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Abstract

We count points satisfying polynomial equations modulo infinitely many primes. In par-

ticular we show that the number %(N) of points (x1, . . . , xn) such that every xi is a positive

integer and gcd(x1, . . . , x`) = 1 where x

k
1 + · · · + x

k
n = N for a given positive integer N is of

order N

n/k�1
, using the circle method and the sieve of Erasthotenes. More generally we show

that the density � of points in Zn
at which m polynomials are relatively prime is lower bounded

by a certain positive function of the degrees of the polynomial and the dimension n by upper

bounding the number of simultaneous solutions of m polynomials in Fn
p for every prime p.

1 Introduction

It is often of interest to count the number of objects satisfying infinitely many conditions which
can be mapped to lattice points on a variety satisfying conditions modulo each prime (see e.g. [3]).
If we wish to find a global solution to some problem, we can often piece together “local” solutions
modulo each prime in order to obtain a “global” solution over the integers by the Chinese remainder
theorem. However, this is often more di�cult if we need to satisfy infinitely many conditions. For
example, as we will see in section 3, we need to upper bound the number of simultaneous solutions
of the polynomial system in Fn

p

for every prime p in order to estimate the density of points x 2 Zn

such that two, or m, relatively prime polynomials in n dimensions evaluated at x are relatively
prime.

We first investigate a modification of Waring’s problem. We find in Theorem 2.4 the estimate
for the number %(N) of solutions to xk

1

+ · · ·+ xk

n

= N over positive integers

%(N) =
1

⇣(`)

�(1 + 1/k)n

�(n/k)
Nn/k�1S(N) +O(Nn/k�1�✓)

for some ✓ > 0 provided n � 2k+ `+1. We can understand this in terms of a main factor cNn/k�1,
which gives the expected result for a smoothed version of the problem where c is a constant term
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depending on n, k, and `, and the singular series S(N), which adjusts the result to account for
the fact that the solutions are also restricted by congruence relations. In order to show that the
number of solutions is of the order Nn/k�1 we also need to show that S(N) is bounded between two
positive constants. The argument largely follows that of chapters 4, 5, and 7 of [2], which derive
the analogous results for the unmodified Waring’s problem, adapted and supplemented to allow for
the new result.

We then move to the case of multiple general polynomials in n variables over all of Zn, where
we will show that the density mentioned � is lower bounded by

exp

✓
�n#(

p
A)�

✓
log ⇣(2)� P (2) +

1p
A

◆
A log(2A)

◆
,

whereA = (n�1) (
P

i

deg f
i

+
Q

i

deg f
i

)min
i

deg f
i

and #(x) is Chebyshev’s first function
P

px

log p.
In order to find this bound we use the identity that

X

d| gcd(A1,...,Am)

µ(d)

is 1 if A
1

, . . . , A
m

are relatively prime and 0 otherwise to write the density as a Dirichlet series and
then factor it into a product over the primes. The problem then reduces to that of upper bounding
the number of common solutions of two, or m, polynomials in Fn

p

. We find such a bound using the
properties of resultants and induction on the dimension n.
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The author thanks Soohyun Park for her mentoring and guidance, Professor Bjorn Poonen for
suggesting this problem, and the MIT Department of Mathematics UROP+ program for providing
the opportunity and funding for this research.

2 A modified version of Waring’s problem

Let %(N) be the number of ways that N can be written as the sum of n kth powers of positive
integers xk

1

+ · · ·+ xk

n

such that gcd(x
1

, . . . , x
`

) = 1. Our method is to find a simpler form for the
exponential sum

NX

x=1

%(x)e(↵x),

where e(u) = e2⇡iu, and by an inverse discrete Fourier transform express %(N) in terms of the
integral of this exponential sum times e(�↵N). We will then divide the interval [0, 1] into major
and minor arcs. The major arcs make up relatively little of the interval but the exponential sum is
large on them, while the minor arcs make up the bulk of the interval but on them the exponential
sum is small. We can then extract a main term from the integral over the major arcs and show
that the contribution from the minor arcs is of smaller order than this main term.

However, it turns out that the main term that we get from the major arcs has an arithmetic
factor, denoted the singular series, whose nature is not entirely clear. Thus in order to show that
%(N) has the order stated we need to show that the singular series is bounded between two positive
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constants. We do this by factoring it into a product over primes and then showing that the factors
from all su�ciently large primes converge and that no factor is zero.

Let

T (↵) =
PX

x=1

e(↵xk)

and

U(↵) =
PX

x1,...,x`=1

gcd(x1,...,x`)=1

e(↵(xk

1

+ · · ·+ xk

`

)).

Then we have

T (↵)n�`U(↵) =
NX

x=1

%(x)e(↵x)

provided P is su�ciently large, in particular with P � N1/k. Taking the inverse Fourier transform
we obtain

%(N) =

Z
1

0

T (↵)n�`U(↵)e(�↵N) d↵.

Now fixing � to depend on N let M
a,q

for some coprime a, q be the interval consisting of the points
a

q

+ � for |�| < P ��k for coprime a and q with 1  a  q  P � with the larger half of the interval
around 1 wrapping around modulo 1, and let M be the collection of the M

a,q

for all such a, q.
Further let m be the complement of M on [0, 1].

Consider the integral from above over the major arcs M
a,q

. Let

S
a,q

=
qX

z=1

e

✓
a

q
zk
◆
,

�
a,q

=
X

z1,...,z`
gcd(z1,...,z`,q)=1

e

✓
a

q
(zk

1

+ · · ·+ zk
`

)

◆
,

I(�) =

Z
P

0

e(�⇠k) d⇠,

and

f(q) =
Y

p|q

✓
1� 1

p`

◆�1

.

Then we have the following:

Lemma 2.1. For ↵ in M
a,q

we have:

a) T (↵) = q�1S
a,q

I(�) +O(P 2�)

b) U(↵) = 1

⇣(`)

f(q)

q

�`

�
a,q

I(�)` +O(P `�1+(`+1)�), where ⇣(s) is the Riemann zeta function.
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Proof of a) (following [2]). Reordering the sum by congruence classes we have

T (↵) =
qX

z=1

e

✓
a

q
zk
◆ P�z

qX

y=0

e(�(qy + z)k).

