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Abstract

We give an algorithm for computing the mod 2 prismatic cohomology H•
∆/2(BSpin(n)) of

the classifying stack of the spin group Spin(n) for any n via the spectral sequence associated
with the short exact sequence 1→ µ2 → Spin(n)→ SO(n)→ 1. We explicitly describe the
result of the computation for n ≤ 13 and give a precise conjecture telling what happens for
general n. If true it gives an exact formula for the discrepancy between the dimensions of
the de Rham and the singular F2-cohomology, extending the work [Tot17] of Totaro, where
he was able to show that

dimF2 H
32
dR(BSpin(11)/F2) > dimF2 H

32
sing(BSpin(11)(C),F2).



1 Introduction

Given a smooth algebraic variety X over C, a classical result of Grothendieck identifies the
singular cohomology H•sing(X(C),C) of the topological space X(C) with the algebraic de Rham
cohomology H•dR(X/C) of X. This gives a description of H•sing(X(C),C) in purely algebraic
terms.

If one wants to replace coefficients in C with some torsion group Fp, there is also an algebraic
description using the étale cohomology of X. Namely, Artin’s comparison theorem identifies
H•sing(X(C),Fp) with the étale cohomology H•et(X,Fp).

However, if X has a model over Z which is smooth at p, there is another de Rham style cohomology
theory which takes values in Fp-vector spaces. Namely, we can consider the reduction XFp and
take its de Rham cohomology H•dR(XFp/Fp). The natural question then is how this compares
with H•sing(X(C),Fp).

For X/Zp proper this question is naturally put into the framework of the integral p-adic
Hodge theory developed in great detail in [BMS16] and [BS19] by Bhatt-Morrow-Scholze and
Bhatt-Scholze correspondingly. Namely there exists the mod-p prismatic cohomology theory
H•∆/p(X) (or rather a complex RΓ∆/p(X)) over the mod p Kisin ring S/p ' Fp[[T ]] which
exactly interpolates between the two cohomology theories above: the étale Fp-cohomology of
(the generic fiber of) X roughly appear as the generic fiber of RΓ∆/p(X) over SpecFp[[T ]] and
it specializes to the de Rham cohomology RΓdR(XFp/Fp) after taking (the derived) quotient
modulo T . In particular,

dimFp H
i
dR(X/Fp) ≥ dimFp H

i(X(C),Fp)

for all i, and for a given i, the dimensions of H i
dR(XFp/Fp) and H i

sing(X(C),Fp) coincide if and

only if there is no T -torsion both in H i
∆/p(X) and H i+1

∆/p(X).

In [Tot17] Totaro studied the analogous question for the classifying stack BG of a split reductive
group G. In particular, (Theorem 10.2 in [Tot17]) for a given G he showed that

dimFp H
i
dR(BG/Fp) = dimFp H

i
sing(BG(C),Fp)

outside of some (in fact very small) set of primes that depends only on the root data of G. He
also showed that the equality does not hold in general, for example

dimF2 H
32
dR(BSpin(11)/F2) > dimF2 H

32
sing(BSpin(11)(C),F2).

The idea of this paper is to apply the integral p-adic Hodge theory to understand the reason
behind this discrepancy and get an understanding of its size. However, at least from the first
glance, the prismatic cohomology theory is badly suited to establish such inequality, since the
stack BG is not proper. In particular, having an arbitrary Artin stack Y over Zp, a priory
there is no clear reason why the natural (Kan) extension of the prismatic cohomology to Y
should give a deformation between algebraic de Rham and algebraic étale cohomology, though it
indeed gives one if you take the étale cohomology of the Raynaud generic fiber instead. One of
the main results of [KP] is that for BG with G reductive these two étale cohomology theories
in fact coincide. Thus prismatic cohomology can be used to study the discrepancy between
dimFp H

i
dR(BG/Fp) and dimFp H

i
sing(BG(C),Fp).
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1.1 Results of the paper and the idea behind the proof

In this paper we describe an algorithm of computing the mod 2 prismatic cohomologyH•∆/2(BSpin(n))

of the classifying stack of the spin group Spin(n). We explicitly describe the result of the compu-
tation for n ≤ 13 and give a conjecture for what we expect to happen for a general n. Assuming
the conjecture one also gets the answer for all dimensions of the de Rham cohomology of
BSpin(n). In fact this leaves only one option for the algebra structure on it as well but it is not
immediate and we won’t discuss this here.

Generally, the idea is to adapt the computation of H•sing(BSpin(n),F2) done by Quillen in [Qui71]
to the case of the prismatic cohomology. Namely Spin(n) fits into a short exact sequence

1→ µ2 → Spin(n)→ SO(n)→ 1

and there is the associated spectral sequence

Ep,q2 = H•∆/2(Bµ2)⊗H•∆/2(BSO(n))⇒ H•∆/2(BSpin(n)).

