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Abstract

We provide a construction for the maximal divided power extension of the spherical
Cherednik algebras for Z/pZ as a family of Z/pZ-invariant differential operators with a
certain invariance condition.
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1 Introduction
Cherednik algebras, also known as double affine Hecke algebras, are a large family of alge-

bras, which were introduced by Cherednik in his work on Macdonald’s conjecture, see [?]. Since
then Cherednik algebras were discovered to be interesting as the object of study by themselves
and in many applications, mainly connected with mathematical physics. A good overview of
the theory of Cherednik algebras is [?].

Until recently these algebras were studied mainly in the zero characteristic, but a few years
ago a theory of Cherednik algebras in positive characteristic started to develop. In [?] some
general structural theory of Cherednik algebras in positive characteristic was investigated, later
in [?] and [?] the Hilbert polynomials of some irreducible finite dimensional representations were
calculated. All of the later research was done in connection with the MIT PRIMES program.

The current paper is a continuation of this research. Our main goal was to develop a theory
of Cherednik algebras for Z/pZ with divided powers in positive characteristic. The main reason
for the study of this construction is the fact that simple reduction of the Cherednik algebra in
positive characteristic, makes the algebra ‘too small’, because a lot of operators become central
and act by zero on important representations. So to make representation theory ’richer’ one
can try to work with the algebra extended by divided powers. To define the maximal divided
power extension even in this case turned out to be an interesting problem. What we were able
to provide is an alternative construction of divided power ring over Z as a family of differential
operators satisfying some invariance conditions.

1.1 Structure of the paper

The structure of the paper is as follows. In the subsection which directly follows this one,
we give some general definitions which we are going to use in the rest of the paper. Section 2
explains what do we actually mean by the divided power extension. Section 3 shows us how
this definition works for the algebra of differential operators in one variable, which will be of
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importance for our further research. Section 4 defines what Cherednik algebra is and gives it’s
alternative definition as a family of operators with invariance condition. Section 5 ties this in
with the calculation of divided power rings and shows that one can use the very same definition
over integers for a spherical algebra to actually get a divided power ring.

1.2 Acknowledgements

I would like to first thank Prof. David Jerison, Prof. Ankur Moitra and Dr. Slava Gerovitch
for organizing the UROP+ program and providing me this opportunity. Also, thanks Prof.
Etingof for [?] and [?], as well as providing the topic of the research. Lastly, I would like to
give huge thanks to my mentor, Daniil Kalinov, who provided me with detailed guidelines and
gave me enormous support throughout the past three months.

1.3 Preliminary definitions

Definition 1.1. For the sake of simplicity, we define [n]q = 1−qn
1−q = 1 + q + · · ·+ qn−1.

2 Divided power rings
Let Z be free as a Z-module. Given a ring AZ over a commutative ring Z, where AZ

free as a Z-module, and VZ , which also free as a Z-module, we have a faithful representation
AZ

φZ−→ EndZ(VZ). Then we let Q := Z ⊗Z Q. We can then define AQ with representation

AQ
φQ−→ EndQ(VQ). The relations are shown in the diagram below.
AZ

ADP EndZ(VZ)

AQ EndQ(VQ)

φZ

φQ

Notice that there is a map from EndZ(VZ) to EndQ(VQ) because HomQ(VQ, VQ) = HomZ(VZ , VQ) =
HomZ(VZ , VZ)⊗Z Q.

Now we can define ADP in the two following ways:

Definition 2.1. ADP = {a ∈ AQ|φ(a) ∈ EndZ(VZ)}

Definition 2.2. ADP = {a⊗ 1
n
|a ∈ AZ , n ∈ N, φ(a)

n
∈ EndZ(VZ)}

2.1 ADP ⊂ BDP

Lemma 2.3. We show that there exists an injective map from ADP to BDP , according to the
diagram below. Here, BZ , BDP and BQ are defined similarly as the definition of AZ , ADP and
AQ.
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AZ BZ

ADP BDP EndZ(VZ)

AQ BQ EndQ(VQ)

Proof. Take p ∈ ADP . Then p ∈ AQ, which means p ∈ BQ. Notice that BDP is defined as the
largest subring of BQ s.t. there exists a map to EndZ(VZ). Since there is a map from ADP to
EndZ(VZ), p ∈ BDP , thus shows ADP ⊂ BDP .

