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Abstract

Classical internal diffusion-limited aggregation (internal DLA) is a probabilistic lattice growth model
in which an occupied set At is inductively defined at each step by starting a random walk on Zd at the
origin, and if x is the first point the walk visits which isn’t already in At, we let At+1 = At ∪ {x} (the
base case is A0 = ∅). Lawler, Bramson, and Griffeath showed that, after rescaling, At asymptotically
converges to a ball, its deterministic shape. Subsequently, Jerison, Levine, and Sheffield proved a central
limit theorem which shows that the fluctuations of the rescaled At away from the deterministic shape
themselves converge weakly to a modified version of the Gaussian Free Field. Internal DLA, however, can
also be modified to have multiple sources by starting the random walks at different points on the lattice
according to a starting density function σ. Levine and Peres proved that, after rescaling, the occupied
set for internal DLA with multiple sources converges to the solution of a certain obstacle problem. We
show that the central limit theorem proved by Jerison, Levine, and Sheffield in the single point source
case generalizes in part to the multiple source case in a natural way.



1 Introduction

Internal diffusion-limited aggregation (internal DLA) with a single point source is a random process {At|t ∈
Z≥0} defined inductively, representing a growing cluster of particles. Here, At is called the “occupied set”
and we define it to start empty, A0 = ∅. Then, at each step t ≥ 1, a particle is added at the origin, and
moves along an independent random walk on Zd. To form At, we let x be the first point the random walk
representing the tth particle visits which isn’t in At−1, and let At = At−1 ∪ {x} (i.e. we stop the particle
once it leaves the cluster, and add that lattice site to the cluster). This process was first proposed by
Meakin and Deutch [1] in 1986, hoping the process would be useful to model chemical phenomena such as
“electropolishing, corrosion, and etching.” Internal DLA has been used in practice to model such processes
as Copper electropolishing [2] and the high viscosity regime of diffusion of dense, water-immiscible liquids,
such as certain oils, into water [3]. It is important to understand the surface regularity of such phenomena,
and this can be investigated by studying internal DLA. Meakin and Deutch performed simulations of internal
DLA (on cylindrical lattices, as opposed to the normal Euclidean lattices we will use) and obtained numerical
evidence that, in two dimensions, the standard deviation of the height of the occupied set (on the cylindrical
lattice, after rescaling) is O(

√
log n) where n is the number of particles simulated, while in three dimensions,

the standard deviation of the height of the occupied set actually seemed to stay constant as n grew, i.e. it
was O(1).

In 1992, Lawler, Bramson, and Griffeath [4] proved that, with probability one, the rescaled occupied set
(for internal DLA on Zd this time, i.e. on Euclidean lattices) converges to a ball centered at the origin, in the
sense that it will eventually contain any smaller ball centered at the origin and be contained in any bigger
ball centered at the origin. This was notable for being the first time a probabilistic lattice growth process
was rigorously proved to have the ball as its deterministic shape; among the small number of such processes
for which the deterministic shape had been characterized, all had been shown to have anisotropic growth.

This established the deterministic shape of the internal DLA cluster as a ball, and so said that with
probability one, the fluctuations away from the ball will eventually be o(n−d) where d is the dimension
of the lattice and n is the number of points added to the cluster. However, this bound on the size of the
maximum fluctuations is larger than what the numerical data predicts [5]. In 2012 and 2013, Jerison, Levine,
and Sheffield proved, first in two dimensions [5], and then in higher dimensions [6], with probability one, the
maximum fluctuations are eventually O(log n) in two dimensions and O(

√
log n) in higher dimensions. This

is in line with what numerical simulations expect the maximum fluctuations to be, and so it is thought that
this bound is tight [5]. However, this bound is on the maximum fluctuations, and only gives an upper bound
on what the standard deviation of the fluctuations could be, which is what Meakin and Deutch studied [1]
(indeed, in both two and higher dimensions, the maximum fluctuation bounds proved by Jerison, Levine,
and Sheffield are

√
log n times what Meakin and Deutch suggested the standard deviations should be).

In 2014, Jerison, Levine, and Sheffield [7] proved a central limit theorem establishing that the fluctuations
weakly converge to the restriction of a modified version of the Gaussian free field (what they called the
“augmented” Gaussian free field) to the boundary of the deterministic ball. This result does not directly say
that the standard deviation of the fluctuations is O(

√
log n) in two dimensions and O(1) in higher dimensions,

which is what Meakin and Deutch [1] predicted from numerical data in 1986, but it does heuristically suggest
that this is true.

All of the above results concern the model of internal DLA with a single source of particles at the origin,
but one can define the model to have multiple different sources, with varying intensities. In 1992, Diaconis
and Fulton [8] defined a growth model that contained internal DLA as a rather specific sub-case. They
were then able to prove a number of algebraic properties of their general model, most notably the fact that
it is abelian. This allows for a definition of internal DLA with multiple sources. In particular, if σ is an
integer-valued function on Zd which is nonzero at only finitely many points, then the internal DLA cluster
for the starting density σ is defined in a similar way as the normal single-source cluster above. Let A0 = ∅,
and let {xi}ni=1 be some ordering of the points in the support of σ such that for each x in Zd, x is represented
in the sequence exactly σ(x) times (which implies that n =

∑
x∈Zd σ(x)). Then, we inductively define At

by initiating an independent random walk on Zd starting at xt, and adjoining the first point the walk visits
which isn’t in At−1 to At−1. The abelian property that Diaconis and Fulton proved extends to this case
as well, and says specifically that the law of the last cluster, An, is independent of the order of the points
{xi}ni=1 (and so we were justified in arbitrarily choosing the sequence beforehand).
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In 2009, Levine and Peres [9] showed that this model of multiple source internal DLA has a deterministic
shape as well, which is the solution to a certain PDE free-boundary problem, specifically a certain obstacle
problem. The proof utilized many of the techniques that were used for the single-source case proved by
Lawler, Bramson, and Griffeath [4] in 1992. However, no further fluctuation bounds have been proven for
the multiple source case. In this report, we aim to extend the central limit theorem proved by Jerison,
Levine, and Sheffield [7] in 2014 to the multiple source case. Taking our cues from Levine and Peres, we
model our proof on the proof in the single-source case due to Jerison, Levine, and Sheffield, making necessary
changes to generalize to the multiple source case.