Now the key observation is that the Totaro’s computation of the de Rham cohomology of BSO(n)
over F2 (Theorem 12.1 of [Tot17]) implies that H•∆/2(BSO(n)) is a polynomial ring over S/2
with generators in degree 2, 3, . . . , n. Moreover, restricting to a maximal elementary 2-subgroup
Γ ⊂ SO(n) it is possible to describe H•∆/2(BSO(n)) as a Breuil-Kisin module: namely it is a
sum of Breuil-Kisin twists and one can explicitly say what the weights of the generators are.
H•∆/2(Bµ2) can also be computed explicitely and it turns out to be a sum of Breuil-Kisin twists
as well. Differentials in the spectral sequence should be maps in the category of Breuil-Kisin
modules. Luckily, between the twists there are not that many (Lemma 3.4):

Hom(S/2{−i},S/2{−j}) =

{
F2, i ≥ j
0, otherwise.

There is a unique non-zero map and moreover it is enough to check that whether it is equal to
zero or not after inverting T . From this it roughly follows that all maps in the spectral sequence
are uniquely defined by the analogous spectral sequence in the singular cohomology. This in
turn was completely described by Quillen in [Qui71].

More precisely, Quillen has shown that, applying the spectral sequence, H•sing(BSpin(n),F2) is
obtained from H•sing(BSO(n),F2) as follows. Let f1, f2, . . . , fh ∈ H•sing(BSO(n),F2) be defined

by f1 := w2 and fi = Sq2i−2
fi−1 where w2 is the second Stiefel-Whitney class and Sqi denotes the

i-th Steenrod square. Then Quillen proved that the sequence f1, f2, . . . , fh ∈ H•sing(BSO(n),F2)
is regular and

H•sing(BSpin(n),F2) ' H•sing(BSO(n),F2)/(f1, . . . , fh)⊗ F2[z2h ]

where z2h is a certain element of degree 2h and h is roughly n/2 but the precise value depends
on n modulo 8. The values for h are listed in Table 1, taken from [Qui71].

We expect there to be a similar formula for the mod 2 prismatic cohomology. Namely, let
u2 := w∆

2 ∈ H2
∆/2(BSO(n)) be the second prismatic Stiefel-Whitney class (see Definition 4.4).

Let f̃1, f̃2, . . . , f̃h ∈ H•∆/2(BSO(n)) be the sequence given by f̃1 = u2 and f̃i = Sq2i−2
f̃i−1. Note

that deg f̃i = 2i−1 + 1. We reduce everything to the following

Conjecture 1.1. The sequence f̃1, f̃2, . . . , f̃h−1, T ∈ H•∆/2(BSO(n)) is regular.
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n type h

8l + 1 R 4l + 0

8l + 2 C 4l + 1

8l + 3 H 4l + 2

8l + 4 H 4l + 2

8l + 5 H 4l + 3

8l + 6 C 4l + 3

8l + 7 R 4l + 3

8l + 8 R 4l + 3

Table 1: Value of h for each residue of n (mod 8)

Theorem 1.2. Assume Conjecture 1.1. Then f̃1, f̃2, . . . , f̃h ∈ H•∆/2(BSO(n)) is a regular
sequence and

H•∆/2(BSpin(n)) ' H•∆/2(BSO(n))/(f̃1, . . . , f̃h)⊗S/2 S/2[z̃2h ]

where deg(z̃2h) = 2h and wt(z̃2h) = 2h−1

Moreover, we have a conjecture describing the T -torsion:

Conjecture 1.3. Assume Conjecture 1.1. Then

• If n 6= 3, 4, 5 mod 8, H•∆/2(BSpin(n)) is T -torsion free. In particular, in this case

dimH i
dR(BSpin(n)/F2) = dimH i

sing(BSpin(n)(C),F2)

for all i.

• If n = 3, 4, 5 mod 8, the T -torsion in H•∆/2(BSpin(n)) (as a graded S/2-module) is

isomorphic to H•∆/2(BSO(n))/(f̃1, . . . , f̃h−1, T )[−2h−1 − 1]. In particular

dimH i
dR(BSpin(n)/F2) = dimH i

sing(BSpin(n)(C),F2)

for i < 2h−1 and for general i the dicrepancy is given explicitly by the value of the
Hilbert function for H•∆/2(BSO(n))/(f̃1, . . . , f̃h−1, T ) (shifted by −2h−1 − 1), which is a
quasi-polynomial of degree n− h, see Section 10

Note that if true the T -torsion is quite huge, but it is elementary (every element killed by Tn

for some n is in fact killed by T ) and this we can prove in general.

We show that the Conjectures 1.1 and 1.3 are true for n ≤ 13 by an explicit computation. We
also have some promising ideas about how to prove them in general by considering the restriction
to a maximal elementary 2-subgroup Γ ⊂ SO(n), which we plan to turn into a rigorous proof
very soon.
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2 Notation and conventions

Starting from now on we put the prime p to be equal to 2. S/2 ∼= F2[[T ]] will denote the mod 2
Breuil-Kisin ring. Let S/2{n} be the n-th Breuil-Kisin twist mod 2: the twisted Frobenius action
is ϕ = T−n Fr where Fr is the regular Frobenius on F2[[T ]]. The mod 2 prismatic cohomology
complex of an object X will be denoted by RΓ∆/2(X) with individual cohomology denoted by
H i

∆/2(X). (S/2)−Mod will denote the ∞-category of (complexes of) modules over S/2.

