contains ai blocks. Given a Young tableau with n total blocks, it is possible to construct a
tableau with n+ 1 blocks by adding a block anywhere where both its top and left side are
adjacent to another block or is in the first row or column, respectively. Conversely, given
a tableau with n + 1 blocks, it is possible to make a tableau with n simply by removing
any block which has nothing to its right or bottom. All together, this process of removing
and adding blocks creates a lattice, where the root is just a single box and two tableaus are
connected if the removal of addition of one block is enough to get from one to the other.
This lattice is called Young’s lattice and is shown above.

Each block in a Young tableau also has a content which is equal to the difference between
its x-coordinate and y-coordinate. The figure below shows the contents of different blocks
in a Young tableau.

Figure 2: Contents of Boxes
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2.3 Classifications of the Irreducible Representations

Definition 2. Given a natural number n ∈ N, define the set of content vectors of length n
as vectors

α = (a1, . . . , an) ∈ Cont(n)

such that α satisfies the following conditions

1. a1 = 0

2. For q > 1 {aq ± 1} ∩ {a1, . . . , aq−1} 6= ∅

3. If ap = aq for some p < q, then {ap ± 1} ⊂ {ap+1, . . . , aq−1}

As described in [1], each content vector corresponds to the process of building up a Young
tableau block by block. Each ai describes the content of the next box to be added, and the
three rules for content vectors are exactly those that guarantee the construction of a valid
Young tableau. With this motivation in mind, we can now define an equivalence relation
≈ on Cont(n), where

α ≈ β, α, β ∈ Cont(n)

whenever the Young tableau constructed through α and β is the same. What follows is the
main result from [1].

Theorem 1. Spec(n) = Cont(n) and α ∼ β⇐⇒α ≈ β.

As a result of Theorem 1, all irreducible representations of Sn correspond to some Young
tableau T and have dimension equal to the number of ways to build up T one block at a
time. Additionally, the branching graph of the symmetric group is exactly Young’s lattice.
Finally, by examining the action of the Coxeter generators (i i+ 1) and their action on the
basis, one can exactly describe the action of Sn on all these irreducible representations.

3 Coxeter Groups and Root Systems

3.1 Weyl group

We begin this section with a discussion of Weyl groups, a specific type of Coxeter group.
Given a root system Φ, there is a corresponding group generated by reflections through
the hyperplanes perpendicular to the vectors in Φ. These form a group W called the Weyl
group. By limiting our work to the finite case, the properties of root systems guarantee
that W will be a Coxeter group with generators sα for α ∈ ∆, where ∆ is some simple
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subsystem of Φ. Accordingly, one can also define a length function l : W → N such that
for w ∈W , l(w) is the length of the shortest expression of w in terms of the sα generators.

In this paper, we are concerned solely with Weyl groups of type An, an example of which
is worked out below.

First, let ε1, . . . , εn be the standard basis of Rn and let ( , ) be the standard inner product.
For now, we will restrict ourselves to looking at h∗ = {(a1, . . . , an) : a1 + · · · + an = 0}.
This space contains and is spanned by the root system Φ = {εi − εj}i 6=j . For each α ∈ h∗,
there is a corresponding reflection sα through the hyperplane perpendicular to α. In fact,
sα(x) = x − 2(α,x)

(α,α) α = x − (α, x)α. Now, for i = 1, . . . , n, define αi = εi+1 − εi. These αi
form a simple subsystem ∆ ⊂ Φ. Let si = sαi for i = 1, . . . , n−1. From this, it follows that
the group of reflections generated by the sα for α ∈ Φ can also be expressed as a Coxeter
group with generators and relations as follows:

Wn =

〈
s1, . . . , sn−1

∣∣∣∣s2i = 1, (sisj)
mi,j = 1 where mi,j =

2 if |i− j| > 1
3 if |i− j| = 1

〉
Notice that, in this case, Wn ≡ Sn, where the si are the standard generators (i i + 1).
Furthermore, the action of Wn on h∗ is exactly the standard action of Sn on Rn.

Given α ∈ h∗, we can also define T (α), a translation by α in h∗. Then, we can define the
affine Weyl group W̃n as in [6]

W̃n = 〈W, {T (α)}α∈h∗〉

We can give another presentation of W̃n as a Coxeter group. Define α0 =
∑n

i=1 αi and
Hα0,1 = {x ∈ h∗|(x, α0) = 1}. Then, let s0 be the reflection through the plane Hα0,1.
Then, W̃n is of the form

Wn =

〈
s0, s1, . . . , sn−1

∣∣∣∣s2i = 1, (sisj)
mi,j = 1 where mi,j =

2 if |i− j| > 1
3 if |i− j| = 1

〉
Here, the |i− j| is interpreted modulo n, meaning that s0sn−1s0 = sn−1s0sn−1. So, we are
thus able to define the Coxeter group and affine Coxeter group of type Ãn.

