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Abstract

The disk packing problem asks whether it is possible to place a given set of disks
onto a given surface without overlap. A useful tool in analyzing these packings is the
contact graph of a packing, in which vertices correspond to centers of disks, and edges
correspond to tangencies between disks. In this paper, we show that given a planar
graph G, it is NP-Hard to determine whether G is the contact graph of a valid disk
packing in the plane. In proving this result, we make use of a proof structure to that of
Cabello et al. [Graph Drawing, 283-294 (2003)].

1 Introduction

The disk packing problem is concerned with placing a given set of disks onto a given surface
such that no two disks overlap. The optimization version of this problem, which involves
maximizing radius of the disks and/or minimizing the surface’s area, has been studied in
many different situations, including equal disk packing in a flat torus [11], unequal disk
packing in a circle [10], and equal disk packing in a klein bottle [9]. Meanwhile, the decision
version of this problem, which simply asks if a given disk packing is possible, is mainly studied
from an algorithmic point of view. For example, Morr’s Split Packing algorithm generates
the packing of a set of disks into a given square, rectangle, or triangle, provided that the total
areas of the disks is no more than a constant fraction of the container area [2]. Additionally,
some disk packing problems have been shown to be NP-hard, including packing unit disks in
a [not neccessarily connected] planar region [5] or packing [not necessarily equal] disks into a
square [6].
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One valuable tool in disk packing proofs is the contact graph GP of a disk packing P . The
contact graph GP of a disk packing P contains a vertex corresponding to the center of each
disk in P , and an edge between two vertices for each tangency between the corresponding
disks in P . Using the contact graph, we are now able to analyze disk packings using results
and techniques from graph theory.

More concretely, we apply similar techniques to those used by Cabello et al. [1] in analyzing
graph embeddings to examine planar embeddings of disk packing contact graphs. Here, we
focus on unit [diameter] disk packings in the plane. We prove the following Theorem:

Theorem. Given a planar graph G, it is NP-hard to determine if G is the contact graph of
a valid unit disk packing in the plane.

Our proof works by applying a similar reduction structure to that of Cabello et al. in their
proof of the NP-hardness of the straight-line embeddability of 3-connected planar graphs
with unit edge lengths [1]. However, the reduction gadgets used in our proof are mostly
different from those used in this result because of a few key differences between our problems.
While our problem also deals with the straight-line embeddability of planar graphs with
unit length edges (our disks have unit diameter, so that we have a unit distance between
tangent disks’ centers), we do not require that the given graph be 3-connected. However,
we have additional restrictions in our problem due to the nature of circle geometry. For
example, when embedding our contact graph into the plane, we must ensure not only that
edges do not cross, but also that non-adjacent vertices are greater unit distance from each
other. Additionally, we must ensure that in our embedding, all angles between adjacent edges
are at least 60◦, with 60◦ angles only allowed when all three involved vertices are pairwise
adjacent (see Figure 1.1 for a concrete example of this).

C
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Figure 1.1: Demonstrating the problem constraints. In the figure, disk C is tangent to
both disks A and B, so that in the contact graph, vertex C is adjacent to vertices A and
B, respectively. By the nature of circle geometry, we cannot have that m6 ACB < 60◦.
Furthermore, if m6 ACB = 60◦, then we must have disks A and B are tangent, which means
that vertices A and B must be adjacent in the contact graph.
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The outline of our paper is as follows. In Section 2, we discuss some related previous results.
Then, in Section 3, we go over some important structures and techniques used in our main
proof. In Section 4, we present a Karp-style reduction using a similar structure to [1] to prove
our main theorem. And in Appendix A, we analyze the gadgets introduced in the proof to
ensure the are realizable within the problem constraints.

2 Previous Results

In this section, we review previous hardness results that relate to the problem at hand.

First, we discuss hardness results proven about disk packing in the plane, without regard
to contact graphs. Fowler et al. showed that the problem of whether n unit disks would fit
into an arbitrary planar region (not necessarily convex or even connected) is NP-hard, via
a reduction from 3SAT [5]. Additionally, Alt et al. showed that the problem of packing n
disks onto a ‘shelf’, that is, placing the disks within a given x-interval such that they do not
overlap and each is touching the x-axis from above, is NP-hard [7].

Furthermore, Demaine et al. showed that the problem of packing a given set of disks [of
possibly different sizes] into a given square, rectangle, or triangle is NP-hard, via a reduction
from 3-partition [6]. This paper also showed NP-hardness for the analogous disk placement
problems, in which only the disks’ centers (as opposed to the entire disks) are required to fit
within the given container.

Related to our problem is the concept of unit disk graphs, intersection graphs for a collection
of unit disks that are placed on the plane (that is, graphs for which vertices correspond to
the centers of these disks and edges correspond to intersections between two disks). While
the two problems differ in their treatment of disks whose placements overlap (whereas such
behavior is prohibited in our problem, this simply results in an edge in a unit disk graph),
they both contain an edge between vertices that whose corresponding disks are tangent. Breu
et al. showed the problem of determining whether a given graph is a unit disk graph is
NP-hard [8].

Finally, as previously mentioned, Cabello et al. showed that the problem of determining
whether a given planar 3-connected graph is straight-line embeddable with unit edge lengths
is NP-hard, even when the graph is known to be rigid 1 [1]. Our proof is heavily inspired by
and heavily relies on this result, following nearly the same format for the reduction. However,
as our problem slightly differs from that of this result, almost all of our gadgets have been
newly constructed to conform to our problem constraints.

1A graph is rigid if, when embedding, the relative positions of all vertices are fixed up to rotations and
reflections.
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3 Preliminaries

In this section, we discuss key structures and techniques used in our reduction.

P1 P2

R

Q1 S Q′
1 Q2 S′ Q′

2

P

Figure 3.1: The gray structures are fixed and rigid, and black edges are straight. Q1Q1 must
be parallel to P1P2, forcing S to lie on a circle with radius PS. But S also lies on an circle
with radius RS 6= PS. Thus, the entire structure has only two realizations, when S lies at
an intersection of the two circles

One structure important to our construction is shown in Figure 3.1. Note that the gray
regions are fixed and rigid structures, edges are straight with fixed length, and vertices are
free pivots.

First, note that P1P2 = Q1Q2, P1Q1 = P2Q2, P is the midpoint of P1P2, and S is the
midpoint of Q1Q2. Then in any realization of this structure, we must have that P1P2 ‖ Q1Q2,
so that S must lie on [the arc of] a circle with radius PS (centered at P ), which is partially
shown. Also, note that P1R = P2R, with PR > 0. Then, because of RS, S must also lie on
[the arc of] a circle with radius RS 6= PS (centered at R), which is partially shown.

Thus, we see that the entire structure has only the two rigid realizations shown, where S is
located at the two intersections of these circles. Note that the distance between P1P2 and
Q1Q2 is fixed to the same value in either realization.
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Figure 3.2: Rigid Triangular Structures (a) A repeating rigid bar structure which we can
extend to our preferred length(b) PQ simulates an edge of length 12 (c) RS simulates an
edge of length 6

√
3 (d) Such a structure is not allowed within the problem constraints as

there would need to be and edge between A and B.

As our problem deals with the contact graphs of disk packings, note that the structures used
in our reduction must be graphs. An important technique we use to ensure rigidity of our
constructions is the arrangement of vertices into a triangular grid structure. Figures 3.2a-c
show some examples of such structures which we use in our proof. Since the triangle grid is a
rigid planar structure, the relative positions of all vertices in one of these structures is fixed
(up to rotations and reflections). This allows us to create large repeating rigid structures
that we can extend to our preferred length, such as the bar in Figure 3.2a. It also allow us to
simulate edges of greater than unit length in our graph, such as with PQ in Figure 3.2b and
RS in Figure 3.2c.

Note that all outer angles of these structures must be at least 120◦, This is because, in the
triangular grid, all angles are multiples of 60◦, and, as previously established in our earlier
discussion of circle geometry, two disjoint vertices who share a common neighbor must form
an angle of greater than 60◦. More concretely, a structure like that in Figure 3.2d is not
allowed within the problem constraints, since m 6 ACB = 60◦, but there is no edge between
A and B.

4 NP-Hardness

We now get to the main result of the paper, proving the Theorem from Section 1. We begin
by providing an overview of how the reduction will be implemented. We then prove the
theorem from the introduction. Once again, we mention that our proof is heavily inspired by
and heavily relies on the previous result in [1].
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Note that the gadgets used in the proof are only introduced and analyzed for their function
in this section; the detailed verification of the realizability of these gadgets (within the
circle geometry problem constraints established in Section 1) is established in the lemmas in
Appendix A. We restate the theorem below for convenience.

Theorem. Given a planar graph G, it is NP-hard to determine if G is the contact graph of
a valid unit disk packing in the plane.

Sketch of Proof In proving our result, we reduce2 from Planar Rectilinear 3-Satisfiability
(PR3SAT), a variant of Planar 3-Satisfiablity that is also strongly NP-Complete [3][4]. In a
PR3SAT instance, we are given a planar bipartite graph, with one set of nodes v1, v2, . . . , vn
representing the variables and the other set of nodes c1, c2, . . . , cm representing the clauses of
a regular 3SAT instance, where each clause node is connected to the three variable nodes
whose literals appear in that clause. We are also given that the variables are arranged in a
[horizontal] line, that the clauses and their corresponding three edges (each with at most one
turn) either lie fully above or fully below this line, and that the entire graph lies on a square
grid of polynomial size (as shown in Figure 4.1a).

We begin the reduction by moving this graph to a triangular grid, so that all angles are
multiples of 60◦, following the proof structure in [1] (as explained in Section 3, this helps
us to create rigid structures for our gadgets). We further modify the variable-clause edges
so that all angles along the edges are 120◦, and the three edges connected to a clause enter
at 120◦ angles to each other (as in Figure 4.1b). Note how, through the way we orient the
‘openings’ to the clauses above and below and variable line, we force every edge to contain at
least one turn.

This ‘metagraph’ layout is then constructed through a combination of various gadget struc-
tures, of similar construction to [1]. Namely, we create rigid tunnel gadgets along the paths
of variable-clause edges in this ‘metagraph’ layout. We also create variable gadgets that have
exactly two realizations corresponding to a variable’s truth value, rigidly connecting these
into a horizontal line. We then have rigid wire gadgets that transmit the value of a literal
through the tunnel gadget from the variable gadget to the clause gadget, where each clause
gadget is realizable if and only if it contains at least one true literal. For a visualization of
this, see Figure 4.1b, in which the black lines correspond to tunnel gadgets, the blue lines
correspond to wire gadgets, the variable boxes correspond to variable gadgets, and the clause
hexagons correspond to the clause gadgets.