3 Overview of the (mod 2) prismatic cohomology

Let C2 := Q̂2 be the completion of the algebraic closure of Q2 and let OC2 ⊂ C2 be the ring of
integers. Following Fontaine we define the tilt

O[C2
:= lim

Fr
OC2/2

This is naturally a topological ring via the discrete topology on OC2/2. Note that it is a ring of
characteristic 2. As a multiplicative monoid O[C2

can also be identified with the limit

O[C2
= lim

x 7→x2
OC2

Let’s fix a sequence 2, 2
1
2 , 2

1
4 , . . . of 2n-th roots of 2, then this gives an element (2, 2

1
2 , 2

1
4 , . . .)

in limx 7→x2 OC2 ' O[C2
which we denote by 2[. If we localise at 2[ then we get C[2 := OC[

2
[ 1
2[

],

which is the fraction field of O[C2
.

We have a map S/2 ' F2[[T ]]→ O[C2
sending T to (2[)2. Under this map C[2 is identified with

F̂2((T )), the completion of the algebraic closure of the Laurent series F2((T )).

Theorem 3.1 ([BS19], [KP]). Let Y be a smooth Artin stack over Z2. Then there exists an
E∞-algebra RΓ∆/2(Y) in (S/2)−Mod and a Frobenius-linear endomorphism φ : RΓ∆/2(Y)→
RΓ∆/2(Y) such that

• RΓ∆/2(Y)⊗L
S/2 S/(2, T ) ' RΓdR(Y/F2);

• RΓ∆/2(Y)⊗L
S/2 C

[
2 ' RΓet(ŶC2 ,F2)⊗F2 C[2 and RΓet(ŶC2 ,F2) ' (RΓ∆/2(Y)⊗L

S/2 C
[
2)
φ=1

Here RΓdR(Y/F2) denotes the de Rham cohomology of the reduction of Y modulo 2 and
RΓet(ŶC2 ,F2) denotes the F2-étale cohomology of the Raynaud (geometric) generic fiber of Y . A
priory it is not clear whether RΓet(ŶC2 ,F2) gives anything reasonable. However, if Y = BG with
G reductive this can be identified with the singular cohomology of its complex points:

Theorem 3.2 ([KP]). Let G be a split reductive group and let BG be its classifying stack. Let
G(C) be the topological space of its complex points and let BG(C) be its classifying space. Then

RΓet(B̂GC2 ,F2) ' RΓsing(BG(C),F2)
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We will be primarily interested in the case G = Spin(n).

Under some cohomological properness assumption (satisfied by BG) each cohomology H i
∆/2(Y)

carries a structure of a (2-torsion) Breuil-Kisin module: namely H i
∆/2(Y) are finitely generated

over S/2 and there is a Frobenius-linear endomorphism φ : H i
∆/2(Y)→ H i

∆/2(Y) which becomes
an isomorphism after inverting T . All Breuil-Kisin modules which we will meet in this paper
will be Breuil-Kisin twists.

Definition 3.3. The (−n)-th (mod 2) Breuil-Kisin twist S/2{−n} has

• S/2 as an underlying S/2-module;

• Tn Fr as φ, where Fr : S/2→ S/2 is the standard Frobenius.

All Breuil-Kisin modules that we will meet will be Breuil-Kisin twists.
Lemma 3.4.

Hom(S/2{−i},S/2{−j}) =

{
F2, i ≥ j
0, otherwise.

Proof. Recall that Hom(S/2{−i},S/2{−j}) = Hom(S/2,S/2{i− j}) so it is enough to prove
it for this special case. We will prove:

Hom(S/2,S/2{−k}) =

{
F2, k ≤ 0

0, otherwise.

To give f : S/2 → S/2{−k}, it is enough to define f(1) by Frobenius-linearity. Let f(1) =
P (T ) =

∑
i≥0 aiT

i. We must have

f(ϕ(1)) = f(1) = P (T ) = ϕ(f(1)) =
∑
i≥0

aiT
2i+k. (1)

As such, we have the relation ai = a(i−k)/2. Suppose k > 0, P (T ) 6= 0. Let d = mini ai 6= 0.
Then the minimum degree on the left hand side of Equation (1) is d while the minimum on the
right hand side is 2d+ k > d. Thus P (T ) = 0.

Suppose k ≤ 0. As above, we have the relation

ai = a(i−k)/2 = a((i−k)/2−k)/2 = . . .

which gives ai = a(i+k)/2n−k for every n. If i 6= −k, then there exists n large so that (i+k)/2n−k /∈
Z, which forces ai = 0. It follows that only a−k is allowed to be nonzero and if it is, it is necessarilly
equal to 1 (since F2 = {0, 1}).

Remark 3.5. Let i ≥ j. The unique non-zero map f : S/2{−i} → S/2{−j} is given by
multiplication by T i−j .

We will also need the following lemma:

Lemma 3.6. Let v be the generator of S/2{−n} such that φ(v) = Tn · v. Then φ-invariants in
S/2{−n} ⊗S/2 C[2 are given by T−n · v and 0.

