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Abstract. Recent works by Gómez, Pezzo and Rossi have generalized the class of games known

as tug-of-war games, which were investigated by Peres, Schramm, Sheffield and Wilson, by analyz-

ing games where the sets of possible movements for the players are either spatially dependent or

spatially and temporally dependent. We further generalize this class of games by considering games

with surrounding noise which is spatially and temporally dependent and where the sets of possible

movements are also spatially and temporally dependent. Our generalization includes simple and

natural real-world examples such as competing parties fighting on multiple fronts and general re-

source allocation problems. We derive the PDE for which the continuum value function of the game

is a solution and we show that the PDE is an interpolation between the ‘infinity Laplacian with

spatial and temporal dependence’ which corresponds to the movements of the players (α coefficient)

and a ‘weighted Laplacian’, with weights arising from the variances of the noise, which corresponds

to the noisy environment (β coefficient). When ∇(x, t)u 6= 0 the PDE takes the form

α

{(
c− 1

c
I(x,t)(∇u(x, t)) +

c+ 1

2

)
ut(x, t)−

1

2
〈D2u(x, t)J(x,t)(∇u(x, t)), J(x,t)(∇u(x, t))〉

}
+ β

{(
c− 1

c
E[µ2

(x,t)] +
c+ 1

2

)
ut(x, t)−

1

2
〈~Eµ2

(x,t)
[Var(µ1,s,i

(x,t))],Diag(D2u(x, t))〉
}

= 0

in the domain of game ΩT = Ω× (0, T ] ⊂ RN+1 where Ω ⊂ RN is a bounded smooth open ‘spatial’

domain and (0, T ] with T ∈ R is a ‘temporal’ domain.

1. Introduction

An interesting problem introduced by David Aldous [1] and partially solved by McKean and

Shepp [7] is the following. Suppose there are K one-dimensional Brownian motions processes

starting at x = 1 which we can control by adding to the K processes drifts which sum up to 1.

What is the optimal policy (division of drift) if the objective is to maximize the probability that

the K processes never hit 0? What’s the optimal policy if the objective is instead to maximize the

expected number of processes that never hit 0? McKean and Shepp has addressed the case K = 2
1



but in general the problem is still open. A natural zero-sum game theory variant of this problem

is to place K one-dimensional Brownian motions processes at 0 and consider two players, I and II,

each having a drift of magnitude 1, whose objective is to maximize the number of processes which

hit 1 (Player I’s objective) or -1 (Player II’s objective). The problem now would be to find the set

of Nash equilibria and the associated policies for the players. An even more general problem would

be to make both the set of actions available to the players and the Brownian motion dependent on

the current state of the game as well as on current time in the game. This variant of the problem

has many natural real-world applications in the context of solving resource allocation problems for

‘multi-theater conflicts’. A war between two countries that takes place along different fronts is one

such an example where the resources need to be divided among the different fronts and the set

of actions (deploying forces, etc.) available to the two countries depends on the current time and

state of the conflict.

One way to approach the above problem is by using ‘tug-of-war’ type of games. In the simple

version of the ε-tug-of-war game a token is placed at some initial position in a domain D. At each

stage of the game two players, I and II, flip a fair coin to decide whose turn it is and the winner

moves the token to any point in a ball of radius ε centered at the current position of the token.

The game ends when the token reaches the boundary of D at which point Player II pays Player

I an amount of money depending on some ‘boundary function’ and the position on the boundary

where the token exited D. The game is named that way because players ‘tug’ in different directions

hoping to get to boundary points where they will receive their best payoffs (the best payoff of Player

I is the worst payoff of player II and vice verse).

