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Abstract

A stable sequence of GLn representations consists of representa-
tions with highest weights (λ, 0, . . . , 0,−λ′) for fixed partitions λ, λ′.
For a fixed positive integer k, the multiplicity space of restrictions of
these representations to certain GLn−k representations is independent
of the number of 0’s in the highest weights. In this paper, we compute
the rational functions that occur in the ratios of norms of basis vectors
of this multiplicity space.
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1 Introduction

A classical goal of representation theory is to assign numerical invariants to
group representations. One such invariant is the dimension of the represen-
tation. Another more refined invariant is the character of a representation
which, in the case of finite groups and semisimple Lie groups, completely
characterizes the representation. The key property of these invariants is
that they are characters of the Grothendeick ring of the category of repre-
sentations of the group. In simpler terms, these invariants are additive over
direct sums and multiplicative over tensor products.

A more modern problem is to replace representations of a group by an
arbitrary tensor category, i.e., a category in which it makes sense to take
direct sums and tensor products. In this paper, we will compute invariants
attached to pairs of irreducible objects in the Deligne category RepGLt ([1]).
Objects in this category are interpolations of sequences of representations of
the general linear group GLn as n grows large. Irreducible objects are labeled
by ordered pairs of partitions and the object corresponding to the pair (λ, λ′),
which we denote by Vλ,λ′ , should be thought of as the interpolation of the
sequence of representations of GLn with highest weight 1

(λ, 0, . . . , 0,−λ′) = (λ1, . . . , λr, 0, . . . 0,−λ′s, . . .− λ′1).

In particular, numerical invariants of objects in RepGLt can usually be com-
puted by computing the corresponding invariant for the sequence of repre-
sentations of GLn that the object interpolates and then replacing n with
t.

The central objects in this paper are the multiplicity spaces of restrictions
of objects in RepGLt to RepGLt−k for some fixed positive integer k. As in
the classical case of GLn representations, we have a restriction functor from
RepGLt to RepGLt−1 and, by iteration, a restriction functor from RepGLt
to RepGLt−k. Thus, we will have

Vλ,λ′ |RepGLt−k = ⊕µ,µ′Nµ,µ′

λ,λ′ � Vµ,µ′

where Nµ,µ′

λ,λ′ are vector spaces whose dimensions count the multiplicity of
Vµ,µ′ in the restriction of Vλ,λ′ . These multiplicity spaces are equipped with
Hermitian forms that are unique up to normalization and our ultimate goal is
to compute the signatures of these Hermitian forms. In this paper, however,
we restrict ourselves to computing signatures when the sum of the sizes of
(µ, µ′) is k less than that of (λ, λ′). We can always restrict ourselves to this
case, so this is the interesting part of the computation.

We do this computation via interpolation. Suppose we have a pair of
partitions (λ, λ′) whose sizes sum to N and a pair of partitions (µ, µ′) whose

1Highest weights and stable sequences of representations are defined in Sections 2 and
3, respectively.
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sizes sum to N − k such that the latter appears in the restriction of the
former with nonzero multiplicity. If this is true, then the multiplicity space
of the representation of GLn with highest weight

(µ, 0, . . . , 0,−µ′)

in the restriction of the representation of GLn−k with highest weight

(λ, 0, . . . , 0,−λ′)

is independent of n−N, the number of 0’s in the middle. The interpolation
of this space as n grows large can then be identified with the multiplicity
space in the RepGLt restriction. Now, the multiplicity space above acquires
a positive definite inner product, which is the ratio of the (unique up to
scaling) invariant inner products on the GLn and GLn−k representations. If
we then take an orthogonal basis for the multiplicity space and compute the
ratios of the norms of the vectors, these ratios will be rational functions of
n. Interpolating these ratios by replacing n with t, we will get the ratios of
norms of the Deligne category theoretic multiplicity space, which determines
the signature up to sign. In this paper, we compute the rational functions
that appear as norm ratios.

The irreducible representations of GLn can be extracted from the finite-
dimensional irreducible representations of the Lie algebra gln. These repre-
sentations are indexed by their highest weights λ and have a basis parametrized
by simple combinatorial objects known as the Gelfand-Tsetlin Patterns. In
Section 2, we describe these representations and construct the Gelfand-
Tsetlin basis. We also give a description of the relevant multiplicity spaces
and their bases. In Section 3, we define stable sequences of representations
and look at the multiplicity spaces associated with these representations.
Finally, in Section 4, we introduce the canonical Hermitian product on gln
representations and their multiplicity spaces. We give formulas for norms of
basis vectors constructed in Section 2. We compute how the ratios of the
norms of basis vectors of a multiplicity space change as we move along a
stable sequence of representations.

