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Abstract

This expository paper focuses on discrete and continuous models of random
geometry. More specifically, we direct our attention to random planar maps in
bijection with other discrete objects whose scaling limits have been well devel-
oped.

1 Introduction

A planar map is a connected planar graph embedded in the sphere considered
up to deformation. We consider these planar maps as equivalence classes of
embedded graphs, where two graphs are equivalent if there exists an orientation
preserving homeomorphism φ : R2 → R2 that sends one graph to the other.

There has been great progress, in recent years, in the study of probabilistic
aspects of large planar maps; many very different approaches have been used to
understand the asymptotic behavior of random planar maps. In fact, this study
has great motivation in statistical physics, as physicists believe that as these
planar maps grow in size, the corresponding loop decorated surfaces converge
in law to some universal random structure M. One very famous approach has
been to study the scaling limit of a sequence of random planar maps obtained by
rescaling graph distances on the maps appropriately with their size and taking
the limit as the size of the map tends to infinity. This approach requires that
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2 MULLIN-BERNARDI-SHEFFIELD BIJECTION

we view these maps as elements of the set of all compact metric spaces k (up
to isometry), equipped with the usual Gromov-Hausdorff metric dGH . Le Gall
showed that the scaling limit of uniform 2p-angulations (all faces of degree 2p)
exists along a suitable subsequence and he furthermore showed that its topol-
ogy is independent of the subsequence and proved that its Hausdorff dimension
equals 4. In subsequent work, Miermont was able to show that uniform quad-
rangulations converge to the Brownian map- a limiting random metric space
(m∞, D)

Many of these discrete planar map can be tied together by the universality
concept surrounding the Louiville Quantum Gravity (LQG), which provides
a convenient way of describing random 2-Dimensional surfaces. The present
study focuses on a LIFO (last-in-first-out) model; at each time step, a particu-
lar product can be ordered or produced. We observe that the inventory grows
as a simple random walk on Z2. We present a bijection between the inventory
projections and decorated planar maps due to Sheffield [She15], and hence we
can talk about convergence of these planar maps in a particular topology.

We then discuss a small perturbation of the model presented in [She17]; we
ask the question of convergence to Fractional Brownian Motion, implying that
the inventory trajectories would this have correlated increments.

2 Mullin-Bernardi-Sheffield Bijection

Recall that a planar map is an embedding of a finite, connected graph (loops
and multiple edges are allowed) in the plane C ∪ {∞}(viewed as a Riemann
sphere), considered up to deformation. A planar map determines faces, which
are the connected components of the complementary of the union of edges. If
we let mn detnote a planar map with n edges, we denote by E(m), V (m) and
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2 MULLIN-BERNARDI-SHEFFIELD BIJECTION

F (m) the edge set, vertex set and set of faces of mn respectively. Given a subset
tn of the edges of mn, we call the pair (mn, tn) a decorated map. We write
m†n for the corresponding dual map of tn

Now we write t†n for the seubset of edges {e† : e /∈ tn}. We fix an oriented
edge of the map mn and define it as the root edge of m; from this point onward
we shall assume that the maps in question are rooted. Let Q = Q(m) be the
map with vertex set V ∪ F , and whose edge set is such that each f ∈ F is con-
nected to all its boundary vertices. We think of these new edges as refinement
edges. Now suppose tn is a subset of E(m). In particular Q is bipartite indexed
by distinct bipartitions V and F .

Figure 2.Top left: Planar map with spanning tree highlighted by bold lines.
Top right: Spanning tree with dual tree, which necessarily spans the vertices of

the dual map. Bottom left: The map Q. Bottom right: Loop (space filling
path) separating the primal and dual spanning trees, to which a root is

highlighted in bold.

corresponding to a spanning tree of mn, and let t†n be the corresponding dual
edges of tn. The reader can easily check that t†n is necessarily a spanning tree
of m†n. Observe that the refinement edges split the map into triangles of two
types: primal (meaning two refinement edges and one primal edge) and dual
triangles (two refinement edges and a dual edge). Thus, we can think of the
map as being split into quadrangles where one diagonal is either primal or dual.