In [8] Peres, Schramm, Sheffield and Wilson showed that the solution of the equation ∆∞u = 0

where ∆∞ is the operator known as the infinity Laplacian defined by

∆∞u = |∇u|−2
N∑

i,j=1

uxiuxixjuxj = 〈D2u∇u,∇u〉

(informally the second derivative in the direction of the gradient), arises as the continuum (ε→ 0)

value function of a tug-of-war game. Peres and Sheffield in [9] have generalized this result by

showing that the solutions of problems involving the operator known as the p-Laplacian are the

continuum value functions of tug-of-war games with noise. One key insight in [9] is that the

p-Laplacian can be written as an interpolation between the infinity Laplacian (corresponding to

the ‘tug-of-war’ part) and the Laplacian (corresponding to the ’noisy’ part as the classic result of

Kakutani [4, 5] regarding the solution of the Dirichlet problem indicates). Following the work of
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the above authors various generalizations of the central idea were developed. See [2] [10]. One

direction of generalization was taken by Gómez and Rossi in [3] who allowed the sets of possible

movements for the two players in the tug-of-war game to depend on the current position of the

token. In [11] Pezzo and Rossi considered a finite horizon problem where the game progresses in

both time and space and derived the PDE for which the continuum value function of the game is

a solution.

Tug-of-war games are applicable to our problem since the sets of available movements for the

players, which depended on position and time, model the sets of possible resource allocations at a

specific place and time. For example, to model a game with two processes (K = 2) where the entire

drift must be given to exactly one process (so the only choice for a player is which process should

receive the drift) we can use a square as a domain where moving along the x-axis corresponds

to giving the entire drift the one process and moving along the y-axis corresponds to giving the

entire drift to the other process. To account for the random movement of the particles we need to

incorporate noise which is spatially and temporally dependent into the model. The work of Pezzo

and Rossi in [11] enables us to consider action sets which are spatially and temporally dependent

but only in the context of games without noise.

In this work we further generalize [11] by incorporating noise into the game which is also spatially

and temporally dependent. The symmetry conditions on the sets of possible movements for the

players imposed in [3] and [11] have naturally led us to impose similar conditions on the noise. Yet,

a very diverse noisy environment is being treated in our work. We allow the noise to be different

in every ‘time slice’ as well as in each spatial orthogonal direction (precise definitions will be given

below). We note that depending on the boundary function of the game the noise can be favorable to

one player or the other at different points in time and space. Some of the proofs and techniques in

[11] carry over into our game but the proof of the limit PDE doesn’t carry over in a straight-forward

way since the convergence of the value functions of the ε-games becomes more complicated.

We show that the limit PDE of our game is an interpolation between the PDE found in [11]

(corresponding to the deterministic ‘tug-of-war’ part) and a ‘weighted Laplacian’ (corresponding

to the noisy part). We also show how the ‘weights’ relate to the variances of the probability

distributions of the noise along orthogonal spatial axes.

The organization of the paper is as follows. In Section 2 we define our tug-of-war game, in

Section 3 we recite some results needed for our main proof and in Section 4 we prove the main

theorem of the paper, Theorem 4.1.
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2. Game definition and preliminaries

In this section we give the definition of the ε-tug-of-war game following [11].

Let T be a positive constant and Ω be a bounded smooth open set of RN . Our game is played

in the domain ΩT := Ω× (0, T ] where we think of (0, T ] as the temporal domain of the game and

of Ω as the spatial domain of the game. The boundary Γ of ΩT is Γ = Ω × {0} ∪ ∂Ω × (0, T ]

and for η > 0 we define a strip around the boundary by Γη = Ωη × (−η2, 0] ∪ Θη × (0, T ] where

Ωη := {x ∈ RN : dist(x,Ω) ≤ η} and Θη := {x ∈ RN\Ω : dist(x, ∂Ω) ≤ η}. Let F : Γη → R be a

bounded Borel function; we call F the final payoff function.

