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1 Introduction

An h-principle is method for finding solutions to a partial differential equation
given a solution to a topological problem. Let p : X → V be a smooth fiber
bundle over a manifold V , and let X(r) be the bundle of r-jets of p. A differential
relation on X is a submanifold R ⊂ X(r) for some r. Any smooth section of p
gives a section of X(r) by taking the r-jet of the section; such sections of X(r)

are called holonomic. A holonomic section of X(r) with image in R is a solution
to R. An h-principle is a relationship between the topology of the space of
solutions of R, SolR, and another topological space that is hopefully easier to
understand.

For example, let DiffVX be the group of diffeomorphisms of X that map
fibers to fibers, and let π : DiffVX → DiffV be the canonical projection, given
by π(f)(x) = p(f(p−1(x)). We say that X is a natural bundle if there exists a
homomorphism j : DiffV → DiffXV that is a section of π. This gives an action
of DiffV on X, and thus on X(r). The prototypical h-principle is,

Proposition 1.1. (Gromov’s h-principle for open Diff-invarant differ-
ential relations on open manifolds, see [1], 7.2.3) Let V be open, and let
R be open inside X(r). Write Γ(V,R) for the space of sections of p|R : R → V .
Let X be a natural bundle. Suppose the action of DiffV on X(r) preserves R.
Then the inclusion map

SolR → Γ(V,R)

is a homotopy equivalence.

The above allows one to construct geometric structures on open manifolds
using topological data. For example, let dimV = 2n. Consider, on (T ∗V )(1) '
T ∗V ⊕ T ∗V ⊗ T ∗V ' T ∗V ⊕ Λ2T ∗V ⊕ Sym2T ∗V , the relation that the deter-
minant of the projection of a section to Λ2T ∗V is nonzero. This is an open
Diff-invariant differential relation on T ∗V , so solutions to this relation exist if
sections of the relation exist. But a section of the relation exists exactly if V
admits a nowhere-degenerate 2-form ω. This, in turn, is equivalent to the exis-
tence of an almost-complex structure on TV , i.e. to TV admitting the structure
of a U(n) bundle. Solutions of this relation are exactly one-forms α with non-
degenerate dα; since d2α = 0, dα is a symplectic form on V for any solution α.
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Thus for open V 2n, if TV admits the structure of a U(n) bundle then V admits
a symplectic structure.

However, many geometric conditions on V , such as the conditions for a met-
ric on V to be Ricci-flat or for V to admit a complex structure are not given by
open differential relations. In this paper, we use the Gromov-Philips transversal-
ity theorem and Haefliger’s construction of the classifying space of a topological
groupoid to generalize Gromov’s classical h-principle to the following:

Theorem 1.2. Let Mn be an open manifold and R an arbitrary Diff-invariant
differential relation on M . Let τ : M → BGL(n) be the map classifying the
tangent bundle of M . Then there exists a space BΓR and a map π : BΓR →
BGL(n), such that homotopy classes of solutions to R on M are in bijection
with homotopy classes of lifts of τ from BGL(n) to BΓR.

The space BΓR will be the classifying space of a topological groupoid con-
structed from R, thus generalizing the remarkable observation of [2] that the
problem of finding a complex structure on an open manifold is is governed by
an h-principle.

The argument is directly analogous to Haefliger’s argument [3] classifying
foliations on open manifolds. In Section 2.1, we review definitions and standard
results about topological groupoids Γ, Γ-structures, and their classifying spaces
BΓ. In Section 2.2, we define the ètale groupoid ΓR associated to a Diff-invariant
differential relation R. In Section 2.3, we discuss the notion of an integrable Γ-
structure (for ètale groupoids Γ), and show that solutions to R correspond to
an integrable ΓR-structures. Finally, in Section 2.4, we state the central claim
(Theorem 2.27): the space BΓR admits a universal integrable ΓR-structure
ωR which can be viewed as a “universal solution” to R, in the sense that any
integrable ΓR on M is a pullback of ωR by a map f : M → BΓR that lifts
the classifying map τ : M → BO(n) of the tangent bundle of M . Moreover,
finding a lift f of τ to BΓR is sufficient to construct an integrable ΓR on M : the
existence of such a lift allows one to apply the Gromov-Philips Transversality
theorem to find a map f ′ : M → BΓR homotopic to f and transverse to ωR,
and the pullback of ωR by f ′ gives an integrable ΓR structure on M .