Multiple source internal DLA is of interest as it has the potential to provide new insights into the
underlying geometry of the aggregation process. Jerison, Levine, and Sheffield proved that on the cylinder,
the fluctuations of internal DLA weakly converge to the regular Gaussian free field [10], as opposed to the
“augmented” Gaussian free field in the case of Euclidean lattices, as noted above. They conjectured that
the need for the modification of the Gaussian free field to accomodate the Euclidean lattices was due, at
least in part, to the nonzero mean curvature of the boundary of the deterministic shape (i.e. the ball) in
the Euclidean case, while in the cylindrical case, the boundary is flat [7]. Understanding how to modify
the Gaussian free field in order to accomodate the multiple source case could confirm and make precise
these heuristic geometric arguments. Unfortunately, while we have been able to elucidate the underlying
covariance structure of the fluctuations in this report, we have not found a way to modify the Gaussian
free field to match this structure. Finding the proper way to modify the Gaussian free field to match the
covariance structure we’ve found is the logical next step in this line of research.

After this Introduction, we establish the nomenclature and precise definitions of the objects of study in
the Preliminaries section, along with stating theorems and lemmas proved in the literature described above
which we will need in the course of our proof. The Results section that follows will consist of the proof of
our main result and a proof of a lemma needed for our main result. Finally, in the Next Steps section, we
discuss modifying the Gaussian free field to match the covariance structure we’ve found.

I would like to thank the MIT UROP+ program, organized by Slava Gerovitch, for providing resources
for me to pursue this project, and specifically Ricardo Grande Izquierdo for his mentorship throughout. I
would also like to especially thank Professor David Jerison for suggesting this project and helping me to
interpret this research in a broader context.

2 Preliminaries

We define the multiple source internal DLA cluster At on a lattice with starting density σ (an integer-valued
function on the lattice which is nonzero only finitely often) in the same way that Levine and Peres do [9], as
described above. In particular, we label the points in the support of σ {x1, . . . , xn}, where the multiplicity
of a point in the sequence is the value of σ there (i.e. #{i;xi = x} = σ(x) for all x in the lattice). We set
A0 = ∅, and define At recursively by starting an independent random walk on the lattice at xt, and adding
to At−1 the first point in the walk which is not in At−1. At a first glance, it seems that At depends on the
order chosen for {x1, . . . , xn}. However, the law of An (i.e. the final cluster) does not actually depend on
the order chosen, which was proved by Diaconis and Fulton [8]. All of the following notation and definitions
correspond to what is in the paper of Levine and Peres [9].

First, if f is a function on 1
mZd, then we define f� on Rd by

f�(x) = f

((
x+

(
− 1

2m
,

1

2m

]d)
∩ 1

m
Zd
)
.

We clearly have that for all x in Rd, the set
(
x+

(
− 1

2m ,
1

2m

]d) ∩ 1
mZd will consist of the single point in Zd

closest to x, rounding up if there’s a conflict in some direction, and so it makes sense to speak of f applied
to this singleton set. In general, we will abuse the notation throughout by considering a function applied to
a set containing a single point to be the function evaluated at the point in the set.

Similarly, for a set B ⊂ 1
mZd, we let B� = B + [− 1

2m ,
1

2m ] be the subset of Rd consisting of the lattice
boxes surrounding the points in B.
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Additionally, for any domain U ⊂ Rd and any ε > 0, we define the inner and outer ε-neighborhoods of D
to be

Uε = {x ∈ U |B(x, ε) ⊂ U},
U ε = {x ∈ Rd|B(x, ε) 6⊂ U c},

where B(x, ε) refers to the open ball centered at x with radius ε.
Throughout this report, we will assume σ : Rd → Z≥0 and, for all positive integers m, σm : 1

mZd → Z≥0

are compactly supported functions with the following properties (which are equations 27-31, 64-67 in the
paper of Levine and Peres [9]). First, there must be a bound M such that 0 ≤ σ ≤ M and 0 ≤ σm ≤ M
holds everywhere and for all m. Second, there must be a compact set Γ which simultaneously contains all
the supports of σ and σm for all m. Additionally, σ must be continuous almost everywhere. Furthermore,
for all x where σ is continuous, we must have

σ�
m(x)→ σ(x).

Also, we must have that for all x in Rd, either σ(x) ≥ 1 or σ(x) = 0. We define Ω = {σ ≥ 1}o, and we
require that {σ ≥ 1} = Ω. Finally, we must assume that for all ε > 0, there is a W (ε) such that both of the
following conditions hold:

x ∈ {σ ≥ 1}ε ⇒ σm(x) ≥ 1 for all m ≥W (ε),

x /∈ {σ ≥ 1}ε ⇒ σm(x) = 0 for all m ≥W (ε).

These conditions on σ, σm, Ω and Γ are designed to be as general as possible. The idea is that σm is a
sequence of functions on 1

mZd such that they converge in the above sense to σ. If σ and Γ satisfy all the
requirements above which don’t involve σm, then setting σm to be

σm(x) =

⌊ 
x+[− 1

2m , 1
2m ]d

σ(y)dy

⌉
guarantees the conditions involving σm to hold, where b·e rounds real numbers to the nearest integer, and
breaks ties upward.

Let {xm,i}nm
i=1 be an ordering of the points in the support of σm according to multiplicity as above, and let

{Am,t}nm
t=1 be the multiple source internal DLA cluster on 1

mZd (defined simply by scaling the corresponding
cluster on Zd by 1

m ) with initial density σm (and choosing the points in the order dictated by {xm,i}). Thus,
nm =

∑
x∈ 1

mZd σm(x) is the index of the final cluster.

The last bit of nomenclature and conditions we have to get out of the way concerns the deterministic
shape of the multiple source internal DLA. Let g(x, y) be the Green’s function on Rd \ {0}, defined by

g(x, y) =

{
− 1

2π log |x− y| d = 2
1

n(n−2) vol(Bd
1 )
|x− y|2−d d ≥ 3

where Bd1 is the unit ball in Rd.
Then we define the “obstacle” γ in the obstacle problem defining the deterministic shape of the multiple

source internal DLA by

γ(x) = −|x|2 −
ˆ
Rd

g(x, y)σ(y)dy.

We now let s : Rd → R be the least superharmonic majorant of γ, so

s(x) = inf{f(x)|f is continuous, superharmonic, and f ≥ γ}.

Then the “odometer function” for the obstacle problem is s−γ, and the “noncoincidence set” for this obstacle
problem is the set of points D where the odometer function is nonzero, i.e.

D = {x ∈ Rd|s(x) > γ(x)}.