2 gln Representations

The general linear algebra gln is the Lie algebra associated with the group
GLn. It consists of the complex n× n matrixes with the commutator

[A,B] = AB −BA.

For 1 ≤ i, j ≤ n, let Eij be the matrix with 1 in the ijth position and 0
everywhere else. The n2 matrices Eij form the standard basis of gln. The
matrices of the form Epp, Ep,p+1, Ep+1,p together generate the algebra gln.
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Every finite dimensional irreducible representation of gln contains a unique
(up to scalar) nonzero vector ξ, known as the highest weight vector, which
is a common eigenvector for E11, E22, . . . , Enn, and satisfies Eijξ = 0 for all
1 ≤ i < j ≤ n. The n-tuple λ = (λ1, . . . , λn) ∈ Cn of the corresponding
eigenvalues of E11, E22, . . . , Enn is known as the highest weight. For every
1 ≤ i ≤ n− 1, the difference λi− λi+1 is a non-negative integer. Conversely,
every n-tuple λ = (λ1, . . . , λn) of complex numbers, for which each λi−λi+1

is a non-negative integer, is the highest weight of a unique finite dimensional
irreducible representation of gln. 2

Let Vλ be the finite dimensional irreducible representation of gln with the
highest weight λ. The restriction of Vλ to the subalgebra gln−1 ⊂ gln de-
composes into irreducible representations of gln−1 according to the following
rule:

Theorem 1 (Branching Rule). [2]

Vλ |gln−1
= ⊕µVµ,

where the summation takes place over highest weights µ = (µ1, . . . , µn−1)
that satisfy the betweenness conditions

λi − µi ∈ Z≥0 and µi − λi+1 ∈ Z≥0

for 1 ≤ i ≤ n− 1.

Note that every finite-dimensional irreducible representation of gln−1 oc-
curs in Vλ |gln−1

at most once. This observation combined with the re-
peated application of the Branching Rule allows us to construct a basis of Vλ
parametrized by combinatorial objects known as Gelfand-Tsetlin Patterns.

Definition 1. AGelfand-Tsetlin Pattern Λ associated with highest weight
λ is a triangular array of complex numbers

λn1 λn2 . . . λn,n−1 λnn
λn−1,1 . . . λn−1,n−1

. . . . . . . .
.

λ21 λ22

λ11

2With this correspondence in mind, we will use the term “highest weight” to refer to
any of the following:

• The eigenvalues of a highest weight vector or

• An arbitrary n-tuple (λ1, . . . , λn) with λi − λi+1 ∈ Z≥0.

4



such that λni = λi for all 1 ≤ i ≤ n, and the differences λpi − λp−1,i and
λp−1,i−λp,i+1 are non-negative integers for all 1 ≤ i < p ≤ n. In other words,
the top row is the highest weight λ and any two adjacent rows of satisfy the
betweenness conditions described in the Branching Rule.

Theorem 2. [2] There exists a basis {ξΛ} of Vλ, called the Gelfand-Tsetlin
basis, that is parametrized by all Gelfand-Tsetlin Patterns Λ associated with
λ such that the action of generators of gln is given by the following formulas:

EppξΛ =

(
p∑
i=1

λpi −
p−1∑
i=1

λp−1,i

)
ξΛ

Ep,p+1ξΛ = −
p∑
i=1

∏
1≤j≤p+1(`pi − `p+1,j)∏
1≤j≤p,j 6=i(`pi − `pj)

ξΛ+δpi

Ep+1,pξΛ =

p∑
i=1

∏
1≤j≤p−1(`pi − `p−1,j)∏
1≤j≤p,j 6=i(`pi − `pj)

ξΛ−δpi

Here, `pi = λpi− i+ 1. The triangular arrays Λ± δpi are obtained from Λ by
replacing λpi by λpi ± 1. If such an array is not a Gelfand-Tsetlin Pattern,
then the corresponding vector ξΛ+δpi or ξΛ−δpi is considered zero.