Proof. Indeed, since S/2{−n} ⊗S/2 C[2 ' C[2 as vector spaces over C[2 and at the same moment

S/2{−n} ⊗S/2 C[2 ' (S/2{−n} ⊗S/2 C[2)φ=1 ⊗F2 C[2 by Theorem 3.1 we get that

dimF2(S/2{−n} ⊗S/2 C[2)φ=1 = 1.
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On the other hand
φ(T−n · v) = T−2n · φ(v) = T−n · v,

so T−n · v is a non-zero invariant vector and consequently

(S/2{−n} ⊗S/2 C[2)φ=1 = F2 · (T−n · v)

.

Corollary 3.7. Let Y be such that H•∆/2(Y) is a sum of Breuil-Kisin twists. Then C[2 in

Theorem 3.1 can be replaced by F2((T )). Namely RΓ∆/2(Y)[ 1
T ] ' RΓet(ŶC2 ,F2)⊗F2 F2((T )) and

RΓet(ŶC2 ,F2) ' (RΓ∆/2(Y)[ 1
T ])

φ=1
.

Definition 3.8. If S/2 · v ⊂ H i
∆/2(Y) forms a Breuil-Kisin submodule isomorphic to S/2{−n}

for some n we say that v ∈ H i
∆/2(Y) has weight n.

4 Prismatic cohomology of BSO(n)

Theorem 4.1. H•∆/2(BSO(n)) ∼= (S/2)[u2, . . . , un] where ui is in degree i.

Proof. For any reductive group G, each cohomology group H i
∆/2(BG) is finitely generated

over S/2 (see [KP]). From [Tot17], we know that H•dR(BSO(n)) is a polynomial algebra with
generators of degree 2, 3, . . . , n, and the same is true for H•sing(BSO(n)(C),F2).

By Theorem 3.1 of prismatic cohomology, we have a quasi-isomorphism

RΓdR(BSO(n)/F2) ∼= RΓ∆/2(BSO(n))⊗L
F2[[T ]] (F2[[T ]]/T ).

This gives rise to a long exact sequence

. . .→ H i
dR(BSO(n)/F2)→ H i+1

∆/2(BSO(n))
·T−→ H i+1

∆/2(BSO(n))→ H i+1
dR (BSO(n)/F2)→ · · · .

By the structure theorem for modules over a PID, if M is finitely generated over F2[[T ]], we
have an isomorphism

M ∼= (F2[[T ]])r
k⊕
i=1

F2[[T ]]/Tni .

Define

ri := dimF2((T ))H
i
∆/2(BSO(n))⊗ F2((T )) = dimF2 H

i
sing(BSO(n)(C),F2)

ti := dimF2 H
i
∆/2(BSO(n))[T − tors]

di := dimF2 H
i
∆/2(BSO(n)/ T ·H i

∆/2(BSO(n)).

Also let ki be k in the formula above for M = H i
∆/2(BSO(n)). Then ti = ki and di = ri + ki in

the decomposition above. From the long exact sequence, we see that

dimF2 H
i
∆/2(BSO(n))⊗L

F2[[T ]] (F2[[T ]]/T ) = ti+1 + di.

Also, BSO(n) is connected, so H0
dR(BSO(n)/F2) = H0

sing(BSO(n)(C),F2) = F2. Then we have

0 = dimF2 H
−1
dR (BSO(n)/F2) = t0 + d−1 = t0
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and therefore H0
∆/2(BSO(n)) is a free module over F2[[T ]].

Note also that if H i
∆/2(BSO(n)) is free over F2[[T ]] if and only if ti = 0 if and only if di =

ri = dimF2 H
i
sing(BSO(n)(C),F2). We then proceed by induction. From above we know that

d0 = dimF2 H
0
sing(BSO(n)(C),F2). Assume the same is true for di. Then we have

di + ti+1 = dimH i
sing(BSO(n)(C),F2) + ti+1 = dimH i

dR(BSO(n))

and since the dimension of de Rham and singular cohomology are the same, we have ti+1 = 0,
so H i+1

∆/2(BSO(n)) is a free F2[[T ]]-module as well.

To show that H•∆/2(BSO(n)) ∼= S/2[u2, . . . , un], tautologically, it is enough to find elements

ũ2, . . . , ũn ∈ H•∆(BSO(n)) such that the induced map

F2[[T ]][ũ2, . . . , ũn]
ũi 7→ui−−−−→ H•∆(BSO(n))

is an isomorphism of graded rings, where the grading on the left is given by deg ũi = i. To check
that such a map is an isomorphism, it is enough to check it modulo T . This is because both
each graded components of both source and target are free finitely generated modules of the
same rank, and so a map is an isomorphism if and only if its determinant is invertible, which
happens if and only if it is nonzero mod T .

Thus we reduced to finding ũ2, . . . , ũn, such that

(F2[[T ]][ũ2, . . . , ũn])(k) → Hk
∆/2(BSO(n)) (2)

is an isomorphism modulo T for all k ≥ 0. But for this we can take ũi to be a lift of the
generators ui in degree i of H•dR(BSO(n)/F2) (see [Tot17] Theorem 12.1).