3.2 Braid Group

Given a Coxeter group W , there is also a corresponding braid group, defined as follows:

6



B = 〈Tv|v ∈W,TvTw = Tvw if l(v) + l(w) = l(vw)〉

Note that, while the Weyl groups we consider are finite groups, the braid group will not
be finite. In fact, a nontrivial element cannot have finite order, as any cancelling that
ultimately results in the identity will need to decrease the length of elements, at which
point one cannot combine terms in the braid group.

As the braid group is currently defined, there is no well-defined map from W to B, as there
are multiple ways to write an element x ∈ W that would not be interpreted as the same
element in B. For example, x = xs2α for any α ∈ Φ, but T 2

sα 6= 1.To interpret x, it is
necessary to write x as a product of Coxeter generators of minimum length x = sa1 . . . sak ,
and then to write each generator as the corresponding element of the braid group. In this
example, x = Tsa1 ...sak . While this is a well-defined map W → B, it is in general not a
homomorphism and so little can be said about the map directly.

While the Weyl group can be pictured as a reflection group, it is easiest to think of the
braid group as the group of different ways to “braid" n strands under composition. In this
visualization, Tsi is the result of pulling the i-th strand over the i + 1-st strand, as seen
below.

Figure 3: A visualization of s2

We can apply this to Wn to get the braid group Bn. It has a presentation very similar to
that of Wn, though things are slightly different because none of the Tsi have finite order.

Bn = 〈s1, . . . , sn−1|sisj = sjsi if i 6= j ± 1, sisi+1si = si+1sisi+1 for i = 1, . . . , n− 2〉

We can also define the affine braid group B̃n by adding a generator s0 and taking the
relations modulo n.

Bn = 〈s0, s1, . . . , sn−1|sisj = sjsi if i 6= j ± 1, sisi+1si = si+1sisi+1 for i = 1, . . . , n− 1〉
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Similarly to s1, . . . , sn, it is possible to interpret s0 in the “braided strand” interpretation
by picturing the n + 1 strands laid out in a circle instead of a line, and then treating
s0 as overlaying the last strand over the first. Furthermore, as in [2], there is a map
φ : B̃n+1 → Bn+1 acting by the following rules

φ : si 7→ si for i > 0

s0 7→ snsn−1 . . . s2s1s
−1
2 . . . s−1n−1s

−1
n

To visualize this, consider the case when n = 3

Figure 4: The braid corresponding to φ(s0) = s3s2s1s
−1
2 s−13 in B3.

This map interprets a braid between the first and last strand through a combination of the
si as opposed to the use of s0. It is easy to check that this map is a group homomorphism.

3.3 Hecke Algebra

Given a Weyl group W , it is also possible to define its Hecke algebra in a similar manner
to the braid group.

H(W ) = 〈Tv|v ∈W,TvTw = Tvw if l(v) + l(w) = l(vw)〉, T 2
v = (q

1
2 − q−

1
2 )Tv + 1
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Here, q is a formal variable. The condition that allows for simplifying these elements can
be restated as (Tv − q

1
2 )(Tv + q−

1
2 ) = 0. This is a generalization of the Weyl group, as if

q = 1 is set, then the original Weyl group comes out again.

As supported by the similarity between the Hecke algebra and the braid group, there is a
good presentation of H(Wn) that begins with the braid group Bn. In fact, H(Wn) is simply
the quotient of Bn by the relations s2i = (q

1
2 − q−

1
2 )si + 1. Consequently, we can define a

homomorphism i : Bn → H(Wn) which simply sends an element to itself. From this, we
can now consider the map

ϕ = i ◦ φ : B̃n+1 → H(Wn)

Just as H(Wn) is in some sense a generalization of the symmetric group, its representation
theory also reflects this fact. As worked out in [3], the representation theory of this Hecke
algebra can be developed in the same way as in Section 2, by setting up an inductive chain
of algebras and defining a correspondence between irreducible representations and Young
diagrams. Consequently, H(Wn) also has a notion of a Jucys-Murphy element Xi. They
are defined as follows

X1 = 1, Xi+1 = siXisi for i ≥ 1

For i > 1, one can then write Xi = si−1 . . . s2s
2
1s2 . . . si−1. The relations in the Hecke

algebra can then be used to simplify this and get

Xi = 1 + (q
1
2 − q−

1
2 )

i−1∑
k=1

sk . . . si−1 . . . sk

Taking the classical limit Xi−1
q
1
2−q−

1
2
and specializing to q = 1, we get

Xi − 1

q
1
2 − q−

1
2

=
i−1∑
k=1

sk . . . si−1 . . . sk = JMi

In this way, the Jucys Murphy elements of the symmetric group and the Hecke algebra
are interconnected. Additionally, from this it is also clear that these Xi generate a large
commutative sub-algebra of H(Sn+1). We now attempt to understand this sub-algebra
from the perspective of the affine Weyl and braid groups.
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4 Images of Translations in the Weyl Group