2In a Karp-style reduction, we say that we can reduce from decision problem A to decision problem B
if we can demonstrate a polynomial-time algorithm that can convert an instance a of problem A into an
instance b of problem B such that b is a positive instance of problem B if and only if a is a positive instance
of problem A. Thus, if we know that problem A is NP-hard, and we can reduce from A to B, then we have
that problem B is NP-hard.
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Figure 4.1: (a) An example planar rectilinear 3-satisfiability instance. The variables can be
arranged in a line, with the three-legged clauses and their corresponding edges placed either
above or below this line, and the whole graph drawn on a square grid. (b) Following the
structure of the reduction from [1], our reduction from this instance starts by moving the
graph to a triangular grid.

We now move on to the full proof of the theorem.
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Proof. Since we have already described the high-level structure of this reduction, all that
remains is for us to demonstrate the gadgets used in the reduction.

Figure 4.2: The Tunnel Gadget

At the most basic level, our construction relies on wire gadgets that transmit the value of a
literal from the variable gadget to the clause gadget, as well as tunnel gadgets that contain
these wire gadgets. Figure 4.2 shows a visualization of [a segment of] the tunnel and wire
gadgets, where the gray bars make up the tunnel gadget, and the inner blue bar is the wire
gadget. As the two are often used together, we sometimes refer to the combination as the
tunnel/wire gadget. By Lemma A.1.1, we have that the tunnel/wire gadget is realizable
within the problem constraints.

This structure is very similar to the tunnel gadgets in [1], as it is both 3-connected and
realizable as a circle packing.

Next, we need a holder gadget to fix the position of the two sides of the tunnel relative to
each other, in addition to rigidly holding the wire gadget in place in the middle of the tunnel.
As the wire gadget needs to be able to transmit the truth value of a literal, we construct this
holder gadget to have two possible configurations. See Figure 4.3 for a visualization of the
holder gadget. Figures 4.3a and 4.3b show the desired two realizations of the gadget.

Now, we examine the top half of Figure 4.3a (the bottom half of the gadget is a mirror image
of the top half). Specifically, note how P1P2 = Q1Q2, P1Q1 = P2Q2, P1R = P2R, and S is
the midpoint of Q1Q2. Thus, we have that this top half-gadget functions identically to the
structure in Figure 3.1, so that it has two possible realizations, and the wire gadget is held at
a fixed distance from the side of the tunnel gadget.

Our holder gadget differs quite a lot from that in [1], as we did not need to make the structure
3-connected, while in [1], Cabello et al. did not need to obey our problem’s angle constraints.
Because of this, the two constructions have different approaches to handling pivots, a pattern
which will be seen again in later gadgets.
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Figure 4.3: The Holder Gadget. (a) & (b) show the two different desired configurations of
the gadget. 9



Note that while this construction forces a particular embedding for the wire gadget relative
to the tunnel gadget, each of the three turquoise structures, which we refer to as “struts”,
still has two possible planar embeddings, by flipping the entire strut over P1Q1, P2Q2, or RS,
respectively. However, since these alternate embeddings still preserve the lengths P1Q1, P2Q2,
and RS that our construction relies on, the gadget cannot be subverted by use of an alternated
embedding of one of these struts. Indeed, these alternate embeddings can only do worse
than our suggested embedding by possibly causing the gadget to fail to satisfy the problem
constraints in the previously verified configurations in 4.3.

By Lemmas A.2.1 and A.2.5, we have that these two desired configurations are realizable
within the problem constraints. We also have, by Corollary A.2.2, that the wire gadget
is shifted by

√
69 units between these two configurations. Thus, the wire can transmit

information through the direction it is pushed by the holder gadget. We call this directional
‘pushing information’ of the wire gadget pressure. Note that each straight part of the
tunnel/wire gadget must contain at least one holder gadget. Note that we sometimes include
holder gadgets in our figures of other gadgets to aid in the visualization of the pressure of
wires.

(a) (b)

Figure 4.4: The Misaligned Holder Gadget. (a) & (b) show the two undesired configurations
of the holder gadget, in which the sides of the tunnel are misaligned.

However, because each half of the gadget has two possible realizations, this means that the
holder gadget has four possible configurations: the two desired configurations in Figures 4.3a
and 4.3b, and the two configurations in Figure 4.4 in which the sides of the tunnel become
misaligned. It turns out that these configurations are impossible within our construction.
But before we can address this, we need to introduce the next gadget: the turn gadget.
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(a)

(b)

Figure 4.5: The Turn Gadget. (a) & (b) show the two different desired configurations of
the holder gadget, sandwiched between two holder gadgets. Note how these configurations
correctly transmit pressure around turns.
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See Figure 4.5 for a visualization of the turn gadget being used to concatenate two holder
gadgets. The turn gadget is used for each of the turns of the tunnel/wire gadget between the
variable gadget and clause gadget, as was shown in Figure 4.1b. As we can see in Figures
4.5a and 4.5b, the turn gadget forces the alignment of the sides of the tunnel gadget for any
holder gadget to which it is rigidly connected. This is because, if a misaligned holder gadget
were to connect to, say, the left end of the turn gadget, as in Figure 4.6, then because of
the non-zero shift between the two sides of the tunnel (by Corollary A.2.2), we would have
that the tunnel spacing on the right side of the turn gadget would be incompatible (too wide
in Figure 4.6a and too narrow in Figure 4.6b) with the tunnel spacing of a holder gadget
connected to that side (recall that we have already established the fixed tunnel spacing of
the holder gadget). As the gadget is symmetric, this incompatibility holds for a misaligned
holder gadget on the other side, as well.

(a) (b)

Figure 4.6: Avoiding the Misaligned Holder Gadget. (a) & (b) Rigidly connecting the holder
gadget to the turn gadget prohibits the misaligned configurations of the holder gadget.

Recall that in our construction, we ensured that each tunnel/wire gadget between the variable
and clause gadgets contained at least one turn. Thus, we have that every holder gadget is
rigidly connected to a turn gadget, so that it is impossible for a misaligned holder gadget to
be realized in our construction. Note also that this means the sides of the tunnel gadgets
are rigidly connected to each another for each edge in the ‘metagraph’. As we will see, the
tunnels of adjacent ‘metagraph’ edges in the variable and clause gadgets are also rigidly
connected to each other, so that all tunnel gadgets are connected in a [globally] rigid way.

Let us now return to properly address the turn gadget. Figures 4.5a and 4.5b show the two
desired realizations of the gadget (note that the holder gadgets need not be so close to the
turn gadget; this is done in the figure for clarity). Note how, in the realizations shown, the
turn gadget allows us to correctly transfer pressure around these turns. By Lemma A.3.1, we
have that these two desired configurations are realizable within the problem constraints.
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Our turn gadget makes use of a similar construction to [1], as it again mainly consists of a
triangular grid structure, which is allowed in both problems.

(a) (b)

Figure 4.7: The Undesired Configurations Turn Gadget. (a) This configuration is not
realizable within the problem constraints (b) We show that this configuration cannot mess
up our construction

However, since each wire end in the gadget has two possible positions, there are also two
undesired configurations for the turn gadget, as shown in Figure 4.7, in which the turn gadget
does not correctly transmit pressure around the turn. By Lemma A.3.2, we have that the
configuration shown in Figure 4.7a is not valid within the problem constraints. Also, it will
turn out that the existence of the configuration shown in Figure 4.7b cannot mess up our
construction. However, we will need to return to this point after introducing the variable
gadget.

Since the variable gadget again needs two possible configurations, we can reuse structures
of the holder gadget. As shown in Figure 4.8, the variable gadget consists of a structure
similar to the holder gadget on the [left] end, except that instead of a wire gadget, it is
connected to a thicker variable bar that extends most of the way through the rest of the
gadget (note that the two halves of the modified holder gadget are rigidly connected, so
that they cannot misalign). Along the top and bottom of the gadget, the tunnel gadgets for
each of this variable’s literals are rigidly connected to adjacent tunnel gadgets (note that
the holder gadgets for each tunnel need not be so close to the variable gadget; however, this
slightly reduces the size of our final graph). In particular, we must make sure to make each
variable gadget long enough to accommodate all literals that are connected above and below
to the gadget.
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Figure 4.8: The Variable Gadget. (a) The ‘true’ configuration of the variable gadget. In
this configuration, nonnegated literals’ wires can be pushed in towards the gadget. (b) The
‘false’ configuration of the variable gadget. In this configuration, negated literals’ wires can
be pushed in towards the gadget.
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Observe how the variable bar contain an indentation for each literal, so that in the ‘true’
configuration of the variable gadget in Figure 4.8a, the variable bar’s indentations extend
the length of the tunnel for non-negated literals, allowing their wire gadgets to be pushed
toward the variable. Similarly, in the ‘false’ configuration of the variable gadget in Figure
4.8b, the variable bar’s indentations elongate the tunnel for negated literals, so that they may
be pushed towards the variable. Thus, we have that the wire gadgets transmit that a literal
is ‘true’ through pressure towards the variable gadget, and that a literal is ‘false’ through
pressure away from the variable gadget.

Our variable gadget mainly differs from that of [1] because it reuses structures of the holder
gadget, which we have constructed differently for our problem. However, the other parts of
the gadget are again triangular grid structures, which are allowed in both problems, so that
the high-level structure of both variable gadgets is the same.

By Lemma A.4.1, we have that both of these configurations (with associated wire gadget
actions) are realizable within the problem constraints. And by Corollary A.4.2 we have that
forcing a false literal’s wire (i.e. the wire of a non-negated literal in the ‘false’ variable gadget
configuration or a negated variable in the ‘true’ variable gadget configuration) in towards
the variable gadget (configuration not shown) is not possible within the problem constraints.
However, as a consequence of Lemma A.4.1, we still have that a true literal’s wire need not be
pushed in towards the variable gadget (as seen with the botton center literal in Figure 4.8a
and the top right literal in Figure 4.8b). Clearly, though, this behavior cannot mess up our
construction, as it only allows us to decrease the number of ‘true’ literal values transmitted
to our clause gadget.

We can now return to address the existence of the turn gadget configuration in Figure 4.7b.
As we just established, pressure towards the variable is used to transmit a ‘true’ value. Thus,
since the turn gadget configuration in question transmits pressure away from the turn for
both of its associated wire gadgets, this configuration would have the effect of converting
pressure towards the variable into pressure away from the variable; in other words, it would
convert the transmitted ’true’ value of a literal into a ‘false’ value. Thus, for the same reasons
as before, this behavior cannot mess up our construction.