The ε-tug-of-war game is a zero-sum game which is played between two players, Player I and

Player II. The game is played in the following way. At the beginning of the game we fix 0 < ε < η

and place a token at a point (x0, t0) ∈ ΩT . Then the players toss a biased coin which is ‘heads’

with probability α and ‘tails’ with probability β where α+ β = 1. If the coin lands on ‘heads’ the

players flip a fair coin and the winner picks a new game state (x1, t1) in a set Aε(x0, t0) (this set,

which is defined below, depends on the position (x0, t0) and on ε). If the coin lands on ‘tails’ a new

game state (x1, t1) is chosen randomly from Aε(x0, t0) according to a probability measure µεx0,t0

defined below. Then the biased coin is tossed again and the game continues in this way until the

token hits the boundary strip Γε. At the end of the game, Player II pays Player I the amount given

by the final payoff function F so Player I earns F (xτ , tτ ) and Player II earns −F (xτ , tτ ), where τ

is a stopping time equals to the number of rounds that took place before the game ended. We have

that 0 < τ < +∞, see Remark (2.1). The definition of the game gives rise to a sequence of random

variables which are the game states (x0, t0), (x1, t1), ..., (xτ , tτ ) depending on the coin tosses, the

strategies of the players and the probability measures of the noise. A strategy SI for Player I is

defined as a collection of measurable mappings SI = {SkI }τk=1 such that the next game position is

Sk+1
I ((x0, t0), (x1, t1), ..., (xk, tk)) = (xk+1, tk+1) ∈ Aε(xk, tk),
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if the biased coin was ‘heads’ and Player I won the fair coin toss, given the partial history

((x0, t0), (x1, t1), ..., (xτ , tτ )). Similarly, Player II plays according to the strategy SII. The next

game position (xk+1, tk+1) ∈ Aε(xk, tk), given the history ((x0, t0), (x1, t1), ..., (xk, tk)), is selected

according to a probability distribution p(·|(x0, t0), (x1, t1), ..., (xk, tk)) which, in our case, is given

by the tosses of the biased and fair coins and the probability measures of the noise.

The point (x0, t0), the domain ΩT and the strategies SI and SII determine a unique probability

measure P(x0,t0)
SI,SII

on the space of plays (ΩT ∪Γε)
∞ with an associated expectation E(x0,t0)

SI,SII
. Thus, the

expected payoff of Player I is given by E(x0,t0)
SI,SII

[F (xτ , tτ )]. The ε-value for Player I, when starting

from (x0, t0), is then defined as

uεI (x0, t0) = sup
SI

inf
SII

E(x0,t0)
SI,SII

[F (xτ , tτ )]

while the ε-value for Player II is given by

uεII(x0, t0) = inf
SII

sup
SI

E(x0,t0)
SI,SII

[F (xτ , tτ )].

To define the sets Aε(x, t), the possible movements of the ε-game at the points (x, t), we use the

following construction.

Following [11] we consider a family of sets {A(x, t)}(x,t)∈ΩT with the following properties: Let

π1,i : ΩT → R for i = 1, ..., N be the spatial projections on the standard basis e1, ..., eN of RN ,

π1 := π1,1 × ...× π1,N and π2 : ΩT → R be the temporal projection. For every (x, t) ∈ ΩT ,

A1. A(x, t) is a compact subset of B(0, 1)× [−c/2, c/2], (0 < c < 1) such that (0, 0) ∈ A(x, t);

A2. For all s ∈ π2(A(x, t)), the set As(x, t) := {y ∈ RN : (y, s) ∈ A(x, t)} is symmetric with

respect to the origin. More precisely, for every Ψ : RN → RN be an orthogonal transformation

which acts as a permutation on the ei’s, then we require that Ψ(As(x, t)) = As(x, t). Note that

this implies that As,i(x, t) := π1,i(A
s(x, t)) is symmetric about 0;

A3. Continuity of A(x, t) with respect to (x, t) : Given (x, t) ∈ ΩT , if {(xn, tn)}n∈N ⊂ ΩT and

(xn, tn)→ (x, t) as n→∞, then for every (y, s) ∈ A(x, t) there exist (yn, sn) ∈ A(xn, tn) such that

(yn, sn)→ (y, s) as n→∞. Moreover if (yn, sn) ∈ A(xn, tn) and (yn, sn)→ (y, s) as n→∞, then

