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Abstract. We consider a multilevel continuous time Markov chain X(s;N) = (Xj
i (s;N) : 1 ≤ i ≤

j ≤ N), which is defined by means of Jack symmetric functions. The process X(s;N) describes a
certain discrete interlacing particle system with local push/block interactions between the particles,
which preserve the interlacing property. We study the joint asymptotic separation of the particles
at the right edge of the ensemble as the number of levels tends to infinity and show that at fixed
time their law converges to i.i.d negative binomial distributions.
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1. Introduction

1.1. Background on the problem. For any β > 0, the Hermite general β-ensemble of rank N is
the probability distribution on z1 < z2 < ... < zN with density proportional to

(1)
∏

1≤i<j≤N
(zj − zi)β

N∏
i=1

exp(−z2
i /2).

For β = 2 this gives the joint distribution of the eigenvalues of an N × N random Hermitian
matrix, whose entries on the diagonal are i.i.d. standard normals and the entries above the diagonal
have i.i.d. normal real and imaginary parts with mean 0 and variance 1/2 (this is known as the
Gaussian Unitary Ensemble or GUE). For β = 1, the density (1) gives the joint distribution of
the eigenvalues of the Gaussian Orthogonal Ensemble, while β = 4 corresponds to the Gaussian
Symplectic Ensemble.

There are two well-known ways to add an additional dimension to the model described above.
One of them is to replace the Gaussian random variables by Brownian motions. This approach
can be generalized for any β in a suitable way to give the so-called β-Dyson Brownian motion.
An alternative way is by the so-called corner process. Suppose that we have an N × N random
matrix from the GUE. For any i = 1, ..., N , we denote the eigenvalues of the upper left corner i× i
matrix by xi1 ≤ ... ≤ xii. It is a well-known (“deterministic”) property of Hermitian matrices that
the interlacing condition xki ≤ xk−1

i ≤ xki+1 holds. The joint distribution of xki , 1 ≤ i ≤ k ≤ N is
known as the GUE-corners process. Its generalization for general β is called the Hermite β-corner
process.

In [GS1], the authors found a way to combine the two extensions described above in a single
picture. In particular, they constructed a simple diffusion process that on a fixed level is given by
a β-Dyson Brownian motion, while for any fixed time it is given by the Hermite β-corner process.
They did this by finding a process Y (s;N) = (Y j

i (s;N) : 1 ≤ i ≤ j ≤ N) which can be approximated
by a discrete space local interaction particle system X(s,N) = (Xj

i (s;N) : 1 ≤ i ≤ j ≤ N) (see
Definition 2.8 below).

Although a great number of results are known for Y (s;N), very little is known for X(s;N);
however, it is expected that the asymptotic behavors of the two systems are similar. In this paper
we will consider a particular result about the joint asymptotic distribution of the separation of the
particles at the right edge of Y (s;N), and try to find its discrete analogue for X(s;N).

In [GS1] the authors show that for every k ≥ 1,(
Y N
N

(
2N

β
+ s;N

)
− Y N−1

N−1

(
2N

β
+ s;N

)
, ..., Y N−k+1

N−k+1

(
2N

β
+ s;N

)
− Y N−k

N−k

(
2N

β
+ s;N

))
converges as N → ∞ to a continuous time stationary Markov process (R1(s), ..., Rk(s)) satisfying
a system of stochastic differential equations with fixed time distribution given by i.i.d. Gamma
random variables. Based on this result, we expect that for any t > 0 one has that(

XN
1 (tN + s;N)−XN−1

1 (tN + s;N) , ..., XN−k+1
1 (tN + s;N)−XN−k

1 (tN + s;N)
)

converges to a continuous time Markov chain as N → ∞. In this paper we establish a partial
result in this direction by showing that for fixed s and t, the above random vectors weakly converge
to a random vector (Q1, ..., Qk) ∈ Zk≥0. The entries Q1, ..., Qk are i.i.d. negative binomial random
variables, which can be viewed as a discrete analog of the Gamma distribution. The exact statement
we prove is as follows.

Theorem 1.1. Let X(s;N) be as in Definition 2.8 with 2θ = β ≥ 1. Fix t > 0, s ≥ 0 and k ∈ N.
Then as N →∞ the sequence(

XN
1 (tN + s;N)−XN−1

1 (tN + s;N) , ..., XN−k+1
1 (tN + s;N)−XN−k

1 (tN + s;N)
)
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converges in law to a random vector (Q1, ..., Qk) ∈ Zk≥0, where Q1, ..., Qk are i.i.d. random variables
with

P(Q1 = n) = (1− p)−θ Γ(n+ θ)

Γ(n+ 1)Γ(θ)
pn, n ∈ Z≥0, and p =

√
t

1 +
√
t
.

1.2. Organization of the paper and acknowledgements. In Section 2, we explain how the
distribution of the top row XN = (XN

1 (s;N), ..., XN
N (s;N)) can be understood in the language

of [BGG] as a discrete β-ensemble. This allows us to use Nekrasov’s equation to find an explicit
formula for the limiting empirical measure 1

N

∑N
i=1 δ

(
XN
i (tN ;N)+(N−i+1)θ

N

)
as N → ∞. Following

the work of [J], we also show that XN
1 (tN ;N)+Nθ

N converges in probability to a constant. In Section
3 we prove an important technical lemma, which forms the basis of the proof of Theorem 1.1, the
latter being the content of Section 4. Section 5 describes a (conjectural) extension of our results to
a dynamic limit statement.

I would like to thank Vadim Gorin for helping me find this problem and showing me interesting
and useful directions to work on. Moreover, I am grateful to Evgeni Dimitrov for many fruitful
discussions and comments. His advice was crucial to all parts of the paper.

2. Discrete β-ensembles and Jack measures

In this section, we define the process X(s,N) = (Xj
i (s;N) : 1 ≤ i ≤ j ≤ N), the main notion that

we study in this paper, and show how it is related to the discrete β-ensemble of [BGG]. We explain
how one can use the latter together with results from [J], to show that 1

N

∑N
i=1 δ

(
XN
i (tN ;N)+(N−i+1)θ

N

)
converges to a deterministic compactly supported measure and that XN

1 (tN ;N)+Nθ
N concentrates near

the right endpoint of its support.