We aim to ’reveal’ the map, triangle by triangle, by exploring it with a space
filling path that visits every triangle exactly once. This path goes through ev-
ery triangle without crossing an edge of t or t†. We will use the letters h, c
to indicate that a hamburger or cheeseburger has been produced resp. and the
letters H, C to indicate that a burger has been eaten (i.e. ordered and eaten
immediately).
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2 MULLIN-BERNARDI-SHEFFIELD BIJECTION

Now let e0, e1, ..., e2n = e0 be the sequence of edges of the triangulation hit
by the path shown in Figure 2. For each ei, let d(ei) := (d1, d2), where d1
counts the number of edges in the tree tn between the V endpoint of ei and
the root (e0), and d2 counts the number of edges in t†n between the F endpoint
of ei and the root. The sequence d(e0), d(e1), ..., d(e2n) = d(e0) defines a sim-
ple random walk on Z2

+. We obtain the corresponding word in the alphabet
{c,h,C,H} by writing h or c each time the first (resp. second) coordinate of
d(ei) goes up, and H or C each time the first (resp. second) coordinate of d(ei)
goes down.

Figure 3.The word associated with (mn, tn):
hccHhhCCHH

We introduce the quantities (Xk, Yk)1≤k≤2n, which count the number of ham-
burgers and cheeseburgers in the stack at step k. It is easy to see that X
and Y both stay non-negative throughout the exploration.Now (Xk, Yk)1≤k≤2n
uniquely identify the word w encoding the decorated map (mn, tn), and con-
versely, given such a process (X,Y ), we can associate a unique word in Θ such
that (X,Y ) satisfies the above definition. Observe that X and Y can be inter-
preted as the corresponding contour functions of tn and t†n respectively, so that
as n→∞,

1√
n

(Xb2ntc, Yb2ntc)0≤t≤1 → (et, e
′

t)0≤t≤1

where e, e
′

are independent, one-dimensional Brownian excursions. The follow-
ing result thus summarizes our findings in the case of spanning trees.

Theorem 2.1[1][4]. The set of spanning-tree decorated planar maps (mn, tn)
are in bijection with the contour functions (Xk, Yk)1≤k≤2n. The pair of trees
tn, t

†
n converges to a pair of Continuum Random Trees, when scaled by

√
n.
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2 MULLIN-BERNARDI-SHEFFIELD BIJECTION

What if we remove the condition that t be a spanning tree? We now sup-
pose that the collection of edges tn is arbitrary. In this instance, we obtain a
collection of loops through which our space-filling curve must traverse (touching
only edges of Q, none of t∪t†. The general concept is that the space-filling path
starts to explore the loop of the root edge, L0. As the edges of t ∪ t† cannot
be crossed, we must find a way to recursively collapse each loop so that the
traversal may continue. To do this, we consider the last time L0 is adjacent to
some triangle in the complement of L0 (i.e. those triangles that do not intersect
L0). Typically, this triangle is reached when we are about to close the loop L0.
The triangle sharing this edge with the boundary of L0 is either an edge of t
or of t†. Regardless, we now replace this edge with the opposite diagonal of the
same quadrilateral: A dual edge is replaced with a primal edge and vice-versa.
The effect of these flipped diagonals is to join one loop of the complement to the
primary loop L0. The reader can verify that when this procedure is iterated, we
obtain a space-filling path that visits every quadrangle exactly twice (traversing
some virtual tree). We thus associate to a decorated map (mn, tn) a list of 2n
symbols in the alphabet Θ = {hcHCF}, where each of the collapsing events
is recorded by the symbol F. [1] asserts that this list of symbols completely
characterizes the decorated map (mn, tn), such that each loop corresponds to a
symbol F.

We now describe how to reverse the bijection. We interpret the alphabet
{hcHC}2n as a LIFO model in hamburgers and cheeseburgers. The burgers
are put into a single stack, and each time there is an order (H or C, the freshest
corresponding burger is removed from the stack ( h or c).