At the heart of this argument are two simple observations. First, integrable
ΓR structures pull back through transversal maps, and in particular, solutions
to Diff-invariant differential relations pull back through codimension zero im-
mersions. Second, immersions and transversal maps from open manifolds are
governed by homotopy theory. Thus we can apply the Smale-Hirsch immersion
theorem to maps from M to any space admitting an integrable ΓR structure. In
Section 3, we explore this technique to find a metric on any 3-manifold that is flat
outside of a neighborhood of a point (Proposition 3.5), some topological criteria
for Stein surfaces to admit hyperkahler and Kahler-Einstein structures (Propo-
sitions 3.1, 3.8), and solutions to the Einstein field equations with all stress
energy concentrated in a small neighborhood of a spacetime point (Proposition
3.9).
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2 h-principle for Diff -invariant relations on open
manifolds

In this section, we review the language of groupoids and classifying spaces, and
prove Theorem 1.2.

2.1 The Classifying Space of a Topological Groupoid

First, to fix terminology, we will review the basic notions needed to state the
existence of the classifying space of a topological groupoid. This presentation
follows [3].

Definition 2.1. A groupoid is a category whose morphisms are invertible and
form a set Γ. Abusing notation, we will denote the groupoid by Γ as well. Let
B be the set of objects of Γ. Let α, β : Γ → B denote the source and target
maps, γ : Γ×B Γ→ Γ denote composition (where Γ×B Γ is the fiber product of
β with α), u : B → Γ the unit map, and i : Γ→ Γ denote the map that sends a
morphism to its inverse.

Definition 2.2. A topological groupoid is a groupoid such that Γ and B are
topological spaces, and α, β, γ, u, and i are all continuous maps.

Remark 2.3. If we endow the of units U of Γ with the subspace topology, then
u gives a homeomorphism B → U , since α is a continuous left and right inverse.

Let X be a topological space, and let {Ui}i∈I be a covering of X. A 1-cocycle
γ over {Ui} with values in a topological groupoid Γ is a choice, for every pair
i, j ∈ I, of a continuous map γij : Ui ∩ Uj → Γ such that γij(x)γjk(x) = γik(x)
for all x ∈ Ui ∩ Uj ∩ Uk. Note that this relation implies that γii maps Ui to
the set of units; since the set of units as a subspace of Γ is homeomorphic to B,
we will at times think of γii as maps from Ui to B, which will be denote by γ̄i.
Given another 1-cocycle γ′ over {U ′k}k∈K , we say that γ and γ′ are equivalent
if for all i ∈ I and k ∈ K there exist continuous maps δik : Ui ∩ Uk → Γ such
that

δik(x)γ′kl(x) = δil(x) for x ∈ Ui ∩ U ′k ∩ U ′l and

γji(x)γ′ik(x) = δjk(x) for x ∈ Ui ∩ Uj ∩ U ′k
We will denote equivalence between two 1-cocycles γ, γ′ by γ = γ′.

Remark 2.4. ?? By the previous equations, we have that

γij(x)γjj(x)γ−1ij (x) = γii(x)
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on x ∈ Ui ∩ Uj . But this means exactly that

γij ◦ γ̄j(x) = γ̄i(x).

Definition 2.5. A Γ-structure on X is an equivalence class of 1-cocycles on X
with values in Γ.

If f : X → Y is a continuous map of topological spaces, then Γ-structures
on Y naturally pull back to Γ-structures on X: the sets f−1(Ui) cover X, and
the maps γij ◦ f define the pullback Γ structure.

A map of topological groupoids π : Γ → Γ′ defines a natural map from 1-
cocycles with values in Γ to 1-cocycles with values in Γ′: if γ is a 1-cocycle over
the cover {Ui} with values in Γ, then π(γ) is a cocycle over {Ui} with values in
Γ′ defined by π(γ)ij(x) = π(γij(x)). This map respects the equivalence relation
on 1-cocycles, and so defines for any space X a map, also denoted π, from
Γ-structures on X to Γ′ structures on X.

Remark 2.6. Let Γ− struct : Top→ Set be the functor sending a topological
space X to the set of Γ-structures on X. It is easy to check that π is natural,
in the sense that π is a natural transformation from Γ− struct to Γ′ − struct.

Definition 2.7. A homotopy of Γ-structures between Γ-structures σ0, σ1 on X
is a Γ structure σ on X × [0, 1] such that i∗0σ = σ0, i

∗
1σ = σ1 where it : X '

X × {t} ⊂ X × [0, 1] denotes the inclusion map.