(y, s) ∈ A(x, t);

A4. Let 〈·, ·〉 be the standard inner product on RN then for every v ∈ RN\{0}, there exists a

unique (z, r) ∈ A(x, t) such that

min{〈v, y〉 : y ∈ π1(A(x, t))} = 〈v, z〉.
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We denote this point (z, r) by (J(x,t)(v), I(x,t)(v)). We have that 〈v, J(x,t)(v)〉 6= 0

and (J(x,t)(λv), I(x,t)(λv)) = (J(x,t)(v), I(x,t)(v)) for any λ > 0 so (J(x,t)(v), I(x,t)(v)) depends only

on the direction of v. Note that (−J(x,t)(v), I(x,t)(v)) ∈ A(x, t) and

max{〈v, y〉 : y ∈ π1(A(x, t))} = 〈v,−J(x,t)(v)〉.

In addition, we require that J(x,t) : ∂B(0, 1)→ ∂π1(A(x, t)) is surjective.

Having in hand the definition of A(x, t) we defined Aε(x, t) as

(2.1) Aε(x, t) =

{
(x, t) +

(
εy, ε2

(
1− c
c

s− c+ 1

2

))
: (y, s) ∈ A(x, t)

}
.

We have that every r ∈ π2(Aε(x, t)) is of the form t+ ε2
(

1−c
c sr − c+1

2

)
for some sr ∈ π2(A(x, t)).

Note that the map r 7→ sr is a bijection. Let x = (x1, ..., xN ); we define Ar
ε(x, t) := {(x + εy, r) :

y ∈ Asr(x, t)} and A
r,i
ε (x, t) := {(xi + εyi, r) : yi ∈ Asr,i(x, t)}.

Remark 2.1. Note that by A1 and by the definition of Aε(x, t) time decreases by at least cε2

every round of the game so τ is indeed finite.

We now define the probability measures µε(x,t). Let us first explain the construction of the

measures informally. Every A(x, t) can be written as A(x, t) =
⋃
s∈π2(A(x,t)) A

s(x, t) × {s}. To

pick a point in A(x, t) we choose a ‘time’ s ∈ π2(A(x, t)) according to a probability measure µ2
(x,t),

(the superscript 2 stands for the temporal direction as the 2 in π2) and in the ‘time slice’ As(x, t)

we choose a point according to a probability measure µ1,s
(x,t) (the first superscript 1 stands for the

spatial direction as the 1 in π1 and the second superscript s stands for the time slice As(x, t)). Each

µ1,s
(x,t) is a measure on RN and we construct it as a product of probability measures µ1,s,1

(x,t), ..., µ
1,s,N
(x,t)

where µ1,s,i
(x,t) is a probability measure on the subspace spanned by the basis element ei.

Formally, for any (x, t) ∈ ΩT we take a family of measures {µ1,s,i
(x,t)}s∈π2(A(x,t)),i∈{1,...,N} each

supported on π1,i(A
s(x, t)) and a measure µ2

(x,t) supported on π2(A(x, t)) such that for each s ∈

π2(A(x, t)) and i ∈ {1, ..., N} we have

µ1,s,i
(x,t)([−yi, 0]) = µ1,s,i

(x,t)([0, yi]) for all yi ∈ Span(ei) ∩As(x, t)

(symmetry about the origin along the subspaces spanned by the ei’s),

µ1,s,i
(x,t)(π1,i(A

s(x, t))) = 1,
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and ∫
π1,i(As(x,t))

y2
i µ

1,s,i
(x,t)(dyi) < M for all i = 1, ..., N, s ∈ π2(A(x, t)) for some M > 0.

We now define a probability measure µ1,s
(x,t) on As(x, t) by setting for every B ⊂ As(x, t) such that B

is measurable with respect to the product sigma algebra generated by {µ1,s,i
(x,t)}s∈π2(A(x,t)),i∈{1,...,N},

µ1,s
(x,t)(B) := µ1,s,1

(x,t)(π1,1(B))× ...× µ1,s,N
(x,t) (π1,N (B)).