2.1. Jack polynomials and Jack measures. We will follow the approaches by [GS1] and [M].
Let Λ be the algebra of symmetric polynomials in countably many variables and ΛN the algebra of
symmetric polynomials in N variables.

A Young diagram λ with n boxes (|λ| = n) is a sequence λ1 ≥ λ2 ≥ ... ≥ 0 of integers that sum
up to n. We define `(λ) to be the number of nonzero numbers in λ. For a pair (i, j) such that λi ≥ j
(a box of the diagram) we define:

a(i, j) = λi − j, l(i, j) = λ′j − i, a′(i, j) = j − 1, l′(i, j) = i− 1.

We let Jλ(·; θ) denote the Jack polynomials, which are indexed by Young diagrams λ and a positive
parameter θ. Many of the properties of these polynomials can be found in Chapter VI of [M] (the
α paramter in [M] corresponds to θ−1 in our notation). One can view Jλ as an element of the
algebra Λ or (specializing all but finitely many variables to zero) as a symmetric polynomial in ΛN .
One way to define Jλ(x1, ..., xn; θ) is as the unique symmetric polynomial in n variables, which has
leading term xλ11 · · ·x

λ`(λ)
`(λ) and satisfies the following Sekiguchi differential operator eigenrelation

1∏
i<j(xi − xj)

det

[
xN−ji

(
xi

∂

∂xi
+ (N − j)θ + u

)]
Jλ(x1, ..., xn; θ) =

N∏
i=1

(λi + (N − i)θ + u)Jλ(x1, ..., xn; θ)

The dual Jack polynomial is given by J̃λ = Jλ
∏
�∈λ

a(�) + θl(�) + θ

a(�) + θl(�) + 1
.
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The skew-Jack and dual skew-Jack polynomials are defined through the following relations

Jλ(x, y; θ) =
∑
µ

Jµ(x; θ)Jλ/µ(y; θ) J̃λ(x, y; θ) =
∑
µ

J̃µ(x; θ)J̃λ/µ(y; θ).

In the above x = (x1, x2, ...), y = (y1, y2, ...) are countable sets of variables and (x, y) is their union.
For simplicity, we will ignore θ in the notations.

A homomorphism ρ from the algebra of symmetric functions to the set of complex numbers is
called a specialization. If ρ takes positive values on all Jack polynomials, it will be called Jack-
positive. We have the following classification.

Proposition 2.1. [KOO] For any fixed θ > 0, Jack positive specializations can be parametrized by
triplets (α, β, γ), where α, β are sequences of real numbers with α1 ≥ α2 ≥ ... ≥ 0, β1 ≥ β2 ≥ ... ≥
0,
∑

i(αi + βi) < ∞ and γ is a non-negative real number. The specialization corresponding to a
triplet (α, β, γ) is given by its values on Newton power sum pk, k ≥ 1:
p1 7→1 (α, β, γ) = γ +

∑
i(αi + βi)

pk 7→ pk(α, β, γ) =
∑
i

αi
k + (−θ)k−1

∑
i

βi
k, k ≥ 2

Throughout this paper we will work with two specializations from Proposition 2.1. The first is
denoted by aN and corresponds to taking α1 = · · · = αN = a and all other α, β and γ parameters
are set to zero. The second is the Plancherel specialization τs, which satisfies γ = s and all other
parameters set to 0. The following formulas are well-known.

Proposition 2.2. For any Young diagram λ we have

(2) Jλ(aN ) = 1{`(λ)≤N}a
|λ|
∏
�∈λ

Nθ + a′(�)− θl′(�)

a(�) + θl(�) + θ
Jλ(τs) = s|λ|θλ

∏
�∈λ

1

a(�) + θl(�) + θ
,

where 1E is the indicator function of the set E.

Definition 2.3. Define Jρ1,ρ2(λ) =
Jλ(ρ1)J̃λ(ρ2)

Hθ(ρ1; ρ2)
, where ρ1, ρ2 are Jack-positive specializations and

Hθ(ρ1; ρ2) = exp

( ∞∑
k=1

θ

k
pk(ρ1)pk(ρ2)

)
with pk =

∑
i x

k
i . This defines a probability measure on

Young diagrams, provided ∑
λ

Jλ(ρ1)J̃λ(ρ2) <∞,

in which case the latter sum equals Hθ(ρ1; ρ2) (see e.g. (10.4) in Chapter VI of [M]).

Remark 2.4. The construction of probability measures via specializations of symmetric polynomials
was originally suggested by Okounkov in the context of Schur measures [Ok].

Proposition 2.5. J1N ;τs(λ) = 0 if λ has more than N rows. If λ has less than N rows we have:

J1N ;τs(λ) = e−θsNs|λ|θ|λ|
∏
�∈λ

Nθ + a′(�)− θl′(�)

(a(�) + θl(�) + θ)(a(�) + θl(�) + 1)
.

At this point, we define using Jack polynomials probability measures on the set GTN of sequences
λ1, ..., λN of Young diagrams with l(λi) ≤ i and the interlacing conditions
λi+1

1 ≥ λi1 ≥ λi+1
2 ≥ ... ≥ λii ≥ λi+1

i+1 for i < N (which we denote by λi � λi+1). The following
definitions can be found in [GS1].
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Definition 2.6. A probability distribution P on arrays λ1 � ... � λN ∈ GTN is called a Jack-
Gibbs distribution, if for any µ ∈ GTN , such that P(λn = µ) > 0, the conditional distribution of
λ1, ..., λN−1 given that λn = µ is

P(λ1, ..., λN−1|λN = µ) =
Jµ/λN−1(1)JλN−1/λN−2(1)...Jλ2/λ1(1)Jλ1(1)

Jµ(1N )
.

Definition 2.7. Given a Jack positive specialization ρ we define the ascending Jack process:

Jascρ;N (λ1, ..., λN ) =
J̃λ(ρ)JλN/λN−1(1)...Jλ2/λ1(1)Jλ1(1)

Hθ(ρ; 1N )
.

We also recall the following useful formula for skew-Jack polynomials in a single variable

Jλk/λk−1(1) = 1{λk−1�λk}
∏

1≤i≤j≤k−1

f(λk−1
i − λk−1

j + θ(j − i))f(λki − λkj+1 + θ(j − i))
f(λk−1

i − λkj+1 + θ(j − i))f(λki − λ
k−1
j + θ(j − i))

,

where f(z) = Γ(z+1)
Γ(z+θ) (see e.g. (7.14’) in [M] or (2.10) in [GS1]).