To construct a classifying space for Γ-structures, one needs the following
technical notion from point-set topology:

Definition 2.8. An open covering {Ui}i∈I of a topological space X is said
to be numerable if there is a locally finite partition of unity {ui}i∈I such that
u−1i (0, 1] = Ui. A Γ-structure on X is numerable if it can be defined by a 1-
cocycle over a numerable covering. Two numerable Γ-structures are numerably
homotopic if they are connected by a homotopy which is numerable.

Remark 2.9. Note that on a paracompact space, e.g. a smooth manifold, any
covering is numerable.

Haefliger proves the following for all topological groupoids Γ:

Theorem 2.10. ([3], §7) There exists a space BΓ with a numerable Γ-structure
ω such that for any numerable Γ-structure σ on a space X, there exists a con-
tinuous map f : X → BΓ such that f∗ω = σ. If f0, f1 : X → BΓ are two
continuous maps, then f∗0ω is numerably homotopy to f∗1ω if and only if f0 and
f1 are homotopic.

Remark 2.11. If ΓG is Lie group G viewed as a topological groupoid with one
object, then a Γ-structure on X is a G-principal bundle on X.
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2.2 The groupoid associated to a Diff-invariant differential
relation

In this section, we define the uniquely-defined groupoid ΓR associated to a
Diff-invariant differential relation R on a manifold M .

Definition 2.12. We say that a topological groupoid Γ is ètale if α, the map
sending morphisms to their sources, is a local homeomorphism.

Example 2.13. Let Γn be the groupoid of local diffeomorphisms of Rn. This
groupoid has base B = Rn and morphisms from p ∈ Rn to q ∈ Rn given
by germs of diffeomorphisms defined on a neighborhood of p that take p to
q. Each diffeomorphism between open sets φ : U → V ⊂ Rn defines a map
φ̄ : U → Γ, sending p ∈ U to the germ of φ at p. The set of morphisms is
topologized in the étale topology, the weakest topology such that all the maps
φ̄ are homeomorphisms. In this topology, Γn is ètale.

Remark 2.14. Given an open set U ⊂ Rn, a section of α : Γn → Rn over U
then exactly a diffeomorphism from U to some other open V ⊂ Rn.

Remark 2.15. For any manifold M , there exists an analogous ètale topological
groupoid ΓM of local diffeomorphisms of M with base M . This construction
makes sense even if M is non-Hausdorff.

Definition 2.16. (The groupoid associated to a Diff-invariant differential re-
lation) Let X be a smooth fiber bundle over Mn, with Mn connected. Let
R ⊂ X(r) be a Diff-invariant differential relation on X. Take a diffeomorphism
from Rn to a small open in Mn, and pull R through this diffeomorphism to a
Diff-invariant differential relation R′ on Rn.

Let B be the sheaf of germs of holonomic sections of R′. A point in B is
thus a tuple (p, f), where p is a point of Rn and f is the germ of a holonomic
section to R′ defined near f (in other words, the germ of a solution to R′ around
p). The étale topology naturally endows B with the structure of a smooth non-
Hausdorff n-manifold: the atlas of charts for this smooth structure is generated
by the smooth holonomic sections of R′ over all opens in Rn.

Let ΓR be the topological groupoid defined as follows. The base of ΓR is
B. Morphisms from (p, f) to (q, g) are germs of local diffeomorphisms h of Rn
defined near p, such that h(p) = q and h∗g = f . Since the set of morphisms
form a sheaf over B, we topologize it with the étale topology. Then ΓR is called
the groupoid associated to R.

It is not completely obvious that ΓR is well-defined. However, given two
diffeomorphisms φ0, φ1 from Rn to small opens in M , by the connectedness
of M and of DiffRn, we can find a diffeomorphism g : M → M such that
g ◦ φ0 = φ1. Since R is Diff-invariant, solutions to R over open sets in φ0(Rn)
correspond to solutions to R over open sets in φ1(Rn) via g; moreover, given a
diffeomorphism ξ : U → V betwen opens in φ0(Rn) pulling a solution over V to
a solution over U , the conjugate of ξ by g pulls back the corresponding solution
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on g(V ) to the corresponding solution on g(U). But solutions to R on opens
in φi(Rn) are exactly local solutions the pullback of R by φi. Following this
reasoning, it is elementary to show that using g, one construct an isomorphism
of ètale groupoids between the two ΓR constructed from φ0 and φ1; so both R′
and ΓR are well-defined.

Remark 2.17. The same reasoning shows that solutions toR on any sufficiently
small open ball U ⊂M are exactly pullbacks of solutions to R′ over small balls
V ⊂M , by any diffeomorphism U → V .