Let µ2
(x,t) be a measure on R such that

µ2
(x,t)(π2(A(x, t))) = 1.

Then for every B ⊂ A(x, t) such that B is measurable with respect to the product sigma alge-

bra generated by {µ1,s
(x,t)}s∈π2(A(x,t)) and µ2

(x,t), by Kolmogorov extension theorem there exists a

probability measure µ(x,t) such that

µ(x,t)(B) =

∫
π2(B)

∫
Bs
dµ1,s

(x,t)dµ
2
(x,t).

where the notation Bs is clear.

We make the following assumption about the measures.

A5. Continuity of the measures µ1,s,i
(x,t) and µ2

(x,t) with respect to (x, t) : Let (xε, tε)→ (x, t) ∈ ΩT ;

then for every sε ∈ π2(A(xε, tε)) if sε → s then µ1,sε,i
(xε,tε)

→ µ1,s,i
(x,t) and µ2

(xε,tε)
→ µ2

(x,t) in the sense of

weak-* convergence.

Having µ(x,t) defined we now define µε(x,t) on Aε(x, t). Following (2.1), let f r,i(x,t),ε : Asr,i(x, t) →

A
r,i
ε (x, t) be defined by

f r,i(x,t),ε(yi) = xi + εyi

and let g(x,t),ε : π2(A(x, t))→ π2(Aε(x, t)) be defined by

g(x,t),ε(s) = t+ ε2

(
1− c
c

s− c+ 1

2

)
.

We set

µ1,r,i,ε
(x,t) := µ1,sr,i

(x,t) ◦ (f r,i(x,t),ε)
−1

and

µ2,ε
(x,t) := µ2

(x,t) ◦ g
−1
(x,t),ε.
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The definitions of µ1,r,ε
(x,t) and µ1,ε

(x,t) should be clear.

With some abuse of notation, we write E[µ] and Var(µ) for the expectation and variance respec-

tively of a random variable with law µ.

Remark 2.2. The reader may we wish to use as a simple example µ1,s,i
(x,t) = 1

|π1,i(As(x,t))| (a

uniform spatial noise) and µ2
(x,t) = δs0 for some s0 ∈ π2(A(x, t)). In this case the expression

〈~Eµ2
(x,t)

[Var(µ1,i,r
(x,t))],Diag(D2u(x, t))〉 (defined later) in the limit PDE becomes ∆u.

Remark 2.3. Convergence issues: In section 4 we take limits of the form

lim
ε→0+

∫
π2(A(xε,tε))

h(xε, tε, s)µ
2
(xε,tε)

(ds)

where (xε, tε) → (x, t) and h : B(0, 1) × [− c
2 ,

c
2 ] × [− c

2 ,
c
2 ] → R. To make sense of such limits we

need to define a notion of convergence of sets and ensure that we can take simultaneously the limits

of various quantities which depend on ε.

Let (Z, d) be a compact metric space and let A ⊂ Z. For δ > 0 we define A(δ) = {z ∈ Z :

d(z, a) < δ for some a ∈ A} and we let 2Z be the set of nonempty compact subsets of Z.

Definition 2.4. Let An be a sequence of subsets of Z. Then we say that An converges to A in 2Z

and write An → A if for every δ > 0 there exists N ∈ N such that for all n > N we have An ⊂ A(δ)

and A ⊂ A(δ)
n .

The following lemma is important.

Lemma 2.5. An → A if and only if the following two conditions hold.

(i) If z ∈ A then there exist zn ∈ An such that zn → z.

(ii) If znk ∈ Ank and znk → z for some z then z ∈ A.

The proof of the lemma is standard and we omit it. Note that with Z := B(0, 1) × [− c
2 ,

c
2 ], by

A3 and Lemma 2.5 we have that A(xε, tε)→ A(x, t) in 2Z .

The following lemma will aid us in computing the limits described above.