By the Euler-Maclaurin formula we can replace the inner summation by the integral

1

q

Z
P

0

e(�⇠k) d⇠ = q�1I(�)

up to error P k|�| = O(P �), so we have

T (↵) =
qX

z=1

e

✓
a

q
zk
◆�

q�1I(�) +O(P �)
�
= q�1S

a,q

I(�) +O(P 2�)

Proof of b). Collecting the terms of each x
i

in the same congruence classes modulo q as above we
have

U(↵) =
X

1z1,...,z`q

PX

x1,...,x`=1

xi⌘zi (mod q)

gcd(x1,...,x`)=1

e

✓✓
a

q
+ �

◆
(xk

1

+ · · ·+ xk

`

)

◆

=
X

1z1,...,z`q

e

✓
a

q
(zk

1

+ · · ·+ zk
`

)

◆ X

1x1,...,x`P

xi⌘zi (mod q)

gcd(x1,...,x`)=1

e(�(xk

1

+ · · ·+ xk

`

))

=
X

1z1,...,z`q

e

✓
a

q
(zk

1

+ · · ·+ zk
`

)

◆ X

1x1,...,x`P

xi⌘zi (mod q)

e(�(xk

1

+ · · ·+ xk

`

))
X

d| gcd(x1,...,x`)

µ(d)

=
X

1z1,...,z`q

e

✓
a

q
(zk

1

+ · · ·+ zk
`

)

◆
PX

d=1

µ(d)
X

1x1,...,x`P

xi⌘zi (mod q)

d| gcd(x1,...,x`)

e(�(xk

1

+ · · ·+ xk

`

)).

Let
W (z, q, d) =

X

1xP

x⌘z (mod q)

d|x

e(�xk).

If (q, d) > 1 and (q, d) - z, then W (z, q, d) = 0 since there are no x satisfying the restrictions. If
(q, d) = 1, then the condition that x ⌘ z (mod q) and d|x implies that x ⌘ a (mod qd) for exactly
one a between 1 and qd by the Chinese remainder theorem. Therefore we have

W (z, q, d) =

P�a
qdX

y=0

e(�(qdy + a)k).
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By the same argument as in the proof of a) this is equal to

Z P�a
qd

0

e(�(qd⌘ + a)k) d⌘

up to error in O(�P k) = O(P �). Letting ⇠ = qd⌘ + a, we have for (q, d) = 1

W (z, q, d) =
1

qd

Z
P

0

e(�⇠k) d⇠ +O(P �) =
1

qd
I(�) +O(P �).

Now

U(↵) =
X

1z1,...,z`q

PX

d=1

µ(d)
`Y

i=1

W (z
i

, q, d).

If (z
1

, . . . , z
`

, q) > 1, we see that the inner sum is equal to 0, since from the first equation above in
which we first collected the x

i

by congruence classes any such x
i

cannot be coprime. Therefore we
consider only the case in which (z

1

, . . . , z
`

, q) = 1. If (d, q) is greater than 1, since (z
1

, . . . , z
`

, q) = 1

it does not divide at least one of the z
i

, so
Q

`

i=1

W (z
i

, q, d) = 0. This leaves only the case in which

(q, d) = 1, in which case
Q

`

i=1

W (z
i

, q, d) = 1

q

`
d

` I(�)` +O(d1�`P `�1+�). Therefore

U(↵) =
1

q`
I(�)`

X

1z1,...,z`q

(z1,...,z`,q)=1

e

✓
a

q
(zk

1

+ · · ·+ zk
`

)

◆ X

1dP

(q,d)=1

µ(d)

d`
+O(P `�1+(`+1)� logP )

=
1

q`
�
a,q

I(�)`
X

d�1

(q,d)=1

µ(d)

d`
+O(P `�1+(`+1)� logP ),

since the error accrued by extending the sum to infinity is of order 1

P

and can be neglected. Now
consider the product

Y

p-q

✓
1� 1

p`

◆
.

If we expand this out, we see that it is exactly equal to the infinite sum above. On the other hand,
it is also equal to

 
Y

p

✓
1� 1

p`

◆!0

@
Y

p|q

✓
1� 1

p`

◆1

A
�1

=
f(q)

⇣(`)

which gives us the desired result.

Having obtained an estimate for each factor of the integrand over the major arcs, we now
combine them to get an estimate for the total contribution of the integral over the major arcs. Let

S(N,B) =
BX

q=1

f(q)

qn

X

1aq

(a,q)=1

Sn�`

a,q

�
a,q

e

✓
�a

q
N

◆
.
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Lemma 2.2. The contribution from the major arcs is

Z

M
T (↵)n�`U(↵)e(�↵N) d↵ =

1

⇣(`)

�(1 + 1/k)n

�(n/k)
Pn�kS(N,P �) +O(Pn�k�✓)

for some ✓ > 0.

Proof. Combining our results from Lemma 2.1, we have that for ↵ 2 M
a,q

T (↵)n�`U(↵) =
f(q)

⇣(`)
q�`I(�)nSn�`

a,q

�
a,q

+O(Pn�1+(`+1)� logP ).

Multiplying by e(�↵N) and integrating over |�| < P ��k gives

f(q)

⇣(`)
q�nSn�`

a,q

e

✓
�a

q
N

◆
�
a,q

Z

|�|<P

��k

I(�)e(��N) d� +O(Pn�k�1+(`+2)� logP ).

Summing over a and q up to q  P �, this becomes 1

⇣(`)

S(N,P �) times the integral plus the error

term. The integral is evaluated in [2] in the proofs of Lemma 4.3 and Theorem 4.1 by a change of

variables and an application of Fourier’s integral theorem and gives �(1+1/k)

n

�(n/k)

Pn�k plus negligible

error, and the error term summed over q  P � and a  q, (a, q) = 1 is in O(Pn�k�1+(`+4)� logP ).
Since we can choose � < 1

`+4

this implies the error term given.

In order to obtain an asymptotic formula it remains only to bound the contribution from the
minor arcs m.