Remark 2.18. There is a map of topological groupoids r : ΓR → Γn. Its action
on the base B sends (p, f) to p, and its action on morphisms is the identity. By
the definition of the smooth structure on B, r induces a local diffeomorphism
B → Rn, which corresponds to the structure of B as the ètale space of a sheaf
over Rn.

2.3 Integrability of Γ-structures

Suppose Γ is a topological groupoid such that its base has the structure of a
(possibly non-Hausdorff) manifold. This section defines integrable Γ-structures,
which generalize the notion of a solution to a Diff-invariant differential relation.

Definition 2.19. A Γ-foliation, or an integrable Γ-structure on a manifold M
is a Γ-structure admitting a representing 1-cocycle γ with γ̄i a submersion to B
for all i.

Definition 2.20. An integrable homotopy of Γ-foliations is a homotopy of Γ-
structures through Γ-foliations.

Definition 2.21. LetM be a manifold with a Γ-foliation σ with a representative
1-cocycle γ and f : N →M be a smooth map. We say that f is transverse to σ
if γ̄i ◦ f : f−1(Ui)→ B are submersions for all i. It is straightforward to check
that Γ-foliations, when viewed as Γ-structures, pull back to Γ-foliations under
transverse maps, and that the property of being a Γ-foliation is independent of
the choice of representative cocycle.

Example 2.22. An integrable ΓRn structure is exactly a codimension n foli-
ation. The previous argument proves the well-known fact that foliations pull
back under transverse maps.

Remark 2.23. The map from ΓR-structures to Γn structures induced by r
sends integrable ΓR structures to integrable Γn structures. This follows imme-
diately from the fact that the action of r from the base of ΓR to the base of Γn
is a local diffeomorphism (Remark 2.18), and the fact that the composition of
a submersion with a diffeomorphism is a submersion.

The same properties can be used to show that if a map is transverse to a
ΓR-structure, then it is transverse to the induced Γn-structure, and vice versa
(since a map ξ : X → Y is a submersion if and only if χ ◦ ξ is a submersion,
where χ is an arbitrary local diffeomorphism Y → Z).
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Remark 2.24. There is a map of topological groupoids ν : ΓRn → ΓGLn(R).
The base of ΓGLn(R) is a point ∗, and ν sends all elements in the base of ΓRn to
∗. Given a germ of a local diffeomorphism of Rn from p to q, we can take its
derivative at p to get an element of GLn(R). The map ν sends morphisms in
ΓRn to their derivatives at their source.

Example 2.25. Given an integrable ΓRn-structure σ on a manifold N , the
ΓGLn(R)-structure induced by ν defines a vector bundle νσ that is isomorphic to
the normal bundle of the foliation corresponding to σ.

Remark 2.26. Let Mn be a manifold with Diff-invariant differential relation
R. An integrable ΓR-structure on M is exactly the data of a solution to R. We
will sketch one direction; the other direction is immediate from Remark 2.17.
Suppose M admits an integrable ΓR-structure with representing 1-cocycle γ
over an open cover {Ui}. Let B be the base of ΓR, and let r be the map defined
in Remark 2.18. Then, γ̄i is a submersion to B (in fact, a diffeomorphism, since
B has the same dimension as M by definition). Since r is a local diffeomorphism
B → Rn, means that after possibly refining the open cover {Ui}, r ◦ γ̄i : Ui →
B → Rn is a submersion onto an open set Vi ⊂ Rn. But a point of B is a
tuple (p, f), where p ∈ Vi ⊂ Rn and f is a germ of a solution to R′ around
p (see Definition 2.16). Thus, γii defines a map sending p ∈ Vi to f in the
ètale space of the sheaf of solutions to R′, i.e. a solution hi to R′ over Vi.
Let fi = (r ◦ γ̄i)∗hi; by Remark 2.17, for a sufficiently small Ui, fi will be a
solution to R. But r ◦ γij then defines a diffeomorphism from r ◦ γ̄j(Ui ∩Uj) to
r ◦ γ̄i(Ui ∩Uj), with the property that (r ◦ γij)∗hi = hj . By the functoriarity of
r and the 1-cocycle equations for γ (see Remark ??), we have that on Ui ∩ Uj ,
(r ◦ γij) ◦ (r ◦ γ̄j) = (r ◦ (γij ◦ γ̄j) = r ◦ γ̄i. In other words, on Ui ∩ Uj , fi =
(r◦ γ̄i)∗hi = ((r◦γij)◦(r◦ γ̄j))∗hi = (r◦ γ̄j)∗(r◦γij)∗hi = (r◦ ¯gammaj)

∗hj = fj ;
so the fi glue together to a global solution to R.