When the word w has no F symbols, the reversal is trivial so we proceed di-
rectly to the general case. The symbol F corresponds to a customer ordering
the freshest available burger. So we can interpret the alphebet Θ a generators
of a semi-group (as not every element has an inverse, per se), with the following
relations:

• cC = cF = hH = hF = ∅

• cH = Hc; hC = Ch

Given a sequence of symbols X in Θ, we denote by X̄ the reduced word formed
by the above relations. Given such a sequence X with reduced word X̄ satis-
fying X̄ = ∅, we make the following construction of (mn, tn): Convert the F
symbol to either H or C depending on its corresponding match (i.e. the burger
to which it corresponds). Reversing the procedure in the spanning tree case,
we construct a spanning tree decorated map (the condition X̄ = ∅ ensures that
we can do this). Consider those quadrangles that have edges corresponding to
the F symbols. We simply reassemble the loops by switching the type of the
quadrangle: If a quadrangle corresponding to an Fhas its triangles formed by
primal edges, we simply replace that primal edge with its corresponding dual
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3 FRACTIONAL BROWNIAN MOTION

edge, and vice versa. The map is now divided into several loops such that the
number of loops is exactly #[F] + 1.
Such a correspondence makes the study of limiting structures of large planar
maps more feasible; a complicated concept such as ’number of loops’ is reduced
to a much simpler quantity to keep track of: number of F symbols in the given
word.Theorem 2.1 describes a limiting law for a pair of trees, and the ’manner’
in which they are glued. Of course, there are several other approaches to this
universal convergence concept. Another model considers these discrete surfaces
as random metric spaces. Miermont and Le Gall [2] so that these spaces con-
verge in law to a limiting space called the Brownian Map; it was later shown
by Sheffield and Miller that the Brownian Map is equivalently an LQG surface

with γ =
√

8
3 (see appendix for more about LQG).

We aim to make a small perturbation to the hamburger-cheeseburger model;
we introduce a sampling scheme for the addition of burgers to the end of the
stack. This model exploits the idea that increments are now correlated, so we
would expect our limiting distribution (of the corresponding random walk, say)
to have the distribution of some Fractional Brownian Motion with Hurst pa-
rameter H.

3 Fractional Brownian Motion

Before we introduce formal definitions, we shall first paint an intuitive picture
of the ’tweak’ to the original model. Given µ- a law on the natural numbers-
we associate the random walk with sequence of increments {Xk : k ∈ N} equal
to −1 or 1. We attach independent samples kn (taken to have a power law
distance in time from the present) of µ to the vertices of Z. The sequence of
increments Xk is such that given the values {Xk : k < n}, Xn is set to be
the increment Xn−kn . In a similar manner, given a semi-infinite sequence of
letters from our alphabet Θ, the symbol at step n is simply set to be the symbol
that occurred kn steps in the past, and so on. In this manner, we expect a
corresponding planar map model whose structure is strongly dependent on its
so-called ’history’.

3.1 Preliminaries

We can extend the idea of semi-random walks to that of correlated random
walks, i.e., the walks in which the steps are not independent, but each step
depends on all previous steps instead. Again, the limit of such a type of biased
random walk introduces a generalization of Brownian motion–the so-called frac-
tional Brownian motion- a one-parameter family of stochastic processes, map-
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3.1 Preliminaries 3 FRACTIONAL BROWNIAN MOTION

ping the real line to itself. They are the only stationary-increment Gaussian
processes that, for some fixed H > 0, are invariant under space-time rescalings.

Motivated from some applications in hydrology, telecommunications, queue-
ing theory and mathematical finance, there has been a recent interest in input
noises without independent increments and possessing long-range dependence
and self-similarity properties. Long-range dependence in a stationary time se-
ries occurs when the covariances tend to zero (like a power function) and so
slowly that their sums diverge.

Definition 3.1: A Gaussian process is called a fractional Brownian motion of
Hurst parameter H ∈ (0, 1) if it has mean zero and covariance function

E(BHs B
H
t ) =

1

2
(|t|2H +|s|2H −|t− s|2H)

or equivalently,
E(|BHt −BHs |2) = |t− s|2H , SH0 = 0

This process was introduced by Kolmogorov and studied by Mandelbrot and Van
Ness, where a stochastic integral representation in terms of a standard Brow-
nian motion was established. The parameter H is called Hurst index from the
statistical analysis, developed by the climatologist Hurst. Fractional Brownian
motion has the following properties:

• Self-Similarity : For any a > 0, {a−HBat, t ≥ 0} and {BHt , t ≥ 0} have the
same probability distribution.