Remark 1. The highest weight vector is the basis vector associated with the
following Gelfand-Tsetlin Pattern Λ given by λpi = λi for all 1 ≤ i ≤ p ≤ n.

λ1 λ2 . . . λn−1 λn
λ1 . . . λn−1

. . . . . . . .
.

λ1 λ2

λ1

The Branching Rule also gives us a basis for the multiplicity space of
the form Homgln−k(Vµ, Vλ) for the highest weights µ = (µ1, . . . , µn−k) and
λ = (λ1, . . . , λn). Note that the basis of Homgln−k(Vµ, Vλ) is indexed by
different copies of Vµ in the decomposition of Vλ | gln−k into irreducible
representations of gln−k. Using the Branching Rule, we can identify these
copies of Vµ with various Galfand-Tsetlin Sub-Patterns:

Definition 2. A Gelfand-Tsetlin Sub-Pattern Λµ associated with high-
est weights λ and µ is a triangular array of complex numbers

λn1 λn2 . . . λn,n−1 λnn
λn−1,1 . . . λn−1,n−1

. . . . . . . .
.

λn−k,1 . . . λn−k,n−k
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such that

λni = λi for all 1 ≤ i ≤ n,
λn−k,i = µi for all 1 ≤ i ≤ n− k,

and the differences λpi − λp−1,i and λp−1,i − λp,i+1 are non-negative integers
for all 1 ≤ i < p and n − k < p ≤ n. In other words, the extreme rows
are the highest weights λ and µ, and any two adjacent rows of satisfy the
betweenness conditions described in the Branching Rule.

Proposition 1. There exists a basis {φΛµ} of the multiplicity space
Homgln−k(Vµ, Vλ) that is parametrized by all Gelfand-Tsetlin Sub-Patterns
Λµ associated with λ and µ. Each φΛµ : Vµ → Vλ maps the Gelfand-Tsetlin
basis vector ξM ∈ Vµ to the Gelfand-Tsetlin basis vector ξΛ ∈ Vλ where Λ is
obtained by merging M and Λµ.

3 Stable Sequences

Let λ = (λ1, . . . , λr) and λ′ = (λ′1, . . . , λ
′
s) be arbitrary partitions. These are

highest weights satisfying λi, λ′j ∈ Z≥0. Then for n ≥ N = r + s,

(λ, λ′)n = (λ, 0, . . . , 0,−λ′) = (λ1, . . . , λr, 0, . . . , 0,−λ′s, . . . ,−λ′1) ∈ Zn

is another highest weight. Let V(λ,λ′)n denote the finite-dimensional irre-
ducible representation of gln with this highest weight. The sequence of rep-
resentations V(λ,λ′)n is called as a stable sequence of representations.

Fix a positive integer k < N. Let µ, µ′ be two partitions whole lengths
add to N − k and the multiplicity space HomglN−k(V(µ,µ′)N , V(λ,λ′)N ) is non-
zero. Then for large n, the multiplicity space

Homgln−k(V(µ,µ′)n , V(λ,λ′)n)

is independent of n.We can prove this simply by looking at how the Gelfand-
Tsetlin basis of this multiplicity changes with n.

Note that if the length of µ is bigger than r, the length of λ, then we may
insert appropriate number of 0’s in λ and µ′, so that the new lengths of µ
and λ are the same and the length of λ′ is k bigger than the length of µ′. If
the length of µ is smaller than r, we may add 0’s to λ′ and µ to achieve the
same result. Both of these operations are equivalent to removing the first
few terms of the sequence of multiplicity spaces Homgln−k(V(µ,µ′)n , V(λ,λ′)n).
Since we only care about the nature of multiplicity spaces for large n, we
may assume that the length of µ is in fact equal to r. We have

µ = (µ1, . . . , µr) and µ′ = (µ′1, . . . , µ
′
s−k).
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Now a basis vector of the multiplicity space Homgln−k(V(µ,µ′)n , V(λ,λ′)n) is
indexed by a Gelfand-Tsetlin Sub-Pattern of the form

λ1 . . . λr 0 . . . 0 − λ′s . . . − λ′1
∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗

. . .
. . . . .

.

∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
µ1 . . . µr 0 . . . 0 − µ′s−k . . . − µ′1

From the betweenness conditions in the definitions of the Gelfand-Tsetlin
Sub-Pattern, it is easy to see that the pith entries in the above Sub-Pattern
must be 0 for every n − k ≤ p ≤ n and r + 1 ≤ i ≤ n −N. In other words,
the entries along the diagonals running from 0’s in the top row to the 0’s in
the bottom row are all 0. Thus, the above Sub-Pattern is obtained from a
Sub-Pattern of the form

λ1 . . . λr − λ′s . . . − λ′1
∗ . . . ∗ ∗ . . . ∗

. . . . .
.

∗ . . . ∗ ∗ . . . ∗
µ1 . . . µr − µ′s−k . . . − µ′1

by inserting a block of 0’s. This correspondence between Sub-Patterns gives a
natural bijection between the multiplicity spaces HomglN−k(V(µ,µ′)N , V(λ,λ′)N )
and Homgln−k(V(µ,µ′)n , V(λ,λ′)n) that is compatible with the action of the
general linear algebra. So, Homgln−k(V(µ,µ′)n , V(λ,λ′)n) does not depend on n,
or equivalently the number of 0’s added between λ and −λ′.

However, the inner products on V(µ,µ′)n and V(λ,λ′)n (defined in the next
section) vary with n. As a result, we get different inner products on the
multiplicity space. Thus, as n increases, the norms of basis vectors of the
multiplicity space change. Our goal is to compute the ratios of these norms
in terms of n.

4 Norms of Basis Vectors

In Section 4.1, we define the Hermitian product on gln representations and
compute ratios of norms of vectors in the Gelfand-Tsetlin basis. In Section
4.2, we conduct a similar analysis for multiplicity spaces. In Section 4.3, we
compute ratios of norms of vectors in the multiplicity space associated with
stable sequences of representations.
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4.1 Inner Product on Representations

Let Vλ be the finite-dimensional irreducible representation of gln with highest
weight λ. Let 〈, 〉 denote the contravariant form on Vλ such that the norm
of the highest weight vector, 〈ξ, ξ〉 is 1, and the operators Eij and Eji are
adjoint for all 1 ≤ i, j ≤ n. We have

Proposition 2. [2] The Gelfand-Tsetlin basis is orthogonal with respect to
〈, 〉 and the norms of the basis vectors are given by:

〈ξΛ, ξΛ〉 =
n∏
p=2

∏
1≤i≤j<p

(`pi − `p−1,j)!

(`p−1,i − `p−1,j)!

∏
1≤i<j≤p

(`pi − `pj − 1)!

(`p−1,i − `pj − 1)!
.

We want to look at the ratios of norms of two basis vectors of a represen-
tation Vλ. Note that any Gelfand-Tsetlin Pattern associated with λ may be
obtained from any other Pattern associated with λ by successively changing
various entries of the Pattern by ±1 such that all intermediate arrays remain
Gelfand-Tsetlin Patterns (i.e. satisfy the betweenness conditions) associated
with λ. Therefore, we only look at the ratios of basis vectors whose Gelfand-
Tsetlin Patterns differ at a single place by ±1 and are identical otherwise.

Proposition 3. Let Λ be a Gelfand-Tsetlin Pattern associated with λ. We
have

〈ξΛ+δpi , ξΛ+δpi〉
〈ξΛ, ξΛ〉

= −
∏p−1
j=1(`pi − `p−1,j + 1)∏p+1
j=1(`pi − `p+1,j)

∏
1≤j≤p,j 6=i

`pi − `pj
`pi − `pj + 1

〈ξΛ−δpi , ξΛ−δpi〉
〈ξΛ, ξΛ〉

= −
∏p+1
j=1(`pi − `p+1,j − 1)∏p−1
j=1(`pi − `p−1,j)

∏
1≤j≤p,j 6=i

`pi − `pj − 1

`pi − `pj

Proof. Note that Ep,p+1 and Ep+1,p are adjoint operators. So, we get

〈Ep,p+1ξΛ, ξΛ+δpi〉 = 〈ξΛ, Ep+1,pξΛ+δpi〉.