3 Differential Operators on r[x] for any ring r
Let r be any ring. We first introduce the definition of the differential operators on r[x]. We

will define then degree by degree.

3.1 Grothendieck’s Definition of Differential Operators

Definition 3.1. [Grothendieck ] The differential operators of degree k on r[x] can be defined
inductively. We denote the set of degree i differential operators as Diff(r[x])i, for any i ∈ N.
Then we define Diff(r[x])0 = {f |f ∈ r[x]}. For any i ≥ 1, we have Diff(r[x])i = {ϕ ∈
End(r[x])|[ϕ, f ] ∈ Diff(r[x])i−1∀f ∈ r[x]}.

3.2 Generators of Diff(r[x])

Definition 3.2. The set of differential operators is defined by
⋃∞
i=0 Diff(r[x])i, which is denoted

as Diff(r[x]).

Theorem 3.3. We claim that Diff(r[x]) is r[x] ⊕ r[x]D0 ⊕ r[x]D1 · · · ⊕ r[x]Di · · · , where we
define Dix

n =
(
∂i

i!

)
xn =

(
n
i

)
xn−i, D0 = I.

Proof. Notice that Di · xm =
(
m
i

)
xm−i, where

(
m
i

)
∈ Z. Thus, Di is well defined on any ring for

any i ∈ N.
Then, to prove this theorem, we consider the r-module that is defined as the set of all

differential operators of degree i (i.e. Diff(r[x])i). For the sake of simplicity, we name it Diffi.
We will prove that Diffi = r[x] ⊕ r[x]D0 ⊕ r[x]D1 · · · ⊕ r[x]Di. We can approach this by

inducting on i.
First consider the base case: when i = 0, r[x] = r[x].
To prove that this holds for i + 1, we first show that Di+1 ∈ Diffi+1. This implies that

r[x]⊕ r[x]D0 ⊕ r[x]D1 · · · ⊕ r[x]Di+1 ⊂ Diffi+1.

Lemma 3.4. Di+1 ∈ Diffi+1.

Proof. We only need to check that
[Di+1, f ] ∈ Diffi

for all i.
Clearly, it’s equivalent to check that

[Di+1, x
n] ∈ Diffi

for all monomial xn, where n ≥ 0.

4



We induct on n.
Base case: when n = 0, [Di+1, 1] = 0 ∈ Diffi. When n = 1, [Di+1, x] ∈ Diffi.
Then we assume that [Di+1, x

n] ∈ Diffi holds for all n ∈ {0, 1, · · · ,m − 1}. Now consider
[Di+1, x

m].

[Di+1, x
m] =

= Di+1x
m − xmDi+1 =

= Di+1x
m−1x− xxm−1Di+1 =

= Di+1x
m−1x− xm−1Di+1x+ xm−1Di+1x− xm−1xDi+1 =

= [Di+1, x
m−1]x+ xm[Di+1, x]

Since [Di+1, x
m−1] ∈ Diffi, and [Di+1, x] ∈ Diffi,

[Di+1, x
m−1]x+ xm[Di+1, x]

is also in Diffi, which finishes the proof.

Then we show that Diffn ⊂ r[x]⊕ r[x]D0 ⊕ r[x]D1 · · · ⊕ r[x]Dn for all n.
Given that r[x]⊕ r[x]D0 ⊕ r[x]D1 · · · ⊕ r[x]Di, we consider Diffi+1.
We first prove the claim below.

Claim 3.5. For any ϕ ∈ Diffi+1, there exists unique ϕ0 ∈ r[x]⊕r[x]D0⊕r[x]D1 · · ·⊕r[x]Di+1 · · ·
such that ϕ0(1) = ϕ(1), ϕ0(x) = ϕ(x),· · ·ϕ0(x

i+1) = ϕ(xi+1).