We then let D̃ = D ∪ Ω. The main relevant result in the paper of Levine and Peres [9] is that D̃ is the
deterministic shape for the multiple source internal DLA process, as we shall now formally state, in addition
to three other previous results which we will need to prove our result.
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Theorem 1 (Thm. 5.1 in [9]). With the nomenclature above, given any ε > 0, with probability one, we have
for sufficiently large m,

D̃ε ∩
1

m
Zd ⊂ Am,nm

⊂ D̃ε ∩ 1

m
Zd.

The next lemma we will need concerns the roughness of the internal DLA cluster. It gives examples of
events which have exponentially small probabilities, which we will be able to paste together to our advantage.
The lemma has been modified from its original form to be on 1

mZd instead of just Zd, which makes more
sense for use in this context.

Lemma 1 (Lem. 5.12 in [9]). Let Q(z, ρ) be the cube centered at z with sidelength ρ. There are constants
b0, b1, and b2 depending only on the dimension d such that if ρ satisfies

nm −#{x;σm(x) 6= 0} ≤ b0mdρd

and if Q(z, 3ρ) is disjoint from {x;σm(x) 6= 0}, then we have

P({Am,nm 6⊂ Q(z, ρ)c}) ≤ b1e−b2mρ.

This is actually a somewhat weaker statement than lemma 5.12 in [9], but it will suffice to prove what
we want.

The next thing we need to define is the final mass configuration for the divisible sandpile. The divisible
sandpile is another lattice model, but which is deterministic instead of probabilistic, like internal DLA. We
won’t go into what exactly it is in too much detail, as it only serves to help us interpret our main result, so
knowing its properties is sufficient for our purposes.

Theorem 2 (Thm. 3.9 and Eq. (6) in [9]). Let νm be the final mass configuration for the divisible sandpile
started on the density function σm. Then 0 ≤ νm ≤ 1, and for any ε > 0 we have for sufficiently large m

D̃ε ∩
1

m
Zd ⊂ {νm = 1} ⊂ {νm > 0} ⊂ D̃ε ∩ 1

m
Zd.

Additionally, for any lattice harmonic function h, we have∑
x∈ 1

mZd

h(x)νm(x) =
∑

x∈ 1
mZd

h(x)σm(x).

It should be noted that the sequence of inclusions above was proved by Levine and Peres without {νm > 0}
in it, however the proof can be easily modified to include it as well.

A “lattice harmonic” function is a function h on 1
mZd such that for all x in 1

mZd,

1

2d

∑
y∼x

(u(y)− u(x)) = 0.

Here, the sum is taken over the 2d lattice sites directly adjacent to x. The last result we need concerns
lattice harmonic functions, and in particular how well they approximate harmonic (in the regular sense)
polynomials on Rd as the lattice gets finer and finer. The following lemma is a synthesis of a few results
from section 2.2 in the 2014 paper by Jerison, Levine, and Sheffield [7].

Lemma 2 (Sect. 2.2 in [7]). For each positive integer m, there is a linear map from the space of harmonic
polynomials on Rd to the space of lattice harmonic polynomials on 1

mZd mapping ψ 7→ ψ(m), which has the
following properties. If ψ has degree k, then there is a constant C(ψ) such that

|ψ(x)− ψ(m)(x)| ≤ C(ψ)|x|k−2m−2.

In particular, for every bounded subset U of Rd, there is a constant C(U,ψ) such that for all x in U ,

|ψ(x)− ψ(m)(x)| ≤ C(U,ψ)m−2.
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Finally, for every harmonic polynomial ψ on Rd, we define the random quantity Φmσ (ψ) by

Φmσ (ψ) = m−d/2

 ∑
x∈Am,nm

ψ(m)(x)−
∑

x∈ 1
mZd

σm(x)ψ(m)(x)

 .

This sequence of random variables will be the main subject of study in our main result. We offer an
interpretation of what this quantity represents using the divisible sandpile. Since ψ(m) is lattice harmonic,
we have, by Theorem 2, ∑

x∈ 1
mZd

ψ(m)(x)νm(x) =
∑

x∈ 1
mZd

ψ(m)(x)σm(x).

Thus,

Φmσ (ψ) = m−d/2

 ∑
x∈Am,nm

ψ(m)(x)−
∑

x∈ 1
mZd

σm(x)ψ(m)(x)


= m−d/2

 ∑
x∈Am,nm

ψ(m)(x)−
∑

x∈ 1
mZd

ψ(m)(x)νm(x)


= m−d/2

∑
x∈ 1

mZd

ψ(m)(x)(1Am,nm
(x)− νm(x)).

For functions f and g on 1
mZd we define the bilinear form

(f, g) = m−d
∑

x∈ 1
mZd

f(x)g(x).

Then if we define
Emσ (x) = md/2

∑
x∈ 1

mZd

(1Am,nm
(x)− νm(x)),

we get
Φmσ (ψ) = (Emσ , ψ).

We call Emσ the “discrepancy function” because it essentially measures the difference between Am,nm and

D̃ (by Theorem 2, νm becomes an arbitrarily good approximator for 1D̃ as m → ∞). Thus, if we can find
the limiting distribution of Φmσ (ψ) for all harmonic polynomials ψ (as we will in Theorem 3), we will have
a result about the weak limit of Emσ as a distribution, which tells us about the fluctuations of Am,nm

away

from D̃.

3 Results

Our main theorem is a generalization of theorem 1.4 from the 2014 paper by Jerison, Levine, and Sheffield
[7]:

Theorem 3. For any harmonic polynomials ψ1, . . . , ψl with corresponding degrees k1, . . . , kl and starting
density σ, we have that (Φmσ (ψj))

l
j=1 converges in law as m → ∞ to a multivariate normal random vector

(Nj)
l
j=1 with mean 0 and covariance matrix Σ given by

Σi,j = Cov(Ni, Nj) =

ˆ
D̃

ψiψj(1− σ).

Using the interpretation of Φmσ (ψ) at the end of the Preliminaries section, we get the following corollary
of Theorem 3, which tells us about the weak distributional limit of Emσ .
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Corollary 1. For any harmonic polynomials ψ1, . . . , ψl with corresponding degrees k1, . . . , kl and starting
density σ, we have that [(Emσ , ψ(m))]

l
j=1 converges in law as m→∞ to a multivariate normal random vector

(Nj)
l
j=1 with mean 0 and covariance matrix Σ given by

Σi,j = Cov(Ni, Nj) =

ˆ
D̃

ψiψj(1− σ).

Before we prove Theorem 3, we must prove a lemma establishing some rather weak fluctuation bounds
for internal DLA with multiple sources, utilizing Lemma 1, one of the lemmas due to Levine and Peres [9].
Recall that Γ is the compact set we required to exist which contains all the supports of the {σm} and σ itself
as well.