We are now ready to define formally the process X(s;N), s ≥ 0 on GTN constructed in [GS1].

Definition 2.8. Let θ > 0 and N ∈ N. The process X(s;N) = (Xj
i (s;N) : 1 ≤ i ≤ j ≤ N) is

defined as the continuous time Markov chain on GTN , with the following jump rates. If X(s−;N) =
λ1(s−) � · · · � λN (s−), then to each λk(s−) we independently add a box � at time s at the rate

(3) q(�, λk(s−), λk−1(s)) = J̃(λk(s−)t�)/λk(s−)(τ1; θ)
Jλk(s−)t�/λk−1(s)(1; θ)

Jλk(s−)/λk−1(s)(1; θ)
.

The latter jump rates incorporate the following push interaction: if we increase one coordinate
of X(s−;N), say in λk−1(s−), in a way that results in λk−1(s) 6� λk(s−), then the appropriate
coordinate of λk(s−) is also increased by 1 (the jump rate for this action becomes infinite), which
restores the interlacing λk−1(s) � λk(s).

Proposition 2.9. Suppose that X(s;N), s ≥ 0 is started from a random initial condition with a
Jack-Gibbs distribution. Then:

• The restriction of X(s;N) to level k coincides with X(s; k), s ≥ 0 started from the restriction
to level k of the initial condition.
• The distribution of X(s;N) at time s > 0 is again a Jack-Gibbs distribution. Moreover, if
X(0;N) has distribution Jascρ;N , then X(s;N) has distribution Jascρ,τs;N

.

2.2. Discrete β-ensemble identification. We start by giving the definition of the discrete β-
ensemble as in [BGG].

Definition 2.10. We fix a parameter β > 0 and set θ = β/2. Consider a function w(x;N) which
takes real values.1 The discrete β-ensemble is the probability distribution

(4) PN (l1, ..., lN ) =
1

ZN

N∏
i=1

w(li;N)
∏

1≤i<j≤N

Γ(lj − li + 1)Γ(lj − li + θ)

Γ(lj − li)Γ(lj − li + 1− θ)

on ordered N -tuples l1 < ... < lN such that li = λN−i+1 + θi and λ1 ≥ ... ≥ λN are integers. li’s
will be called particles, while the state space of the above configurations (l1, ..., lN ) will be denoted
by Wθ

N .

1w(x;N) should decay at least as |x|−2θ(1+ε) for some ε > 0 as |x| → ∞.
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Remark 2.11. If lj−li →∞ for 1 ≤ i < j ≤ N , the probability in (4) looks like
∏
i<j

(lj − li)β
N∏
i=1

w(li;N),

which describes the general-β log-gas probability distribution.

If we set li = XN
N−i+1(s;N) + θi with X(s;N) given in Definition 2.8, then we may combine the

results of Section 2.1 to show that

(5) P(l1, ..., lN ) = e−sθN (sθ)−
N(N+1)

2
Γ(θ)N∏
i<N Γ(iθ)

∏
1≤i<j≤N

Γ(lj − li + θ)Γ(lj − li + 1)

Γ(lj − li)Γ(lj − li + 1− θ)

N∏
i=1

(sθ)li

Γ(li + 1)

The above shows that the top row of X(s;N) at a fixed time is described by the discrete β-ensemble

of Definition 2.10 with w(x;N) =
(sθ)x

Γ(x+ 1)
.

Let us also denote, mi = XN−1
N−i (s;N) + θi. The results of Section 2.1 allow us to express the

joint distribution of l1, ..., lN and m1, ...,mN−1 and we get that it is proportional to:

(6)
N∏
i=1

(sθ)li

Γ(li + 1)

∏
1≤i<j≤N

(lj − li)
∏

1≤i<j<N
(mj −mi)

∏
1≤i≤j≤N−1

f(mj − li)
f(lj+1 −mi)

, with f(z) = Γ(z+1)
Γ(z+θ) .

The last formula will be very useful later in this paper.

The identification of the distribution of the top row of our process at fixed time with the β-
ensemble readily gives us a result about the law of large numbers of the empirical measures µN =
1
N

∑N
i=1 δ

(
XN
i (tN ;N)+(N−i+1)θ

N

)
= 1

N

∑N
i=1 δ

(
li
N

)
. The exact statement we need is a version of

Theorem 1.2 in [BGG] and we state it below

Theorem 2.12. Suppose µN = 1
N

∑N
i=1 δ

(
XN
i (tN ;N)+(N−i+1)θ

N

)
with X(s;N) as in Definition 2.8.

Then there exists a deterministic measure µ, such that µN ⇒ µ as N → ∞, in the sense that for
any bounded continuous function f , we have the following convergence in probability:

lim
N→∞

∫
R
f(x)dµN (x) =

∫
R
f(x)dµ(x).

The idea of the proof of Theorem 2.12 is to establish a large deviations principle for the measure
in (5), which would show that it is concentrated on those N -tuples (l1, ..., lN ) which maximize the
probability density. Similar results are known in various contexts (see e.g. the references in the
proof of Proposition 2.2 of [BGG]). In particular, Theorem 2.12 can be proved by following the same
arguments as in [J]. We will not write out a complete proof; however, we recall the results of [J]
below and discuss how our problem can be rephrased in that framework.

Suppose V (x) is a real-valued function with V (x) ≥ (1 + ξ) log(x2 + 1) whenever |x| >> 1 (here
ξ > 0). Let As denote the set of all φ ∈ L1[0, s) such that 0 ≤ φ ≤ 1 and

∫ s
0 φ = 1, where 1 ≤ s ≤ ∞.

For φ ∈ As we define

kV (x, y) := log |x− y|−1 +
V (x) + V (y)

2
and IV [φ] :=

∫ s

0

∫ s

0
kV (x, y)φ(x)φ(y)dxdy.