• Stationary Increments: The increments of the process in [s, t] ∼ N(0,|t− s|2H .
It follows that for any integer k ≥ 1

E(BHt −BHs )2k) =
(2k)!

k!2k
|t− s|sHk

• ∀ ε > 0 and T > 0, there exists a non-negative random variable Gε,T such
that E(|Gε,T |p) <∞ for all p ≥ 1 and almost surely∣∣∣BHt −BHs ∣∣∣ ≤ Gε,T |t− s|h−ε
In other words, the Hurst parameter H controls the regularity of the tra-
jectories of the Fractional Brownian Motion.
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Figure 4: A visual representation of self- similarity as displayed by the Koch
Curve and the Sierpinski Triangle. ’Zooming in’ on any part of these objects

displays an object that is similar to the ’bigger picture’.

In[3], we discover that the above walk does in fact converge to Fractional Brow-
nian motion, in the sense of finite dimensional distributions. Essentially, it
asserts that the above walk associated to an extremal µ-Gibbs measure (See
[3]) for a choice of µ ∈α, the time-scaled process S(nt), further rescaled by
subtracting its mean a multiplying by some n-dependent factor, converges in
law to Fractional Brownian motion with Hurst parameter α + 1

2 (we say that
µ ∈α if there exists a slowly varying function L : (0,∞) → (0,∞) for which
µ{n, ...,∞} = n−αL(n)).

3.2 A similar Bijection

Given the correlated random walk outlined in the previous section, we can as-
sociate a random planar map quite naturally. We consider here the case of the
spanning trees as outlined in section 2 (i.e. we anticipate words in Θ composed
of {h, c,H,C}).

We consider the event that our space-filling path has already traversed infinitely
many triangles in the semi-infinite canonical triangulation Q. We consider this
triangulation as a collection of blocks of trees; our focus here is the final n pri-
mal (and dual) edges of this triangulation, and we consider the history of the
space-filling curve as groups of n primal edges (with corresponding dual edges),
each block with its distinct root edge e0. the di’s are simply redefined as follows:
if ei is the ith edge to be traversed by the loop, and d = (d1, d2), we visit the
block ki units in the past, and we observe the discrepancy at that step in the
past (that is, we record which coordinate of the corresponding (d1, d2) changed)
and we attach this discrepancy to the edge ei. A little bit of thought shows that
this is essentially sampling the burger type (or order type) attached to the ith

edge of the block ki units in the past.

It’s difficult to say (from this picture) whether or not this modified picture
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3.2 A similar Bijection 3 FRACTIONAL BROWNIAN MOTION

converges to some non-degenerate random metric space or universal structure.
Our work here (in the case of spanning trees) is closely related to some of the
work done by Le Gall and Miermont in [2]. Their approach in the character-
ization of the Brownian Map considers a model without loops (as above) and
to interpret the discrete surfaces as random metric spaces. They were able to
show that these spaces converge in law to a limiting random metric space. The
method utilizes the powerful Cori-Vauquelin-Shaeffer (CVS) Bijection, which
exhibits a bijection between well-labelled trees and quadrangulations. It’s thus
far easier to understand the asymptotic of these large random quadrangulations,
as they coincide with the study of R-trees, which we will discuss later.

1

2

2 3

3 2

2

2

31

Figure 5: On the left, we have a plane tree τ , and its contour illustration is
shown by the arrows.The contour function provides some intuition behind the

enumeration of plane trees: One can intuit that these trees are in bijection
with non-negative lattice paths (Dyck Paths), which is another catalan object.

On the right, we see a labelling of τ according to the following scheme: the root
is labelled 1, and the absolute value of the difference between the labels of any

two adjacent vertices is at most 1.