Lemma 2.3. For n � 2k + `+ 1, the contribution from the minor arcs is

Z

m
T (↵)n�`U(↵)e(�↵N) d↵ = O(Pn�k�✓)

for some ✓ > 0.

Proof. Lemma 4.1 of [2] shows that for s � 2k + 1 we have
R
m |T (↵)|s d↵ = O(P s�k�✏) for some

✏ > 0 depending on � by using Dirichlet’s theorem on Diophantine approximation to show that
the denominator of any such approximation must be large and then applying the Weyl and Hua
inequalities. Choosing s = n � ` and using the fact that U(↵) = O(P `) everywhere the result
follows.

We are now prepared to prove our first main theorem. Let S(N) = lim
B!1 S(N,B).

Theorem 2.4. For n � 2k + `+ 1 we have

%(N) =
1

⇣(`)

�(1 + 1/k)n

�(n/k)
Nn/k�1S(N) +O(Nn/k�1�✓)

for some ✓ > 0.

Proof. We can choose any P su�ciently large that in any sum of
P

xk

i

= N every x
i

 P . If we
choose P = bN1/kc this is su�cient, so applying Lemmas 2.2 and 3.3 with P = bN1/kc immediately
gives the result with negligible error.
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In order to show that ⇢(N) ⇣ Nn/k�1, where f(x) ⇣ g(x) indicates that lim
x!1

f(x)

g(x)

is nonzero

and finite, we now need to examine the singular series S(N).

Let A(q) = f(q)

q

n

P
1aq

(a,q)=1

Sn�`

a,q

�
a,q

e
⇣
�a

q

N
⌘
, so that S(N) =

P1
q=1

A(q). Then we claim the

following.

Lemma 2.5. A(q) is multiplicative.

Proof. We first show that if (a
1

, q
1

) = (a
2

, q
2

) = (q
1

, q
2

) = 1, then letting q = q
1

q
2

and a ⌘
a
1

q
2

+ a
2

q
1

(mod q) we have �
a,q

= �
a1,q1�a2,q2 . Write

�
a,q

=
X

1z1,...,z`q

(z1,...,z`,q)=1

e

✓
a

q
(zk

1

+ · · ·+ zk
`

)

◆
=
X

d|q

µ(d)
X

1z1,...,z`q

e

✓
a

q
((dz

1

)k + · · ·+ (dz
`

)k)

◆

=
X

d1|q1

X

d2|q2

µ(d
1

)µ(d
2

)

X

1z1,1,...,z`,1q1

X

1z1,2,...,z`,2q2

e

✓
a

q

�
(z

1,1

q
2

+ z
1,2

q
1

)k + · · ·+ (z
`,1

q
2

+ z
`,2

q
1

)k
�◆

=
X

d1|q1

X

d2|q2

µ(d
1

)µ(d
2

)
X

1z1,1,...,z`,1q1

X

1z1,2,...,z`,2q2

e

✓✓
a
1

q
1

+
a
2

q
2

◆�
(z

1,1

q
2

)k + (z
1,2

q
1

)k + · · ·+ (z
`,1

q
2

)k + (z
`,2

q
1

)k
�◆

=
X

d1|q1

X

d2|q2

µ(d
1

)µ(d
2

)
X

1z1,1,...,z`,1q1

X

1z1,2,...,z`,2q2

e

✓
a
1

q
1

((z
1,1

q
2

)k + . . .+ (z
`,1

q
2

)k) +
a
2

q
2

((z
1,2

q
1

)k + · · ·+ (z
`,2

q
1

)k)

◆

=

0

@
X

d1|q1

µ(d)
X

1z1,1,...,z`,1q1

e

✓
a
1

q
1

(zk
1,1

+ · · ·+ zk
`,1

)

◆1

A

·

0

@
X

d2|q2

µ(d)
X

1z1,2,...,z`,2q2

e

✓
a
2

q
2

(zk
1,2

+ · · ·+ zk
`,2

)

◆1

A

since (q
1

, q
2

) = 1 so removing their powers simply rearranges the order of the inner sums. We saw
above that

�
a,q

=
X

d|q

µ(d)
X

1z1,...,z`q

e

✓
a

q
((dz

1

)k + · · ·+ (dz
`

)k)

◆
,

so this is simply �
a1,q1�a2,q2 . Now we have from the proof of Lemma 5.1 in [2] that for similar
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a
1

, a
2

, q
1

, q
2

we have S
a,q

= S
a1,q1Sa2,q2 , so it follows that

0

BB@
X

1a1q1
gcd(a1,q1)=1

Sn�`

a1,q1
�
a1,q1e

✓
�a

1

q
1

N

◆
1

CCA

0

BB@
X

1a2q2
gcd(a2,q2)=1

Sn�`

a2,q2
�
a2,q2e

✓
�a

2

q
2

N

◆
1

CCA

=
X

1a1q1
gcd(a1,q1)=1

X

1a2q2
gcd(a2,q2)=1

(S
a1,q1Sa2,q2)

n�`�
a1,q1�a2,q2e

✓
�
✓
a
1

q
1

+
a
2

q
2

◆
N

◆

=
X

1aq

gcd(a,q)=1

Sn�`

a,q

�
a,q

e

✓
�a

q
N

◆
.

Since f(q)q�n is clearly multiplicative the result follows.

Let

�(p) =
1X

j=0

A(pj).

Lemma 2.6. For n � 2k + 1, we have

S(N) =
Y

p

�(p)

and there exists a fixed ✏ > 0 such that |�(p)� 1| ⌧ p�1�✏

where the implied constant depends only

on ✏.

Proof. The factorization of S follows immediately from Lemma 2.5. By applying Weyl’s inequality
to S

a,q

we see immediately that S
a,q

⌧ q1�2

1�k
+✏ for any ✏ > 0, where the implied constant depends

only on ✏. For q = pj for some positive integer j gcd(z
1

, . . . , z
`

, q) is 1 unless p divides all of the z
i

.
There are `j sets of z

i

for which this is the case, so as p ! 1 �
a,q

= O(S`

a,q

). Therefore

A(pj) ⌧
p

jX

a=1

p(�2

1�k
+✏)jn ⌧

p

jX

a=1

p(�2�2

1�k
+2

k
✏)j ⌧ p�1�2

1�k
+2

k
✏.