It follows from [DS] that there exists a unique element φsV in As, which minimizes IV [φ]. The
measure, which has density φsV , is compactly supported and absolutely continuous with respect to
Lebesgue mesure. The above setup is known as a variational problem, and the measure with density
φsV , minimizing the functional IV , is called the equilibrium measure.
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Fix N ∈ N, β > 0 and set AN = 1
N . We consider the following distribution on ordered elements

x1 < x2 < · · · < xN , with xi ∈ AN :

(7) P(x1, ..., xN ) =
1

ZN

∏
1≤i<j≤N

(xj − xi)β exp

(
−βN

2

N∑
i=1

VN (xi)

)
.

In the above, VN : R→ R are continuous and we assume that there exist ξ, T,N0 > 0 such that for
t ≤ T,N > N0 we have VN (t) ≥ (1 + ξ) log(t2 + 1) and VN converge uniformly to a function V on
compact sets.

Let Xs
1 < ... < Xs

N , have the joint distribution given by (7) conditional on xN ≤ s, where
s ∈ [1,∞]. Under these conditions [J] shows that 1

N

∑N
i=1 δXs

1
weakly converges to the equilibrium

measure with density φsV , defined above.
An additional important result in [J] is the following large deviation estimate for the position

for the right-most particle X∞N . Let FN (t) = P(X∞N ≤ t), where X∞1 < ... < X∞N have the joint
distribution given by (7). Let bV denote the right-most endpoint of the support of φ∞V , and put

IV [φsV ] = F sV for s < ∞ and IV [φ∞V ] = FV . We define the function L(t) =
F tV − FV

2
and J(t) = 0

for t ≤ bV and J(t) = inf
τ≤t

∫ ∞
0

kV (τ, x)φV (x)dx− FV (x). Then Theorem 2.2 in [J] states

Theorem 2.13. With the assumptions above,

lim
N→∞

1

N2
logFN (t) = −βL(t)

for any t ≥ 1 and L(t) > 0 if t < bV . Assume furthermore that J(t) > 0 for t > bV . Then,

lim
N→∞

1

N
log(1− FN (t)) = −βJ(t)

for all t. In particular, X∞N converges to bV in probability.

We turn back to our problem and set xi = li
N , s = Nt with t > 0. In view of (5) we have the

following distribution

(8) P(x1, ..., xN ) =
1

ZN

∏
1≤i<j≤N

Γ(Nxj −Nxi + θ)Γ(Nxj −Nxi + 1)

Γ(Nxj −Nxi)Γ(Nxj −Nxi + 1− θ)
exp

(
−N logN

N∑
i=1

VN (xi)

)
,

where VN (x) = log Γ(Nx+1)−Nx log(Ntθ)
N logN . Using properties of the gamma function Γ, we have that

Γ(z + α)

Γ(z + β)
= zα−β

(
1 +

(α− β)(α+ β − 1)

2z
+O

(
1

|z|2

))
,

for z →∞. Thus we see that for xi < xj fixed
Γ(Nxj −Nxi + θ)Γ(Nxj −Nxi + 1)

Γ(Nxj −Nxi)Γ(Nxj −Nxi + 1− θ)
∼ (xj − xi)2θ.

Thus the interaction term in our problem asymptotically looks the same as the logarithmic inter-
action term in [J]. The potential term, represented by exp

(
−N logN

∑N
i=1 VN (xi)

)
in (8), matches

the one in (7) upto an additional logarithmic factor logN . This additional factor is harmless and
does not change the arguments in [J], which may be repeated to show the validity of Theorem 2.12.

We observe that over compact sets VN (x) = x log x − x + O( 1
logN ), and so it converges to

V (x) = x log x− x. The measure µ to which the empirical measures µN of Theorem 2.12 converge
is the solution to the variational problem discussed above with V (x) = x log x− x. The only thing
that changes is that the function space over which we take the infimum has to be replaced with
A′∞ = {φ ∈ L1[0,∞) such that 0 ≤ φ ≤ θ−1 and

∫∞
0 φ = 1}. This modification results from the fact
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that the minimal separation between our particles is θ
N as opposed to the 1

N considered in [J]. We
remark that the arguments in [J] provide us with the concentration result of the empirical measures
and classify the limit as the solution of a variational problem. An exact formula for this limit will
be derived in the next section by a different technique and it will be seen that it has a continuous
compactly supported density.

Finally, we remark that a result similar to Theorem 2.13 holds in our case by essentially the same
arguments. The result that we will need is that the right-most particle xN = lN

N concentrates near
the right endpoint of the support of µ. The precise statement is given below.

Lemma 2.14. Suppose (l1, ..., lN ) are distributed as in (5) with s = tN and t > 0 and let bR denote
the right endpoint of the support of the measure µ from Theorem 2.12. Then we have the following
convergence in probability

(9) lim
N→∞

lN
N

= bR

An easy corollary of the above that will be needed in Section 3 is given below.

Corollary 2.15. With the notation of Lemma 2.14, we have

(10) lim
N→∞

E
[

N

lN + 1

]
=

1

θ(
√
t+ 1)2

Proof. For now we assume that bR = θ(1 +
√
t)2 is the right-most point of the support of the

equilibrium measure, a result which will be proved rigorously in the next section.

We have
N

lN + 1
≤ N

(N − 1)θ
, which is bounded. Moreover

N

lN + 1
=

1
1
N + lN

N

converges in prob-

ability to
1

θ(
√
t+ 1)2

by Lemma 2.14. The Bounded convergence theorem completes the proof. �

2.3. Nekrasov’s equation and limiting measure. There is a simple way to calculate the equi-
librium measure, and that is to use the so called Nekrasov’s equation. This approach was followed
in [BGG]. The reason why we could not use their result without proof is that they assumed com-
pactness of the measures (which we do not have), but only discreteness of the poles and rapid
convergence of the weight w(x;N) near infinity are important. To be more specific, we have the
following result:

Theorem 2.16. Let P be a distribution on N -tuples (l1, ..., lN ) ∈Wθ
N as in (5). Suppose φ± are

analytic and satisfy
w(x;N)

w(x− 1;N)
=
φ+
N (x)

φ−N (x)
, where w(x;N) =

(sθ)x

Γ(x+ 1)
. Define

RN (ξ) = φ−N (ξ) · EPN

[
N∏
i=1

(
1− θ

ξ − li

)]
+ φ+

N (ξ) · EPN

[
N∏
i=1

(
1 +

θ

ξ − li − 1

)]
.

If φ+
N , φ

−
N are polynomials of degree at most d, then so is RN (ξ).