Using the orthogonality of the Gelfand-Tsetlin basis and Theorem 2, we get

〈Ep,p+1ξΛ, ξΛ+δpi〉 = −
∏

1≤j≤p+1(`pi − `p+1,j)∏
1≤j≤p,j 6=i(`pi − `pj)

〈ξΛ+δpi , ξΛ+δpi〉

and

〈ξΛ, Ep+1,pξΛ+δpi〉 =

∏
1≤j≤p−1(`pi − `p−1,j + 1)∏
1≤j≤p,j 6=i(`pi − `pj + 1)

〈ξΛ, ξΛ〉

From the above three equations, we obtain the formula for
〈ξΛ+δpi

,ξΛ+δpi
〉

〈ξΛ,ξΛ〉 .

The formula for
〈ξΛ−δpi ,ξΛ−δpi 〉
〈ξΛ,ξΛ〉 can be easily derived from this formula.
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We may prove this proposition using Proposition 2. As we change a single
entry of a Gelfand-Tsetlin Pattern by ±1, most of the factorials appearing
in the norm of the corresponding basis vector remain the same. As a result,
we obtain a simpler expression for the ratio

〈ξΛ±δpi ,ξΛ±δpi 〉
〈ξΛ,ξΛ〉 . In particular,

the ratio contains linear factors in terms of the entries in only three rows
of the Pattern Λ : the row with the altered entry, and the rows directly
above and below it. Thus, when we insert a block of 0’s in the Pattern, the
ratio changes by a rational function of the number of 0’s. We prove this
computation are in Section 4.3. First, we need to introduce the Hermitian
product on multiplicity spaces.

4.2 Inner Product on Multiplicity Space

Note that
Vλ = ⊕µVµ ⊗Homgln−k(Vµ, Vλ),

where the summation takes place over all highest weights µ ∈ Cn−k. Then
the Gelfand-Tsetlin vectors of Vλ are of the form

ξΛ = ξM ⊗ φΛµ

where Λ is the Pattern obtained by merging M (the Pattern associated
with µ) and Λµ (the Sub-Pattern associated with λ). Thus, the inner prod-
ucts on Vλ and Vµ induce an inner product 〈, 〉 on the multilpicity space
Homgln−k(Vµ, Vλ).

Definition 3. Let φΛµ be a Sub-Pattern associated with λ. For a Pattern
M associated with µ and Pattern Λ obtained by merging M and Λµ,

〈φΛµ , φΛµ〉 =
〈ξΛ, ξΛ〉
〈ξM , ξM 〉

.

Using Proposition 2 in the previous section, we get an explicit formula
for the norm of φΛµ :

Proposition 4. The basis {φΛµ} is orthogonal with respect to the induced
form 〈, 〉 on Homgln−k(Vµ, Vλ). The norms of the basis vectors are given by

〈φΛµ , φΛµ〉 =

n∏
p=n−k+1

∏
1≤i≤j<p

(`pi − `p−1,j)!

(`p−1,i − `p−1,j)!

∏
1≤i<j≤p

(`pi − `pj − 1)!

(`p−1,i − `pj − 1)!

where `pi = λpi − i+ 1.

Since the bottom n− k rows of M and Λ are identical the expression for
the norm of φΛµ only depends on the additional rows in Λ. These are precisely
the entries of Λµ. This shows that the norm of φΛµ does not depend on the
choice of M and Definition 3 is valid.

9



Remark 2. The formula for 〈φΛµ , φΛµ〉 is obtained by simply deleting the
irrelevant terms in the formula for 〈ξΛ, ξΛ〉. The same technique may be
used when we take ratios of norms of the basis vectors in the multiplicity
space. So, the formulas in Proposition 3, originally derived for Gelfand-
Tsetlin Patterns, also apply to Gelfand-Tsetlin Sub-Patterns.

4.3 Dependence on n

In this section, we compute the ratios of norms of basis vectors of the multi-
plicity space associated with a stable sequence of representation. Fix a high-
est weight λ = (λ1, . . . , λN ) ∈ ZN and r ≤ N such that λr ≥ 0 ≥ λr+1.

3 Fix
a positive integer k < N and a highest weight µ = (µ1, . . . , µN−k) ∈ ZN−k
such that HomglN−k(Vµ, Vλ) is non-zero. As explained in Section 3, we may
assume that µr ≥ 0 ≥ µr+1. Consider the highest weights

[λ]n = (λ1, . . . , λr, 0, 0, . . . , 0, λr+1, . . . , λN ) ∈ Cn

and
[µ]n−k = (µ1, . . . , µr, 0, 0, . . . , 0, µr+1, . . . , µN−k) ∈ Cn−k.