Proposition 4.2 ([KP]). Moreover, wt(ũi) = b i2c. In particular H•∆/2(BSO(n)) is a direct sum
of Breuil-Kisin twists.

Remark 4.3. Proposition 4.2 provides is a nice choice of generators for H•∆/2(BSO(n)). Since

there is no T -torsion in H•∆/2(BSO(n)), there is an embedding

H•∆/2(BSO(n)) ↪→ H•∆/2(BSO(n))[T−1] ' H•sing(BSO(n),F2)⊗F2 F2((T )).

If we denote by wi the elements in H•∆/2(BSO(n))[T−1] corresponding to the Stiefel-Whitney

classes wi ⊗ 1 ∈ H•sing(BSO(n),F2)⊗F2 F2((T )), by Lemma 3.6 the elements T b
i
2
cwi will give

generators for H•∆/2(BSO(n)).

Definition 4.4. We will call the elements w∆
i = T bi/2cwi ∈ H•∆/2(BSO(n)) the prismatic

Stiefel-Whitney classes.

As was noted above, we have H•∆/2(BSO(n)) ' S/2[w∆
2 , . . . , w

∆
n ]. Also degw∆

i = i and

wtw∆
i = bi/2c. For convenience we also put w∆

1 = 0.

These generators are very nice because for them we can easily deduce the action of the Steenrod
algebra

7



Proposition 4.5. Let 0 < j ≤ i. Then

if i+ j is odd Sqj(w∆
i ) =

j∑
l=0

(
i− l − 1

j − l

)
w∆
l w

∆
i+j−l (3)

if i+ j is even Sqj(w∆
i ) = T ·

j∑
l=0

(
i− l − 1

j − l

)
w∆
l w

∆
i+j−l (4)

Proof. This follows from the Wu’s formula for the usual Stiefel-Whitney classes plus the Frobenius-
linearity of Steenrod squares over F2[[T ]].

The appearence of a T -factor in the action by Steenrod squares in the even case is exactly what
(for some n) produces a non-trivial T -torsion in the prismatic cohomology of BSpin(n).

5 Mod 2 prismatic cohomology of Bµ2

Proposition 5.1 ([KP]).

H•∆/2(Bµ2) ∼= S/2[v, c]/(v2 = T · c)

where deg v = 1, deg c = 2 and wt c = wt v = 1.

6 Mod 2 prismatic cohomology of BSpin(n)

There is a short exact sequence

1→ Bµ2 → BSpin(n)→ BSO(n)→ 1.

For a given n there is associated a number h, see Table 1 in the introduction. The way we are
going to compute the cohomology is via a spectral sequence. Namely,

Proposition 6.1 ([KP]). There is a spectral sequence of graded algebras

Ep,q2 = Hp
∆/2(BSO(n))⊗Hq

∆/2(Bµ2)⇒ Hp+q
∆/2(BSpin(n)).

Let v, c ∈ H•∆/2(Bµ2) be the generators of the first column. Firstly, d2(v) ∈ H•∆/2(BSO(n))
should have degree 2 and weight 1 and should be non-zero since it is non-zero after localizing T
(see [Qui71]), so there is only one option for it, namely d2(v) = w∆

2 . There is no T -torsion on
the second page, so all computations can be done after localizing T . In particular

d2(c) = d2(T−1v2) = T−1d2(v2) = 0

Obviously d2 kills the first row and this (together with the discussion above) extends it uniquely
to the whole 2nd page via the Leibnitz rule. This shows that

E•,•3 = S/2[w∆
2 , . . . , w

∆
n ]/(w∆

2 )⊗S/2 S/2[c]
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Let f̃1, . . . , f̃h ∈ H•∆/2(BSO(n)) ' S/2[w∆
2 , . . . , w

∆
n ] be a sequence of polynomials defined by

f̃1 := w∆
2 and f̃i := Sq2i−2

f̃i−1. Let also f̄1, . . . f̄h ∈ F2[wdR2 , . . . , wdRn ] ' H•dR(BSO(n)/F2) be
their reduction mod T (with wdRi = w∆

i mod T correspondingly).

We assume the following

Conjecture 6.2. The sequence f̄1, . . . , f̄h−1 ∈ S/2[wdR2 , . . . , wdRn ] is regular.

Note that this is equivalent to Conjecture 1.1. Indeed from 4.5 and the Cartan formula we
see that f̃1, . . . , f̃h in fact lie in F2[T ][w∆

2 , . . . , w
∆
n ] ⊂ F2[[T ]][w∆

2 , . . . , w
∆
n ]. If instead of grading

by the cohomological degree we consider grading by the weight, then all f̃1, . . . , f̃h, T will be
homogeneous. In particular f̃1, . . . , f̃h−1, T is regular if and only if T, f̃1, . . . , f̃h−1 is regular
which exactly means that f̄1, . . . , f̄h−1 ∈ S/2[wdR2 , . . . , wdRn ] is regular.

Corollary 6.3. The sequence f̃1, . . . , f̃h ∈ S/2[w∆
2 , . . . , w

∆
n ] is regular.

Proof. We know that this is true after inverting T by [Qui71]. We then proceed by induction.