The above is essentially Theorem 4.1 in [BGG] and the proof that we give here is very much
the same as their proof. We repeat it here for reasons of completeness (as noted we do not have
compactness of the support as in [BGG]).

Proof. The first step of the proof is to show that RN is an entire function. If Im(ξ0) > 0, then∏N
i=1

(
1− θ

ξ−li

)
are uniformly bounded in a neighborhood of ξ0, so the first term of RN is differen-

tiable at ξ0 (absolutely summable series of differentiable functions) and similarly for the other term.
The same reasoning applies for Im(ξ0) < 0.
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If ξ0 ∈ R is not on SθN = {0, 1} + Wθ
N , then the fact that SθN is discrete means that in a

neighborhood of ξ0 the first summand of RN is again differentiable (absolutely summable series).
From the discussion above it is clear that RN can only possibly have simple poles at the points
li, li + 1 (where li belongs to the ensemble) as singularities.

Switching from li = x to li = x − 1 (following the proof by [BGG]) the interaction term of the
density is multiplied by:

Γ(lj − x+ 1)Γ(lj − x+ θ)

Γ(lj − x)Γ(lj − x+ 1− θ)
Γ(lj − x+ 1)Γ(lj − x+ 2− θ)
Γ(lj − x+ 2)Γ(lj − x+ 1 + θ)

=
(lj − x)(lj − x+ 1− θ)
(lj − x+ 1)(lj − x+ θ)

for i < j and for i > j by:

Γ(x− lj + 1)Γ(x− lj + θ)

Γ(x− lj + 1− θ)Γ(x− lj)
Γ(x− lj − 1)Γ(x− lj − θ)
Γ(x− lj)Γ(x− lj − 1 + θ)

=
(x− lj)(x− lj + θ − 1)

(x− lj − 1)(x− lj − θ)
.

By Fubini’s theorem, the residue of RN arising from li at m is:

−θ
∑

l∈Wθ
N ,li=m

φ−N (x)P(l)
∏
j 6=i

(
1− θ

m− lj

)
+ θ

∑
l∈Wθ

N ,li=m−1

φ+
N (x)P(l)

∏
j 6=i

(
1 +

θ

m− lj − 1

)
.

Note that the two series are absolutely summable because of the discreteness of SθN . From the
definition of φ+

N , φ
−
N , it is obvious that the two terms cancel and thus the residue at li is 0.

So RN is an entire function.
Take 1 > ε > 0. For any R1 > 0 large enough such that (R1, 0) is at least at distance (in the

complex plane) ε from the lattice where the ensemble lies, |R(z)| is at most MRd1 on the circle
|z| = R1 for some fixed constant M = M(ε). Fix any z0 ∈ C. Then, by Cauchy formula we have

for the (d+ 1)-th derivative of R if R1 is large enough such that |z − z0| >
R1

2
:∣∣∣R(d+1)(z0)

∣∣∣ =

∣∣∣∣∣(d+ 1)!

2πi

∫
|z|=R

f(z)

(z − z0)d+2
dz

∣∣∣∣∣ ≤ 2d+2 2πR1R
d
1M

2πRd+2
1

= 2d+2M

R1
.

For R1 →∞, we see that R(d+1)(z0) = 0. Since z0 was arbitrary, the conclusion follows.
�

We define G(z) =

∫
1

z − x
ν(dx) to be the Stieltjes transform of a measure ν. Note that G(z) is

analytic on the upper and lower half-planes (by differentiation under the integral sign).
We developed the tools and we are ready to calculate the equilibrium measure. After the time and

space rescaling (s, x) = (Nt,Nξ), we see that
w(x;N)

w(x− 1;N)
=
sθ

x
=
tθ

ξ
. So we can choose φ+

N (ξ) = tθ

and φ−N (ξ) = ξ.
Consider R(ξ) = ξe−θG(ξ) + tθeθG(ξ), where G is the Stieltjes transform of µ. R is a polynomial

of degree at most 1, as it is the N → ∞ limit of RN (Nξ) defined in Nekrasov’s equation. To see
this, we use the approximation 1 + x ≈ ex for small x and the fact that

1

N

N∑
j=1

1

z − lj
N

=

∫
1

z − x
µN (dx)→

∫
1

z − x
µ(dx) as N →∞

for all z that do not belong to SθN .
We have R(ξ)/ξ → 1 as ξ → ∞ and R(ξ) − ξ = ξ(e−θG(ξ) − 1) + tθeθG(ξ) → θ(t− 1). The two

limits follow from the fact that G(z) ∼ 1

z
as z →∞.
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From the results above we derive R(z) = z + θ(t− 1). Solving for G(z) gives:

(11) exp(θG(ξ)) =
ξ + θ(t− 1)−

√
(ξ + θ(t− 1))2 − 4tθξ

2tθ

We apply the inversion formula for the Stieltjes transform

f(x) = lim
y→0+

ImG(x− iy)− ImG(x+ iy)

2πi

to derive a formula for the density of the limiting measure. The result split into the cases t ≥ 1 and
t ∈ (0, 1).

Suppose t ≥ 1. Then we get

(12) f(x) =


0 for x < θ(

√
t− 1)2 or x > θ(

√
t− 1)2,

arccot(

√
4θtx−[x+θ(t−1)]2

x+θ(t−1) )

θπ
otherwise.

Suppose t ∈ (0, 1). Then we get

(13) f(x) =


0 for x > θ(

√
t+ 1)2

1
θ for x < θ(

√
t− 1)2

arccot(

√
4θtx−[x+θ(t−1)]2

x+θ(t−1) )

θπ
otherwise.

We see that the above density is compactly supported in an interval with right end given by bR =
θ(
√
t+ 1)2. The record the following statement, which will be used later in the text

(14) lim
ε→0+

G(bR + ε) =
log(1 + 1√

t
)

θ
.

The above follows from the fact that the density behaves like
1√
x

near bR (so we can use the

Dominated convergence theorem).

Remark 2.17. We will in fact need only G(ξ) and not the density of µ. It was presented here just
for reasons of completeness.

3. Key results

We prove some technical lemmas that we will need in Section 4. Throughout this section we
denote by P−→ convergence in probability.

3.1. A useful lemma.

Lemma 3.1. If 0 < Xn, Yn < 1 are random variables and c > 0 with E[XnYn] → c and for any
η, ξ > 0 we have P(Xn > c+ η) < ξ for n large enough, then Xn

P−→ c and Yn
P−→ 1.