Proof. Let’s look ϕ0 in the forms of a0(x)D0 + a1(x)D1 + a2(x)D2 +· · ·+ ai+1(x)Di+1.
Then, we notice that for any i, Di has the following property:

• Di · xi = 1

• Di · xj = 0 for any j < i.

Therefore, it’s easy to see that ϕ0(x
j) = aj(x) +

∑j−1
k=0 ak(x) ·

(
j
k

)
xj−k, and we want this to

equal to ϕ(xj), and thus a0, a1,· · · , ai+1 can be determined uniquely inductively. i.e. a0(x) =
ϕ(1), a1(x) = ϕ(x)− a0(x)x, · · · , aj(x) = ϕ(xj)−

∑j−1
k=0 ak(x) ·

(
j
k

)
xj−k.

Given the existence of ϕ0, we can then let ϕ1 = ϕ−ϕ0. Since we know that ϕ◦f−f◦ϕ ∈ Diffi
for any polynomial f , we have (ϕ1 +ϕ0)◦f −f ◦ (ϕ1 +ϕ0) ∈ Diffi. Thus, ϕ1 ◦f −f ◦ϕ1 ∈ Diffi.

Claim 3.6. Given

• ϕ1 ◦ f − f ◦ ϕ1 ∈ Diffi

• ϕ1(1) = ϕ1(x) = · · · = ϕ1(x
i+1) = 0

It follows that ϕ1 = 0.

Proof. We induct on the power of x. The base case is that ϕ1(1) = ϕ1(x) = · · · = ϕ1(x
i+1) = 0.

Assume that ϕ1(1) = ϕ1(x) = · · · = ϕ1(x
i+m) = 0 for some m ∈ N+, we now consider

ϕ1(x
i+m+1).

We take h = xm+1, Φ = ϕ1 · h− h · ϕ1, V = r[x]|deg≤i+1.
Since we know that ϕ|V = 0, Φ|V = ϕ1 ◦ h|V .
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Thus, we have Φ(xk) = ϕ1 ◦ xm+1(xk) = ϕ1(x
m+1+k), for k ∈ {0, 1,· · · , i + 1}. Since

ϕ1(x
m+1) = ϕ1(x

m+2) = · · · = ϕ1(x
i+m) = 0, Φ(x0) = Φ(x1) = · · · = Φ(xi) = 0. However, since

Φ = ϕ1 ·h−h ·ϕ1, ϕ1 ∈ Diffi+1, Φ ∈ Diffi. Thus, Φ = 0, which means Φ(xi+1) = 0. This implies
that ϕ1(x

m+i+1) = 0. By the induction assumption (Diffi ⊂ r[x]⊕r[x]D0⊕r[x]D1 · · ·⊕r[x]Di),
this completes the proof.

Since ϕ1 = 0, ϕ = ϕ0, which means ϕ ∈ r[x] ⊕ r[x]D0 ⊕ r[x]D1 · · · ⊕ r[x]Di+1, and this
completes the induction.

3.3 Diff(Z[x]) = (Z[∂, x])DP

Theorem 3.7. Diff(Z[x]) = (Z[∂, x])DP

Proof. We first show that (Z[∂, x])DP ⊂ Diff(Z[x]).
Take a differential operator p ∈ (Z[∂, x])DP . We can group p into a sum of homogeneous

differential operators (i.e. each term in the differential operator has a degree), say p =
∑
pk,

where pk is degree k. We can then write pk =
∑∞

i=min(k,0) αix
k+i∂i. We now want to show that

for any homogeneous operators pk, n|αii! for all i.
We consider two different cases, k ≥ 0 and k < 0.
We prove the two cases respectively by inducting on i. We first prove the case when k ≥ 0.
Base case: Notice that pk(x0) = α0x

k, thus n|pk(x0)⇒ n|α0 · 0!
Inductive step: Assume that n|αi · i! for i ∈ {0, 1, · · · ,m− 1}. We now want to show that

n|αm ·m!.
Consider p(xm).