Lemma 2.6. Let h be uniformly bounded, i.e. there exists M ∈ R such that for every (x, t, s) ∈

B(0, 1)× [− c
2 ,

c
2 ]× [− c

2 ,
c
2 ] we have h(x, t, s) < M . In addition suppose that if (xn, tn)→ (x, t) then

h(xn, tn, s) → h(x, t, s) uniformly in s, i.e. for every δ > 0 there exists N ∈ N such that if n > N

then |h(x, t, s)− h(xn, tn, s)| < δ for all s. Then,

lim
n→∞

∫
π2(A(xn,tn))

h(xn, tn, s)µ
2
(xn,tn)(ds) =

∫
π2(A(x,t))

h(x, t, s)µ2
(x,t)(ds).
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Proof. Since A(xε, tε) → A(x, t) in 2Z with Z = B(0, 1)× [− c
2 ,

c
2 ], for every δ we can take n large

enough such that∫
π2(A(xn,tn))

h(xn, tn, s)µ
2
(xn,tn)(ds) =

∫
π2(A(x,t))

h(xn, tn, s)µ
2
(xn,tn)(ds)

+

∫
π2(A(xn,tn))\π2(A(x,t))

h(xn, tn, s)µ
2
(xn,tn)(ds)

−
∫
π2(A(x,t))\π2(A(xn,tn))

h(xn, tn, s)µ
2
(xn,tn)(ds)

and ∫
π2(A(xn,tn))\π2(A(x,t))

h(xn, tn, s)µ
2
(xn,tn)(ds)−

∫
π2(A(x,t))\π2(A(xn,tn))

h(xn, tn, s)µ
2
(xn,tn)(ds)

≤

∣∣∣∣∣
∫
π2(A(xn,tn))\π2(A(x,t))

h(xn, tn, s)µ
2
(xn,tn)(ds)

∣∣∣∣∣+

∣∣∣∣∣
∫
π2(A(x,t))\π2(A(xn,tn))

h(xn, tn, s)µ
2
(xn,tn)(ds)

∣∣∣∣∣
≤M(2δ + 2δ) = 4Mδ.

Since for every δ the above equation holds for n > nδ for some nδ ∈ N it remains to show that

lim
n→∞

∫
π2(A(x,t))

h(xn, tn, s)µ
2
(xn,tn)(ds) =

∫
π2(A(x,t))

h(x, t, s)µ2
(x,t)(ds).

By the uniform convergence of h with respect to s and since both h and µ2
(xn,tn) are uniformly

bounded we just need to show that

lim
n→∞

∫
π2(A(x,t))

h(x, t, s)µ2
(xn,tn)(ds) =

∫
π2(A(x,t))

h(x, t, s)µ2
(x,t)(ds)

but this follows from A5. �

3. Review of relevant results

The proof of the main result in [11] is based on four steps. First, a Dynamic Programming

Principle (DPP) for the ε-value functions uεI and uεII is proven. Second, using the DPP it is proven

that the game has an ε-value function uε which is the only function which satisfies the DPP with

the given boundary values and that uε = uεI = uεII. Third, it is proven that uε → v uniformly for

some function v as ε→ 0+. Finally, it is shown that v solves the PDE.

Of the above four steps, using results from [6], [8, 9] and [11] the proofs of the first three steps

carry over to our case. The proof of last step is similar to the one in [11] but the issue of convergence

is more delicate in our case and we address it appropriately. Below we repeat the results of the

first three steps and mention the references for their proofs.
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Lemma 3.1. (DPP)

The value function for Player I satisfies
uεI(x, t) = α

2

{
sup

(y,r)∈Aε(x,t)
uεI(y, r) + inf

(y,r)∈Aε(x,t)
uεI(y, r)

}
+ β

∫
Aε(x,t)

uεI(y, r)µ
ε
(x,t)(dydr), (x, t) ∈ ΩT .

uεI(x, t) = F (x, t), (x, t) ∈ Γε.

A similar equation holds for uεII.