Proof. Since XnYn ≤ Xn, we just need to show that for any η, ξ > 0 we have P(Xn ≤ c−η) < ξ and
P(Yn ≤ 1− η) < ξ for all n large enough. Suppose that for some ξ, η we have P(Xn ≤ c − η) ≥ ξ
for infinitely many n’s. Without loss of generality we assume P(Xn ≤ c− η)→ ξ1 for some ξ1 ≥ ξ
(otherwise we take subsequential limits). Take any ε > 0.

We have:

E[XnYn] = E
[
XnYn1{Xn≤c−η}

]
+ E

[
XnYn1{c−η<Xn≤c+ε}

]
+ E

[
XnYn1{c+ε<Xn}

]
≤ (c− η)P(Xn ≤ c− η) + (c+ ε)P(c− η < Xn ≤ c+ ε) + P(c+ ε < Xn).
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Taking limits on both sides of the inequality (n→∞), since P(c+ ε < Xn)→ 0, we get:

c ≤ (c− η)ξ1 + (c+ ε)(1− ξ1) = c− ηξ1 + ε− εξ1 ⇒ ξ1 ≤
ε

η + ε

Obviously, this cannot hold for ε arbitrarily small, so we get a contradiction. So Xn
P−→ c. Similarly

Yn
P−→ 1. The proof is completed. �

3.2. Separation of the particles on the top row. We turn back to the notation from Section
2.2 and let li and mj be distributed as in equations (6) with s = Nt. Intuitively one would expect
from the dynamics of the problem that the two right-most particles of the top row to be far apart.

Rigorously, it should be expected that
1

lN − lN−1

P−→ 0 as N →∞ . This result will be proved here.

For technical reasons we will assume θ ≥ 1

2
.

Lemma 3.2. Fix θ ≥ 1/2 and t > 0. Then as N →∞ we have

i)
1

lN − lN−1

P−→ 0, ii)
N−1∑
j=1

1

lN − lj
P−→

log(1 + 1√
t
)

θ
, iii)

N−2∑
j=1

1

lN −mj

P−→
log(1 + 1√

t
)

θ
.

Proof. Set ∆(x) =
N−1∏
j=1

Γ(x− lj + 1)Γ(x− lj + θ)

Γ(x− lj + 1− θ)Γ(x− lj)
for x > lN−1 and 0 otherwise.

The key relation in the proof of this lemma is: E
[

∆(lN − 1)

∆(lN )

]
= E

[
sθ

lN + 1

]
. This follows by

taking expectations on both sides of the following relation:

E

[
sθ

lN + 1

∣∣∣∣∣l1, ..., lN−1

]
= E

[
∆(lN − 1)

∆(lN )

∣∣∣∣∣l1, ..., lN−1

]
.

To see the latter, we use the functional equation Γ(x+ 1) = xΓ(x), which shows that

E

[
sθ

lN + 1

∣∣∣∣∣l1, ..., lN−1

]
= C(l1, .., lN−1)

∑
lN∈θ+lN−1+Z≥0

sθ

lN + 1

(sθ)lN

Γ(lN + 1)
∆(lN ) =

= C(l1, .., lN−1)
∑

lN∈θ+lN−1+Z≥0

(sθ)lN

Γ(lN + 1)
∆(lN )

∆(lN − 1)

∆(lN )
= E

[
∆(lN − 1)

∆(lN )

∣∣∣∣∣l1, ..., lN−1

]
,

where C(l1, .., lN−1) is some normalization constant. In the above we used that ∆(lN−1 +θ−1) = 0.
By Corollary 2.15 we get

(15) lim
N→∞

E
[

∆(lN − 1)

∆(lN )

]
=

t

(
√
t+ 1)2

.

We observe that

(16)
∆(lN − 1)

∆(lN )
=

N−1∏
j=1

(
1− 1

lN − lj

)(
1− 2θ − 1

lN − lj + θ − 1

)
≤ XNYN ,

where XN = exp(−
∑N−1

j=1 ( 1
lN−lj + 2θ−1

lN−lj+θ−1)), and YN = exp(−
∑N−1

j=1 ( 1
(lN−lj)2 + (2θ−1)2

(lN−lj−1+θ)2
)).

In what follows we want to use Lemma 3.1 to prove that XN converges to t
(
√
t+1)2

and YN to 1

in probability. We observe that 0 < XN , YN < 1.
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Take ε > 0, δ > 0. By Lemma 2.14 we have P
(
lN
N
≥ θ(
√
t+ 1)2 +

δ

2

)
< ε for N large enough.

On the event { lNN ≥ θ(
√
t+ 1)2 + δ

2} we have for N large enough:

N−1∑
j=1

1

lN − lj
+

2θ − 1

lN − lj + θ − 1
>

1

N

N−1∑
j=1

1
δ
2 + θ(

√
t+ 1)2 − lj

N

+
2θ − 1

δ
2 + θ(

√
t+ 1)2 + θ−1

N −
lj
N

>
2θ

N

N−1∑
j=1

1

δ + θ(
√
t+ 1)2 − lj

N

=
2θ

N

N∑
j=1

1

δ + θ(
√
t+ 1)2 − lj

N

− 2θ

N

1

δ + θ(
√
t+ 1)2 − lN

N

.

The first term in the last expression converges to 2θG(bR + δ) by Theorem 2.12. On the event
{ lNN ≥ θ(

√
t+ 1)2 + δ

2} the second term is bounded by

2θ

N

1

δ + θ(
√
t+ 1)2 − lN

N

≤ 4θ

Nδ
.

The above suggests that for any δ, ε > 0 we have

lim sup
N→∞

P(XN ≤ exp(−2θG(bR + δ)) ≥ 1− ε.

Note that by (14) exp(−2θG(bR + δ))→ t

(
√
t+ 1)2

as δ → 0+, which implies that for any η, ξ > 0

we have for N large enough:

P
(
XN ≥ η +

t

(
√
t+ 1)2

)
< ξ.

Since XN is bounded, we get

lim sup
N→∞

E[XN ] ≤ t

(
√
t+ 1)2

.

Combining the latter statement with YN ∈ (0, 1), (15) and (16) we see that

(17) lim
N→∞

E[XNYN ] =
t

(
√
t+ 1)2

.