Now, we need to describe a clause gadget that is only realizable if it contains at least one
wire with pressure away from the clause. However, it seems to be easier to design a clause
gadget of the opposite nature, that is only realizable if it contains at least one wire with
pressure towards the clause. To be able to do this, we introduce a new gadget, the inverter
gadget, as shown in Figure 4.9. The inverter gadget allows us to convert pressure towards
the variable into pressure away from the variable, and vice versa, as shown in Figures 4.9b
and 4.9a. The thick green dots in the figure are used to show the possible positions of the
ends of the left and right wires. Notice how we sandwich the inverter gadget between two
holder gadgets to ensure the rigidity of the two wires extending from the gadget.
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(a)

(b)

Figure 4.9: The Inverter Gadget (a) & (b) The two valid configurations of this gadget show
how it inverts the pressure of a wire..

Our inverter gadget differs from that in [1] mainly due to the way the two constructions
handle pivots within the respective problem constraints, as already seen with the holder
gadget.

By Lemmas A.5.1, A.5.2, A.5.3 and A.5.4, we have that the two aforementioned desired
configurations of the inverter gadget are realizable within the problem constraints. Also, by
Lemma A.5.5, we have that the two unwanted configurations of the inverter gadget shown
in Figure 4.10 (as well as their mirror images, since the gadget is symmetric), in which
the pressure of the wires is not inverted, are not realizable within the problem constraints.
Note that we position the inverter gadget right before the the wire enters the clause gadget
(in particular, after all turns in the wire), so that the harmlessness of the turn gadget
configuration in Figure 4.7b still holds.

Note that while this construction forces a particular embedding for the wire gadget relative
to the tunnel gadget, each of the two central blue structures inside the gadget still has two
possible planar embeddings. However, by an analogous argument to our discussion of the
struts of the holder gadget, the inverter gadget cannot be subverted by use of an alternated
embedding of one of these structures. As before, these only allow the possibility to do worse
than our suggested embedding by possibly causing the gadget to fail to satisfy the problem
constraints in the previously verified configurations in 4.9.
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(a)

(b)

Figure 4.10: The Invalid Configurations of the Inverter Gadget. (a) & (b) show the two
invalid configurations of the gadget.

Now, we can begin to discuss the clause gadget. As previously mentioned, we would like to
design our clause gadget to be realizable only if it contains at least one wire with pressure
towards the clause (which now means that it contains at least one ‘true’ literal). In fact,
observe that it suffices to design our clause gadget to be realizable only if it contains exactly
one ‘true’ literal, disregarding configurations with two or more ‘true’ literals.

This is because, as we saw when we first introduced the variable gadget, even if a variable
assignment allows a particular literal to be true, the literal’s wire can still transmit the value
of that literal to be ‘false’. Thus, whenever a particular clause has more than one literal that
can evaluate to be ‘true’, we can have all but one of these literals transmit a ‘false’ value
instead without changing the overall truth value of the clause, so that we only need to ensure
the gadget functions correctly for clauses with 0 or 1 true literals.

Keeping this in mind, we can finally introduce our clause gadget, whose four configurations
we care about are shown in Figure 4.8. The green dots show the position of the edge of the
wire gadgets entering the clause gadget, for both the true and false values of each literal (the
dot closer to the center corresponding to a ‘true’ literal). Each wire entering the gadget is
connected to a rigid ‘arm’ structure that can pivot about the tip of the wire. The three arms
are then joined at their tips in a triangle configuration.
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Figure 4.11: The Clause Gadget. (a) The unrealizable configuration of the clause gadget,
with three ‘false’ literals. The pressure of all three incoming wires is away from the gadget.
The arrows point to the two points which should coincide. (b), (c), and (d) The realizable
configurations of the clause gadget, with one ‘true’ literal (for which the pressure of the
corresponding wire is towards the gadget) and two ‘false’ literals (in which the pressure of
the corresponding wires is away from the gadget).
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Our clause gadget significantly differs from that in [1] because of the aforementioned handling
of pivots within the respective problem constraints. It also differs from [1] in that we have the
tips of our ‘arm’ structures connected in a triangle, rather than directly coinciding, due to the
angle constraints of our problem. Lastly, our clause gadget differs from that in [1] because of
our earlier observation about halving the number of cases our clause gadget needed to handle.
Interestingly, while this observation is equally valid in the case of Cabello et al.’s proof, they
did not choose to make use of it.

By Lemmas A.6.2, A.6.3, A.6.4, A.6.5, A.6.6, and A.6.7 we have that the three configurations
of the clause gadget with one ‘true’ literal (shown in Figures 4.11b, 4.11c, and 4.11d) are
realizable within the problem constraints. However, by Lemma A.6.1, we have that the
configuration with all ‘false’ literals (shown in Figure 4.11a) is not realizable within the
problem constraints. Thus, recalling our observation, our clause gadget correctly requires at
least one ‘true’ literal to be realized.

Once again, note that while this construction forces a particular embedding for the wire
gadgets relative to the tunnel gadgets, each part of the three blue ‘arm’ structures inside
the gadget still has two possible planar embeddings. However, by an analogous argument to
our discussion of the struts of the holder gadget, the clause gadget cannot be subverted by
use of an alternated embedding of one of these structures. As before, these only allow the
possibility to do worse than our suggested embedding by possibly causing the gadget to fail
to satisfy the problem constraints in the previously verified configurations in 4.11b-d.

A small example with all of the gadgets working together is shown in Figure 4.12.

To summarize, our clause gadget is realizable if and only if exactly one literal transmitted a
‘true’ value, which means that the corresponding wire is pushing in towards the clause gadget.
This implies that on the far side of the inverter gadget from the clause, the corresponding
wire has pressure towards the variable. This pressure is propagated through the wires and
turns until the variable gadget, where the wire is pushing in towards the variable gadget,
which is only possible if the variable’s truth value is that of the corresponding literal. Since
our variable gadget allows true literal to transmit a ‘false’ value through the wire gadget,
our construction also functions correctly for clauses containing more than one true literal.
Thus, our entire constructed graph is only realizable (within the problem constraints) if all
PR3SAT clauses are satisfied. Finally, our constructed graph has a polynomial number of
edges since the graph of the original PR3SAT instance was in a grid of polynomial size, and
thus, our reduction is in polynomial time.
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Figure 4.12: A small example of all gadgets working together.
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A Appendix A: Analyzing the Gadgets

In this appendix, we will use analytic geometry techniques to show that each of the gadgets
used in our above reduction obey the constraints of disk packing, i.e. the circle geometry
constraints mentioned in Section 1. Recall that our problem deals with disks of unit diameter,
so that if two disks are touching, then the vertices corresponding to their centers in the
contact graph are exactly 1 unit apart. Thus, we will show, for each of the gadgets, that
if two vertices are not connected by an edge in the contact graph of the gadget, then they
are greater than 1 unit apart. Again, because of the nature of circle geometry, we will also
show that all angles between nonadjacent vertices with a common neighboring vertex are
greater than 60◦. Note that we will be using degrees to measure all of our angles, for a more
intuitive understanding of non-standard angles, and that we will often give approximations
to the nearest thousandth, for a more intuitive understanding of complicated measurements.

A.1 The Basics

In this section, we examine some of the basic properties used in the remainder of this appendix,
ending with a short proof of the realizability of the tunnel/wire gadget within the problem
constraints.

For most of the following analyses, we will begin by overlaying the gadgets onto a triangular
grid. As we will often use this grid to help measure distances between lattice points, we begin
by noting a few of its properties we will use (note: throughout this appendix, we will refer to
both grids and lattices, using grids to refer to the infinite repeating collection of lines and
lattices refer to the infinite repeating collections of points; there is a clear correspondence
between the two).

All of the gadgets consist of several components, where each component is a rigid subset of a
triangular grid/lattice (edges/vertices), though each component may be a part of a different
grid/lattice. However, note that the outer rigid parts of the tunnels and other gadgets all
share the same lattice/grid, which we refer to as the “tunnel lattice”/“tunnel grid” (this is
basically all of the parts of the gadgets that are colored gray).

We now review properties of the triangular lattice which are useful in measuring distances
in our proof, shown in Figure A.1a (note that because the triangular grid has rotational
symmetry, these properties also apply in different orientations). Taking the lattice vectors
to be unit length (which corresponds to disks in the contact graph having diameter 1), we
have that the horizontal distance between a lattice point and its horizontally adjacent lattice
point is 1 (i.e. the distance from A to B is 1). Furthermore, we have the vertical distance

between adjacent rows of lattice points is
√
3
2

(i.e. the distance between
←→
AB and

←→
CD is

√
3
2

).
Finally, note that the horizontal displacement between adjacent lattice points in different
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rows is 1
2

(i.e. the horizontal displacement between A and C is 1
2
).

Finally, we end by verifying that the tunnel/wire gadget can be verified within the problem
constraints

Lemma A.1.1. The tunnel and wire gadgets are greater than unit distance apart.

Proof. In the tunnel gadget (see Figure A.1b), while the wire gadget’s lattice/grid (which we
call the “wire lattice”/“wire grid” is shifted horizontally from the “tunnel lattice”/“tunnel
grid”, it is not at all shifted vertically from the “tunnel lattice”/“tunnel grid”, so that by
construction, we have that the distance from the wire gadget to the sides of the tunnel gadget
is
√

3 > 1.

A B

C D

1

1

2
√

3

2

(a)

√
3

(b)

Figure A.1: (a) Triangular grid properties (b) The Tunnel Gadget

A.2 The Holder Gadget

UPDATE FIGURES!!!! THIS SECTION IS NOT COMPLETE!!!

First, we examine the holder gadget (see Figure A.2), and prove that its two valid configura-
tions are realizable within the constraints of the problem. We also quantify the shift of the
wire grid with respect to the tunnel grid. Note that in this analysis, we refer to the turquoise
structures of the holder gadget as “struts”.
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Figure A.2: The Holder Gadget. (a) The Holder Gadget overlaid on the triangular grid of the
tunnel. (b) Close-up of the top right strut. (c) Close-up of the top left strut. (d) Close-up of
the shift.
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Lemma A.2.1. The angles between adjacent components of the holder gadget are all greater
than 60◦.

Proof. We begin by overlaying the gadget onto the triangular grid of the sides of the tunnel
(the “tunnel grid”), like in Figure A.2a. Now, we can focus our analysis on just the top half
of one of the realizations of the holder gadget as shown in Figure A.2b (a close-up of the
region outlined in green in A.2a), since the bottom half and the other realization consist of
just rotated and reflected versions of this gadget, which doesn’t change angles or distances.

Let us start by focusing on the right strut. By construction, we know that UP = 12 and that
ZP = 13

√
3

2
. Thus, since 6 UZP is a right angle we have that m6 ZUP = α = sin−1(13

√
3

24
) ≈

69.750◦. Also, note by the Pythagorean Theorem that ZU =
√
69
2

.