2.4 The main argument

Theorem 2.27. Let M be an open manifold. Let R be a Diff-invariant differ-
ential relation on Rn. Let BΓR be the space defined by Theorem 2.10, ωR be the
ΓR structure on ΓR, and νωR be the vector bundle on BΓR corresponding to the
ΓGLn(R) structure induced from ωR by the compostion ΓR → ΓRn → ΓGLn(R).

There is a bijection between integrable homotopy classes of ΓR-foliations on
M and homotopy classes of epimorphisms of TM to νωR.

Proof. An integrable ΓR-foliation F on M is a ΓR structure, and so by Theorem
2.10, F = f∗ωR for some f : M → BΓR. By the functoriality of ν (Remark 2.6),
f∗νωR ' νf∗ωR ' νF , so there is a bundle map φ : νF → νωR covering f that
is an isomorphism on each fiber. But νF is the normal bundle to the codimension
n foliation induced by F , and so admits an epimorphism q : TM → TM/F =
νF ; the bundle map φ ◦ q : TM → νωR is the desired epimorphism. Given a
homotopy of foliations foliations, this gives a homotopy of epimorphisms.
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Let φ : TM → νωR be an epimorphism of vector bundles whose projection
is f : M → BΓR. Let σ = f∗ωR. Then there exists a map i : M → E
where E is a finite dimensional smooth manifold with a ΓR-foliation ε such that
i∗ε = σ. We will describe this construction explicitly; it is almost identical to the
well-known construction of the foliated microbundle associated to a Haefliger
structure. Take a defining 1-cocycle {γij} for σ, defined over a covering {Ui}
of M . Using the paracompactness of M and possibly refining the Ui, we can
assume that γ̄i maps Ui into a basis element Vi of the topology on the base B of
ΓR; then Vi = gi(V

′
i ), for some open subset V ′i ⊂ Rn and some solution gi to R

over V ′i . Let Gi ⊂ Ui×V ′i be the graph of g−1i ◦ γ̄i = r ◦ γ̄i, let si : Ui → Ui×V ′i
be the section corresponding to g−1i ◦ γ̄i, and let pik be the projection from Gi
to the first and second factor, respectively. Let εi : Ui × V ′i → B be gi ◦ pi2. Let
Gij be the restriction of Gi to (Ui ∩ Uj)× V ′i . Then we have a diffeomorphism
wij from some open neighborhood Wij of Gij inside (Ui∩Uj)×V ′i to some open
neighborhood of Gji inside (Ui ∩ Uj) × V ′j which can be written in the form
(id, ρij), where ρij = r ◦ γij ; then ρ∗ijgj = gi and wij ◦ si = sj .

Choose open neighborhoodsWi ofGi inside Ui×V ′i such thatWi|(Ui∩Uj)×V ′
i
⊂

Wij for all j (this is possible because of the fact that {Ui} is a locally finite
cover). The definition of a ΓR structure implies that ρijρjk = (r◦γij)(r◦γjk) =
r ◦ (γijγjk) = r ◦ γik = ρik; so, wijwjk = wik. Therefore, we can use the diffeo-
morphisms wij to glue the Wi into a manifold E. Because the p1wij = p1, E
inherits a projection p : E →M ; because the wijsi = sj , there is a section s of
p, which we call i. Each of the Wi had a ΓR structure given by the one-element

cocycle (viewed as a map to B) ε̄i : Wi → Ui × V ′i
pi2−→ V ′i

gi−→ B, where the first
arrow is the inclusion as an open submanifold. I claim that these ΓR structures
glue together to give a ΓR structure on Wi with the desired properties. Let ε′ij
be the map from Vi = gi(V

′
i ) to Vj = gj(V

′
j ) acting by v 7→ gjρijg

−1
i v. But the

equation ρ∗ijgj = gi implies exactly that ε′ij ε̄i = ε̄j on Wij . Thus, the ε′ij together
with the ε̄i define a ΓR structure on E, which we denote by ε. Furthermore,
i∗ε = σ since this is true over E|Uj

for each j.
By the functoriality of ν (see Remark 2.6), i∗νε ' νσ ' f∗νωR. Hence, φ

defines an epimorphism to i∗νε, and thus an epimorhism to νε covering i. By
the Gromov-Philips Transversality theorem (Proposition 4.3 and Remark 4.4), i
is homotopic to a map transverse to the codimension-n foliation corresponding
to ε. But this map is then also transverse to ε, and so ε pulls back to the desired
integrable Γ-foliation on M .