pk(x
m) =

=
∞∑

i=min(k,0)

αix
k+i∂i(xm) =

=
m∑
i=0

αix
k+i∂i(xm) =

=
m−1∑
i=0

αix
k+i∂ixm + αmx

k+m∂mxm =

=
m−1∑
i=0

αix
k+i∂ixm + αm ·m! · xk+m

Since n|αi · i! for i ∈ {0, 1, · · · ,m − 1}, n|
∑m−1

i=0 αix
k+i∂ixm, so n|αm · m! · xk+m, which

finishes the induction.
We then prove the case when k < 0.
Base case: Consider pk(xk).

pk(x
k) =

=
∞∑
i=k

αix
k+i∂i(xk) =

= αkx
0k! =

= αkk!
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Thus n|α−k(−k)!.
Inductive step: we assume that n|αii! for i ∈ {k, k+1, · · · ,m−1}, and now consider pk(xm).

pk(x
m) =

=
∞∑

i=min(k,0)

αix
k+i∂i(xm) =

=
m∑
i=k

αix
k+i∂i(xm) =

=
m−1∑
i=k

αix
k+i∂ixm + αmx

k+m∂mxm =

=
m−1∑
i=k

αix
k+i∂ixm + αm ·m! · xk+m

Similarly, since n|αi · i! for i ∈ {k, 1, · · · ,m− 1}, n|
∑m−1

i=k αix
k+i∂ixm, so n|αm ·m! · xk+m,

which finishes the induction.
Therefore, we know that p

n
=
∑

αii!
n
Di, which belongs to Diff(Z[x]). Thus, we proved that

(Z[∂, x])DP ⊂ Diff(Z[x]).
Also, we know that Diff(Z[x]) ⊂ Q[∂, x] there exists a map from Diff(Z[x]) to End(Z[x]).

According to the definition of (Z[∂, x])DP , it’s the largest subring of Q[∂, x] s.t. there exists a
map to End(Z[x]).

Thus, we showed that Diff(Z[x]) = (Z[∂, x])DP.

4 Cherednik Algebra

4.1 Background information

Let b be an integer. Let G = Z/bZ. G is a group that generated by s, with a single relation
sb = I. Let q = e

2πi
b . k = Q[q], and let Q = k[c], where c is a formal variable.

Definition 4.1. We define HQ
c,p as following: HQ

c,p = Q〈x, y, s〉\{[y, x] = 1 − 2cs, sys−1 =
q−1y, sxs−1 = qx}, where [, ] is the commutator, 〈, 〉 is the freely generated algebra on x, y, s.

Definition 4.2. Define DiffQ
p = Q[x, x−1, ∂]oQ[G] = Q[x, x−1, ∂]∗Q[G]\{sxs−1 = s(x), s∂s−1 =

s(∂)}, where o is the semidirect product, ∗ is the free product and \ is the quotient.

Now, let’s consider a natural representation of those algebras. Indeed, DiffQ
p acts on

Q[x, x−1], where s(xi) = qixi, for i ∈ Z.
We can also define an action of HQ

c,p on Q[x, x−1].
We define D = ∂x − 2c(1−s)

(1−q)x . Now we define the structure of a representation of HQ
c,p on

Q[x, x−1] as following:

HQ
c,p → Endk(Q[x, x−1])

y 7→ D

x 7→ x

s 7→ s
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Notice that this can be restricted on Q[x] because if i > 0, then deg(D(xi)) = i−1; if i = 0,
then D(1) = 0.

We now want to consider a family of twisted action of DiffQ
p on Q[x, x−1]. Instead, it’s easier

to define them using action of DiffQ
p on xl|x|nQ[x, x−1], where we can understand the symbol

as following:

∂(xl+i|x|n) = (l + i+ n)xl+i+1|x|n (4.1)
s(xl+i|x|n) = ql+ixl+i|x|n (4.2)

Claim 4.3. xl|x|nQ[x, x−1] has a submodule xl|x|nQ[x] if and only if n = 2c
1−q (1− q

l)− l.