Since m6 ZPQ = 90◦, we have that m6 UPQ = 90◦ − α + 90◦ = 180◦ − α ≈ 110.250◦,
so that m 6 UPQ > 60◦. Because m6 RPQ = 120◦ and m 6 SPU = 60◦, we have that
m6 RPS = 180−m6 UPQ = α ≈ 69.750◦, so that m6 RPS > 60◦.

Next, we have that m6 ZUV = 60◦, so that m 6 V UP = 60◦ + α ≈ 129.750◦, so that
m6 V UP > 60◦. Because m 6 TUP = 60◦ and m6 WUV = 60◦, we have that m6 TUW =
240◦ −m 6 V UP = 180◦ − α ≈ 110.250◦, so that m6 TUW > 60◦

Let us now move our analysis to the left strut. Recall that U ′P ′ ‖ UP .

Since U ′P ′ makes an angle of 90◦ − α with the vertical at P ′, we have that m 6 U ′P ′Q′ = α ≈
69.750◦, so that m6 U ′P ′Q′ > 60◦. Because m6 U ′P ′S ′ = 60◦ and m 6 Q′P ′R′ = 120◦, we have
that m6 R′P ′S ′ = 180−m6 U ′P ′Q′ = 180◦ − α ≈ 110.250◦, so that m6 R′P ′S ′ > 60◦.

Then, by adjacent interior angles, we have that m 6 P ′U ′V ′ = 60◦+(180◦−m6 U ′P ′Q′) = 240◦−
α ≈ 170.250◦, so that m6 P ′T ′V ′ > 60◦. Because m6 V ′U ′W ′ = 60◦ and m6 P ′U ′T ′ = 60◦, we
have that m6 T ′U ′W ′ = 240◦ −m 6 P ′T ′V ′ = α ≈ 69.250◦, so that m6 T ′U ′W ′ > 60◦.

Now, we shift our analysis to the middle strut. By construction, we have that IK = 6
√

3

and that KJ = 11
√
3

2
. Thus, since 6 IJK is a right angle we have m6 KIJ = sin−1

(
11

√
3

2

6
√
3

)
).

Let m6 KIJ = β. Also note, by the Pythagorean Theorem, that IJ =
√
69
2

.

Since m 6 DIJ = m6 MIY = 60◦, and IK bisects 6 MIY , We know that m 6 Y IJ = m 6 KIJ−
30◦, so that m 6 Y ID = β + 30◦ ≈ 96.444◦, so that m6 Y ID > 60◦. Since m6 MIY =
m6 CID = 60◦, we have that m6 MIC = 240◦ −m6 Y ID = 210◦ − β ≈ 143.556◦, so that
m6 MIC > 60◦.

Now, since
←→
ID ‖

←→
AK and

←→
IY ‖

←→
XK, we have that m 6 AKX = m6 Y ID = β + 30◦ ≈ 96.444◦,

so that m6 AKX > 60◦. Also, since m6 AKB = m6 XKL = 60◦, we have that m6 BKL =
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240◦ −m 6 AKX = 210◦ − β ≈ 143.556◦, so that m6 BKL > 60◦.

Corollary A.2.2. The wire gadget is shifted by
√

69 units (in the direction parallel to the
wire) between the two configurations of the holder gadget.

Proof. As determined in the previous proof, IJ = UZ =
√
69
2

is the shift of the wire gadget
from being “centered” on our holder gadget. Since the other configuration of the holder
gadget (Figure 4.3b is a mirror image of the configuration shown in Figure 4.3a, we have that

the distance (shift) between the two configurations of the wire gadget is
√
69
2
· 2 =

√
69.

Next, let us examine the shift of triangular lattice of the the wire gadget (the “wire lattice”)
with respect to the “tunnel lattice”(The triangular lattice of the tunnel gadget), by examining

Figure A.2c (a close-up of the region outlined in green in A.2b. Recall that UZ = IJ =
√
69
2

.
We define the following constant to simplify later calculations using this shift.

Definition A.2.3. Let κ =
√
69
2
− 4 ≈ 0.153.

We now quantify the shift.

Lemma A.2.4. The “wire grid” is shifted by κ+ 1
2

from the “tunnel grid” in the direction
of pressure.

Proof. Noting that Z is at the midpoint between two lattice points of the “tunnel lattice”,
we find that the “wire lattice” is shifted by κ + 1

2
in the direction of “pressure” from the

“tunnel lattice”. Note that this means that while no points coincide between the two lattices,
we have that all lines of the “tunnel grid” are parallel to or the same as the corresponding
[shifted] lines of the “wire grid” (the triangular grid of the “wire lattice”).

Note that while we may reuse and/or redefine other symbols and/or variables in the analysis
of different gadgets, we use this same value of κ throughout this appendix.

Finally, we complete the verification of the holder gadget.

Lemma A.2.5. The disjoint components of the holder gadget are greater than unit distance
apart.

Proof. Because we have already verified all relevant angles, it only remains to show that
adjacent struts are greater than unit distance apart. Again, refer to Figure A.2b.

First, for the right and middle struts, we want to calculate the distance between their closest
edges. Because m6 KIJ = β and m6 PUZ = α, and since tan β < tan(β), we have that the

slope of
←→
IK is less than the slope of

←→
UP . Since

←→
Y L ‖

←→
KI and

←→
TS ‖

←→
UP , due to their slopes
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and relative positions, it suffices to check that L is more than unit distance from TS to verify
that the two struts are far enough apart.

Similarly, for the left and middle struts, we also want to calculate the distance between their

closest edges. Since
←−→
MX ‖

←→
KI and

←→
T ′S ′ ‖

←→
UP , due to their slopes and relative positions, it

suffices to check that M is more than unit distance from T ′S ′ to verify that the two struts
are far enough apart.

To accomplish this, we will calculate the positions of points in a Cartesian coordinate system.
By fixing the origin (0, 0) to O (note that O is a point in the “tunnel lattice”), we can calculate
the Cartesian coordinates of other points from their horizontal and vertical displacement
from O using the triangular grid, our shift calculations from A.2.4, and trigonometry.

First, by construction, we find that I = (2− κ,
√
3
2

), U = (7− κ,
√
3
2

), and U ′ = (−3− κ,
√
3
2

).
Next, since m6 Y IJ = β − 30◦, m6 MIJ = β + 30◦, and MI = Y I = 2, we have that
Y = (2−κ+ 2 cos(β − 30◦),

√
3
2

+ 2 sin(β − 30◦)), and that M = (2−κ+ 2 cos(β + 30◦),
√
3
2

+

2 sin(β + 30◦)). Additionally, since m6 KIJ = β,
←→
KI ‖

←→
LY , and LY = 4

√
3, we have

that L = (2 − κ + 2 cos(β − 30◦) + 4
√

3 cos β,
√
3
2

+ 2 sin(β − 30◦) + 4
√

3 sin β). Also, since
m6 TUZ = α + 60◦, m6 T ′U ′I = α − 60◦, and TU = T ′U ′ = 1, we have that T = (7 − κ +

cos(α + 60◦),
√
3
2

+ sin(α + 60◦)) and T ′ = (−3− κ+ cos(α− 60◦),
√
3
2

+ sin(α− 60◦)).

Now, using the fact that the slope of
←→
TS = the slope of

←→
T ′S ′ = tanα, we can find the

equations of these lines. Then, using the equation for the distance from a point to a line
(given a line in standard form ax+ by+ c = 0 and a point (x0, y0), the distance from the point

to the line is |ax0+by0+c|√
a2+b2

). We find that the distance between
←→
TS and L is 235

√
3

144
− 5
√
23

48
≈ 2.327,

so that L is greater than unit distance from TS, and that the distance between
←→
T ′S ′ and M

is
√
23
48

+ 235
√
3

144
≈ 2.927, so that M is greater than unit distance from T ′S ′.

A.3 The Turn Gadget

Now, we examine the turn gadget (see Figure A.3).

Lemma A.3.1. The disjoint components of the turn gadget are greater than unit distance
apart.

Proof. As before, we begin by overlaying the gadget onto the “tunnel lattice”, like in Figure
A.3a. We only focus our analysis on only one of the realizations of the holder gadget, since
the two are mirror images of each other.
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Figure A.3: The Turn Gadget. (a) The Turn Gadget overlaid on the triangular grid of the
tunnel. (b) Close-up of the relevant gaps.

Let us begin by calculating the distance between the two wires of the gadget, as shown in
the bottom of Figure A.3b (a close-up of the region outlined in green in A.3a). Note that we
are dealing with two separate “wire grid”s here (left and right), because each wire is shifted
in a different direction with respect to the “tunnel grid”. However, since corresponding lines
in the shifted “wire grid”s are parallel to the lines in the “tunnel grid”, they are also parallel
to each other. Thus, to show that the two wires are sufficiently far apart, it suffices to show

that U (of the left wire) is greater than unit distance from T , the closest point to U on
←→
TV

(of the right wire). Note that
←→
TV belongs to both the “tunnel grid” and the right “wire grid”,

and that V belongs to the “tunnel lattice”.

Recalling our previous shift calculations form Lemma A.2.4, we find that UV = 3
2

+ κ,

by construction. Furthermore, since
←→
UV and

←→
TV are both parallel to lines of the “tunnel

grid”, we have that m6 UV T = 60◦. Thus, by right triangle trigonometry, we have that
UT =

√
3
2

(3
2

+ κ) ≈ 1.432, so that UT > 1.

Now, we turn our attention to the distance between the end of the right wire and the wall of
the gadget, as in the top of Figure A.3b. Again, since we have that the lines of the “wire
grid” are parallel to the lines of the “tunnel grid”, it suffices to check that M is greater than

unit distance from Q (the closes point to M of
←→
QP ), and similarly that R is greater than

unit distance from S. However, due to symmetry, we can check that MQ = RS, so that it
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suffices to merely check the distance from M to Q.

Analogously, we find that MP = 3
2
− κ, by construction. Similarly, we again use that the

“wire grid” and “tunnel grid” have parallel corresponding lines, so that m 6 QPM = 60◦. Thus,
by right triangle trigonometry, we have that QM =

√
3
2

(3
2
− κ) ≈ 1.166, so that QM > 1.

Figure A.4: The Invalid Configuration of the Turn Gadget

Lemma A.3.2. The invalid configuration of the turn gadget cannot be realized within the
problem constraints.

Proof. From Lemma A.3.1, we have that the distance from the left wire to the right wire in
Figure A.3b is UV = 3

2
+ κ. By Corollary A.2.2, we have that the wire gadget is shifted by√

69 units between the two configurations of the holder gadget. We know that
√

69 ≈ 8.307
and 3

2
+ κ ≈ 1.653, so that

√
69 > 3

2
+ κ. Thus, since we have that the left wire gadget is

shifted
√

69 units to the right in the invalid configuration as compared to the configuration
in Figure A.3b, the two wires must intersect in this configuration, so that it is invalid within
the problem constraints.