4.1 Translations in W̃n

W̃n contains a large commutative subgroup WT ⊂ W̃n of translations T (α) for α ∈ h∗.
However, as mentioned previously, writing these as elements of B̃n does not preserve the
structure of this subgroup. In fact, the resulting elements do not always commute! However,
as discussed by Lusztig in [4], this can be remedied by introducing the notion of the positive
cone P+ ⊂ h∗, defined as follows

P+ = {x ∈ h∗|(x, αi) ≥ 0, i = 1, . . . , n− 1}

Lusztig then goes on to show that if α, β ∈ P+, then T (α)T (β) = T (α + β) inside B̃n.
That is, all positive translations do continue to commute. As such, he then defines a map
Θ : WT → B̃n defined as show below.

Θ(x) = T (α)T (β)−1, α, β ∈ P+, x = α− β, T (α), T (β) ∈ B̃n

This map, unlike the previous map, is in fact a homomorphism from WT to B̃n. This then
allows us to examine the image of this sub-algebra in H(Wn).

Additionally, Lusztig also shows in his paper that given α ∈ P+ and by writing Wα as the
Wn-orbit of α,

∑
β∈Wα

Θ(β) ∈ Z(H(Wn))

That is, the center of the Hecke algebra contains the sum over a Wn-orbit of any element
in the positive cone. Once it is shown that the Jucys-Murphy elements are in the range of
these translations, this will also mean that symmetric polynomials in the Xi will generate
the center of the Hecke algebra.
Example 1. Here, we consider the case when n = 4.

α T (α) ϕ(T (α))

α1 + α2 + α3 s0s3s2s1s2s3 X4

α1 + 2α2 + α3 (s0s3s1s2)
2 X4 +X3 −X2

α1 + 2α2 + 2α3 (s0s1s2s3s2)
2 2X4 −X2

α1 + 2α2 + 3α3 (s0s1s2s3)
3 3X4 −X3 −X2

2α1 + 2α2 + α3 (s0s3s2s1s2)
2 X4 +X3

3α1 + 2α2 + α3 (s0s3s2s1)
3 X4 +X3 +X2

α Θ(α)

α1 X2

α1 + α2 X3

α1 + α2 + α3 X4
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In this example, it is apparent that, in fact, the image of these translations under the Θ
map consists of linear combinations of the Jucys-Murphy elements in H(W4). Furthermore,
this appears to signal that Θ(

∑k−1
i=1 αi) = Xk. The next section will approach this problem

from a different direction, but will come onto the same conclusion.

4.2 Translations in Rn

Up to now, we have worked primarily with Coxeter groups and related constructions. How-
ever, there is a different approach investigated by Ram and Ramagge in [5] that begins by
considering Rn instead of h∗. While this is no longer a Coxeter group, it is still similar
enough that the constructions for the affine braid group and the Hecke algebra still apply.
When viewed from this perspective, the map from the affine braid group to the Hecke
algebra becomes much simpler.

First, let W ′n be the group generated by the si from before and by another element T ε1 ,
corresponding to a translation by ε1. This then allows us to define the corresponding braid
group B′n with presentation as follows.

B̃′n =

〈s1, . . . , sn−1, Xε1 |sisj = sjsi if i 6= j ± 1
|sisi+1si = si+1sisi+1 for i = 1, . . . , n− 2
|T ε1s2T ε1s2 = s2T

ε1s2T
ε1

|T ε1si = siT
ε1 for i = 3, . . . , n− 1 〉

Now, we can define T εi ∈ B′n as

T εisiT
εi−1si

These correspond exactly to the translations by εi in W ′n. Now, we can now extend this to
a map φ′ : B̃′n → H(Wn) by mapping the si to themselves and Xε1 to 1. Now, to determine
the image of the translations, we need only consider the Xεi , as they form a basis for Rn.
But it is easy to see that

φ′(εi) = si−1si−2 . . . s
2
1s2 . . . si−1 = Xi

So, the translations by the standard basis correspond exactly to the Jucys-Murphy elements,
as was conjectured. Additionally, this also lines up with the work from the translations in
h∗, as
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i−1∑
k=1

αi = εi − ε1

However, after applying the map into the Hecke algebra, the ε1 becomes trivial, indicating
that in fact, φ(T (

∑i−1
k=1 αi)) = Xi.
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