Proof. xl|x|nQ[x, x−1] has a HQ
c,p if and only if D(xl|x|n) = 0.

⇔ (xl|x|n)′ − 2c

(1− q)x
(1− s)(xl|x|n) = 0 (4.3)

⇔ (lxl−1|x|n + nxl|x|n−1 · |x|
x

)− 2c

(1− q)x
(1− s)(xl|x|n) = 0 (4.4)

Notice that
s(xl|x|n) = qlxl|q|n|x|n = qlxl|x|n

thus, (3.4)

⇔ (l + n)− 2c

1− q
(1− ql) = 0

⇔ n =
2c

1− q
(1− ql)− l

.

Since qp = 1, it is enough to consider l ∈ {0, 1,· · · , p− 1}.

4.2 HQ
c,p = HQ

c,p

Definition 4.4. For l ∈ {0, 1,· · · , p − 1}, we define kl = 2c[l]q − 2, Vl = xl|x|klQ[x, x−1],
Ul = xl|x|klQ[x].

Then we define HQ
c,p as following:

Definition 4.5. HQ
c,p = {p ∈ DiffQ

p |pUl ⊂ Ul, l = {0, 1,· · · , p− 1}}

Then, follow from Claim 3.3, HQ
c,p ⊂ HQ

c,p.

Theorem 4.6. HQ
c,p = HQ

c,p.

Proof. We would like to show HQ
c,p ⊂ HQ

c,p.

Definition 4.7. We define the degree of differential operators ∈ DiffQ
p as following:

deg(x) = 1, deg(∂) = −1, deg(s) = 0

.
Then deg(xp∂qsh) = p− q = z.
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Notice that this definition of degree can be restricted to HQ
c,p and HQ

c,p, because the degree
of D is −1.

Then we define the ordering of differential operators as following (as a lexicographical order):

xi < sxi < · · · < sp−1xi < ∂xi−1 < s∂xi−1 < · · ·

, for any j, i ∈ N∗.

Next we take x ∈ (HQ
c,p)i. We want to find x ∈ HQ

c,p s.t. x− x = 0.

Lemma 4.8. Let W be a vector space with infinite basis f1 < f2 < · · · < fi < · · · , and let
V be a vector space with infinity basis e1 < e2 < · · · < ei < · · · . If fi can be expressed as
ciei +

∑∞
i+1 cjej, then W = V .

Proof. Since fi = ciei +
∑∞

i+1 cjej, fi = Ti,kek for some upper-triangular matrix Ti,j. Since the
upper-triangular matrix is invertible, ek = fk

ck
+
∑∞

k+1 c
′
jfj, for some constant c′j. Thus, for any

i, ei can be expressed as a linear combination of basis of W , and for any i, fi can be expressed
as a linear combination of V . Thus W = V .

Lemma 4.9. for i ∈ N∗, (HQ
c,p)i = (DiffQ

p )i.

Proof. By definition, (HQ
c,p)i ⊂ (DiffQ

p )i.
We want to show that (DiffQ

p )i ⊂ (HQ
c,p)i. Take p ∈ (DiffQ

p )i. Notice that pxn|x|l = Axl+n|x|l
for some constant A. Because Uj is closed under multiplication by x, pUj ⊂ Uj. Therefore,
(DiffQ

p )i = (HQ
c,p)i when i is positive.

Claim 4.10. The highest term in Dnspxh is ∂nspxh, according to the order we defined above.

Proof. We prove the claim by inducting on the power of D.
Base case: when n = 0, Dnspxh = spxh, which has highest term spxh.
Inductive step: Assume that for n ∈ {0, 1, · · · , n′ − 1}, Dnspxh has highest term ∂nspxh.

We now consider Dn′spxh.