Choosing ✏ su�ciently small it follows that

|�(p)� 1| ⌧
1X

j=1

p�1�✏ ⌧ p�1�✏.

Remark. It immediately follows that there exists a p
0

such that 1

2


Q

p>p0
�(p)  3

2

. Indeed
this is enough to show that S(N) is upper bounded by a constant, so in order to show that
%(N) ⇣ Nn/k�1 we need only find a constant lower bound.
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Let M(q) be the number of solutions to

zk
1

+ zk
2

+ · · ·+ zk
n

⌘ N (mod q)

with 1  z
i

 q such that gcd(z
1

, . . . , z
`

, q) = 1. The primary tools that we use to establish a
lower bound on S(N) are Lemma 2.6 and a connection between the factors �(p) and M(q) in the
following lemma.

Lemma 2.7. For any integer ⌫ � 1 we have

⌫X

j=1

A(pj) =
f(p)

p⌫(n�1)

M(p⌫) =
M(p⌫)

p⌫(n�1)(1� p�`)
,

so that

�(p) = lim
⌫!1

f(p)

p⌫(n�1)

M(p⌫) = lim
⌫!1

M(p⌫)

p⌫(n�1)(1� p�`)
.

Proof. Write

M(q) =
1

q

qX

t=1

X

1z1,...,z`q

gcd(z1,...,z`,q)=1

X

1z`+1,...,znq

e

✓
t

q
(zk

1

+ zk
2

+ · · ·+ zk
n

�N)

◆
.

Collect together the t sharing a greatest common factor q

q

1

with q. Then we have

M(q) =
1

q

X

q1|q

X

1uq1
(u,q1)=1

X

1z1,...,z`q

gcd(z1,...,z`,q)=1

X

1z`+1,...,znq

e

✓
u

q
1

(zk
1

+ zk
2

+ · · ·+ zk
n

�N)

◆

=
1

q

X

q1|q

X

1uq1
(u,q1)=1

✓
q

q
1

◆
n�`

Sn�`

u,q1
e

✓
� u

q
1

N

◆ X

1z1,...,z`q

gcd(z1,...,z`,q)=1

e

✓
u

q
1

(zk
1

+ · · ·+ zk
`

)

◆

=
1

q

X

q1|q

X

1uq1
(u,q1)=1

✓
q

q
1

◆
n�`

Sn�`

u,q1
e

✓
� u

q
1

N

◆

X

0j1,...,j`<q/q1

X

1l1,...,l`q1

e

✓
u

q
1

�
(j

1

q
1

+ l
1

)k + · · ·+ (j
`

q
1

+ l
`

)k
�◆ X

d|q
8i:d|jiq1+li

µ(d)

=
1

q

X

q1|q

X

1uq1
(u,q1)=1

✓
q

q
1

◆
n�`

Sn�`

u,q1
e

✓
� u

q
1

N

◆

X

0j1,...,j`<q/q1

X

1l1,...,l`q1

e

✓
u

q
1

(lk
1

+ · · ·+ lk
`

)

◆ X

d|q
8i:d|jiq1+li

µ(d).

Suppose that for particular q
1

, l
1

, . . . , l
`

we have (l
1

, . . . , l
`

, q
1

) > 1. Then the innermost sum must
be 0, since there exist d > 1 satisfying the appropriate restrictions. Therefore we can restrict the

9



sum over l
1

, . . . , l
`

to those pairs such that (l
1

, . . . , l
`

, q
1

) = 1. Now suppose that a particular d
divides q

1

. Since we have restricted l
1

, . . . , l
`

, it follows that either d does not divide all of the
j
i

q
1

+ l
i

or d = 1, so we can restrict the sum over d to those d not dividing q
1

and d = 1. For
these d with the aforementioned restrictions on the l

i

, there will be exactly one j
i

in any complete
residue system modulo d such that d|j

i

q
1

+ l
i

for a given l
i

. Therefore we have

M(q) =
1

q

X

q1|q

X

1uq1
(u,q1)=1

✓
q

q
1

◆
n�`

Sn�`

u,q1
e

✓
� u

q
1

N

◆

0

BB@

✓
q

q
1

◆
`

�
u,q1 +

X

d|q
d-q1

µ(d)

✓
q

q
1

d

◆
` X

1l1,...,l`q1
(l1,...,l`,q1)=1

e

✓
u

q
1

(lk
1

+ · · ·+ lk
`

)

◆
1

CCA

=
1

q

X

q1|q

X

1uq1
(u,q1)=1

✓
q

q
1

◆
n

Sn�`

u,q1
�
u,q1e

✓
� u

q
1

N

◆
0

BB@1 +
X

d|q
d-q1

µ(d)

d`

1

CCA .

Setting q = p⌫ , we have

M(p⌫) = p⌫(n�1)

⌫X

j=0

p�jn

X

1up

j

(u,p

j
)=1

Sn�`

u,p

j�
u,p

je

✓
� u

pj
N

◆0

@1 +
⌫X

l=j+1

µ(pl)

p`l

1

A

= p⌫(n�1)

⌫X

j=0

p�jn

X

1up

j

(u,p

j
)=1

Sn�`

u,p

j�
u,p

je

✓
� u

pj
N

◆
� p⌫(n�1)�`

= p⌫(n�1)

⌫X

j=0

A(pj)

f(pj)
� p⌫(n�1)�`

= p⌫(n�1)

�
1� p�`

� ⌫X

j=1

A(pj),

from which the result follows.

In order to use this connection to show that the �(p) are nonzero we need the following result.

Lemma 2.8. If M(p�) � 1, where � is equal to ⌧ + 1 for p = 2 and ⌧ + 2 for all p > 2 where ⌧ is

the largest positive integer such that p⌧ divides k, we have M(p⌫) � p(⌫��)(n�1)(1� pk�⌫).