Assume that f̃1, . . . , f̃i are regular. Then we need to show that f̃i+1 is not a zero divisor in
S/2[w∆

2 , . . . , w
∆
n ]/(f̃1, . . . , f̃i). Let K ⊂ S/2[w∆

2 , . . . , w
∆
n ]/(f̃1, . . . , f̃i) be the kernel of multiplica-

tion by f̃i+1. But then K⊗S/2F2((T )) = 0 and so K is T -torsion. f̄1, . . . , f̄i ∈ S/2[wdR2 , . . . , wdRn ]

is regular, so by the discussion above there is no T -torsion in S/2[w∆
2 , . . . , w

∆
n ]/(f̃1, . . . , f̃i) and

we are done.

Proposition 6.4. Assume Conjecture 6.2. Then for all r ≤ h the 2r + 1-th sheet E•,•2r+1 looks
like

E•,•2r+1 ' S/2[w∆
2 , . . . , w

∆
n ]/(f̃1, . . . , f̃r)⊗S/2 S/2[c2r−1

].

Moreover if r < h, it does not have any T -torsion.

Proof. The argument is completely analogous to Quillen’s. See [Qui71]. The absense of T -torsion
follows from the regularity of the sequence f̄1, . . . , f̄r.

Consider the map i∗ :H•∆/2(BSpin(n))→ H•∆/2(Bµ2) dual to the embedding µ2 ↪→ Spin(n).

Lemma 6.5. c2h−1
lies in the image of i∗.

Proof. Let’s take the Spin representation θ : Spin(n)→ SO(2h). Then the restriction to µ2 is
given by the standard 1-dimensional representation µ2 → Gm with multiplicity 2h. Then the
pull-back of i∗θ∗w∆

2h
of w∆

2h
∈ H•∆/2(BSO(2h)) is non-zero (since it is non-zero after inverting T )

and should have degree 2h and weight 2h−1. Thus it should be equal to c2h−1
and consequently

c2h−1 ∈ Im(i∗).

This means that d2h+1(c2h−1
) = 0 and starting from this moment the spectral sequence stabilizes.

Thus, fixing any homogeneous (with respect to the weight) lift z2h of c2h−1
to H•∆/2(BSpin(n))

(e.g. z2h = θ∗w∆
2h

) we get
Theorem 6.6. Assuming the Conjecture 6.2

H•∆/2(BSpin(n)) ' S/2[w∆
2 , . . . , w

∆
n ]/(f̃1, . . . , f̃h)⊗S/2 S/2[z2h ].
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7 Description of the T -torsion

To describe the T -torsion it remains to understand by what power of T we can divide f̃h
inside S/2[w∆

2 , . . . , w
∆
n ]/(f̃1, . . . , f̃h−1). We give the equivalent description in terms of monomial

expressions for f̃h.

Definition 7.1. Let w∆
I = w∆

i1
w∆
i2
· · ·w∆

in
be a monomial (with repeats possibly among the ik).

We have deg(w∆
I ) =

∑
ik and weight(w∆

I ) =
∑
bik/2c. We will call the weight of a homogeneous

polynomial f ∈ S/2[w∆
2 , . . . , w

∆
n ] the maximum of the weights of the monomials in it. Let I

be a homogenous ideal with respect to degree. The weight of a polynomial f modulo I is the
minimum of the weights of all representatives of f modulo I.

The following lemma is crucial but trivial to prove.

Lemma 7.2. Let f be a homogeneous polynomial in w∆
i . Let I be a homogenous ideal. Let d be

the degree of f . Then

• 0 ≤ weight(f) ≤ bdeg(f)/2c

• f = T bdeg(f)/2c−weight(f)g where g /∈ (T ).

We consider I = (f̃1, . . . , f̃k) and f = f̃k+1. In particular if f̃k+1 is not divisible by T modulo

(f̃1, . . . , f̃k) (e.g. if f̄1, . . . f̄k+1 is a regular sequence) it means that any representative of f̃k+1

modulo I has a monomial with no more than 1 odd variable. After applying Sqi for some even i
by Proposition 4.5 and the Cartan formula we get that the number of odd indices is at most 3
and so by Lemma 7.2 f̃k+2 can’t be be divisible by T 2 in S/2[w∆

2 , . . . , w
∆
n ]/(f̃1, . . . , f̃k+1). This

shows that there is only elementary T -torsion in H•(BSO(n)). Unfortunately for now we can’t
say for sure when we have T -torsion there at all. However we conjecture the following:

Conjecture 7.3. • If n 6= 3, 4, 5 mod 8, H•∆/2(BSpin(n)) is T -torsion free. In particular,
in this case

dimH i
dR(BSpin(n)/F2) = dimH i

sing(BSpin(n)(C),F2)

for all i.

• If n = 3, 4, 5 mod 8, the T -torsion in H•∆/2(BSpin(n)) (as a graded S/2-module) is

isomorphic to H•∆/2(BSO(n))/(f̃1, . . . , f̃h−1, T )[−2h−1 − 1]. In particular

dimH i
dR(BSpin(n)/F2) = dimH i

sing(BSpin(n)(C),F2)

for i < 2h−1 and for general i the dicrepancy is given explicitly by the value of the
Hilbert function for H•∆/2(BSO(n))/(f̃1, . . . , f̃h−1, T ) (shifted by −2h−1 − 1), which is a
quasi-polynomial of degree n− h see Section 10 for more detail.