Dn′spxh =

= D(Dn′−1spxh) =

= (∂ − 2c(1− s)
(1− q)x

)(Dn′−1spxh) =

= (∂ − 2c(1− s)
(1− q)x

)(∂n
′−1spxh + · · · ) =

= ∂∂n
′−1spxh − 2c(1− s)

(1− q)x
∂n
′−1spxh + · · ·

= ∂n
′
spxh − 2c

1− q
x−1∂n

′−1spxh +
2c

1− q
∂n
′−1sp+1xh + · · ·

Notice that after commuting x−1 and ∂n′−1, the additional terms have lower powers on x,
and thus cannot become the highest term. In addition, 2c

1−q∂
n′−1spxh−1 and 2c

1−q∂
n′−1sp+1xh both

have lower degrees than ∂n′spxh, so ∂n′spxh is the highest term, which completes the induction.
Therefore we can see that Dnspxh has highest term ∂nspxh for any n, p, h.
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Therefore, Dqspxh can be expressed as ∂qspxh+ lower terms. Let W = HQ
c,p and let V =

DiffQ
p . We can then apply lemma 3.8, which proves DiffQ

p = HQ
c,p.

Then we consider the case when degree i is negative. Take p ∈ (HQ
c,p)i, where i is a negative

integer.

Claim 4.11. p = D′ +
∑−i−1

k=0 Ak(s)x
k+i∂k, where D′ ∈ (HQ

c,p)i.

Proof. Since p is a differential operator, p = Asmxj+i∂j + lower terms, for some constant A, k,
j.

Notice that when (j + i) < 0, the claim obviously holds. Thus we only need to consider
when (j + i) ≥ 0.

Notice that

Asmxj+i∂j − Asmxj+iDj =

= Asmxj+i∂j − Asmxj+i(∂ − 2c(1− s)
(1− q)x

)j =

= Bsm+1xj+i−1∂j−1 + · · · (4.5)

where Bsm+1xj+i−1∂j−1 (for some constant B) is the highest term in equation 4.5, and thus
the degree of x is guaranteed to decrease at least by 1 by the above operation.

Since the power of x is finite, we can repeat the above operation until the power of x
becomes negative. Also, notice that Asmxj+iDj ∈ HQ

c,pi
for any m and j, so we know that

p = D′ +
∑−i−1

k=0 Ak(s)x
k+i∂k, where D′ ∈ (HQ

c,p)i.

Now we denote Q = p−D′.

Lemma 4.12. Q = 0.

Proof. To prove this lemma, we first show the following equivalence.

Lemma 4.13. To prove that Q =
∑−i−1

k=0 Ak(s)x
k+i∂k is zero is equivalent to∣∣∣∣∣∣∣∣∣∣∣∣

1 m1 m1(m1 + 1) · · ·
∏−i−2

g=0 (m1 + g)

1 m2 − 1 (m2 − 1)m2 · · ·
∏−i−2

g=0 (m2 + g − 1)

1 m3 − 2 (m3 − 2)(m3 − 1) · · ·
∏−i−2

g=0 (m3 + g − 2)
...

...
...

...
1 m−i + i− 1 (m−i + i− 1)(m−i + i) · · ·

∏−i−2
g=0 (m−i + g + i− 1)

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0

Here, the matrix has (−i) columns and (−i) rows with the term on the rth row and sth column
be
∏s−2

g=0(mr + g − (r − 1)), where mh = 2c[h+ l]q for any h.

Proof. We begin the proof with a claim.

Claim 4.14. (A(s) · xb∂a)(xc|x|d) =
∏a−1

h=0(c + d − h)A(qc+b−a)xc+b−a|x|d, where A(s) is a
polynomial of s, and a, b, c, d are integers.

Proof. We first show that ∂a(xc|x|d) =
∏a−1

h=0(c+ d− h)xc−a|x|d.
We prove by inducting on a.
Base case: when a = 1,

∂(xc|x|d)

= cxc−1|x|d + dxc|x|d−1 |x|
x

= (c+ d)xc−1|x|d

10



Inductive step: Assume ∂a(xc|x|d) =
∏a−1

h=0(c + d − h)xc−a|x|d for a ∈ {1, 2, · · · , a′ − 1}.
Consider a′.