Given a homotopy of epimorphisms TM → νωR, we get an underlying
homotopy of maps M → BΓR, which, by Theorem 2.10 gives a homotopy of
ΓR structures by pullback (since any homotopy of maps from a manifold M
is numerable). A homotopy of ΓR-structures over M is a ΓR-structure over
M × [0, 1]; applying the construction of E to the ΓR structure on M × [0, 1]
and using the parametric version of the Gromov-Philips Transversality theorem
gives a family of maps M → E|M×t transverse to the integrable integrable
ΓR structures on each of the M × t that is homotopic to the original inclusion
M× [0, 1]→ E. By pullback, this gives homotopy of ΓR-foliations Ft on M that
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is homotopic by some homotopy h to the homotopy of ΓR structures produced
by Theorem 2.10. Thus, given a homotopy of epimorphisms TM → νωR, we
have produced a homotopy of ΓR-foliations on M . Applying the ν functor to h
shows that that the homotopy of epimorphisms TM → νFt → νωR is homotopic
to the original family of epimorphisms TM → νωR, proving the hard direction
in the bijection.

The above theorem almost immediately proves Theorem 1.2.

Proof. By Remark 2.26, an integrable BΓR-structure on Mn is the same as a
solution to R. But BΓR = BΓR′ where R′ is the pullback of R to Rn by an
arbitrary diffeomorphism of M to a small ball on M . Applying Theorem ??,
this means that homotopy classes of integrable ΓR-structures are in bijection
with homotopy classes of epimorphisms from TM to νωR. But νωR has the
same dimension as TM , so since isomorphism classes of n-dimensional vector
bundles on M are in bijection with homotopy classes of maps M → BGL(n),
this exactly corresponds to liftings

BΓR

ν

��
M

τ //

;;

BGL(n)

where τ is the map classifying TM , as desired.

3 Examples of Geometric Structures

3.1 Hyperkähler structures on Stein manifolds

Consider a Stein manifold M of complex dimension n. Let τ : M → BU(n)
be the map classifying the tangent bundle of TM . If M admits a hyperkähler
structure, then n must be even and the map τ must factor through the map
π : BSp(n/2) → BU . Suppose τ factors through π; then we say that M is
formally hyperkähler. An easy topological computation shows the following:

Proposition 3.1. All formally hyperkähler Stein manifolds of complex dimen-
sion 2 admit hyperkähler structures.

Proof. Since Sp(1) = SU(2) = S3, πi(BSp(1)) = 0 for i = 0 . . . 3. However,
any open manifold of real dimension 4 is of the homotopy type of a 3-complex
(Proposition 4.2), so τ : M → BSp(1) is homotopic to a constant map; in
other words, M is parallelizable. But now, by the Smale-Hirsch (Proposition
4.1) immersion theorem, this implies that M admits an immersion to C2. This
immersion is between equidimensional spaces, so it is a local diffeomorphism;
thus, the standard hyperkähler structure on C2 pulls back to a hyperkähler
structure on M .
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This construction will generally construct metrics that are incomplete. For
example in Figure 3.6 we draw an immersion T 2 \B (where T 2 is a torus and B
is a small ball) into R2. The induced flat metric on T 2 \B is very incomplete.

Figure 1:
Immersion of
T 2 \B into R2.

Indeed, the T 2 \B cannot admit a complete flat met-
ric. If it admitted a complete flat metric, then it would
be the quotient of its universal cover, a simply connected
complete flat manifold, by a group of isometries. But the
only simply connected surface is a disk, and the only flat
structure on it is the one on R2 by the uniformization the-
orem. The only isometries of R2 that produce orientable
manifolds are translations, and any manifold quotient of
R2 by a group generated by translations is either a cylin-
der or a torus.

Remark 3.2. One could have guessed that such an im-
mersion must exist by noting that the complement of
point in a a genus g surface Σ is parallelizable. (A topo-
logical way to see this is to use that the complement of
a point is homotopy equivalent to a 1-complex (Proposi-
tion 4.2), so the tangent bundle admits a nowhere zero section; but the tangent
bundle to a surface admits an almost complex structure J , and so any nowhere
zero section gives another linearly independent one one upon application of J .)

Definition 3.3. Given a manifold M , we say that curvature on M can be
localized if M admits a complete Riemmanian metric that is flat outside of an
arbitrarily small neighborhood of a point.