Proof. Let a
1

, a
2

, . . . , a
n

with each a
i

between 1 and p� be the solution modulo p� whose existence
is assumed. Choose z

`+1

, . . . , z
n

between 1 and p⌫ such that z
i

⌘ a
i

(mod p�). This can be done
in p(⌫��)(n�`) ways. Then N � zk

`+1

� · · ·� zk
n

⌘ ak
1

+ · · ·+ ak
`

(mod p�), so the problem is reduced
to counting the number of solutions to zk

1

+ · · ·+ zk
`

⌘ m (mod p⌫) where (z
1

, . . . , z
`

, p) = 1, given
that the same congruence modulo p� has at least one solution with the same restriction. Let this

10



number of solutions be denoted G(m, p⌫), and let G
c

(m, p⌫) be the number of solutions to the same
congruence without the requirement that (z

1

, . . . , z
`

, p) = 1. Then assuming ⌫ � 2 we have

G(m, p⌫) = p�⌫

p

⌫X

t=1

X

1z1,...,z`p

⌫

(z1,...,z`,p)=1

e

✓
t

p⌫
(zk

1

+ · · ·+ zk
`

�m)

◆

= p�⌫

p

⌫X

t=1

X

1z1,...,z`p

⌫

e

✓
t

p⌫
(zk

1

+ · · ·+ zk
`

�m)

◆ X

d|p
d| gcd(z1,...,z`)

µ(d)

= p�⌫

p

⌫X

t=1

X

1z1,...,z`p

⌫

e

✓
t

p⌫
(zk

1

+ · · ·+ zk
`

�m)

◆

� p�⌫

p

⌫X

t=1

X

1x1,...,x`p

⌫�1

e

✓
t

p⌫
((px

1

)k + · · ·+ (px
`

)k �m)

◆

= G
c

(m, p⌫)� p�⌫

p

⌫X

t=1

e

✓
� t

p⌫
m

◆ X

1x1,...,x`p

⌫�1

e

✓
t

p⌫�k

(xk

1

+ · · ·+ xk

`

)

◆

= G
c

(m, p⌫)� p�⌫+`(k�1)

p

⌫X

t=1

S`

t,p

⌫�ke

✓
� t

p⌫
m

◆

= G
c

(m, p⌫)� p�⌫+`(k�1)

p

⌫�kX

t=1

S`

t,p

⌫�k

p

k�1X

j=0

e

✓
� t+ p⌫�kj

p⌫
m

◆

= G
c

(m, p⌫)� p�⌫+`(k�1)

p

⌫�kX

t=1

S`

t,p

⌫�ke

✓
� t

p⌫
m

◆
p

k�1X

j=0

e

✓
� j

pk
m

◆
.

If m is not divisible by pk, then the second part is 0, and we have simply G(m, p⌫) = G
c

(m, p⌫). If
pk|m, then the innermost sum is pk, so we have

G(m, p⌫) = G
c

(m, p⌫)� p�⌫+`(k�1)+k

p

⌫�kX

t=1

X

1z1,...,z`p

⌫�k

e

✓
� t

p⌫�k

✓
zk
1

+ · · ·+ zk
`

� m

pk

◆◆

= G
c

(m, p⌫)� p`(k�1)G
c

✓
m

pk
, p⌫�k

◆
.

Carrying out the procedure as at the start of the proof with 1 in place of ` and setting n = ` shows
that G

c

(m, p⌫) � p(⌫��)(`�1). If pk - m then it follows that G(m, p⌫) = G
c

(m, p⌫) � p(⌫��)(`�1), so
the total number of ways to choose z

1

, . . . , z
`

, . . . , z
n

satisfying the appropriate requirements is at
least p(⌫��)(n�1). However this method only accounts for m not divisible by pk, so we must modify
our initial count to the number of ways we can choose z

`+1

, . . . , z
n

such that N � zk
`+1

� · · · � zk
n

is not divisible by pk. We can lower bound this by allowing only z
n

to vary to see that there
are at least p(⌫��)(n�`)(1 � pk�⌫) such ways to choose z

`+1

, . . . , z
n

, so in total there are at least
p(⌫��)(n�1)(1� pk�⌫) as desired.
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Finally we need to satisfy the condition on Lemma 2.8.

Lemma 2.9. For n � 2k if k is odd and n � 4k if k is even, for every prime p we have M(p�) � 1.

Proof. The proof in [2] of Lemma 5.6 shows that for every N � 1 there exist z
1

, z
2

, . . . , z
n

between
1 and p� for every prime p such that zk

1

+ zk
2

+ · · · + zk
n

⌘ N (mod p�) with z
1

, z
2

, . . . , z
n

not all
divisible by p with n as in the statement of the theorem by distributing the N into classes by the
value of the least n such that the relevant congruence is soluble and demonstrating that no two
consecutive classes are both empty, so that for n satisfying the conditions stated the congruence
must be soluble for all N . We can simply rearrange the z

i

such that z
1

, . . . , z
`

are not all divisible
by p, so that M(p) � 1 for all p.

This gives us everything we need to lower bound S(N).

Theorem 2.10. For n � 2k + 1 there exists some c > 0 independent of N such that for every

N � 1 we have S(N) � c.

Proof. The result follows immediately from Lemmas 2.9, 2.8, 2.7, and 2.6.

Combining Theorems 2.4 and 2.10 with the observation that S(N) is upper bounded by a
constant as a result of Lemma 2.6 gives us the desired result:

Corollary 2.11. For n � 2k + 1 we have

%(N) ⇣ Nn/k�1.

We can generalize this result by allowing each coordinate x
i

to have a corresponding nonzero
coe�cient c

i

, so that the problem is now counting the number %(N) of solutions to c
1

xk

1

+· · ·+c
n

xk

n

=
N such that x

1

, . . . , x
n

are positive integers and gcd(x
1

, . . . , x
`

) = 1. We require the c
i

to be such
that for every positive integer N the congruence c

1

xk + · · · + c
n

xk

n

⌘ N is soluble modulo p⌫ for
every prime p for every su�ciently large ⌫, since if this is not the case Lemma 2.9 fails and therefore
so does Lemma 2.8, so that �(p) can be 0 for some p. Choose P

1

, . . . , P
n

each su�ciently large and
write

T
i

(↵) =
PiX

x=1

e(c
i

↵xk)

and

U(↵) =
P1X

x1=1

P2X

x2=1

· · ·
PX̀

x`=1

e(↵(c
1

xk

1

+ · · ·+ c
`

xk

`

))
X

d|(x1,...,x`)

µ(d),

so that

U(↵)
nY

i=`+1

T
i

(↵) =
NX

x=1

%(x)e(↵x).