∂a
′
(xc|x|d)

= ∂∂a
′−1(xc|x|d)

= ∂

a′−2∏
h=0

(c+ d− h)xc−a
′+1|x|d

=
a′−2∏
h=0

(c+ d− h)∂(xc−a
′+1|x|d)

=
a′−1∏
h=0

(c+ d− h)(xc−a
′ |x|d)

Which finishes the induction.

Given that, we can continue the proof of lemma 3.11. Let nl = xl|x|2c[l]q−l, for l =
{0, 1, · · · , p− 1} Consider the operator Q operating on nlxn for some integer n. Then

(
−i−1∑
k=0

Ak(s)x
k+i∂k)(nlx

n)

= (
−i−1∑
k=0

Ak(s)x
k+i∂k)(xl|x|2c[l]q−lxn)

= (
−i−1∑
k=0

Ak(s)x
k+i∂k)(xn+l|x|2c[l]q−l)

=
−i−1∑
k=0

k+i−1∏
h=0

(n+ l + (2c[l]q − l)− h)Ak(q
n+l+k−(k+i))xn+l+k−(k+i)|x|n

=
−i−1∑
k=0

k+i−1∏
h=0

(n+ 2c[l]q − h)Ak(q
n+l−i)xn+l−i|x|n

= 0

if and only if

−i−1∑
k=0

k+i−1∏
h=0

(n+ 2c[l]q − h)Ak(q
n+l−i) = 0 (4.6)

for n ∈ {0, 1, · · · ,−i− 1}. Equation 3.4 holds if and only if

−i−1∑
k=0

k+i−1∏
h=0

(n+ 2c[l − n+ i]q − h)Ak(q
l) = 0 (4.7)

for n ∈ {0, 1, · · · ,−i− 1}.
Notice that the set of linear equations in 3.5 has a non-trivial solution if and only if the

corresponding matrix M doesn’t ahve determinant 0, where M is
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
1 m1 m1(m1 + 1) · · ·

∏−i−2
g=0 (m1 + g)

1 m2 − 1 (m2 − 1)m2 · · ·
∏−i−2

g=0 (m2 + g − 1)

1 m3 − 2 (m3 − 2)(m3 − 1) · · ·
∏−i−2

g=0 (m3 + g − 2)
...

...
...

...
1 m−i + i− 1 (m−i + i− 1)(m−i + i) · · ·

∏−i−2
g=0 (m−i + g + i− 1)


, and this finishes the proof of Lemma 3.11.

Then we back to the proof of Lemma 3.10.
Applying lemma 3.11, we only need to show that the matrix has determinant non-zero.
Let matrix Mc = M |c. i.e.

Mc =


1 0 0 · · · 0
1 −1 0 · · · 0
1 −2 (−2)(−1) · · · 0
...

...
...

...
...

1 i− 1 (i− 1)(i) · · ·
∏−i+1

g=0 (i− 1 + g)


Then it’s easy to see that Mc is an upper-triangular matrix, and thus, the determinant is
the product of all terms on the diagonal. Since each term on the diagonal is non-zero, the
determinant of Mc is also non-zero, thus the determinant of M is non-zero, which means
Q = 0. This finishes the proof of Lemma 3.10.

We can then back to the proof of Theorem 3.6. Since we know that Q = 0, we have
p = D′. Since D′ ∈ (HQ

c,p)i, p ∈ (HQ
c,p)i, and thus we proved that for all negative degrees i,

(HQ
c,p)i = (HQ

c,p)i. Therefore, HQ
c,p = HQ

c,p, which finishes the proof of the theorem.