Lemma 3. There exists a bounded set B(Γ, σ) ⊂ Rd such that

maP({Am,nm
6⊂ B(Γ, σ)})→ 0 as m→∞ for all a > 0.

Proof. Since nm =
∑
x∈ 1

mZd σm(x), we have that there is a constant c1 such that nm ≤ c1m
d. Thus, we

may choose ρ to be so large that b0ρ
d > c1, in which case the first condition of Lemma 1 is satisfied. Let

R = diam Γ + 3
√
d

2 ρ+ 1. Let o be some point inside Γ, let T be the boundary of the ball of radius R centered
at o, and let Tb be the closed ball of radius R centered at o. Clearly, we can cover T with a finite number of
sets of the form Q(z, ρ), where z is in T (this immediately follows from the compactness of T , for example),

so we may let {z1, . . . , zh} be a set of points on T such that
⋃h
i=1Q(zi, ρ) ⊃ T . Furthermore, since we

defined R large enough, we have that Q(zi, 3ρ) is disjoint from Γ, and therefore {x;σm(x) 6= 0}, for each i
in {1, . . . , h}. Thus, by Lemma 1, we have for each i in {1, . . . , h},

P({Am,nm 6⊂ Q(zi, ρ)c}) ≤ b1e−b2mρ.

Now, we have

h⋃
i=1

{Am,nm 6⊂ Q(zi, ρ)c} =

{
Am,nm 6⊂

h⋂
i=1

Q(zi, ρ)c

}
=

{
Am,nm 6⊂

(
h⋃
i=1

Q(zi, ρ)

)c}
.

Now,
(⋃h

i=1Q(zi, ρ)
)c

has two connected components, one a subset of Tb, one disjoint from Tb. Since σm is

supported within Γ, which is a subset of Tb, if At,m ⊂
(⋃h

i=1Q(zi, ρ)
)c

, then we must have that At,m ⊂ Tb,
as every point in At,m must be connected by a path in 1

mZd to a point in the support of σm. Thus, we have
that

h⋃
i=1

{Am,nm
6⊂ Q(zi, ρ)c} =

{
Am,nm

6⊂

(
h⋃
i=1

Q(zi, ρ)

)c}
= {Am,nm

6⊂ Tb}.

So,

P({Am,nm 6⊂ Tb}) = P

(
h⋃
i=1

{Am,nm 6⊂ Q(zi, ρ)c}

)
≤ hb1e−b2mρ.

Going back through the proof, the definitions of Tb and h only depended on R, which depended on Γ and
ρ. The definition of ρ only depended on d (and constants which depend only on d), so the right hand side
of the above inequality has no further dependence on m than what is apparent, and Tb is a valid candidate
for B(Γ, σ). In particular, the above inequality shows that:

maP({Am,nm
6⊂ Tb}) ≤ hb1mae−b2mρ → 0 as m→∞ for all a > 0

Thus, setting B(Γ, σ) = Tb, we see that the lemma indeed holds.

Proof of Theorem 3. We start by proving the theorem for a single harmonic polynomial ψ with degree k,
and then generalize to the multivariate case.
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The proof relies on exploiting the martingale properties of the quantity

Mm(t) = m−d/2

 ∑
x∈Am,t

ψ(m)(x)−
t∑
i=1

ψ(m)(xm,i)

 .

We first note that Mm(nm) = Φmσ (ψ), so our goal is to show that Mm(nm) converges in law to a normal
random variable with mean zero and variance given in the theorem statement. We’ll also see that the “rows”
of this quantity (i.e. keeping m fixed) form martingales up to time t = nm. In order to make use of this, we
define the following sigma algebras on which we’ll form a martingale difference array from Mm(t). For m in
Z≥1 and t in {0, . . . , nm},

Fm,t = σ
(
{Am,i}ti=0

)
.

Now, for all m in Z≥1 and t in {1, . . . , nm}, we define Xm,t = Mm(t) − Mm(t − 1) for t > 1 and let
Xm,1 = Mm(1). Written out, we see

Xm,t = m−d/2
(
ψ(m)(Am,t \Am,t−1)− ψ(m)(xm,t)

)
.

We note that the one point in Am,t \ Am,t−1 is the location a random walk, starting at xm,t exits the set
Am,t−1. Thus, since ψm is harmonic on the lattice 1

mZd, we have that

E[ψ(m)(Am,t \Am,t−1)|σ({Am,i}t−1
i=0)] = ψ(m)(xm,t).

(This follows from Theorem 1.4.5 in [11]). Thus, we have E[Xm,t|Fm,t−1] = 0, so X is indeed a zero-mean
martingale difference array adapted to {Fm,t}. We will use a version of the martingale central limit theorem
to prove our desired result (see Theorem 3.2 in [12] and the subsequent Remarks). This version tells us
that if the following conditions hold on the martingale difference array X, then we will have that

∑nm

t=1Xm,t

converges in law as m→∞ to a zero-mean normal random variable with variance
´
D̃
ψ2(1− σ):

E
[

max
1≤t≤nm

X2
m,t

]
is bounded in m, (1)

max
1≤t≤nm

|Xm,t| → 0 in probability as m,→∞ (2)

nm∑
t=1

X2
m,t →

ˆ
D̃

ψ2(1− σ) in probability as m→∞. (3)

It’s worth noting that condition 1 implies the array is square-integrable, so we don’t have to prove that
separately. Additionally, since

∑nm

t=1Xm,t = Mm(nm) = Φmσ (ψ), showing these properties hold indeed
suffices to prove the theorem in the single variable case.

In order to prove conditions 1 and 2 at once, we will show that E [max1≤t≤nm |Xm,t|a] → 0 as m → ∞
for a ≥ 1. Condition 1 immediately follows from the case a = 2, and the a = 1 case implies that the mean
of max1≤t≤nm

|Xm,t| converges to zero, which implies that it converges to zero in the L1 norm since it is
nonnegative everywhere, which implies that it converges to zero in probability, giving condition 2.

We start by showing that for all a ≥ 0, we have that

E
[

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a
]

is bounded independently of m. We let Em = {Am,nm
⊂ B(Γ, σ) ∩ 1

mZd}, where B(Γ, σ) is as in Lemma 3,

which tells us that for sufficiently large m, we have that P(E c
m) ≤ m−a(d−1)k. Then, by conditioning on Em,

we have the expectation above is equal to

E
[

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a
∣∣∣∣Em]P(Em) + E

[
max

1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a
∣∣∣∣E c
m

]
P(E c

m).
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Now, on Em, we have that Am,t ⊂ B(Γ, σ), so

|ψ(m)(Am,t \Am,t−1)|a ≤ 2a−1

(
sup

x∈B(Γ,σ)

|ψ(x)|a + C(B(Γ, σ), ψ)am−2a

)
.