Taking the inverse Fourier transform as before we have

%(N) =

Z
1

0

e(�↵N)U(↵)
nY

i=`+1

T
i

(↵) d↵.

12



We again separate the integral into the contributions from the major and minor arcs. Let S
a,q

be
as before, but now let

I
i

(�) =

Z
Pi

0

e(c
i

�⇠k) d⇠

and

�
a,q

=
X

1z1,...,z`q

gcd(z1,...,z`,q)=1

e

✓
a

q

�
c
1

zk
1

+ · · ·+ c
`

zk
`

�◆
.

Then we can apply similar methods to those used in the proof of Lemma 2.1 to get estimates for
the components of the integrand.

Lemma 2.12. For ↵ in M
a,q

we have:

a) T
i

(↵) = q�1S
cia,qIi(�) +O(P 2�)

b) U(↵) = 1

⇣(`)

f(q)

q

�`

�
a,q

Q
`

i=1

I
i

(�) +O

✓
1

q

min
i

P
i

logmin
i

P
i

Q
1j`

Pj 6=mini Pi

P �

j

◆
.

Proof. The proof of a) is precisely as in Lemma 2.1. The proof of b) is also similar:

U(↵) =
X

1z1,...,z`q

e

✓
a

q
(c

1

zk
1

+ · · ·+ c
`

zk
`

)

◆

X

8i`:1xiPi
xi⌘zi (mod q)

e(�(c
1

xk

1

+ · · ·+ c
`

xk

`

))
X

d|(x1,...,x`)

µ(d)

=
X

1z1,...,z`q

(z1,...,z`,q)=1

e

✓
a

q
(c

1

zk
1

+ · · ·+ c
`

zk
`

)

◆

X

8i`:1xiPi
xi⌘zi (mod q)

e(�(c
1

xk

1

+ · · ·+ c
`

xk

`

))
X

d|(x1,...,x`)

(d,q)=1

µ(d)

=
X

1z1,...,z`q

(z1,...,z`,q)=1

e

✓
a

q
(c

1

zk
1

+ · · ·+ c
`

zk
`

)

◆ X

1dmin(Pi)

(q,d)=1

µ(d)
`Y

i=1

✓
1

qd
I
i

(�) +O(P �

i

)

◆

=
1

⇣(`)

f(q)

q`
�
a,q

`Y

i=1

I
i

(�) +O

0

BB@
1

q
min(P

i

) logmin(P
i

)
Y

1j`

Pj 6=min(Pi)

P �

j

1

CCA .

Let

S(N,B) =
1X

q=1

f(q)

qn

X

1aq

gcd(a,q)=1

�
a,q

e

✓
�a

q
N

◆
nY

i=`+1

S
cia,q

and S(N) = lim
B!1 S(N,B). Lemma 3.3 still holds, so combining the elements of Lemma 2.12

and applying it we get the following:
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Theorem 2.13. For n � 2k + `+ 1 we have

%(N) =
1

⇣(`)

1

|c
1

c
2

· · · c
n

|1/k
�(1 + 1/k)n

�(n/k)
Nn/k�1S(N) +O(Pn�k�✓)

for some ✓ > 0.

Proof. The result follows from Lemma 2.12 just as in the proofs of Lemma 2.2 and Theorem 2.4,
setting each P

i

= b(N/c
i

)1/k, with the only major di↵erence being that in the evaluation of the I
i

due to the presence of the coe�cient c
i

a factor of c�1/k

i

emerges from the change of variable in
each integral.

Remark. Lemmas 2.5, 2.6, 2.7, and 2.8 hold just as before. The condition in Lemma 2.8, analogous
to Lemma 2.9, is the condition we assumed on the c

i

, and in fact Theorem 7.3 of [2] shows that it is
enough to have the c

i

pairwise coprime. Therefore if the c
i

are pairwise coprime or more generally
if the congruence c

1

xk

1

+ · · · + c
n

xk

n

⌘ N is soluble for every N modulo p⌫ for all primes p for all
su�ciently large ⌫ then Theorem 2.10 holds, and therefore so does Corollary 2.11.

3 Relatively prime values of polynomials

Given two relatively prime polynomials f and g in Z[x
1

, . . . , x
n

] not both everywhere divisible by the
same prime, we want to estimate the density �(f, g) of points x 2 Zn such that gcd(f(x), g(x)) = 1.
Since �(f, g) can trivially be as high as 1 we will focus on finding a lower bound. Our method will
be to express the coprimality condition on f(x) and g(x) as a divisor sum involving the Mobius
function. We can then express �(f, g) in terms of the density of points x such that f(x) and g(x)
are simultaneously divisible by d, which translates into the number of simultaneous zeros of f and
g modulo d divided by dn. Since this number is a multiplicative function of d we can factor the
resulting Dirichlet series as a product over primes. Then since for f and g as stated there is no
prime p such that f and g are both everywhere zero modulo p, in order to lower bound �(f, g) it
remains only to upper bound the number of simultaneous solutions of f and g modulo p. We do
this by considering f and g as functions f

a

and g
a

of n � 1 variables with some parameter a and
induct on n. The case in which f

a

and g
a

are both nonzero and relatively prime is covered by
the inductive hypothesis, and we can show that there are su�ciently few values of a that are not
covered to be able to use the crude bound in Lemma 3.1 below. Finally we can use the properties
of resultants to establish the base case n = 1.

We denote by Res(f, g) the resultant of two nonzero univariate polynomials f and g, and by
Res

xi(f, g) the resultant of two nonzero multivariate polynomials f and g with respect to the
variable x

i

, with all other variables taken as parameters.
We first need the following basic fact about multivariable polynomials in finite fields:

Lemma 3.1. Let f 2 F
p

[x
1

, . . . , x
n

] for some prime p not be identically zero. Then f has at most

pn�1 deg f zeros in F
p

.