5 BZ
c,p = (BZ

c,p)
DP

Define e = 1+s+···+sp−1

p
. Then let BQ

c,p = eHQ
c,p e. By theorem 4.6, BQ

c,p = eBQ
c,p e

We now define BQ
c,p in a way similar to HQ

c,p (under invariance). Take p ∈ HQ
c,p. Then epe ∈

BQ
c,p, which means epe ∈ Q[x, x−1, ∂]Z/pZ = (DiffQ

c )Z/pZ. Consider epe acts on Ul. Specifically,
we consider epe acts on xm( x

|x|)
l|x|2c[l]q for some m. Notice that epexm( x

|x|)
l|x|2c[l]q = 0 when

p - m + l, and epexm( x
|x|)

l|x|2c[l]q = xm( x
|x|)

l|x|2c[l]q when p|m + l. Thus, we can define U inv
l as

following: U inv
l = |x|nl+p−pδ0,lQ[xp].

Then we define BQ
c,p = {p ∈ (DiffQ

c )Z/pZ |pU inv
l ⊂ U inv

l }.
We define BZ

c,p and BZ
c,p similarly.

BZ
c,p BZ

c,p (DiffZ
c )Z/pZ DiffZ

c EndZ[c][q](Z[c][q][x, x−1])

(BZ
c,p)DP (BZ

c,p)DP ((DiffZ
c )Z/pZ)DP (DiffZ

c )DP

BQ
c,p BQ

c,p (DiffQ
c )Z/pZ DiffQ

c EndQ[c][q] Q[c][q][x, x−1]

Claim 5.1. eDiffQ
c,p e = (DiffQ

c )Z/pZ

Remark 5.2. The proof is contained in [?].
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Proposition 5.3. BQ
c,p = BQ

c,p

Proof. We first prove that BQ
c,p ⊂ BQ

c,p. Take p ∈ HQ
c,p. Since eU inv

l = U inv
l , epeU inv

l = epU inv
l .

Also, U inv
l is invariant under p, so we know that epeU inv

l = U inv
l . Thus by definition of BQ

c,p,
BQ

c,p ⊂ BQ
c,p.

We then show that BQ
c,p ⊂ BQ

c,p. Take T ∈ BQ
c,p. Then T = epe, for some p ∈ DiffQ

c,p. Consider
epe acts on Ul. Notice that epeUl = U inv

l ⊂ Ul, thus epe ∈ HQ
c,p = HQ

c,p, so T ∈ BQ
c,p.

Claim 5.4. (DiffZ
c )Z/pZ = ((DiffZ

c )Z/pZ)DP

Proof. By section 2, we know that DiffZ
c = (DiffZ

c )DP .
By definition, (DiffZ

c )Z/pZ ⊂ ((DiffZ
c )Z/pZ)DP . Thus we only need to show that ((DiffZ

c )Z/pZ)DP ⊂
(DiffZ

c )Z/pZ.
Take p ∈ ((DiffZ

c )Z/pZ)DP . Since it’s in (DiffZ
c )DP , it’s also in DiffZ

c . Since it’s invariant
under DiffZ

c , p ∈ (DiffZ
c )Z/pZ, which means that ((DiffZ

c )Z/pZ)DP ⊂ (DiffZ
c )Z/pZ, so we know

((DiffZ
c )Z/pZ)DP = (DiffZ

c )Z/pZ.

Claim 5.5. BZ
c,p = (BZ

c,p)DP

Proof. By definition, we know that BZ
c,p ⊂ (BZ

c,p)DP . Now we want to show (BZ
c,p)DP ⊂

BZ
c,p. Take p ∈ (BZ

c,p)DP . By definition of (BZ
c,p)DP , p ∈ (BZ

c,p)DP is equivalent to (p ∈
((DiffZ

c )Z/pZ)DP ) ∧ (pU inv
l ⊂ U inv

l ). By claim 5.3, it’s equivalent to p ∈ (DiffZ
c )Z/pZ ∧(pU inv

l ⊂
U inv
l ), which means p ∈ BZ

c,p.
This proves that BZ

c,p = (BZ
c,p)DP .

Claim 5.6. (BZ
c,p)DP = BZ

c,p.

Proof. Since BQ
c,p = BQ

c,p, (BZ
c,p)DP = (BZ

c,p)DP . Also, we proved that BZ
c,p = (BZ

c,p)DP , so it
follows that BZ

c,p = (BQ
c,p)DP .
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