The above work shows that XN , YN satisfy the conditions of Lemma 3.1, which gives

(18)
N−1∑
j=1

1

(lN − lj)2
+

(2θ − 1)2

(lN − lj + θ − 1)2

P−→ 0, and
N−1∑
j=1

1

lN − lj
+

2θ − 1

lN − lj + θ − 1

P−→ 2log

(
1 +

1√
t

)
.

Now it is obvious that
1

(lN − lj)2

P−→ 0, and so
1

lN − lj
P−→ 0. This proves i.

We have:

(19)
N−1∑
j=1

1

lN − lj
+

2θ − 1

lN − lj + θ − 1
=

N−1∑
j=1

2θ

lN − lj
+ (2θ − 1)

1− θ
(lN − lj)(lN − lj + θ − 1)

.

Since
N−1∑
j=1

1

(lN − lj)(lN − lj + θ − 1)
≤ 1

lN − lN−1

N−1∑
j=1

1

lN − lj + θ − 1

P−→ 0,

we get by (18) and (19) that 2θ

N−1∑
j=1

1

lN − lj
→ 2log

(
1 +

1√
t

)
. This proves ii.
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Notice that
N−1∑
j=1

1

lN − lj
− 1

lN − lN−1
=

N−2∑
j=1

1

lN − lj
≤

N−2∑
j=1

1

lN −mj
≤

N−2∑
j=1

1

lN − lj+1
≤

N−1∑
j=1

1

lN − lj
.

From the above it is clear that iii follows from i and ii. �

4. Analysis of the distance of the right-most particles

We will combine all the results proved in this paper for the ultimate goal of studying the distance
between the particles at the right of each row of the ensemble. Specifically, we will show that the
distances of the right-most particles of adjacent rows converge to independent negative binomial
distributions, as noted in the introduction. The approach here closely follows ideas from [GS2],
where they proved the analogous result for β-Dyson Brownian motion.

4.1. Two row analysis. First of all, we will study the separation of the right-most particles just
of the first two rows.

Lemma 4.1. Let li,mj be distributed as in (6) with s = Nt and t > 0. Then lN −mN−1
P−→ Z as

N →∞, where

P(Z = n+ θ) = (1− p)−θ Γ(n+ θ)

Γ(n+ 1)Γ(θ)
pn, n ∈ Z≥0, and p =

√
t

1 +
√
t
.

.

Proof. From (6), we know that P(lN −mN−1 = z|l1, ..., lN ,m1, ...,mN−2) is proportional to

Γ(z)

Γ(z + 1− θ)

N−2∏
i=1

(lN − z −mi)
N−1∏
i=1

Γ(lN − z − li + θ)

Γ(lN − z − li + 1)
.

Put zN = lN −mN−1 − θ. For some c > 0 (depending on l1, ..., lN and m1, ...,mN−2) we have

P(zN = k|l1, ..., lN ,m1, ...,mN−1) = fN (k)

fN (k) = c
Γ(θ + k)

Γ(1 + k)

N−2∏
i=1

(lN −mi − k − θ)
N−1∏
i=1

Γ(lN − li − k)

Γ(lN − li − k + 1− θ)
.

(20)

We will study the ratio
fN (k)

fN (0)
as N →∞.

fN (k)

fN (0)
=

Γ(θ + k)Γ(1)

Γ(1 + k)Γ(θ)

N−2∏
i=1

lN −mi − k − θ
lN −mi − θ

N−1∏
i=1

Γ(lN − li − k)Γ(lN − li + 1− θ)
Γ(lN − li)Γ(lN − li − k − θ + 1)

=
Γ(θ + k)Γ(1)

Γ(1 + k)Γ(θ)

N−2∏
i=1

(
1− k

lN −mi − θ

)N−1∏
i=1

f(lN − li − θ)
f(lN − li − k − θ)

, with f(z) = Γ(z+1)
Γ(z+θ) .

By Lemma 3.2, we can find a sequence of sets D(N) ⊂ R2N−2 satisfying the interlacing properties
of the top two rows of our ensemble such that lim

N→∞
P(l1, ..., lN ,m1, ...,mN−2 ∈ D(N)) = 1 and for

any sequence (x1(N), ..., xN (N), y1(N), ..., yN−2(N)) ∈ D(N) we have:

• lim
N→∞

1

xN (N)− xN−1(N)
= 0;

• lim
N−1∑
i=1

1

xN (N)− xi(N)− θ
=

log(1 + 1√
t
)

θ
;
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• lim

N−2∑
i=1

1

xN (N)− yi(N)− θ
=

log(1 + 1√
t
)

θ
.

It is enough to study fN (k) on D(N). For those sequences we get:

lim
N→∞

fN (k)

fN (0)
=

Γ(θ + k)

Γ(θ)Γ(1 + k)
lim
N→∞

exp

(
−
N−2∑
i=1

k

lN −mi − θ
−
N−1∑
i=1

k(θ − 1)

lN − li − θ
+ o

(
1

lN − lN − 1

))

=
Γ(k + θ)

k!Γ(θ)
exp

(
−klog

(
1 +

1√
t

))
.

Thus,
fN (k)

fN (0)
→ pk

Γ(k + θ)

k!Γ(θ)
, where p =

√
t

1 +
√
t
.

The limit above is proportional to the density of a negative binomial distribution, which is

pk(1− p)θΓ(k + θ)

k!Γ(θ)
. It remains to show that fN (0)→ (1− p)θ.

Suppose that we had lim supN→∞ fN (0) > (1 − p)θ. Then, for some N large enough we would
have

∑
j≤k P(zN = j) > 1 for some k, contradiction. So lim supN→∞ fN (0) ≤ (1− p)θ.

It remains to show that liminfN→∞fN (0) ≥ (1− p)θ. Pick any ε > 0. For N sufficiently large
and all k we have:

fN (0) ≥ Γ(θ)Γ(k + 1)

Γ(k + θ)
exp

(
N−2∑
i=1

k

lN −mi − θ
+

N−1∑
i=1

k(θ − 1)

lN − li − θ

)
≥

fN (k)

(
1 +

1√
t
− ε
)k Γ(θ)Γ(1 + k)

Γ(θ + k)
.