The proof in [6] with Remark 2.1 applies here.

Lemma 3.2. (Theorem 2.7 in [11]) Let Ω ⊂ RN be a bounded smooth open set and F a given payoff

function in Γη. There exists a unique function uε in ΩT that satisfies the DPP with boundary values

F . Moreover, the function uε coincides with the ε-value of the game which exists.

Proof. The sub/supermartingale method first introduced in [8, 9] applies here (see also Section 4.4

in the review [12]). Note the Corollary 2.9 in [11] which states that inf
Γε
F ≤ uε(x, t) ≤ sup

Γε

F for all

(x, t) ∈ ΩT holds as a consequence. �

Lemma 3.3. (Theorem 3.4 in [11]) Let Ω be bounded convex domain with ∂Ω ∈ C2 and positive

curvature, f : Ωη → R be a Lipschitz continuous function and assume that the family of sets

{A(x, t)}(x,t)∈ΩT satisfies the properties A1-A2. Let {uε}ε>0 be the family of solutions of the DPP

in ΩT with a fixed Lipschitz continuous datum F (x, t) = f(x) in Γ. Then, there exists a subsequence

still denoted by {uε}ε>0 and a uniformly continuous function u such that uε → u uniformly in ΩT

as ε→ 0+.

Proof. The proof in [11] holds in our case. The idea of the proof is to show that the functions

{uε}ε>0 satisfy a variant of the Arzela-Ascoli lemma so they converge uniformly to a limit. A key

fact in the proof is that linear functions of the form `(x, t) = 〈v, x〉 + b are solutions of the DPP

(with F (x, t) = `(x, t) in Γε) where v ∈ RN , b ∈ R (Remark 3.2 in [11]). Note that these linear

functions satisfy the DPP in our case as well. �

4. The limit equation

Theorem 4.1. If uε converges uniformly to u then u solves in the viscosity sense the PDEG(D2u(x, t),∇u(x, t), ut(x, t), x, t) = 0 in ΩT

u(x, t) = F (x, t) in Γ

10



where D2u and ∇u are the spatial Hessian and gradient of u respectively, ut is the partial derivative

of u with respect to the time variable and G : SN × RN × R× ΩT → R is defined as

G(M,v, s, x, t) = α

{(
c− 1

c
I(x,t)(v) +

c+ 1

2

)
s− 1

2
〈MJ(x,t)(v), J(x,t)(v)〉

}
+ β

{(
c− 1

c
E[µ2

(x,t)] +
c+ 1

2

)
s− 1

2
〈~Eµ2

(x,t)
[Var(µ1,s,i

(x,t))],Diag(M)〉
}

if v 6= 0

and

G(M,v, s, x, t) = α

{(
c− 1

c
Î(x,t)(s) +

c+ 1

2

)
s

}
+ β

{(
c− 1

c
E[µ2

(x,t)] +
c+ 1

2

)
s− 1

2
〈~Eµ2

(x,t)
[Var(µ1,s,i

(x,t))],Diag(M)〉
}

if v = 0.

where SN is the set of N ×N symmetric matrices, ~Eµ2
(x,t)

[Var(µ1,s,i
(x,t))] is a vector whose ith entry is∫

π2(A(x,t)) Var(µ1,s,i
(x,t))µ

2
(x,t)(ds) and Diag(M) is a vector containing the ordered entries of the diagonal

of M . J(x,t) and I(x,t) were defined in A4 and Î(x,t)(s) is uniquely defined by(0, Î(x,t)(s)) ∈ A(x, t)

Î(x,t)(s)s = min{s′s : (0, s′) ∈ A(x, t)}

if s ∈ R\{0} and Î(x,t)(0) := 0.