Proof. If we regard f as a univariate polynomial in one of the x
i

and treat the other variables as
parameters then the result follows immediately from the fundamental theorem of algebra.

We will also need several well-known properties of resultants (both univariate and multivariate);
see for example [4].
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Finally, the following bounds are in terms of Chebyshev’s first function

#(x) =
X

px

log p.

In order to get a purely analytic bound we can use the upper bound

#(x)  x+
0.15

log3 x

for all x > 1 from Theorem 2.4 of [1].

Theorem 3.2. For any two polynomials f and g in n variables, let �(f, g) be the limit as B ! 1
of (2B + 1)�n|{x 2 {�B, . . . , B}n : (f(x), g(x)) = 1}|. Then if gcd(f, g) = 1 and there is no prime

that divides every value of both f and g, then

�(f, g) � exp

✓
�n#(

p
A)�

✓
log ⇣(2)� P (2) +

1p
A

◆
A log(2A)

◆

where A = (n � 1)T (f, g) = (n � 1)(deg f deg g + deg f + deg g)min(deg f, deg g) and #(x) is

Chebyshev’s first function #(x) =
P

px

log p.

Proof. Write v(f, g) for the number of shared zeros modulo a prime p for polynomials f, g in n
variables and f

a

(x
1

, . . . , x
n

) = f(x
1

, . . . , x
n

, a), and similarly for g. Let n = 2. Then

v(f, g) =
X

a2Fq

v(f
a

, g
a

) =
X

a2Fq

faga 6=0

deg gcd(fa,ga)=0

v(f
a

, g
a

) +
X

a2Fq

faga 6=0

deg gcd(fa,ga)>0

v(f
a

, g
a

) +
X

a2Fq

faga=0

v(f
a

, g
a

).

Now since f
a

and g
a

are univariate we have that v(f
a

, g
a

) > 0 only if deg gcd(f, g) > 0, so the
first sum is zero. The second sum is over a satisfying Res(f

a

, g
a

) = 0, so since Res(f
a

, g
a

) is a
polynomial in a there are at most degRes(f

a

, g
a

)  deg f deg g zeros. Since v(f
a

, g
a

)  deg f ,
the second sum is at most (deg f)2 deg g. For the third sum if say f

a

is identically 0 then f must
be divisible by x

2

� a, so there are at most deg f + deg g such points a. Therefore v(f, g) 
(deg f deg g + deg f + deg g)min(deg f, deg g) = T (f, g).

Suppose that for some n � 2 we have v(f, g)  pn�2(n � 1)T (f, g) provided that neither f
nor g is identically 0 modulo p and gcd(f, g) has degree 0, where T (f, g) is as in the statement
of the theorem. Then we want to show that for polynomials f, g in n + 1 variables we have
v(f, g)  pn�1nT (f, g). As in the case with n = 2 write

v(f, g) =
X

a2Fq

v(f
a

, g
a

) =
X

a2Fq

faga 6=0

deg gcd(fa,ga)=0

v(f
a

, g
a

) +
X

a2Fq

faga 6=0

deg gcd(fa,ga)>0

v(f
a

, g
a

) +
X

a2Fq

faga=0

v(f
a

, g
a

).

We can upper bound the first sum by pn�1(n � 1)T (f, g) by the inductive hypothesis. For the
second sum we use a similar method as in the case n = 2. For any a satisfying the require-
ments we have for some i  n Res

xi(fa, ga) = 0 for any values of the other variables. Therefore
Res

xi(f, g) is divisible by x
n+1

�a. Since f and g are coprime, Res
xi(f, g) is not identically 0, so the

number of a such that gcd(f
a

, g
a

) has positive degree must be at most max
i

deg
xn+1

Res
xi(f, g) 
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deg f deg g. Now for any f
a

, g
a

we have v(f
a

, g
a

)  pn�1 deg f , so in total the second sum is at most
pn�1 deg f deg gmin(deg f, deg g). For the third sum, if say f

a

is identically 0, then f must be divis-
ible by x

n+1

�a, so there are at most deg f+deg g points a such that f
a

or g
a

is 0. Therefore in total
we have v(f, g)  pn�1nT (f, g). By induction for every n � 2 we have v(f, g)  pn�2(n�1)T (f, g).

Now we can write �(f, g) as

E
x2Zn

X

d| gcd(f(x),g(x))

µ(d) =
1X

d=1

µ(d) E
x2Zn

[d| gcd(f(x), g(x))] =
1X

d=1

µ(d)⌫(d)

dn
=
Y

p

✓
1� ⌫(p)

pn

◆

where ⌫(x) is v(f, g) for modulus x not necessarily prime and [ · ] is Iverson bracket notation.
Therefore since for coprime f and g we have ⌫(p) < pn for every p and ⌫(p)  pn�2(n � 1)T (f, g)
it follows that the product is at least

0

B@
Y

p
p

(n�1)T (f,g)

p�n

1

CA

0

B@
Y

p
p>(n�1)T (f,g)

✓
1� (n� 1)T (f, g)

p2

◆
1

CA .

We can rewrite this as

exp
⇣
�n#(

p
A)
⌘ Y

p>

p
A

AY

k=1

✓
1� 1

p2 � k + 1

◆

where the second product is factored repeatedly until the numerator of the fraction a

p

2 is 1. Now

for a fixed k < A we have
⇣
1� 1

p

2�k+1

⌘
�
⇣
1� 1

p

2

⌘
ck

for p >
p
A if c

k

� log(1� 1
A�k+1 )

log(1� 1
A )

and for

k = A
⇣
1� 1

p

2�k+1

⌘
is at least 1

2

so we need c
k

� � log 2

log(1� 1
A )

, so

�(f, g) � exp
⇣
�n#(

p
A)
⌘ AY

k=1

Y

p>

p
A

✓
1� 1

p2

◆
ck

= exp
⇣
�n#(

p
A)
⌘ AY

k=1

⇣(2)�ck
Y

p
p
A

✓
1� 1

p2

◆�ck

= exp
⇣
�n#(

p
A)
⌘ AY

k=1

⇣(2)�ck exp

0

@�c
k

X

p
p
A

log

✓
1� 1

p2

◆1

A

� exp
⇣
�n#(

p
A)
⌘ AY

k=1

⇣(2)�ck exp

0

@c
k

X

p
p
A

1

p2

1

A

� exp
⇣
�n#(

p
A)
⌘ AY

k=1

⇣(2)�ck exp

0

@c
k

0

@P (2)�
X

j>

p
A

1

j2

1

A

1

A

� exp

 
�n#(

p
A) +

AX

k=1

c
k

✓
P (2)� log ⇣(2)� 1p

A

◆!
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where P (2) is the prime zeta function
P

p

1

p

s evaluated at s = 2. Now

AX

k=1

c
k

= � log 2

log(1� 1

A

)
+

AX

k=2

log(1� 1

k

)

log(1� 1

A

)

 A

 
log 2�

AX

k=2

log

✓
1� 1

k

◆!