The last inequality implies that for all large N :(
1 +

1√
t
− ε
)−k

fN (0)
Γ(θ + k)

Γ(θ)Γ(1 + k)
≥ fN (k),

which implies

liminfN→∞fN (0)
1(

1− 1
1+ 1√

t

− ε
)θ ≥ 1,

by the well-known identity
∑
k

x−k
Γ(k + θ)

Γ(θ)Γ(1 + k)
=

(
1− 1

x

)−θ
.

For ε→ 0 the last inequality gives lim inf
N→∞

f(0) ≥ (1− p)θ.The proof is completed. �

4.2. Proof of Theorem 1.1. We proceed by induction on k. For k = 1, we already proved the
result in Lemma 4.1 when s = 0. In fact, the same arguments can be repeated to prove the statement
for any s ≥ 0.

Suppose for k < m the result of the theorem holds. We will prove it for k = m. For simplicity of
notations we set ZNj = XN−j+1

1 (Nt+ s;N)−XN−j
1 (Nt+ s;N) for j = 1, ..., k.

Take any k1, ..., km∈Z≥0. Then, we know that

P(ZN1 = k1, ..., Z
N
m = km) =P(ZNm = km|ZN1 = k1, ..., Z

N
m−1= km−1)P(ZN1 = k1, ..., Z

N
m−1 = km−1).

By the inductive hypothesis it is enough to show that

(21) lim
N→∞

P(ZNm = km|ZN1 = k1, ..., Z
N
m−1 = km−1) = pkm(1− p)θΓ(km + θ)

km!Γ(θ)
.
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From Section 2.1 we have

(22) P(λN , ..., λN−m) =
J̃λN (ρ)JλN/λN−1(1)...JλN−m+1/λN−m(1)JλN−m(1N−m)

Hθ(ρ; 1N )
.

Let FN be the σ-algebra generated by XN−j+1
i (Nt+ s;N) for j = 1, ...,m and i = 1, ..., N − j + 1.

Notice that FN is a finer σ-algebra than that of ZN1 , ..., ZNm−1. Equation (22) gives us that the
conditional on FN density of the (m+ 1)-th row is proportional to JλN−m(1N−m)JλN−m+1/λN−m(1).
Consequently,

P(ZNm = km|FN ) = P(XN−m+1
1 (tN ;N −m)−XN−m

1 (tN ;N −m) = km|XN−m+1
1 , ..., XN−m+1

N−m+1 ).

From this point we can follow exactly the same proof as for k = 1 to conclude that

lim
N→∞

P(ZNm = km|FN ) = pkm(1− p)θΓ(km + θ)

km!Γ(θ)
.

The latter implies the validity of (21) by the Tower property for conditional expectation, which
proves the theorem.

5. Dynamic limit

In this section we describe a conjectural extension of our results. As discussed in Section 1, the
parallel with multilevel Dyson Brownian motion suggests that for any t > 0(

XN
1 (tN + s;N)−XN−1

1 (tN + s;N) , ..., XN−k+1
1 (tN + s;N)−XN−k

1 (tN + s;N)
)

converges to a continuous time Markov chain as N → ∞. Investigating this question will be the
subject of a future joint work with Evgeni Dimitrov. In what follows we describe a certain continuous
time Markov process (Q1(s), ..., Qk(s)) and formulate a precise conjectural statement that extends
Theorem 1.1.

Let us fix k ≥ 1, t > 0 and θ ≥ 1/2. Suppose we have k piles of particles at locations 1, ..., k, and
at time s the i-th pile contains a non-negative integer number of particles Qi(s). In addition, we
assume we have a pile with infinitely many particles at location 0 and a sink at location k+ 1. The
i-th pile with i ∈ {1, ..., k} has an exponential clock with parameter λi(s) = θ θ+Qi(s)1+Qi(s)

. The clocks
are independent of each other and when the i-th clock rings, a particle from the closest non-empty
pile to the left jumps into pile i. The infinite pile at location 0, ensures that there is always a
non-empty pile to the left and is a source for new particles to enter the system. In addition, the
sink has an exponential clock with constant parameter λsink = θ 1+

√
t√
t

and when the clock rings a
single particle jumps from the nearest non-empty pile to the left into the sink and disappears.

We let Q(s) = (Q1(s), ..., Qk(s)) be the Markov process defined through the dynamics in the pre-
vious paragraph and with initial distribution such that Q1(0), ..., Qk(0) are i.i.d. random variables
with

P(Q1(0) = n) = (1− p)−θ Γ(n+ θ)

Γ(n+ 1)Γ(θ)
pn, n ∈ Z≥0, and p =

√
t

1 +
√
t
.

It is easy to check that Q(s) is a stationary pure jump continuous time Markov process and we
view it as an element in Dn - the space of right continuous left limited functions from [0,∞) to Zn≥0
with the topology of uniform convergence over compact sets. With this notation we formulate the
following extension of Theorem 1.1.

Conjecture 5.1. Assume the same conditions as in Theorem 1.1. The distribution of the process(
XN

1 (tN + s;N)−XN−1
1 (tN + s;N) , ..., XN−k+1

1 (tN + s;N)−XN−k
1 (tN + s;N)

)
, s ≥ 0

on Dn converges weakly to that of the process Q(s) = (Q1(s), ..., Qk(s)) defined above.
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The dynamics we described earlier is the dual dynamics to a certain push-TASEP interacting
particle system X(s) on the line that we explain here briefly. Suppose we have k + 1 particles on
Z, whose location at time s ≥ 0 is Xk+1(s) < · · · < X1(s). Each particle i has an exponential clock
with parameter λi and when the clock rings the particle jumps to the right by 1. If the site to the
right is occupied then one finds the longest string of adjacent particles starting from that location
going to the right and the entire string is pushed by 1. The clocks are independent and have rates

λk+1(s) = θ
1 +
√
t√

t
, and λi(s) = θ

θ +Xi+1(s−)−Xi(s−)− 1

Xi+1(s−)−Xi(s−)
.

When θ = 1 the above becomes the well-known push-TASEP. The dynamic system Q(s) =
(Q1(s), ..., Qk(s)) has the same law as (X1(s) −X2(s) − 1, ..., Xk(s) −Xk+1(s) − 1). In this sense
Q(s) describes the evolution of the gaps between particles in X(s), which is sometimes called the
dual process.
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