A.4 The Variable Gadget

Now, we examine the variable gadget (see Figure A.5, Figure A.7).

Note that this gadget includes multiple copies of the holder gadget, which we have already
verified in A.2, so that we need not verify angles between adjacent structures of the variable
gadget. Also note that the spacing between the variable bar and the outer wall of the gadget
is the same as the tunnel gadget we verified in A.1. Thus, it only remains to verify the gaps
between the variable bar and the ends of the wire gadgets. The gap calculation arguments in
this section closely follow those of A.3.
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Figure A.5: The ‘True’ Variable Gadget. (a) The Variable Gadget overlaid on the triangular
grid of the tunnel. (b) Close-up of the gap between the variable bar and a false literal. (c)
Close-up of the gap between the variable bar and a true literal

Lemma A.4.1. The disjoint components of the variable gadget are greater than unit distance
apart.

Proof. Let us begin by analyzing the ‘true’ configuration of the gadget. As before, we begin
by overlaying the gadget onto the “tunnel lattice”, like in Figure A.5a.

Let us begin by calculating the distance between the variable bar and the end of the wire
gadget of a ‘false’ literal, as in Figure A.5b (a close-up view of the region outlined in purple in
A.5a). Because the two “wire grids” are only shifted, not rotated, we have that corresponding
lines are parallel, so that it suffices to show that A is a sufficient distance from C. Note that
this distance will be the same for both the ‘true’ and ‘false’ configurations of this gadget, so
we only need to verify it once.

As before, we find that AB = 5
2

+ κ, by construction. Furthermore, since
←→
AB and

←→
BC are
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both parallel to lines of the “tunnel grid”, we have that m6 ABC = 60◦. Thus, by right
triangle trigonometry, we have that AC =

√
3
2

(5
2

+ κ) ≈ 2.298, so that AC > 1.

Now, we turn our attention to the distance between the variable bar and a ‘true’ literal that
is extended into its gap, as in Figure A.5c (a close-up view of the region outlined in green in
A.5a). Again, since we have that the lines of the “wire grid” are parallel to the lines of the
“tunnel grid”, it suffices to check that D is greater than unit distance from F , G is more than
unit distance from I, and J is more than unit distance from L.

Analogously to the the previous calculation, we find that DE = 3
2
− κ, GH = 5

2
− κ, and

JK = 5
2

+κ, by construction. We also find that m 6 DEF = m6 GHI = m6 JKL = 60◦. Thus,

we find that DF =
√
3
2

(
3
2
− κ
)
≈ 1.166, GI =

√
3
2

(
5
2
− κ
)
≈ 2.032, and JL =

√
3
2

(
5
2

+ κ
)
≈

2.298, so that DF > 1, GI > 1, and JL > 1.

Next, we analyze the ‘false’ configuration of this gadget (see Figure A.7), by again overlaying
it onto the “tunnel lattice”, as in Figure A.6a. As established above, we can immediately turn
our attention to the distance between the variable bar and a ‘true’ literal that is extended
into its gap, as in Figure A.6b (a close-up view of the region outlined in maroon in Figure
A.6a).

Again, since we have that the lines of the “wire grid” are parallel to the lines of the “tunnel
grid”, it suffices to check that D′ is greater than unit distance from F ′, G′ is more than unit
distance from I ′, and J ′ is more than unit distance from L′.

Almost exactly as before, we find that D′E ′ = 3
2

+ κ, G′H ′ = 5
2
− κ, and J ′K ′ = 5

2
− κ, by

construction. We also find that m6 D′E ′F ′ = m 6 G′H ′I ′ = m 6 J ′K ′L′ = 60◦. Thus, we find
that D′F ′ =

√
3
2

(
3
2

+ κ
)
≈ 1.432, G′′I =

√
3
2

(
5
2
− κ
)
≈ 2.032, and J ′L′ =

√
3
2

(
5
2
− κ
)
≈ 2.032,

so that D′F ′ > 1, GI ′ > 1, and J ′L′ > 1.
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Figure A.6: The ‘False’ Variable Gadget. (a) The Variable Gadget overlaid on the triangular
grid of the tunnel. (b) Close-up of the gap between the variable bar and a true literal
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Figure A.7: An Invalid Forced Literal in the Variable Gadget

Corollary A.4.2. It is impossible to force the wire gadgets of false literals (negated literals
in the ‘true’ variable configuration or nonnegated literals in the ‘false’ variable configuration)
towards the variable gadget.

Proof. From Lemma A.4.1, we have that the distance from the end of the wire gadgets to
the variable bar in Figure A.5b is 5

2
+ κ units when measured in the direction parallel to the

wire. By Corollary A.2.2, we have that the wire gadget is shifted by
√

69 units between the
two configurations of the holder gadget. We know that

√
69 ≈ 8.307 and 5

2
+ κ ≈ 2.653, so

that
√

69 > 5
2

+ κ. Thus, since we have that the end of the wire gadget is shifted
√

69 units
towards the variable gadget in the invalid configuration as compared to the configuration
in Figure A.5b, the wire and variable bar must intersect in this configuration, so that it is
invalid within the problem constraints.

A.5 The Inverter Gadget

Our analysis of this gadget will be split into three parts, one to verify each of the two valid
configurations of this gadget (the “outward” configuration, in which the “pressure” of the
wire is directed away from the gadget on both sides, and the “inward” configuration, in which
the “pressure” of the wire is directed towards the gadget from both sides) and one to prove
the invalid configurations of the gadget.
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A.5.1 The “Outward” Configuration

We first examine the “outward” configuration of the inverter gadget (see Figure A.8). We
will first check angles before checking distances between the walls and inner structures of the
gadget.

(a)

18
2

O

α

P

V

U 35

2
κ+

M

R

S

T

W

A

B

D

C

(b)

Figure A.8: The “Outward” Inverter Gadget. (a) The “Outward” Inverter Gadget overlaid
on the triangular grid of the tunnel. (b) Close-up of the relevant parts of the gadget.

Lemma A.5.1. The angles between adjacent components of the “outward” inverter gadget
are all greater than 60◦.

Proof. As before, we begin by overlaying the gadget on top of the “tunnel lattice”, like in
Figure A.8a. We only focus our analysis on the left side of the gadget since the right side is a
mirror image of the left side. Refer to Figure A.8b (a close-up of the region outlined in green
in A.8a) for the following.

We begin by calculating α = m 6 SUD. By construction, we have that UD = κ+ 35
2

and that
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US = 18 (note that
←→
DS splits the gadget in half). Thus, α = cos−1(

κ+ 35
2

18
) ≈ 11.263◦.

Since the left wire’s “wire grid” is only horizontally shifted from the tunnel grid, we have that
m6 BUD = 120◦. It follows that m6 SUB = 120◦ + α ≈ 131.263◦, so that m6 SUB > 60◦.
Furthermore, since m6 AUB = 60◦ and m6 V US = 60◦, we have that m6 AUV = 240◦ −
m6 SUB = 120◦ − α ≈ 108.737◦, so that m6 AUV > 60◦.

We also have that m 6 USW = 2 ·m6 USD = 2(90◦ − α) = 180◦ − 2α ≈ 157.473◦, so that
m6 USW > 60◦. Furthermore, since m6 USR = 60◦ and m6 TSW = 60◦, we have that
m6 RST = 240−m6 USW = 60◦ + 2α ≈ 82.527◦, so that m 6 RST > 60◦.

Lemma A.5.2. The disjoint components of the “outward” inverter gadget are greater than
unit distance apart.

Proof. We must check distances between the walls and inner structures of the gadget. Because
we have that α > 0◦, all parts of the inner structure are strictly farther from the bottom wall
of the gadget than the bottom of the left wire gadget, and thus, we do not need to check for
distances between the inner structure and the bottom wall of the gadget.

Meanwhile, because tan 0◦ < tanα < tan 60◦, the slope of
←→
V R is less than that of

←→
MC, and

greater than
←→
MP . Thus, given the relative positions of parts of the gadget, it suffices to show

that P is greater than unit distance from V R and that V is greater than unit distance from
either MC or MP .

To accomplish this, we will calculate the positions of points in a Cartesian coordinate system.
By fixing the origin (0, 0) to O (note that O is a point in the “tunnel lattice”), we can calculate
the Cartesian coordinates of other points from their horizontal and vertical displacement from
O using the triangular grid, our earlier shift calculations from Lemma A.2.4, and trigonometry.
Since the distance from a point to a line can only be greater than the distance from the point
to the segment’s corresponding line, this is the calculation we use below.

First, by construction, we have that U = (1 − κ,
√
3
2

). Additionally, because they lie on

the “tunnel grid”, we can easily find that M = (1, 3
√

3) and P = (8, 3
√

3). Finally,
because m6 V US = 60◦, we have that m 6 V UD = α + 60◦. Thus, using right triangle
trigonometry and the fact that UV = 2, we can find the location of V relative to U , to get

V =
(

1− κ+ 2 cos(α + 60◦),
√
3
2

+ 2 sin(α + 60◦)
)

.

Next, we note that the slopes of
←→
V R,

←→
CM , and

←→
MP are tanα, tan 60◦ =

√
3, and tan 0◦ = 0,

respectively. Using this, we can solve for the equations of
←→
V R,

←→
CM , and

←→
MP .

Finally, using the formula for distance between a point and a line, we find that the distance

between P and
←→
V R is

−(
√
69+27)·

(√
−2(9

√
69−83)·(21

√
23+31

√
3)−4(18

√
23+113

√
3)
)

15840
≈ 1.117, so that
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they are greater than 1 unit apart. We also find that the distance between V and MC is
−(2)
√
−6(9

√
69−83)+9(3

√
23−13

√
3)

36
≈ 1.642, so that they are greater than 1 unit apart. Lastly, we

find that the distance between V and
←→
MP is

−
√
−6(9

√
69−83)

36
−
√
23−21

√
3

12
≈ 2.436, so that they

are greater than 1 unit apart.

A.5.2 The “Inward” Configuration

Now, we examine the “inward” configuration of the inverter gadget in a very similar fashion
(see Figure A.9). We will first check angles before checking distances between the walls and
inner structures of the gadget.

Lemma A.5.3. The angles between adjacent components of the “inward” inverter gadget
are all greater than 60◦.

Proof. As before, we begin by overlaying the gadget on top of the “tunnel lattice”, like in
Figure A.9a. We only focus our analysis on the left side of the gadget since the right side is
a mirror image of the left side. Refer to Figure A.9b (a close-up of the region outlined in
purple in A.9a) for the following.