8 Verification of Conjecture 7.3 assuming Conjecture 6.2 for
n ≤ 13

Further we present some computations of the Steenrod polynomials f̃i and prove the conjectures
above for n ≤ 13. In what follows wi = w∆

i . If i > n, then we put wi = 0. For each f̃i we pick
the nicest representative. We have:

10



f̃2 = w3, f̃3 = w5, f̃4 = w9.

Then, if n ≥ 10

n f̃5 f̃6 f̃7

10 w7w10 - -
11 w6w11 +w7w10 T · (w4w7w

2
11 + w2

7w8w11 + w3
11) -

12 w6w11 +w7w10 T · (w4w7w
2
11 + w2

7w8w11 + w3
7w12 + w3

11) -

Note that f̃6 is exactly f̃h for n = 11, 12 which confirms Conjecture 7.3 in these cases. Also if
n ≤ 10 there is no T -torsion at all.

For n = 13,

Sq4w2 = w4w13 + w6w11 + w7w10

Sq5w2 = w4w6w11w12 + w4w7w10w12 + Tw4w7w
2
11 + w6w7w

2
10 + Tw6w

2
7w13 + w2

6w8w13 +
w2

6w10w11 + Tw7w
2
13 + Tw2

7w8w11 + Tw3
7w12 + w2

10w13 + Tw3
11

Sq6w2 = T 2w4w6w
2
7w8w

3
11 + Tw4w6w

2
7w

3
10w11 + Tw4w6w

3
7w10w

2
12 + T 2w4w6w

3
7w

2
11w12 +

Tw4w
2
6w7w8w

2
11w12+Tw4w

2
6w7w

2
10w

2
11+T 2w4w

3
7w8w10w

2
11+Tw4w

3
7w8w

2
10w12+T 2w4w

4
7w10w11w12+

Tw2
4w

2
7w8w11w

2
12+Tw2

4w
2
7w

2
10w11w12+Tw2

4w
3
7w

3
12+Tw2

4w
3
11w

2
12+Tw3

4w7w
2
11w

2
12+T 2w6w7w

4
13+

Tw6w
2
7w

2
10w12w13 +T 2w6w

2
7w

3
11w12 +Tw6w

3
7w8w

3
10 +T 2w6w

3
7w12w

2
13 +T 2w6w

4
7w8w10w13 +

T 2w6w
4
7w8w11w12+T 2w6w

4
7w

2
10w11+Tw2

6w7w8w12w
2
13+Tw2

6w7w10w11w12w13+Tw2
6w7w

2
10w

2
13+

Tw2
6w7w

2
11w

2
12+T 2w2

6w7w
3
11w13+Tw2

6w
2
7w

2
8w10w13+Tw2

6w
2
7w

2
8w11w12+T 2w2

6w
3
7w8w11w13+

Tw2
6w

3
7w8w

2
12+Tw2

6w
3
7w

2
10w12+Tw2

6w8w10w
2
11w13+Tw2

6w8w
3
11w12+Tw2

6w
2
10w

3
11+Tw3

6w7w8w10w
2
11+

Tw3
6w

2
7w

2
10w13+Tw3

6w
2
7w

3
11+Tw4

6w7w8w
2
13+Tw4

6w7w10w11w13+Tw4
6w7w

2
11w12+T 2w7w10w

2
11w

2
13+

Tw7w
2
10w12w

2
13+Tw2

7w8w
2
10w11w12+Tw2

7w8w
3
10w13+Tw2

7w
4
10w11+T 2w3

7w8w10w
2
13+T 2w3

7w10w
2
11w12+

T 2w3
7w

2
10w11w13+T 2w4

7w
3
8w13+T 2w4

7w
2
12w13+T 2w5

7w8w10w12+T 2w8w
4
11w13+Tw2

10w
3
11w12+

Tw3
10w

2
11w13 + T 2w5

13

Note that in this case h = 7 and we see that f̃7 is divisible by T . So Conjecture 7.3 is
confirmed.

9 Verification of Conjecture 6.2 for n ≤ 13

9.1 About Gröbner bases.

We first recall some material about Gröbner bases. Material from this section is from [Eis08],
Chapter 15.

Let S be a polynomial ring over a field, S = k[x1, . . . , xn]. Fix an order on the monomials of S.
Let F be a finitely generated free module over S with basis {ei}. Choose an order on monomial
basis elements of F , elements of the form xAei where xA is a monomial in S.

Definition 9.1. If > is a monomial order, then for any f ∈ F we define the initial term, in>(f)
to be the smallest term of f with respect to the order >. If M is a submodule of F then in>(M)
is the submodule generated by in>(f) for all f ∈M .

Going forward, we’ll just write in(f) if the order is clear from context.
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Definition 9.2. If f, g1, . . . , gt ∈ F , then a standard expression is one of the form

f =
∑

figi + f ′

with f ′ ∈ F , fi ∈ S, where none of the monomials of f ′ are in (in(g1), . . . , in(gt)), and
in(f) ≤ in(figi).