Remark 3.4. There is no obstruction to extending Riemannian metrics, so the
argument in Remark 3.2 implies that curvature on any compact surface Σ can be
localized. Let B be an arbitrarily small ball on Σ. We localize Σ by immersing
Σ \ B into R2, pulling back the flat Euclidean metric to Σ \ B, and extending
the metric to Σ. This metric must be complete since the surface is compact.
Notice that the resulting metric near this point must have total curvature equal
to 2πχ(Σ), as required by Gauss-Bonnet.

It is well known that all 3-manifolds are parallelizable; thus, applying Smale-
Hirsch (Proposition 4.1) in the complement of a ball and extending the resulting
flat metric, we see that curvature on any 3-manifold can be localized.

We can state the following generalizations of the argument in this section:

Proposition 3.5. Given an open parallelizable manifold M (e.g. any M with
dimM = 3) and a Diff-invariant differential relation R, if R admits a solution
in any nonempty open set U in M then M admits a solution of R.

Proposition 3.6. Given open n-manifolds M,U , a Diff-invariant differential
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relation R on Rn, and a map h : M → U satisfying the commutative diagram

M

τM

$$
h

��
U

τU // BGL(n)

if U admits an integrable ΓR structure then so does M .

Both of these hold because by the Smale-Hirsch immersion theorem (Propo-
sition 4.1, M can be immersed into U . Proposition 3.6 together with Theorem
1.2 immediately proves that

Proposition 3.7. Using the notation of Proposition 3.6, if h is a homotopy
equivalence, then homotopy classes of integrable R-structures on M are in bi-
jection with homotopy classes of integrable R-structures on U .

This can be rephrased loosely as “Diff-invariant differential relations on open
manifolds are controlled by homotopy theory”.

3.2 More complex examples

If our manifold M is not parallelizable, we can try solving Diff-invariant differ-
ential relations immersing M into a more complicated manifold than Rn. For
example,

Proposition 3.8. Any Stein surface M with 3-divisible c1(M) ∈ H2(M,Z)
admits a Kähler-Einstein metric.

Proof. Note that P2 admits a Kähler-Einstein metric given by the Fubini-Study
metric, and that c1(P2) = 3h, where h denotes the hyperplane class. Consider
the inclusion of a complex line i : P1 → P2. Let [P1] denote the fundamental
homology class of P1 and [∗] denote the class of a point. We know that i∗3h
is some multiple n of the fundamental cohomology class (P1) of P1. But [P1] ∩
(P1) = [∗], so [P1] ∩ i∗3h = n[∗]. Applying i∗ and using the push-pull formula
for the cap product, we get that ni∗[∗] = i∗([P1] ∩ i∗3h) = i∗[P1] ∩ 3h = 3i∗[∗].
So n = 3.

Now, let 3b = c1(M). There exists a 2-complex K with a homotopy equiv-
alence j : K → M . Let b be represented by a linear combination

∑
i ciDi of

2-cells of K. Then there exists a map K → P1 which pulls back the fundamental
cohomology class of P1 to j∗b. This map can be constructed by collapsing the
1-skeleton of K to get a wedge of 2-spheres ∧iS2

i (with Di/∂Di naturally iden-
tified with S2

i ), and composing with a map ∧iS2
i → S2 that restricts to a degree

ci map on each S2
i . This map then then pulls back three times the fundamental

class of P1 to 3j∗b = j∗c1(M). Composing with i and precomposing with the
homotopy inverse of j, we get a map l : M → P2 such that l∗c1(P2) = c1(M).

This in turn implies that l∗TP2 ' TM as complex topological bundles.
First, by naturality of the Chern class, c1(l∗TP2) = l∗c1(P2) = c1(M). Now
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both of these bundles are real 4-bundles over a space homotopy equivalent to a
2 complex, so they admit a nowhere-zero section; applying the complex struc-
ture, they both admit a trivial complex subbundle. Since exact sequences of
topological bundles split, we can write l∗TP2 = L1 ⊕ C, TM = L2 ⊕ C, where
C denotes the trivial complex line bundle. But then by additivity of the first
Chern class, c1(l∗TP2) = c1(L1), c1(TM) = c1(L2), and since topological line
bundles are determined by their first Chern class we are done.

Thus we have a continuous map M → P2 and a covering bundle monomor-
phism TM → TP2, so by the Smale-Hirsch theorem (Proposition 4.1) there
exists an equidimensional immersion M → P2. Pull back the Kähler-Einstein
metric on P2 to M .