As before,we begin by calculating θ = m 6 S ′U ′D′. By construction, we have that U ′D′ = 19
2
−κ

and that U ′S ′ = 18 (note that
←−→
D′S ′ splits the gadget in half). Thus, θ = cos−1(

19
2
−κ
18

) ≈
58.717◦.

Since the left wire’s “wire grid” is only horizontally shifted from the tunnel grid, we have that
m6 B′U ′D′ = 120◦. It follows that m6 S ′U ′B′ = 120◦+θ ≈ 178.717◦, so that m6 S ′U ′B′ > 60◦.
Furthermore, since m6 A′U ′B′ = 60◦ and m6 V ′U ′S ′ = 60◦, we have that m6 A′U ′V ′ =
240◦ −m 6 S ′U ′B′ = 120◦ − θ ≈ 61.283◦, so that m6 A′U ′V ′ > 60◦.

We also have that m 6 U ′S ′W ′ = 2 ·m6 U ′S ′D′ = 2(90◦ − θ) = 180◦ − 2θ ≈ 62.565◦, so that
m6 U ′S ′W ′ > 60◦. Furthermore, since m6 U ′S ′R′ = 60◦ and m6 T ′S ′W ′ = 60◦, we have that
m6 R′S ′T ′ = 240−m6 U ′S ′W ′ = 60◦ + 2θ ≈ 177.435◦, so that m 6 R′S ′T ′ > 60◦.

Lemma A.5.4. The disjoint components of the “inward” inverter gadget are greater than
unit distance apart.

Proof. We again check distances between the walls and inner structures of the gadget. Again,
because we have that θ > 0◦, all parts of the inner structure are strictly farther from the
bottom wall of the gadget than the bottom of the left wire gadget, and thus, we do not need
to check for distances between the inner structure and the bottom wall of the gadget.
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Figure A.9: The “Inward” Inverter Gadget. (a) The “Inward” Inverter Gadget overlaid on
the triangular grid of the tunnel. (b) Close-up of the relevant parts of the gadget.
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Meanwhile, because tan 0◦ < tan θ < tan 60◦, the slope of
←−→
V ′R′ is less than that of

←→
PQ and

greater than that of
←→
QF (which is parallel to

←→
EP ). Also, because m 6 S ′U ′D′ < m6 R′S ′U ′

(θ < 60◦), and because
←→
QF ‖

←−→
U ′D′, we have that the slope of

←→
RS is less than that of

←→
QF .

Thus, given the relative positions of parts of the gadget, it suffices to show that P is greater
than unit distance from V ′R′, V ′ is greater than unit distance from EP , and R′ is greater
than unit distance from QF .

As before, we will check distances by calculating the positions of points in a Cartesian
coordinate system. By fixing the origin (0, 0) to O′ (note that O′ is a point in the “tunnel
lattice”), we can calculate the Cartesian coordinates of other points from their horizontal and
vertical displacement from O′ using the triangular grid, our earlier shift calculations from
Lemma A.2.4, and trigonometry.

First, by construction, we have that U ′ = (1 +κ,
√
3
2

). Additionally, because they all lie on the

“tunnel grid”, we can easily find that E = (−1, 3
√

3), P = (0, 3
√

3), Q = (15
2
, 21
√
3

2
), and F =

(25
2
, 21
√
3

2
). Next, because m6 V ′U ′S ′ = 60◦, we have that m6 V ′U ′A′ = 120◦ − θ. Thus, using

right triangle trigonometry and the fact that U ′V ′ = 2, we can find the location of V ′ relative

to U ′, to get V ′ =
(

1 + κ− 2 cos(120◦ − θ),
√
3
2

+ 2 sin(120◦ − θ)
)

. Finally, because we know

that
←−→
V ′R′ ‖

←−→
U ′S ′ and that V ′R′ = 16, we can use trigonometry to calculate the position of R′

relative to V ′, to find thatR′ =
(

1 + κ− 2 cos(120◦ − θ) + 16 cos θ,
√
3
2

+ 2 sin(120◦ − θ) + 16 sin θ
)

.

Next, we note that the slopes of
←−→
V ′R′,

←→
EP , and

←→
QF are tan θ, tan 0◦ = 0, and tan 0◦ = 0,

respectively. Using this, we can solve for the equations of
←−→
V ′R′,

←→
EP , and

←→
QF .

Finally, using the formula for distance between a point and a line, we find that the distance

between P and
←−→
V ′R′ is

−(
√
69−27)·

(√
2(9
√
69+83)·(21

√
23−31

√
3)−4(18

√
23−113

√
3)
)

15840
≈ 1.502, so that

they are greater than 1 unit apart. We also find that the distance between V ′ and EP is
√
23+21

√
3

12
−
√

6(9
√
69+83)

36
≈ 2.576, so that they are greater than 1 unit apart. Lastly, we find

that the distance between R′ and
←→
QF is

√
23+111

√
3

12
− 17
√

6(9
√
69+83)

36
≈ 1.893, so that they are

greater than 1 unit apart.

A.5.3 The Invalid Configurations

Now, we examine the two invalid configurations of the inverter gadget and verify that they
are, in fact, not realizable.
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Figure A.10: The Invalid Configurations (a) The ‘Downward” Invalid Configuration (b) The
‘Upward’ Invalid Configuration

Lemma A.5.5. The two invalid configurations of the inverter gadget cannot be realized
within the problem constraints.

Proof. We will show that these two configurations force intersections of disks, by showing that
the ‘downward’ configuration forces IH to intersect OJ and that the ‘upward’ configuration
forces I ′H to intersect LK. Note that, while the two inner blue structures can flip about GI
and HI, or GI ′ and HI ′, respectively, the locations of G,H, I, and I ′ are fixed, so that the
aforementioned intersections are unavoidable.

To accomplish this, we will calculate the positions of points in a Cartesian coordinate system.
By fixing the origin (0, 0) to O (note that O is a point in the “tunnel lattice”), we can calculate
the Cartesian coordinates of other points from their horizontal and vertical displacement
from O using the triangular grid, our shift calculations from Lemma A.2.4, and trigonometry.
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First, we consider the ‘downward’ configuration in Figure A.10a. By construction, we have
that J = (27, 0), G = (1

2
+ κ, 2

√
3), and H = (55

2
+ κ, 2

√
3). Since GI = HI = 18, by

the Pythagorean Theorem, we find that I = (14 + κ, 2
√

3 − 9
√
7

2
). Clearly, we have that

←→
OJ is the line y = 0. Since the y-coordinate of G is 2

√
3 > 0 and the y-coordinate of I is

2
√

3− 9
√
7

2
≈ −8.442, so that it is less than 0, we must have that GI intersects the line y = 0,

so that it intersects
←→
OJ . Furthermore, since the x-coordinate of G is 1

2
+ κ ≈ 0.653, and

the x-coordinate of I is 14 + κ = 14.153, both values between 0 and 27, we have that GI
intersects OJ which means that this configuration cannot be realized within the problem
constraints.

Next, we consider the ‘upward’ configuration in Figure A.10b. By construction, we have
that G = (1

2
+ κ, 2

√
3), H = (55

2
+ κ, 2

√
3), L = (41

2
, 9
√
3

2
), and K = (55

2
, 9
√
3

2
). Since

GI ′ = HI ′ = 18, by the Pythagorean Theorem, we find that I ′ = (14+κ, 2
√

3+ 9
√
7

2
). Clearly,

we have that
←→
LK is the line y = 9

√
3

2
. We can find the equation for

←→
HI ′ and plug in y = 9

√
3

2

to find that it intersects
←→
LK at (55

2
+ κ− 15

√
21

14
, 9
√
3

2
). As (55

2
+ κ− 15

√
21

14
≈ 22.743 is between

41
2

and 55
2

(the s-coordinates of L and K, respectively), we thus have that I ′H intersects LK,
so that this configuration is not realizable within the problem constraints.

A.6 The Clause Gadget

Our analysis of this gadget will be split into four parts, one for each of the possible configura-
tions of this gadget that we will encounter. Recall that we previously argued that the clause
gadget need only handle the cases where 0 or 1 literals are ‘true’, so that it suffices to only
analyze these four configurations.

First, we will argue that the unsatisfied configuration (where all literals have a value of ‘false’)
is truly impossible to realize. Then, we will address each of the three satisfied configurations
(where exactly one literal has a value of ‘true’ and the other two a value of ‘false’) in turn,
showing that each can actually be realized within the constraints of the problem. Note that
these have been arbitrarily numbered to distinguish different configurations.

Note that we need not check the distances between the inner structures of this gadget and
the outer walls, since the outer walls can be arbitrarily moved outward (while maintaining
rigidity and staying on the “tunnel grid”) if needed without changing the validity of this
gadget.
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(a) (b)

(c) (d)

Figure A.11: The Clause Gadget. Each of the following configurations is overlaid onto
the tunnel lattice(a) The Unsatisfied Configuration (literal values: FFF ) (b) Satisfied
Configuration 1 (literal values: TFF ) (c) Satisfied Configuration 2 (literal values: TFT ) (d)
Satisfied Configuration 3 (literal values: FFT )
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A.6.1 The Unsatisfied Configuration

B

E

H

W
W ′

Z′

Y ′

O

Figure A.12: The Unsatisfied Configuration, a closeup of the relevant parts of Figure A.11a

Let us begin by analyzing the unsatisfied configuration of the gadget. Notice that we already
overlaid the gadget onto the “tunnel lattice” in Figure A.11a.

Lemma A.6.1. The unsatisfied configuration cannot be realized as a valid configuration of
the clause gadget.
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Proof. We will show that this configuration cannot have W coincide with W ′. Note that,
while the inner blue structures can flip about HZ ′, EY ′ and BW ′, respectively, the dis-
tances HZ ′, EY ′, and BW ′ are fixed (or rather bounded in the case of BW’), so that the
aforementioned co-incidence is impossible.

Since this gadget has the most internal moving parts, calculating the angles between its inner
structures will require us to know the relative positions of some of the points in Figure A.13
(a close-up of the region outlined in green in A.11a).

To accomplish this, we will calculate the positions of points in a Cartesian coordinate system.
By fixing the origin (0, 0) to O (note that O is a point in the “tunnel lattice”), we can calculate
the Cartesian coordinates of other points from their horizontal and vertical displacement
from O using the triangular grid, our shift calculations from A.2.4, algebra, and trigonometry.
Once we know the coordinates of three points, we can use simple trigonometry to find the
angle formed between them.

First, by construction, we find that

B =

(
−17

2
− κ, 12

√
3

)
, E =

(
131

4
+
κ

2
,
5
√

3

4
− κ
√

3

2

)
, and H =

(
109

4
+
κ

2
,
97
√

3

4
+
κ
√

3

2

)
.