Proposition 9.3. Standard expressions always exist.

The proof consists of an algorithm where one repeatedly removes monomials from f ′ by subtract-
ing a suitable multiple of gj . Details can be found in [Eis08], Division Algorithm 15.7.

Definition 9.4. A Gröbner basis with respect to an order > on F is a set of elements g1, . . . , gt ∈
F such that if M is the submodule generated by g1, . . . , gt then in>(g1), . . . , in>(gt) generate
in>(M).

Let g1, . . . , gt be elements of F . Let ⊕Sεi be a free module with basis {εi} corresponding to the
elements {gi} of F and let

ϕ : ⊕ Sεi → F ; εi 7→ gi (5)

be the corresponding map of modules. For each pair of indices i, j such that in(gi) and in(gj)
involve the same basis element of F , we define

mij = in(gi)/GCD(in(gi), in(gj)) ∈ S

and we set σij = mijεi −mijεj . For each pair i, j, we choose a standard expression

mjigi −mijgj =
∑

f (ij)
u gu + hij

with respect to g1, . . . , gt.

Theorem 9.5 (Buchberger). The elements g1, . . . , gt form a Gröbner basis if and only if hij = 0
for all i, j.

Theorem 9.6 (Schreyer). Using the set-up above, further assume that g1, . . . , gt form a Gröbner
basis. Define

τij = mjiεi −mijεj −
∑
u

f (ij)
u εu,

Then the τij generate ker(ϕ) (c.f. Equation (5)).

Proofs can be found in [Eis08], Theorems 15.8 and 15.10.

9.2 Verification of Conjecture 6.2

In this section we verify Conjecture 6.2 for n ≤ 13. Here we put wi = wdRi and consider
f̄i ∈ F2[w2, . . . , wn].

It is clear that

f̄1 = w2, f̄2 = w3, f̄3 = w5, f̄4 = w9, f̄5 = w4w13 + w6w11 + w7w10

is regular. It remains to prove that f̄6 is not a zero divisor modulo the previous elements.

Using Buchberger’s Criterion ([Eis08], Theorem 15.8), one can verify that

w4w6w11w12 + w4w7w10w12 + w2
6w8w13 + w2

6w10w11 + w6w7w
2
10 + w2

10w13
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w4w13 + w6w11 + w7w10

w2
6w8w

2
13 + w2

6w10w11w13 + w2
6w

2
11w12 + w6w7w

2
10w13 + w2

7w10w12 + w2
10w

2
13

is a Gröbner basis for the ideal J = (f̄5, f̄6). Using Schreyer’s theorem ([Eis08], Theorem 15.10),
one verifies that the module of syzygies, expressed as the kernel of the map

F2[w4, w6, w7, w8, w10, w11, w12, w13]〈ε1, ε2〉
ε1 7→f̄5,ε2 7→f̄6−−−−−−−−→ F2[w4, w6, w7, w8, w10, w11, w12, w13]

is generated by f̄6ε1 − f̄5ε2. As such, it follows that the sequence f̄1, . . . , f̄6 is regular.

10 Description of the Hilbert function ofH•
dR(BSO(n)/F2)/(f̄1, . . . , f̄h−1)

We give a partial description of the Hilbert series for H•∆/2(BSO(n))/(f̃1, . . . , f̃h−1, T ). First,

note that f̃i, T are homogenous elements with respect to the weight, therefore regularity of
the sequence does not depend on the order of elements. With this in mind, we first find the
Hilbert series of H•(BSO(n))/T ∼= F2[u2, . . . , un]. The Hilbert series of F2[ui] for deg(ui) = i is
(1− ti)−1. Since Hilbert series of tensor products multiply, we have

fM (t) := Hilb (H•(BSO(n))/T ) =

n∏
i=2

(1− ti)−1.

Write
M = H•(BSO(n))/T ) N = H•∆/2(BSO(n))/(f̃1, . . . , f̃h−1, T )

Now by regularity of the sequence, there is a Koszul resolution

0→
h−1∧

Mh−1 →
h−2∧

Mh−1 → · · · →
2∧
Mh−1 →Mh−1 →M → N → 0

which allows us to compute the Hilbert function of N . Another description of the Hilbert
function can be obtained as follows.

Let

P (M, t) =
n∏
i=2

(1− ti)−1

and define recursively

P0 = P (M, t), Pi = Pi−1(M, t)/Pi−1(M, t− 2i−1 + 1).

Define Mi = M/(f̃0, . . . , f̃i−1). From the exact sequences

0→ fiMi →Mi →Mi/fiMi → 0

we see by induction that the Poincaré series of N is given by P (N, t) = Ph−2(M, t). If we
write

P (N, t) =
∑

dimN(n)t
n

then according to [Bav95], Theorem 2.2, dimN(n) is a quasi-polynomial in n, i.e. there exist
n! polynomials p0, . . . , pn!−1 such that dimN(n) = pk(n) for n ≡ k (mod n!). Moreover, these
polynomials have the same degree n− h and the same leading coefficient.
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