Thus, we have that

E
[

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a
∣∣∣∣Em]P(Em) ≤ 2a−1

(
sup

x∈B(Γ,σ)

|ψ(x)|a + C(B(Γ, σ), ψ)am−2a

)
.

So the first term above is bounded independently of m. Now we show the same of the second term. Let
R = supx∈Γ |x|. An upper bound on the norm of the point in Am,t \ Am,t−1 is t/m + R, as Am,t must be
connected, there are only t points in it on the grid 1

mZd, and the origin is in Γ. Furthermore, t ≤ nm, and
since nm =

∑
x∈ 1

mZd σm(x), we have that there is a constant c1 such that nm ≤ c1md. Thus, we have that

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a ≤ 2a−1
(
C ′(ψ)a(c1m

d−1 +R)ak + C(ψ)am−2(c1m
d−1 +R)a(k−2)

)
.

(Here, C ′(ψ) is a constant such that |ψ(x)| ≤ C ′(ψ)|x|k everywhere but zero, guaranteed to exist since ψ
has degree k. Also, C(ψ) is given by Lemma 2.) However, Lemma 3 tells us that for sufficiently large m,
P(E c

m) ≤ m−a(d−1)k. This means

E
[

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a
∣∣∣∣E c
m

]
P(E c

m)

≤ 2a−1
(
C ′(ψ)a(c1 +m−(d−1)R)ak + C(ψ)am−2−2a(d−1)(c1 +m−(d−1)R)a(k−2)

)
.

Thus, since this is decreasing in m, it is bounded independent of m. Thus, both terms are bounded inde-
pendent of m, meaning that our original quantity

E
[

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a
]
≤ K(a, ψ, σ,Γ)

is bounded by a constant K(a, ψ, σ,Γ) independently of m (this constant K will be used later as well). Thus,
we have

E
[

max
1≤t≤nm

|Xm,t|a
]

= m−ad/2E
[

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)− ψ(m)(xm,t)|a
]

≤ 2a−1m−ad/2
(
E
[

max
1≤t≤nm

|ψ(m)(Am,t \Am,t−1)|a
]

+ max
1≤t≤nm

|ψ(m)(xm,t)|a
)
.

Clearly if the quantity inside the parentheses is bounded independent of m, the whole expression will tend
to zero as m→∞. We just showed that the first term in the parentheses is bounded independent of m, and
it’s not hard to see the second one is as well:

max
1≤t≤nm

|ψ(m)(xm,t)|a ≤ 2a−1

(
max

1≤t≤nm

|ψ(xm,t)|a + C(Γ, ψ)am−2a

)
≤ 2a−1

(
sup
x∈Γ
|ψ(x)|a + C(Γ, ψ)am−2a

)
.

Thus, we’ve shown that E [max1≤t≤nm |Xm,t|a] → 0 for all a ≥ 1, which, as noted before, implies that
conditions 1 and 2 hold.

The final step is to show that condition 3 holds. We define the following random variables to help with
this:

Sm(t) =

t∑
i=1

X2
m,t,

Zm(t) = m−d
∑

x∈Am,t

ψ(m)(x)2 −m−d
t∑
i=1

ψ(m)(xm,i)
2,
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Nm(t) = Sm(t)− Zm(t).

We note that Sm(t), Zm(t) and Nm(t) are adapted to the filtration Fm,t, since so are Xm,t and Am,t. We
will show that E[Nm(nm)2]→ 0 as m→∞, which implies that Nm(nm) = Sm(nm)− Zm(nm) converges in
probability to zero as m→∞. Then, if we can show that Zm(nm) converges in probability to

´
D̃
ψ2(1− σ),

we have that Sm(nm) converges in probability to this value as well, which is precisely what condition 3
requires.

So, we try to show that E[Nm(nm)2] → 0. We note that the increments of Nm have the martingale
property. We have

E [Nm(t)−Nm(t− 1)|Fm,t−1] = E
[
X2
m,t −m−d(ψ(m)(Am,t \Am,t−1)2 − ψ(m)(xm,t)

2)|Fm,t−1

]
.

This is equal to

m−dE
[
(ψ(m)(Am,t \Am,t−1)− ψ(m)(xm,t))

2 − (ψ(m)(Am,t \Am,t−1)2 − ψ(m)(xm,t)
2)|Fm,t−1

]
= m−dE

[
−2ψ(m)(Am,t \Am,t−1)ψ(m)(xm,t) + 2ψ(m)(xm,t)

2|Fm,t−1

]
= 2m−d

(
ψ(m)(xm,t)

2 − ψ(m)(xm,t)E[ψ(m)(Am,t \Am,t−1)|Fm,t−1]
)
.

We noted earlier that E[ψ(m)(Am,t \ Am,t−1)|Fm,t−1] = ψ(m)(xm,t) since ψ(m) is discrete harmonic and
Am,t \ Am,t−1 is the point where a random walk exits Am,t−1 (so the result follows from Theorem 1.4.5 in
[11]). Thus, we get that the expression above is equal to 2m−d(ψ(m)(xm,t)

2 − ψ(m)(xm,t)
2) = 0. Thus, the

increments of Mm have the martingale property, which tells us that the increments also have zero covariance,
as follows. Let 1 ≤ j < i ≤ nm. Then we have that

E[(Nm(i)−Nm(i− 1))(Nm(j)−Nm(j − 1))] = E[E[(Nm(i)−Nm(i− 1))(Nm(j)−Nm(j − 1))|Fm,i−1]].

Since i > j, i− 1 ≥ j and i− 1 ≥ j − 1, so Nm(j) and Nm(j − 1) are Fm,i−1-measurable. Thus, we have

E[E[(Nm(i)−Nm(i−1))(Nm(j)−Nm(j−1))|Fm,i−1]] = E[(Nm(j)−Nm(j−1))E[Nm(i)−Nm(i−1)|Fm,i−1]].

Since we just showed that the increments of Nm have the martingale property, the inner expectation in the
second expression above is zero, so we have that the covariance of distinct increments of Nm must be zero.
Finally, we note that Sm(1) = 0 and Zm(1) = 0, both since the first point in the internal DLA cluster must
be the same as the starting point for the first walk, since the cluster is empty, so the first walk’s starting
position must be empty. Thus,

E[Nm(nm)2] = E[(Nm(nm)−Nm(1))2] = E

(nm∑
t=2

Nm(t)−Nm(t− 1)

)2
 .