We also know that HZ ′ = 16, EY ′ = 24 and that the maximum distance for BW ′ is 27. Now,
rather that trying to prove that W can only be greater that 27 units from B, we argue that
Z ′ can only be greater than 28 units away from B, because WZ ′ = 1, and by the triangle
inequality, BZ ′ ≤ BW + 1, so that BZ ′ > 28 =⇒ BW + 1 > 28 =⇒ BW > 27.

We try to find the closest possible position of Z ′ to B, noting that HZ ′ = 16 and EZ ′ < 25
(because Y ′Z ′ = 1). If we let Z ′ = (x, y), Then we are trying to solve

min

√(x− (−17

2
− κ
))2

+
(
y −

(
12
√

3
))2

such that


√(

x−
(
109
4

+ κ
2

))2
+
(
y −

(
97
√
3

4
+ κ

√
3

2

))2
= 16√(

x−
(
131
4

+ κ
2

))2
+
(
y −

(
5
√
3

4
− κ

√
3

2

))2
≤ 25

Solving this (using computer-aided methods), we find that the minimum distance from B to
Z ′ is approximately 35.373 units, when (x, y) ≈ (26.308, 26.168), which is clearly greater that
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28 units. Thus, by our earlier argument, we have that W and W ′ cannot coincide, so that
this configuration is not possible within our problem constraints.

A.6.2 Satisfied Configuration 1

O
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B
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D

E F

G′

H′
I′

J

K
L

M
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Q

R

S
T

U

V

Figure A.13: Satisfied Configuration 1, a closeup of the relevant parts of Figure A.11b
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Now, we analyze one of the satisfied configuration of the gadget. Notice that we already
overlaid the gadget onto the “tunnel lattice” in Figure A.11a.

Lemma A.6.2. The angles between adjacent components of satisfied configuration 1 of the
clause gadget are all greater than 60◦.

Proof. Since this gadget has the most internal moving parts, calculating the angles between
its inner structures will require us to know the relative positions of some of the points in
Figure A.13 (a close-up of the region outlined in purple in A.11b).

To accomplish this, we will calculate the positions of points in a Cartesian coordinate system.
By fixing the origin (0, 0) to O (note that O is a point in the “tunnel lattice”), we can calculate
the Cartesian coordinates of other points from their horizontal and vertical displacement
from O using the triangular grid, our shift calculations from A.2.4, algebra, and trigonometry.
Once we know the coordinates of three points, we can use simple trigonometry to find the
angle formed between them.

First, by construction, we find that

A =

(
−19

2
− κ, 13

√
3

)
, B =

(
−17

2
− κ, 12

√
3

)
,

E =

(
131

4
+
κ

2
,
5
√

3

4
− κ
√

3

2

)
, F =

(
139

4
+
κ

2
,
5
√

3

4
− κ
√

3

2

)
,

G′ =

(
89

4
− κ

2
,
85
√

3

4
− κ
√

3

2

)
, and H ′ =

(
93

4
− κ

2
,
81
√

3

4
− κ
√

3

2

)
.

Next, using the coordinates for E and H ′, and the fact that EV = 24 and H ′U = 16, we
can solve for the coordinates of V , V = (x1, y1), given that we want U to be a unit vertically
above V , U = (x1, y1 + 1), using the following system of equations

√(
x1 −

(
131
4

+ κ
2

))2
+
(
y1 −

(
5
√
3

4
− κ

√
3

2

))2
= 24√(

x1 −
(
93
4
− κ

2

))2
+
(
y1 + 1−

(
81
√
3

4
− κ

√
3

2

))2
= 16

Of the two sets of solutions to this system, we choose the one with the lower value for x1, as
this matches our construction. We get that x1 ≈ 16.340, y1 ≈ 19.474 (the exact solution is
too long to display on the page).

As mentioned before, we have that V = (x1, y1) and U = (x1, y1 + 1), but we also have that

T = (x1 −
√
3
2
, y1 + 1

2
). Now, using this and the coordinates of B, and the fact that BL = 10
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and LT = 17, we can solve for the coordinates of L, L = (x2, y2) using the following system
of equations 

√(
x2 −

(
−17

2
− κ
))2

+
(
y2 −

(
12
√

3
))2

= 10√(
x2 −

(
x1 −

√
3
2

))2
+
(
y2 −

(
y1 + 1

2

))2
= 17

Of the two sets of solutions to this system, we choose the one with the lower value for y2,
as this matches our construction. We get that x2 ≈ −0.696, y2 ≈ 14.728 (again, the exact
solution is too long to display on the page).

Now, using all of our computed coordinates for points, we can use the law of cosines to find
angles. Namely, given the coordinates of the points X, Y, and Z, we can find m6 XY Z as
follows: letting DXY , DY Z , and DXZ be the Euclidean distance between points X and Y ,

Y and Z, and X and Z, respectively, we have that m6 XY Z = cos−1(
D2

XY +D2
Y Z−D

2
XZ

2·DXY ·DY Z
). Note

that because of the length of exactly-valued expressions, we only give approximate measures
of all angles.

Using this, we find that m6 FEV ≈ 133.387◦, so that m6 FEV > 60◦. Since m6 REV =
m6 DEF = 60◦, we have that m 6 RED = 240◦−m 6 FEV ≈ 106.613◦, so that m6 RED > 60◦.

We find that m6 G′H ′U ≈ 124.719◦, so that m 6 G′H ′U > 60◦. Since m6 PH ′U = m6 G′H ′I ′ =
60◦, we have that m 6 I ′H ′P = 240◦ −m 6 G′H ′U ≈ 115.281◦, so that m6 I ′H ′P ′ > 60◦.

We find that m 6 ABL ≈ 157.276◦, so that m 6 ABL > 60◦. Since m6 ABC = m 6 JBL = 60◦,
we have that m6 CBJ = 240◦ −m 6 ABL ≈ 82.724◦, so that m6 CBJ > 60◦.

We find that m6 EV U ≈ 136.613◦, so that m6 EV U > 60◦. We have that m6 H ′UV ≈
154.719◦, so that (since m6 H ′UQ = 60◦) m6 QUV = m6 H ′UV − 60◦ ≈ 94.719◦, so that
m6 QUV > 60◦.

We find that m 6 H ′UT ≈ 145.281◦, so that m6 H ′UT > 60◦. We have that m6 LTU ≈
167.973◦, so that (since m 6 LTN = 60◦) m6 NTU = m6 LTU − 60◦ ≈ 107.973◦, so that
m6 NTU > 60◦.

We find that m6 LTV ≈ 132.027◦, so that m6 LTV > 60◦. We have that m 6 EV T ≈ 163.387◦,
so that (since m6 SV E = 60◦) m6 SV T = m6 EV T − 60◦ ≈ 103.387◦, so that m 6 SV T > 60◦.

Finally, we find that m6 BLT ≈ 124.751◦. Since m6 TLM = 60◦, we have that m 6 BLM =
m6 BLT − 60◦ ≈ 64.751◦, so that m6 BLM > 60◦. Since we also have m 6 BLK = 60◦, we
have that m6 KLT = 240◦ −m6 BLM ≈ 175.249◦, so that m6 KLT > 60◦.

Lemma A.6.3. The disjoint components of satisfied configuration 1 of the clause gadget are
greater than unit distance apart.
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Proof. As previously noted, we do not need to check the distances between the inner structures
of this configuration and the outer wall, so that it only remains to check the distances between
EV and QU , H ′U and NT , and LT and SV , respectively.

However, because we already know that m6 EV U + m 6 V UQ ≈ 231.331◦, we have that
m6 EV U +m6 V UQ > 180◦, so that EV and QU are closest at V U = 1, and the remainder
of these line segments are more than unit distance apart. Similarly, because we know that
m6 H ′UT + m6 UTN ≈ 253.254◦, we have that m6 H ′UT + m6 UTN > 180◦, so that H ′U
and NT are closest at UT = 1, and the remainder of these line segments are more than unit
distance apart. Finally, because we know that m6 LTV +m6 TV S ≈ 235.414◦, we have that
m6 LTV +m6 TV S > 180◦, so that LT and SV are closest at TV = 1, and the remainder of
these line segments are more than unit distance apart.

A.6.3 Satisfied Configuration 2

Now, we analyze another one of the satisfied configuration of the gadget. Notice that we
already overlaid the gadget onto the “tunnel lattice” in Figure A.11c.

Lemma A.6.4. The angles between adjacent components of satisfied configuration 2 of the
clause gadget are all greater than 60◦.

Proof. Since this gadget has the most internal moving parts, calculating the angles between
its inner structures will require us to know the relative positions of some of the points in
Figure A.14 (a close-up of the region outlined in brown in A.11c).

To accomplish this, we will calculate the positions of points in a Cartesian coordinate system.
By fixing the origin (0, 0) to O (note that O is a point in the “tunnel lattice”), we can calculate
the Cartesian coordinates of other points from their horizontal and vertical displacement
from O using the triangular grid, our shift calculations from A.2.4, algebra, and trigonometry.
Once we know the coordinates of three points, we can use simple trigonometry to find the
angle formed between them.

First, by construction, we find that
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Figure A.14: Satisfied Configuration 2, a closeup of the relevant parts of Figure A.11c

Next, using the coordinates for E ′ and H, and the fact that E ′V ′ = 24 and HU ′ = 16, we can
solve for the coordinates of V ′, V ′ = (x3, y3), given that we want U ′ to be a unit vertically
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above V ′, U ′ = (x3, y3 + 1), using the following system of equations
√(

x3 −
(
115
4
− κ

2

))2
+
(
y3 −

(
21
√
3

4
+ κ

√
3

2

))2
= 24√(

x3 −
(
109
4

+ κ
2

))2
+
(
y3 + 1−

(
97
√
3

4
+ κ

√
3

2

))2
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Of the two sets of solutions to this system, we choose the one with the lower value for x3, as
this matches our construction. We get that x3 ≈ 16.340, y3 ≈ 19.474 (the exact solution is
too long to display on the page).

As mentioned before, we have that V ′ = (x3, y3) and U ′ = (x3, y3 + 1), but we also have that

T ′ = (x3−
√
3
2
, y3 + 1

2
). Now, using this and the coordinates of B, and the fact that BL′ = 10

and L′T ′ = 17, we can solve for the coordinates of L′, L′ = (x4, y4) using the following system
of equations 
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Of the two sets of solutions to this system, we choose the one with the lower value for y4,
as this matches our construction. We get that x4 ≈ −0.696, y4 ≈ 14.728 (again, the exact
solution is too long to display on the page).

Now, using all of our computed coordinates for points, we can once again use the law of
cosines to find angles, by the same method used above. Note that because of the length of
exactly-valued expressions, we only give approximate measures of all angles.