Our goal is to look at the norms of the basis vectors of the multiplicity space
Homgln−k(V[µ]n−k , V[λ]n) associated with the stable sequence of representa-
tions V[λ]n .

4.3.1 gln to gln−1 reduction

First, we consider the case k = 1. The multiplicity space Homgln−1
(V[µ]n−1

, V[λ]n)
is one-dimensional with the basis vector φn corresponding to the following
Gelfand-Tsetlin Sub-Pattern Λn :

λ1 . . . λr 0 . . . 0 λr+1 . . . λN
µ1 . . . µr 0 . . . 0 µr+1 . . . µN−1

Let

`pi = [(p, i)th entry of ΛN ]− i+ 1,

`′pi = [(p, i)th entry of Λn]− i+ 1.

Then the norm of φn varies with n according to the following formula:
3In the definition of stable sequences in Section 3, we fix two partitions λ = (λ1, . . . , λr)

and λ′ = (λ′1, . . . , λ
′
s), and combine them into a single highest weight (λ,−λ′). In this

section, for convenience of notation, we simply use “λ” for this combined highest weight.
To keep track of the point where the partitions are merged, we use “r” with the condition
“λr ≥ 0 ≥ λr+1.”
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Proposition 5.

〈φn, φn〉
〈φN , φN 〉

=
n−N∏
a=1

r∏
i=1

(
(`N,i + a− 1)!(`N,i + a− 2)!

(`N−1,i + a− 1)!(`N−1,i + a− 2)!

N∏
j=r+1

(`N,i − `N−1,j + a)(`N,i − `N−1,j + a− 1)

(`N−1,i − `N−1,j + a)(`N−1,i − `N−1,j + a− 1)

)
.

Proof. Note that

〈φN , φN 〉 =
∏

1≤i≤j<N

(`N,i − `N−1,j)!

(`N−1,i − `N−1,j)!

∏
1≤i<j≤N

(`Ni − `Nj − 1)!

(`N−1,i − `N,j − 1)!

and

〈φn, φn〉 =
∏

1≤i≤j<n

(`′ni − `′n−1,j)!

(`′n−1,i − `′n−1,j)!

∏
1≤i<j≤n

(`′ni − `′nj − 1)!

(`′n−1,i − `′nj − 1)!
.

Using the definition of `′pi and Λn, we see that

`′ni−`′n−1,j =



`Ni − `N−1,j if 1 ≤ i ≤ j ≤ r
`Ni + j − 1 if 1 ≤ i ≤ r < j ≤ n−N + r

`Ni − `N−1,j+N−r−n + 1 if 1 ≤ i ≤ r, n−N + r < j < n

`′n−1,i − `′n−1,j if r < i ≤ n−N + r

`N,i+N−r−n − `N−1,j+N−r−n if n−N + r < i ≤ j < n

Using similar computations for other terms appearing in 〈φn, φn〉, we prove
the proposition.

Since the multiplicity space is one-dimensional, the case k = 1 is quite
uninteresting. We quickly move to the k = 2, where we have larger multi-
plicity spaces and we can look at how norms of basis vectors change as small
changes are made in the respective Gelfand-Tsetlin Sub-Patterns.

4.3.2 gln to gln−2 reduction

Now we consider the case k = 2. The formulas we develop for this case can
be easily generalized for bigger values of k. Note that the multiplicity space
Homgln−2

(V[µ]n−2
, V[λ]n) is spanned by basis vectors φω,n corresponding to

the Gelfand-Tsetlin Sub-Patterns Λω,n of the form

λ1 . . . λr 0 . . . 0 λr+1 . . . λN

ω1 . . . ωr 0 . . . 0 ωr+1 . . . ωN−1

µ1 . . . µr 0 . . . 0 µr+1 . . . µN−2
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for suitable highest weights ω = (ω1, . . . , ωN−1) satisfying the betweenness
conditions with both λ and µ. As in the previous section, expression for the
ratio 〈φω,n,φω,n〉

〈φω,N ,φω,N 〉 involves products of several factorials. As we make small
changes in ω, most of these factorials remain the same and this ratio changes
by a rational function in n. Let

`pi = [(p, i)th entry of Λω,N ]− i+ 1.

and
`′pi = [(p, i)th entry of Λω,n]− i+ 1.