= A

 
log 2 +

AX

k=2

(log k � log(k � 1))

!

= A log(2A).

Therefore

�(f, g) � exp

✓
�n#(

p
A)�

✓
log ⇣(2)� P (2) +

1p
A

◆
A log(2A)

◆

as desired.

We can generalize the above theorem as follows. Let Res(f) = Res(f
1

, . . . , f
n

) denote the
multivariate or Macaulay resultant of n homogenous polynomials in n variables.

Theorem 3.3. For any m polynomials f
1

, f
2

, . . . , f
m

in n variables, let �(f) be the limit as B ! 1
of (2B+1)�n|{x 2 {�B, . . . , B}n : (f

1

(x), . . . , f
m

(x)) = 1}|. Then if gcd(f
1

, . . . , f
m

) = 1 and there

is no prime that divides every value of every polynomial, then

�(f) � exp

✓
�n#(

p
A)�

✓
log ⇣(2)� P (2) +

1p
A

◆
A log(2A)

◆

where A = (n� 1)T (f, g) = (n� 1) (
Q

i

deg f
i

+
P

i

f
i

)min
i

deg f
i

.

Proof. First let n = m� 1. Write f̃
i

for the homogenous polynomial in m variables x
1

, . . . , x
m�1

, u
such that setting u = 1 we recover f

i

. Then the Macaulay resultant Res(f̃
1

, . . . , f̃
m

) is divisible by
p if there exists a common zero of f̃

1

, . . . , f̃
m

in F
p

. Therefore the number v(f) of common zeros
of f

1

, . . . , f
m

in F
p

is zero unless Res(f̃
1

, . . . , f̃
m

) is divisible by p. Since for coprime f
1

, . . . , f
m

v(f) < pm, v(f) < pm�1 min
i

deg f
i

and the resultant is 0 in F
p

for only finitely many p, it follows
that

�(f) =
Y

p||Res(

˜

f1,...,
˜

fm)|

✓
1� ⌫(p)

pm�1

◆

as in the proof of Theorem 3.2 is lower bounded by a function as described in the statement of the
theorem. This also su�ces to prove the case n < m � 1, since the number of zeros can be upper
bounded by permitting additional variables.

Now let n = m. Then

v(f) =
X

a2Fp

v(f
a

) =
X

a2Fp

deg gcd(f1a ,...,fma )=0Q
i fia 6=0

v(f
a

) +
X

a2Fp

gcd(f1a ,...,fma )>0Q
i fia 6=0

v(f
a

) +
X

a2FpQ
i fia=0

v(f
a

)
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using the notation from above. In the first sum for all a such that the conditions hold v(f
a

) =
0 by the preceding paragraph, so the first sum is 0. If the conditions of the second sum hold
then Res(f̃

1a , . . . , f̃ma) = 0, so taking this as a polynomial in a of degree at most
Q

i

deg f
i

there
are at most

Q
i

deg f
i

solutions for a. For the third sum in order for
Q

i

f
ia be be identically

0 the product
Q

i

f
i

must be divisible by x
n

� a, so there are at most deg
Q

i

f
i

=
P

i

deg f
i

solutions for a. Therefore using the generic bound for v we have v(f)  pm�2T (f) where T (f) =
(
Q

i

deg f
i

+
P

i

deg f
i

)min
i

deg f
i

.
Now for any n > m suppose that for m polynomials f

i

in n variables we have v(f)  pn�2(n�
m+ 1)T (f). Then in n+ 1 variables we have

v(f) =
X

a2Fp

deg gcd(f1a ,...,fma )=0Q
i fia 6=0

v(f
a

) +
X

a2Fp

gcd(f1a ,...,fma )>0Q
i fia 6=0

v(f
a

) +
X

a2FpQ
i fia=0

v(f
a

)

as above. Using the same methods as previously we get a bound of pn�1T for the latter two sums
and using the inductive hypothesis we get a bound of pn�1(n � m + 1)T (f) for the second sum.
Therefore we have v(f)  pn�1(n � m + 2)T (f), and so by induction for every n � m we have
v(f)  pn�2(n�m+ 1)T (f). Writing

�(f) =
Y

p

✓
1� ⌫(p)

pn

◆

and noting that for f as in the statement of the theorem we have ⌫(p) < pn for every p the result
follows as in the proof of Theorem 3.2.

Remark. It is interesting to note that although the bounds obtained in the proof of Theorem
3.2 are nearly as strong as we would expect from the heuristic that the zeros of each polynomial
are distributed randomly and independently over Fn

p

for every prime p, those used in the proof of
Theorem 3.3 are no stronger, even though we would expect something of the order v(f) = O(pn�mA)
for some A = A(f), analogous to the Lang-Weil bounds under an intuitive expectation of the
dimension of the variety. The greatest e↵ect of such bounds on the lower bound of �(f) would be
to improve the argument of # from A1/2 to A1/m, but they would also improve the constant in the
lower-order term of the bound to log ⇣(m)�P (m) in place of log ⇣(2)�P (2). The main di�culty in
proving these bounds lies in attacking the third sum over a such that some f

ia is identically 0, and
we could restrict our attention to polynomials such that for all a such that this is the case v(f

a

) is
small and improve the lower bound for these; investigation in this direction may be the subject of
future work.
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