Using this, we find that m6 F ′E ′V ′ ≈ 121.478◦, so that m 6 F ′E ′V ′ > 60◦. Since m 6 R′E ′V ′ =
m6 D′E ′F ′ = 60◦, we have that m6 R′E ′D′ = 240◦ − m6 F ′E ′V ′ ≈ 118.522◦, so that
m6 R′E ′D′ > 60◦.

We find that m6 GHU ′ ≈ 105.647◦, so that m6 GHU ′ > 60◦. Since m6 P ′HU ′ = m6 GHI =
60◦, we have that m 6 IHP ′ = 240◦ −m6 GHU ′ ≈ 134.353◦, so that m 6 IHP ′′ > 60◦.

We find that m6 ABL′ ≈ 121.885◦, so that m6 ABL′ > 60◦. Since m6 ABC = m 6 J ′BL′ = 60◦,
we have that m6 CBJ ′ = 240◦ −m 6 ABL′ ≈ 118.115◦, so that m 6 CBJ ′ > 60◦.

We find that m6 E ′V ′U ′ ≈ 148.522◦, so that m6 E ′V ′U ′ > 60◦. We have that m6 HU ′V ′ ≈
135.647◦, so that (since m6 HU ′Q′ = 60◦) m 6 Q′U ′V ′ = m 6 HU ′V ′ − 60◦ ≈ 75.647◦, so that
m6 Q′U ′V ′ > 60◦.

We find that m6 HU ′T ′ ≈ 164.353◦, so that m 6 HU ′T ′ > 60◦. We have that m6 L′T ′U ′ ≈
175.050◦, so that (since m 6 L′T ′N ′ = 60◦) m6 N ′T ′U ′ = (360◦ −m6 L′T ′U ′)− 60◦ ≈ 124.950◦,
so that m 6 N ′T ′U ′ > 60◦.
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We find that m 6 L′T ′V ′ ≈ 115.050◦, so that m6 L′T ′V ′ > 60◦. We have that m6 E ′V ′T ′ ≈
151.478◦, so that (since m6 S ′V ′E ′ = 60◦) m6 S ′V ′T ′ = m6 E ′V ′T ′ − 60◦ ≈ 91.478◦, so that
m6 S ′V ′T ′ > 60◦.

Finally, we find that m6 BL′T ′ ≈ 143.165◦. Since m 6 T ′L′M ′ = 60◦, we have that m 6 BL′M ′ =
m6 BL′T ′ − 60◦ ≈ 83.165◦, so that m6 BL′M ′ > 60◦. Since we also have m6 BL′K ′ = 60◦, we
have that m6 K ′L′T ′ = 240◦ −m6 BL′M ′ ≈ 156.835◦, so that m 6 K ′L′T ′ > 60◦.

Lemma A.6.5. The disjoint components of satisfied configuration 2 of the clause gadget are
greater than unit distance apart.

Proof. As previously noted, we do not need to check the distances between the inner structures
of this configuration and the outer wall, so that it only remains to check the distances between
E ′V ′ and Q′U ′, HU ′ and N ′T ′, and L′T ′ and S ′V ′, respectively.

However, because we already know that m6 E ′V ′U ′ + m6 V ′U ′Q′ ≈ 224.169◦, we have that
m6 E ′V ′U ′ + m6 V ′U ′Q′ > 180◦, so that E ′V ′ and Q′U ′ are closest at V ′U ′ = 1, and the
remainder of these line segments are more than unit distance apart. Similarly, because we
know that m 6 HU ′T ′+m6 U ′T ′N ′ ≈ 289.303◦, we have that m6 HU ′T ′+m 6 U ′T ′N ′ > 180◦, so
that HU ′ and N ′T ′ are closest at U ′T ′ = 1, and the remainder of these line segments are more
than unit distance apart. Finally, because we know that m 6 L′T ′V ′ +m6 T ′V ′S ′ ≈ 206.528◦,
we have that m6 L′T ′V ′ +m6 T ′V ′S ′ > 180◦, so that L′T ′ and S ′V ′ are closest at T ′V ′ = 1,
and the remainder of these line segments are more than unit distance apart.

A.6.4 Satisfied Configuration 3

Now, we analyze the third of the satisfied configuration of the gadget. Notice that we already
overlaid the gadget onto the “tunnel lattice” in Figure A.11d.

Lemma A.6.6. The angles between adjacent components of satisfied configuration 3 of the
clause gadget are all greater than 60◦.

Proof. Since this gadget has the most internal moving parts, calculating the angles between
its inner structures will require us to know the relative positions of some of the points in
Figure A.15 (a close-up of the region outlined in navy in A.11d).

To accomplish this, we will calculate the positions of points in a Cartesian coordinate system.
By fixing the origin (0, 0) to O (note that O is a point in the “tunnel lattice”), we can calculate
the Cartesian coordinates of other points from their horizontal and vertical displacement
from O using the triangular grid, our shift calculations from A.2.4, algebra, and trigonometry.
Once we know the coordinates of three points, we can use simple trigonometry to find the
angle formed between them.
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Figure A.15: Satisfied Configuration 3, a closeup of the relevant parts of Figure A.11d
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First, by construction, we find that
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Next, using the coordinates for E and H, and the fact that EV = 24 and HU ′′ = 16, we can
solve for the coordinates of V ′′, V ′′ = (x5, y5), given that we want U ′′ to be a unit vertically
above V ′′, U ′′ = (x5, y5 + 1), using the following system of equations
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Of the two sets of solutions to this system, we choose the one with the lower value for x5, as
this matches our construction. We get that x5 ≈ 16.340, y5 ≈ 19.474 (the exact solution is
too long to display on the page).

As mentioned before, we have that V ′′ = (x5, y5) and U ′′ = (x5, y5 + 1), but we also have

that T ′′ = (x5 −
√
3
2
, y5 + 1

2
). Now, using this and the coordinates of B′, and the fact that

B′L′′ = 10 and L′′T ′′ = 17, we can solve for the coordinates of L′′, L′′ = (x6, y6) using the
following system of equations
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Of the two sets of solutions to this system, we choose the one with the lower value for y6,
as this matches our construction. We get that x6 ≈ −0.696, y6 ≈ 14.728 (again, the exact
solution is too long to display on the page).

Now, using all of our computed coordinates for points, we can once again use the law of
cosines to find angles, by the same method used above. Note that because of the length of
exactly-valued expressions, we only give approximate measures of all angles.

Using this, we find that m6 FEV ′′ ≈ 105.487◦, so that m6 FEV ′′ > 60◦. Since m6 R′′EV ′′ =
m6 DEF = 60◦, we have that m6 R′′ED = 240◦−m6 FEV ′′ ≈ 134.513◦, so that m6 R′′ED >
60◦.
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We find that m6 GHU ′′ ≈ 146.744◦, so that m 6 GHU ′′ > 60◦. Since m6 P ′′HU ′′ = m6 GHI =
60◦, we have that m 6 IHP ′′ = 240◦ −m6 GHU ′′ ≈ 93.256◦, so that m 6 IHP ′′′ > 60◦.

We find thatm6 A′B′L′′ ≈ 125.780◦, so thatm 6 A′B′L′′ > 60◦. Sincem6 A′B′C ′ = m6 J ′′B′L′′ =
60◦, we have that m 6 C ′B′J ′′ = 240◦ −m6 A′B′L′′ ≈ 114.220◦, so that m6 C ′B′J ′′ > 60◦.

We find that m6 EV ′′U ′′ ≈ 164.513◦, so that m6 EV ′′U ′′ > 60◦. We have that m 6 HU ′′V ′′ ≈
176.744◦, so that (since m 6 HU ′′Q′′ = 60◦) m6 Q′′U ′′V ′′ = m6 HU ′′V ′′ − 60◦ ≈ 116.744◦, so
that m6 Q′′U ′′V ′′ > 60◦.

We find that m6 HU ′′T ′′ ≈ 123.256◦, so that m6 HU ′′T ′′ > 60◦. We have that m 6 L′′T ′′U ′′ ≈
170.248◦, so that (since m6 L′′T ′′N ′′ = 60◦) m 6 N ′′T ′′U ′′ = m6 L′′T ′′U ′′ − 60◦ ≈ 110.248◦, so
that m6 N ′′T ′′U ′′ > 60◦.

We find that m6 L′′T ′′V ′′ ≈ 129.752◦, so that m 6 L′′T ′′V ′′ > 60◦. We have that m6 EV ′′T ′′ ≈
135.487◦, so that (since m6 S ′′V ′′E = 60◦) m6 S ′′V ′′T ′′ = m6 EV ′′T ′′ − 60◦ ≈ 75.487◦, so that
m6 S ′′V ′′T ′′ > 60◦.

Finally, we find that m6 B′L′′T ′′ ≈ 153.972◦. Since m6 T ′′L′′M ′′ = 60◦, we have that
m6 B′L′′M ′′ = m 6 B′L′′T ′′ − 60◦ ≈ 93.972◦, so that m6 B′L′′M ′′ > 60◦. Since we also have
m6 B′L′′K ′′ = 60◦, we have that m6 K ′′L′′T ′′ = 240◦ − m 6 B′L′′M ′′ ≈ 146.028◦, so that
m6 K ′′L′′T ′′ > 60◦.

Lemma A.6.7. The disjoint components of satisfied configuration 3 of the clause gadget are
greater than unit distance apart.

Proof. As previously noted, we do not need to check the distances between the inner structures
of this configuration and the outer wall, so that it only remains to check the distances between
EV ′′ and Q′′U ′′, HU ′′ and N ′′T ′′, and L′′T ′′ and S ′′V ′′, respectively.

However, because we already know that m6 EV ′′U ′′ +m 6 V ′′U ′′Q′′ ≈ 281.257◦, we have that
m6 EV ′′U ′′ +m6 V ′′U ′′Q′′ > 180◦, so that EV ′′ and Q′′U ′′ are closest at V ′′U ′′ = 1, and the
remainder of these line segments are more than unit distance apart. Similarly, because we know
that m6 HU ′′T ′′+m6 U ′′T ′′N ′′ ≈ 233.503◦, we have that m 6 HU ′′T ′′+m6 U ′′T ′′N ′′ > 180◦, so
that HU ′′ and N ′′T ′′ are closest at U ′′T ′′ = 1, and the remainder of these line segments are
more than unit distance apart. Finally, because we know that m 6 L′′T ′′V ′′ +m6 T ′′V ′′S ′′ ≈
205.240◦, we have that m6 L′′T ′′V ′′ +m 6 T ′′V ′′S ′′ > 180◦, so that L′′T ′′ and S ′′V ′′ are closest
at T ′′V ′′ = 1, and the remainder of these line segments are more than unit distance apart.
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