When we expand the square, the cross-terms will have expectation zero by what we just showed, so we have

E[Nm(nm)2] =

nm∑
t=2

E
[
(Nm(t)−Nm(t− 1))2

]
.

Now we’ll estimate the increments of Nm. We have

E[(Nm(t)−Nm(t− 1))2] ≤ 2E[(Sm(t)− Sm(t− 1))2] + 2E[(Zm(t)− Zm(t− 1))2].

To estimate the first term, we see

E[(Sm(t)− Sm(t− 1))2] = E[X4
m,t] = m−2dE[

(
ψ(m)(Am,t \Am,t−1)− ψ(m)(xm,t)

)4
].

Splitting this up further gives

E[(Sm(t)− Sm(t− 1))2] ≤ 8m−2dE[ψ(m)(Am,t \Am,t−1)4 + ψ(m)(xm,t)
4]

≤ 8m−2d

(
K(4, ψ, σ,Γ) + 8

(
sup
x∈Γ
|ψ(x)|4 + C(Γ, ψ)4m−8

))
.
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Here, we’ve reused the K from earlier. Thus, we’ve shown there is a constant CS(ψ, σ,Γ) such that

E[(Sm(t)− Sm(t− 1))2] ≤ CS(ψ, σ,Γ)m−2d.

Now we estimate the second term:

E[(Zm(t)− Zm(t− 1))2] = m−2dE[(ψ(m)(Am,t \Am,t−1)2 − ψ(m)(xm,i)
2)2]

≤ 2m−2d

(
K(4, ψ, σ,Γ) + 8

(
sup
x∈Γ
|ψ(x)|4 + C(Γ, ψ)4m−8

))
.

Thus, there is also a constant CZ(ψ, σ,Γ) such that

E[(Zm(t)− Zm(t− 1))2] ≤ CZ(ψ, σ,Γ)m−2d.

Thus, we have that

E[Nm(nm)2] ≤ 2

nm∑
t=2

m−2d(CZ(ψ, σ,Γ) + CS(ψ, σ,Γ)) ≤ 2(CZ(ψ, σ,Γ) + CS(ψ, σ,Γ))nmm
−2d.

However, we still have that nm ≤ c1md. Thus, there is a constant CN (ψ, σ,Γ) such that

E[Nm(nm)2] ≤ CN (ψ, σ,Γ)m−d.

Thus, Nn(nm)→ 0 in the L2 norm, and so converges in probability as well.
So to prove the theorem in the single variable case, it suffices to show that Zm(nm) →

´
D̃
ψ2(1 − σ) in

probability. We have that

Zm(nm) = m−d

 ∑
x∈Am,nm

ψ(m)(x)2 −
nm∑
t=1

ψ(m)(xm,i)
2

 = m−d
∑

x∈Am,nm

ψ(m)(x)2(1− σm(x)).

Now, by standard integration theory, we have

m−d
∑

x∈Am,nm

ψ(m)(x)2(1− σm(x)) =

ˆ
A�

m,nm

ψ�
(m)(x)2(1− σ�

m(x)).

We will show that this converges in probability to
´
D̃
ψ2(1− s) by showing that it is equal to

´
D̃
ψ2(1− s)

minus three other random variables, each of which converges to zero almost surely. For each positive integer
i, we let Ui be the event that

D̃1/i ∩
1

m
Zd ⊂ Am,nm

⊂ D̃1/i ∩ 1

m
Zd

holds for sufficiently large m. Theorem 1 tells us that P(Ui) = 1 for all i. Let U =
⋂
i≥1 Ui. Since U is a

countable intersection of probability one events, it has probability one itself. We define

Y 1
m =

ˆ
D̃

ψ�
(m)(x)2(1−σ�

m(x))−
ˆ
A�

m,nm

ψ�
(m)(x)2(1−σ�

m(x)) =

ˆ
D̃∪A�

m,nm

ψ�
(m)(x)2(1−σ�

m(x))(1�Am,nm
−1D̃).

We clearly have that for B1, B2 ⊂ 1
mZd, if B1 ⊂ B2 then B�

1 ⊂ B�
2 . Thus, we have that for every outcome

in U and every positive integer i, for sufficiently large m,(
D̃1/i ∩

1

m
Zd
)�

⊂ A�
m,nm

⊂
(
D̃1/i ∩ 1

m
Zd
)�

.

I claim that D̃1/i+
√
d/m ⊂

(
D̃1/i ∩ 1

mZd
)�

and
(
D̃1/i ∩ 1

mZd
)�
⊂ D̃1/i+

√
d/m. If x is in D̃1/i+

√
d/m, then

B(x, 1/i +
√
d/m) ⊂ D̃, so by the triangle inequality, if zm(x) is the nearest lattice point to x, breaking
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ties upward, then B (zm(x), 1/i) ⊂ B(x, 1/i +
√
d/m) ⊂ D̃ (since zm(x) is at most a distance of

√
d

2m away

from x), so zm(x) is in D̃1/i. On the other hand, if x is in
(
D̃1/i ∩ 1

mZd
)�

, then zm(x) is in D̃1/i, so

B(zm(x), 1/i) 6⊂ D̃. Since zm(x) is at most a distance
√
d

2m away from x, by the triangle inequality, B(x, 1/i+√
d/m) ⊃ B(zm(x), 1/i), so B(x, 1/i+

√
d/m) 6⊂ D̃ as well, so x is in D1/i+

√
d/m. Thus, for every outcome

in U and every positive integer i, for sufficiently large m,

D̃1/i+
√
d/m ⊂ A

�
m,nm

⊂ D̃1/i+
√
d/m.

Since we clearly also have that D̃1/i+
√
d/m ⊂ D̃ ⊂ D̃1/i+

√
d/m, we have that for all outcomes in U and

positive integers i, 1A�
m,nm

− 1D̃ can only be supported on D̃1/i+
√
d/m \ D̃1/i+

√
d/m for sufficiently large m.

We first note that, for each outcome in U , for sufficiently large m, we have

sup
x∈D̃∪A�

m,nm

|ψ�
(m)(x)2(1− σ�

m(x))| ≤ 2(M + 1)

(
sup
x∈D̃1

|ψ(x)|2 + sup
x∈D̃1

|ψ(x)− ψm(x)|2
)

≤ 2(M + 1)

(
sup
x∈D̃1

|ψ(x)|2 + C(D̃1, ψ)m−2

)
.