3.3 Complete solutions to Einstein equations and local-
ization of curvature

According to general relativity, our universe is supposed to be described by a
4-manifold M with a Lorentzian metric g and a stress-energy tensor T satisfying
the Einstein field equations Ric(g) + 1

2R(g) = (8πG/c4)T , where Ric(g) is the
Ricci tensor and R(g) is the scalar curvature. Given the importance of spinors
in quantum field theory, one imagines that M admits a spin structure. A basic
question is how the topology M constrains solutions to the Einstein equations.

Proposition 3.9. Assume M4 is compact, spin, and admits a Lorentzian met-
ric. Then M admits a Lorentzian metric that is flat outside of an arbitrarily
small ball.

Proof. The existence of a spin structure forces w1(M) = w2(M) = 0. Pick a
Riemannian metric g′ on M . Let M ′ be the complement of a small open ball
B of radius ε with respect to g around a point p ∈ M . Then M ′ is equivalent
to a 3-complex (Proposition 4.2), so H4(M ′) = 0, so χ(M ′) = p1(M ′) = 0.
By the Dold-Whitney theorem, this implies that M ′ is parallelizable. We can
thus (Proposition 4.1) immerse M ′ into standard Minkowski space R3,1, and
pull back the standard Lorentz metric to a Lorentzian metric h on M ′. I claim
that for topological reasons, h restricted to the complement of a ball around p
of radius 5ε/4 extends to a Lorentzian metric on M .

Indeed, g|M ′ is homotopic to h, since TM ′ is trivial. Let I = [0, 1]. Pick an
annulus A = {x ∈ M : dg′(x, p) ∈ [ε/4, 3ε/4]}. Let M ′′ = {x ∈ M : dg′(x, p) ≥
ε/4}. Since B was arbitrary, the tangent bundle of M restricted to A ∪M ′ or
to M ′′ is still trivial. Then g|A∪M ′ can be viewed as a map from A ∪M ′ to Q,
the manifold of Lorentzian quadratic forms on R4. We have a trivial homotopy
from g|A to itself; the disjoint union of this homotopy with the previous one
gives a homotopy (A∪M ′)×I → Q. The inclusion A∪M ′ →M ′′ is closed, and
so is a cofibration, so the homotopy extension property implies that there exists
an extension of this homotopy to a (continuous) homotopy M ′′ × I → Q. After
this homotopy, the resulting map is smooth in the region R = {x ∈ M ′′ × I :
dg′(x, p) ∈ (ε/2, 9ε/8)}, and so this map is homotopic to a smooth map rel
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M ′′ \R. The resulting map agrees with g in {x ∈M : d(x, p) ∈ (ε/4, ε/2)} and
with h in {x ∈ M : d(x, p) ≥ 5ε/4}, and so we have the desired approximate
extension of h to all of M .

Remark 3.10. Notice that in this case, the metric constructed on M is com-
plete, since M is compact.

4 Appendix

In this section, we collect a few useful theorems used in the paper.

Proposition 4.1. (Smale-Hirsch for equidimensional immersions from
open manifolds) Let V n,Wn be manifolds with V open. If there is a map
f : V → W and a bundle isomorphism f∗TW ' TV , then f is homotopic to
an immersion.

Proof. A smooth map g : V →W is an immersion if dg is nondegenerate. This
condition is an open Diff-invariant differential relation on the natural bundle
W ×V → V , and so Proposition 1.1 applies. Thus, such a map exists exactly if
this differential relation admits a section, i.e. a map f : V → W together with
a bundle map TV → TW covering f that is nondegenerate. This is, in turn,
equivalent to giving an isomorphism f∗TW ' TV .

We also have the following useful observation:

Proposition 4.2. ([1], 4.3.1) Let V be an open manifold. If V is open, then
there exists a polyhedron K ⊂ V , codim K ≥ 1, such that V can be compressed
by an isotopy φt : V → V , t ∈ [0, 1], into an arbitrarily small neighborhood U
of K.

Finally, for reference, we state a version of the Gromov-Philips Transversality
theorem:

Proposition 4.3. (Gromov-Philips Transversality, [1], 4.6.2) Let ξ be
a plane field (distribution) on a q-dimensional manifold W , codim ξ = k. Let
n < k. Then for any closed n-dimensional submanifold V ∪W whose tangent
bundle TV is homotopic insid TW to a subbundle τ ⊂ TW transversal to ξ,
one can perturb V via an isotopy to make it transversal to ξ. The relative and
parametric versions are also true.

Remark 4.4. If ξ is the tangent bundle of a foliation, i : V → W is the
inclusion, π : TW → TW/ξ the quotient map, and a homotopy of maps from
π ◦ di to a submersion TV → TW/ξ, then the theorem applies and V can be
perturbed to be transverse to the foliation.
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