Let ω± δi denote the highest weight obtained by replacing ωi in ω by ωi±1.
We have

Proposition 6. For n ≥ N, we have

〈φω+δi,n, φω+δi,n〉
〈φω,n, φω,n〉

=
〈φω+δi,N , φω+δi,N 〉
〈φω,N , φω,N 〉

fω,i(n)

where fω,i(n) is a rational function of n.

Proof. By Remark 2 and Proposition 3, for 1 ≤ i ≤ r, we have

〈φω+δi,n, φω+δi,n〉
〈φω,n, φω,n〉

= −
∏n−2
j=1 (`′n−1,i − `′n−2,j + 1)∏n

j=1(`′n−2,i − `′nj)
∏

1≤j≤n−1,j 6=i

`′n−1,i − `′n−1,j

`′n−1,i − `′n−1,j + 1

As in the proof of Proposition 5, we write the factors appearing in the above
expression in terms of `pj ’s and explicitly compute fω,i.

fω,i(n)

=

N−2∏
j=r+1

`N−1,i − `N−2,j + n−N + 1

`N−1,i − `N−2,j + 1

N∏
j=r+1

`N−1,i − `Nj
`N−1,i − `Nj + n−N

×

N−1∏
j=r+1

`N−1,i − `N−1,j + n−N
`N−1,i − `N−1,j

×
`N−1,i − `N−1,j + 1

`N−1,i − `N−1,j + n−N + 1
.

The same technique is used to obtain the formula for i > r. In this case, we
get

fω,i(n)

=
r∏
j=1

`N−1,i − `N−2,j − n+N + 1

`N−1,i − `N−2,j + 1
×

`N−1,i − `Nj
`N−1,i − `Nj − n+N

×

`N−1,i − `N−1,j − n+N

`N−1,i − `N−1,j
×

`N−1,i − `N−1,j + 1

`N−1,i − `N−1,j − n+N + 1
.
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4.3.3 gln to gln−k reduction

Note that for any k > 1, the multiplicity space Homgln−2
(V[µ]n−k , V[λ]n) is

spanned by basis vectors φΩ,n corresponding to the Gelfand-Tsetlin Sub-
Patterns ΛΩ,n

λ1 . . . λr 0 . . . 0 λr+1 . . . λN

ωN−1,1 . . . ωN−1,r 0 . . . 0 ωN−1,r+1 . . . ωN−1,N−1

. . .
. . . . . . . .

.

ωN−k+1,1 . . . ωN−k+1,r 0 . . . 0 ωN−k+1,r+1 . . . ωN−k+1,N−k+1

µ1 . . . µr 0 . . . 0 µr+1 . . . µN−k

for suitable Sub-Patterns Ω that “fit between” λ and µ. Let

`pi = [(p, i)th entry of ΛΩ,N ]− i+ 1.

Let Ωpi ± δpi denote the Sub-Pattern obtain from Ω by replacing ωpi by
ωpi ± 1. We can imitate the proof of Proposition 6 to prove the following
theorem:

Theorem 3. For n ≥ N, we have

〈φΩ+δpi,n, φΩ+δpi,n〉
〈φΩ,n, φΩ,n〉

=
〈φΩ+δpi,N , φΩ+δpi,N 〉
〈φΩ,N , φΩ,N 〉

fΩ,pi(n)

where fΩ,pi(n) is a rational function of n. For 1 ≤ i ≤ r, we have

fΩ,pi(n)

=

p−1∏
j=r+1

`pi − `p−1,j + n−N + 1

`pi − `p−1,j + 1

p+1∏
j=r+1

`pi − `p+1,j

`pi − `p+1j + n−N
×

p∏
j=r+1

`pi − `pj + n−N
`pi − `pj

× `pi − `pj + 1

`pi − `pj + n−N + 1
.

For i < r, we have

fΩ,pi(n)

=

r∏
j=1

`pi − `p−1,j − n+N + 1

`pi − `p−1,j + 1
× `pi − `p+1,j

`pi − `p+1,j − n+N
×

`pi − `pj − n+N

`pi − `pj
× `pi − `pj + 1

`pi − `pj − n+N + 1
.

By interpolating the formulas in the above theorem, we will obtain ratios
of norms of vectors in the multiplicity spaces in the Deligne category RepGLt.
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