This is bounded independently of m, so we have that for each outcome in U

sup
x∈D̃∪A�

m,nm

|ψ�
(m)(x)2(1− σ�

m(x))| ≤ K ′(ψ,M, D̃)

is bounded independently of m (here, K ′ is actually a random variable as it depends on the outcome chosen
in U). Thus, for each outcome in U and each positive integer i, we can choose m so large that

|Y 1
m| ≤

ˆ
D̃∪A�

m,nm

|ψ�
(m)(x)2(1− σ�

m(x))(1�Am,nm
− 1D̃)| ≤ K ′(ψ,M, D̃)L

(
D̃1/i+

√
d/m \ D̃1/i+

√
d/m

)
.

Here, L denotes the Lebesgue measure. Now, given any positive integer j, by setting i = 2j and requiring

that m also be large enough that
√
d
m ≤

1
2j , we can get that for each outcome in U and each positive integer

j, we can choose m so large that

|Y 1
m| ≤ K ′(ψ,M, D̃)L(D̃1/j \ D̃1/j).

Now, clearly {D̃1/j \D̃1/j} is a decreasing sequence ordered by inclusion, and
⋂
j≥1 D̃

1/j \D̃1/j = ∂D̃. Thus,

by the monotonicity properties of measures, since L(∂D̃) = 0 (this is precisely Proposition 2.12(i) in the

paper of Levine and Peres [9]), we must have that L
(
D̃1/j \ D̃1/j

)
→ 0. Thus, given an outcome in U , and

an ε > 0, we can find a j so large such that

L
(
D̃1/j \ D̃1/j

)
<

ε

K ′(ψ,M, D̃)
.

Then we can choose m so large that, for this outcome, we have

|Y 1
m| ≤ K ′(ψ,M, D̃)L

(
D̃1/j \ D̃1/j

)
< ε.

Thus, we’ve shown that Y 1
m → 0 on U , which is a set of probability one, so Y 1

m → 0 almost surely.
Now we define Y 2

m by

Y 2
m =

ˆ
D̃

ψ�
(m)(x)2(1− σ(x))−

ˆ
D̃

ψ�
(m)(x)2(1− σ�

m(x)) =

ˆ
D̃

ψ�
(m)(x)2(σ�

m(x)− σ(x)).
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As above, for each outcome in U , we can choose m so large that

sup
x∈D̃
|ψ�

(m)(x)|2 ≤ 2

(
sup
x∈D̃1

|ψ(x)|2 + sup
x∈D̃1

|ψ(x)− ψm(x)|2
)

≤ 2

(
sup
x∈D̃1

|ψ(x)|2 + C(D̃1, ψ)m−2

)
.

Thus, supx∈D̃ |ψ
�
(m)(x)|2 is bounded independent of m (but not independently of the outcome in U), say by

a constant K ′′(ψ, D̃). So for every outcome in U , we have

|Y 2
m| ≤

ˆ
D̃

∣∣∣ψ�
(m)(x)2(σ�

m(x)− σ(x))
∣∣∣ ≤ K ′′(ψ, D̃)

ˆ
D̃

|σ�
m − σ|

We have that for all m, |σ�
m| ≤M1Γ, and the latter is Lebesgue integrable. Additionally, since we required

that we have σ�
m → σ everywhere σ is continuous, and we required σ to be continuous almost everywhere,

we have that σ�
m → σ almost everywhere. Thus, by dominated convergence, we get that

´
D̃
|σ�
m − σ| → 0.

This gives that, on U , Y 2
m → 0, and since U has probability one, Y 2

m → 0 almost surely.
Finally, we define Y 3

m by

Y 3
m =

ˆ
D̃

ψ(x)2(1− σ(x))−
ˆ
D̃

ψ�
(m)(x)2(1− σ(x)) =

ˆ
D̃

(ψ(x)2 − ψ�
(m)(x)2)(1− σ(x)).

Thus, we have

|Y 3
m| ≤ (M + 1)

ˆ
D̃

∣∣∣ψ + ψ�
(m)

∣∣∣ ∣∣∣ψ − ψ�
(m)

∣∣∣ .
So,

|Y 3
m| ≤ (M + 1)

(
sup
x∈D̃
|ψ(x)|+K ′′(ψ, D̃)1/2

) ˆ
D̃

∣∣∣ψ − ψ�
(m)

∣∣∣ .
Now, fix x in D̃ and ε > 0. Since ψ is continuous, there is a δ > 0 such that for any y, |x − y| < δ implies
that |ψ(x)− ψ(y)| < ε/2. We can choose m so large that

m−2 ≤ ε

2C(D̃, ψ)

and
√
d

2m < min(δ, d(x, ∂D̃)). Then, letting zm(x) be the closest lattice point to x as above, we will have

|ψ(x)− ψ�
(m)(x)| = |ψ(x)− ψ(m)(zm(x))| ≤ |ψ(x)− ψ(zm(x))|+ |ψ(zm(x))− ψ(m)(x)| < ε

2
+
ε

2
= ε.

Thus, ψ�
(m) → ψ pointwise, and since, on D̃, |ψ�

(m)| ≤ C(D̃2, ψ)m−2 ≤ C(D̃2, ψ), dominated convergence

gives us that
´
D̃

∣∣∣ψ − ψ�
(m)

∣∣∣→ 0. Thus, for each outcome in U , Y 3
m → 0, so Y 3

m → 0 almost surely. Thus, we

have that

Zm(nm) + Y 1
m + Y 2

m + Y 3
m =

ˆ
D̃

ψ2(1− σ).

Since Y 1
m, Y 2

m, and Y 3
m all converge to zero almost surely, they converge to zero in probability, so Zm(nm)

converges in probability to
´
D̃
ψ2(1− σ) as desired.

Now, going back to the multivariate case, we prove that the characteristic function converges to the
characteristic function of the multivariate normal distribution with the desired mean and covariance ma-
trix. Let Φm = (Φmσ (ψi))

l
j=1, and let t = (t1, . . . , tl) be an arbitrary vector in Rl. We want to calculate

E[exp(i〈t,Φm〉)]. However, since the map ψ 7→ ψ(m) is linear (by Lemma 2), the map ψ 7→ Φmσ (ψ) is linear

(as it was defined as a linear function of ψ(m)). Thus, 〈t,Φm〉 = Φmσ

(∑l
i=1 tiψi

)
. Since we just showed
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that, for each individual ψ harmonic, Φmσ (ψ) converges in law as m→∞ to a normal random variable with
variance

´
D̃
ψ2(1− σ), by Lévy’s continuity theorem, we have

E[exp(i〈t,Φm〉)] = E

[
exp

(
iΦmσ

(
l∑
i=1

tiψi

))]
→ exp

−1

2

ˆ
D̃

(
l∑
i=1

tiψi

)2

(1− σ)

 .