Another reasonable model for our ’tweak’ is this metric space model; considering
R-trees encoded by Fractional Brownian Motion. In this manner, we can say
more about what expect our limiting surface to be (in particular, whether or
not it is degenerate).
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1

2

3

3 22

31

v0

1

3

Figure 2: An example of the CVS bijection. The original tree is highlighted
in red, and the quadrangulation is done according to the following algorithm:
We add an isolated vertex v0, and connect each corner labelled 1 to v0. We
then connect each corner labelled i to i− 1. One obtains a quadrangulation
with the labels indicating the respective graph distances from the vertices to

the root [5]

3.3 R-trees

Recall that a metric space (T , d) is an R − tree if the following hold for each
a, b ∈ T

• ∃! isometric map fa,b : [0, d(a, b)]→ T such that fa,b(0) = a and fa,b(d(a, b)) =
b

• For continuous, injective g : [0, 1] → T with g(0) = a and g(1) = b, it
holds that

g([0, 1]) = fa,b(0, d(a, b))

Now for every s, t ∈ [0, 1] we set

mg(s, t) = inf
r∈s∧t,s∨t

g(r)

and
dg(s, t) = g(s) + g(t)− 2mg(s, t)

The reader can easily verify that dg satisfies the triangle inequality (and is clearly
variable symmetric), thus is a metric on [0, 1]. We now introduce the equiva-
lence relation s ∼ t iff dg(s, t) = 0. We write the quotient space Tg := [0, 1]/ ∼.
Clearly dg induces a distance on the space Tg. We denote by pg := [0, 1] → Tg
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4 FURTHER DISCUSSION

the canonical projection onto Tg. This coding induces a cyclic ordering on the
tree Tg and we note the following:

Theorem 3.2[2]: The metric space (Tg, dg) is an R-tree with root ρ = pg(0) =
pg(1) We thus view this space as a rooted R− tree..

Definition 3.3. The CRT is the R-tree (Te, de) encoded by the Brownian
excursion e

It is well known that the CRT has Hausdorff dimension 2, and is homeomorphic
to S2. [5] asserts that the R-tree encoded by the Fractional Brownian bridge has
Hausdorff dimension 1

H , and if we consider the hamburger-cheeseburger model
as a ‘mating of trees’, we see that when the trees are ‘glued’, the quotient is a
closed topological relation, and should be homeomorphic to S2. In particular,
we believe that the limiting surface of such trees should be decorated by a vari-
ant of a space filling SLE (see appendix).

Theorem 3.4[5]: The hausdorff dimension dHaus of the R-tree encoded by
the Fractional Brownian bridge has hausdorff dimension 1

H a.s.

Conjecture 3.5. The quotient, after gluing two R-trees encoded by Fractional
Brownian motion, is homeomorphic to S2.

4 Further Discussion

A lot can said about the universality concept introduced earlier. In partic-
ular, there have been significant developments in the study of these random
surfaces.

4.1 FK Models

A (critical) Fortuin-Kasteleyn (FK) planar map of size n ∈ N and parameter
q > 0 is a pair (m, S) consisting of a planar map m with n edges and a subset S
of the set of edges of m, sampled with weight qK(S)/2 where K(S) is the number
of connected components of S plus the number of complementary connected
components of S. This model is critical in the sense that its partition function
has power law decay as n→∞ . If (m, S) is a critical FK planar map of size n
and parameter q, then the conditional law of S given m is that of the uniform
measure on edge sets of m weighted by qK(S)/2. The critical FK planar map
is conjectured to converge in the scaling limit to a conformal loop ensemble
(CLEκ) with κ ∈ (4, 8) satisfying q = 2 + 2cos( 8pi

κ ) on top of an independent
Liouville quantum gravity (LQG) surface with parameter γ = 4√

κ
[1].
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4.2 SLEκ

The Schramm-Loewner evolution (SLE) is a measure on continuous curves that
is a candidate for the scaling limit for discrete planar models in statistical
physics. It is difficult to speak about SLE without introducing the discrete
models that motivate it, as well as the concepts needed to make its definition
clear. We think of them as the scaling limit of some Self Avoiding Walks (SAW)
and informally, the index κ indicates ’winding activity’ of said paths.[6]
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