Now, we also have

exp

−1

2

ˆ
D̃

(
l∑
i=1

tiψi

)2

(1− σ)

 = exp

−1

2

ˆ
D̃

l∑
i,j=1

titjψiψj(1− σ)

 = exp

(
−1

2
tTΣt

)
.

Here, Σ is the matrix given in the statement of the theorem. Thus, we have that E[exp(i〈t,Φm〉)] →
exp

(
− 1

2 t
TΣt

)
for each t in Rl, so the random vector (Φmσ (ψi))

l
i=1 converges in law to the normal random

vector given in the theorem statement, again by Lévy’s continuity theorem, as desired.

4 Next Steps

In this report, we’ve partially generalized theorem 1.4 from [7] to the multiple source case. However, one of
the features of the original theorem is that the weak limit, which they termed the “augmented” Gaussian
free field, was able to be interpreted as a Gaussian Hilbert space isomorphic to a certain closed subspace of
H1

0 (Rd) with a norm different, but equivalent to the Dirichlet norm on the subspace. On the other hand,
the normal Gaussian free field is a Gaussian Hilbert space isomorphic to H1

0 (Rn) with the Dirichlet norm.
Expressing the result as a Gaussian Hilbert space allowed for a much better understanding of the geometry
of the problem, but its counterpart in the multiple sources case we expect is significantly more complicated.
In the single source case, using a heuristic symmetry argument, Jerison, Levine, and Sheffield reasonably
conjectured that since the smoothing and dampening effects on the fluctuations should be rotationally
invariant, they should act independently on each spherical Fourier mode. This motivated them to construct,
at least in two dimensions, the augmented Gaussian free field as a Gaussian Hilbert space isomorphic to a
subspace of H1

0 with the norm:

‖η‖2nr =
∑

0<|k|<∞

2π

ˆ ∞
0

(
|r∂rηk(r)|2 + (|k|+ 1)2|ηk(r)|2

) dr
r

where

ηk(r) =
1

2π

ˆ 2π

0

η(reiθ)e−ikθdθ

(we’ve implicitly made use of the identification of R2 with C). The subspace here is just the orthogonal (in
the sense of the Dirichlet norm) complement of the null space of the norm above. For reference, the normal
Dirichlet norm, which corresponds to the normal Gaussian free field, can be written as

‖η‖2∇ =

ˆ
R2

|∇η|2 =
∑

0≤|k|<∞

2π

ˆ ∞
0

(
|r∂rηk(r)|2 + |k|2|ηk(r)|2

) dr
r

which only really differs from the previous norm in that the previous norm uses (|k| + 1)2 instead of |k|2
in the second term (hence the term “augmented”). The inclusion or exclusion of the k = 0 term in the
sums above corresponds to whether or not the particles in the cluster are started at Poisson intervals or
simple integer intervals (respectively); Jerison, Levine, and Sheffield opt for the former choice, while we’ve
chosen the latter, but the choice is not really salient mathematically, it’s more a stylistic choice. We suspect
modifying the norm to generate a Gaussian Hilbert space to match the covariance structure we’ve found for
the multiple source case will be harder, as we’ve lost the rotational symmetry which suggested looking at
the Fourier modes in the first place. Nevertheless, based on our work above, we derive below a condition
which the desired norm must satisfy.
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To be more specific, we want to find a closed subspace H ⊂ H1
0 (Rd) with its own, different inner product

(·, ·)H (which is still equivalent to the Dirichlet norm on the subspace, however) inducing a norm ‖ · ‖H such
that for all harmonic polynomials ψ, we have

ˆ
D̃

ψ2(1− σ) = sup
‖η‖H≤1

∣∣∣∣ˆ
∂D̃

ψη

∣∣∣∣2 .
Why this is desireable is as follows. For every measure φ in H−1, let Ψφ : H1

0 → R be the continuous linear
functional which pairs elements of H1

0 with φ, i.e.

Ψφ(η) =

ˆ
ηdφ = (η, φ).

Let λ : H ′ → H be the Hilbert space isomorphism between H (with the inner product (·, ·)H) and its
continuous dual which is guaranteed by the Riesz representation theorem, so λ((η, ·)H) = η. Since Ψφ is a
continuous linear functional on H1

0 , it’s a continuous linear functional on H, so we have that λ(Ψφ) is in H.
Thus, we have

(η, λ(Ψφ))H = Ψφ(η) =

ˆ
ηdφ = (η, φ).

Now, let gH be a Gaussian Hilbert space isomorphic to H, i.e. for every η in H, (gH , η)H is a zero mean
normal random variable with variance ‖η‖2H , and (gH , ·)H is linear in its argument. Then are justified by
the above equation in defining (gH , φ) for each φ in H−1 by

(gH , φ) = (gH , λ(Ψφ))H .

Then we would have

Var(gH , φ) = Var(gH , λ(Ψφ))H = ‖λ(Ψφ)‖2H = ‖Ψφ‖2H′ = sup
‖η‖H≤1

|Ψφ(η)|2 = sup
‖η‖H≤1

∣∣∣∣ˆ ηdφ

∣∣∣∣2 .
Here we’ve used the fact that λ is a Hilbert space isomorphism. Thus, if we can show that the original
equation above holds, then (letting s∂D̃ be the surface measure on ∂D̃) we have

Var(gH , ψs∂D̃) = sup
‖η‖H≤1

∣∣∣∣ˆ ηd
(
ψs∂D̃

)∣∣∣∣2 = sup
‖η‖H≤1

∣∣∣∣ˆ
∂D̃

ψη

∣∣∣∣2 =

ˆ
D̃

ψ2(1− σ).

Then, Corollary 1 could be re-expressed as saying that (Emσ , ψ(m)) converges in law to (gH , ψs∂D̃), which
tells us that Emσ converges in distribution in this rather weak sense (weaker even than in the usual sense

since we have to use ψ(m) instead of ψ itself) to gH restricted to ∂D̃, which is what we want to be able to
say. Thus, the natural next step in this line of research is to search for a subspace H ⊂ H1

0 with a different
inner-product-induced norm ‖ · ‖H such that

ˆ
D̃

ψ2(1− σ) = sup
‖η‖H≤1

∣∣∣∣ˆ
∂D̃

ψη

∣∣∣∣2 .
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