Remark 4.2. The PDE in Theorem 4.1 is an interpolation between the PDE in [11] which cor-

responds to the tug-of-war game with spatial and temporal dependence without noise and a PDE

which corresponds to a game where the movements of the game are determined only by noise. If

α = 1 then the game reduces to the game in [11] so the PDE should reduce to the PDE in [11]

which is indeed the case. If β = 1 then by the scaling of the game (steps of order ε in the spatial

direction and steps of order ε2 in the temporal direction as in (2.1)) we expect to have a second

order term for the spatial dimension and a first order term for the temporal dimension. Moreover,

by Kakutani’s result we expect to have the Laplacian in the spatial dimension which is indeed the

case if we use uniform distributions for the noise. Note that the analogue of I(x,t)(v) which is the

‘best time’ in the tug-of-war part is E[µ2
(x,t)], the ‘average time’, in the noisy part.

We first give the definition of a viscosity solution to a PDE of the form Gu = 0 for a function

u and a degenerate elliptic operator G. To this end we define the upper and lower semicontinuous

envelopes of G denoted by G∗ and G∗. Let

Cε(M,v, s, x, t) = {(M̂, v̂, ŝ, x̂, t̂) : ‖M − M̂‖+ |v − v̂|+ |s− ŝ|+ |x− x̂|+ |t− t̂| < ε}.
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We define

G∗(M, v, s, x, t) = lim sup
ε→0

{G(M̂, v̂, ŝ, x̂, t̂) : (M̂, v̂, ŝ, x̂, t̂) ∈ Cε(M, v, s, x, t)}

and G∗(M,v, s, x, t) := −(−G∗)(M, v, s, x, t) for every (M, v, s, x, t) ∈ SN × RN × R× ΩT .

Definition 4.3. A function u ∈ C(ΩT ) is a viscosity solution to a PDE G with boundary values

F if u(x, t) = F (x, t) on Γ and the following two conditions hold.

(i) For every φ ∈ C2,1(ΩT ) such that u − φ has a strict minimum at (x0, t0) ∈ ΩT we have

G∗(D2φ(x0, t0),∇φ(x0, t0), φt(x0, t0), x0, t0) ≥ 0.

(ii) For every φ ∈ C2,1(ΩT ) such that u − φ has a strict maximum at (x0, t0) ∈ ΩT we have

G∗(D
2φ(x0, t0),∇φ(x0, t0), φt(x0, t0), x0, t0) ≤ 0.

We now characterize the envelopes of G.

Lemma 4.4. For every (M,v, s, x, t) ∈ SN × RN × R× ΩT we have

G∗(M, v, s, x, t) = G(M,v, s, x, t) if v 6= 0

and

G∗(M,v, s, x, t) = max
(z,w)∈A(x,t)

α

{(
c− 1

c
w +

c+ 1

2

)
s− 1

2
〈Mz, z〉

}
+ β

{(
c− 1

c
E[µ2

(x,t)] +
c+ 1

2

)
s− 1

2
〈~Eµ2

(x,t)
[Var(µ1,s,i

(x,t))],Diag(M)〉
}

if v = 0.

Similarly,

G∗(M,v, s, x, t) = G(M,v, s, x, t) if v 6= 0

and

G∗(M,v, s, x, t) = min
(z,w)∈A(x,t)

α

{(
c− 1

c
w +

c+ 1

2

)
s− 1

2
〈Mz, z〉

}
+ β

{(
c− 1

c
E[µ2

(x,t)] +
c+ 1

2

)
s− 1

2
〈~Eµ2

(x,t)
[Var(µ1,s,i

(x,t))],Diag(M)〉
}

if v = 0.

Proof. The proof in [11] holds mutatis mutandis. �

We now turn to the proof of our main result.

Proof. (Theorem 4.1) First, since uε → u uniformly and uε = F on Γ we have that u = F on Γ.

We show that if φ ∈ C2,1(ΩT ) and u− φ has a strict local minimum at (x0, t0) then

G∗(D2φ(x0, t0),∇φ(x0, t0), φt(x0, t0), x0, t0) ≥ 0
12



and a similar proof holds for the reverse inequality if u− φ has a strict local maximum at (x0, t0).

Since u− φ has a strict local minimum at (x0, t0) we have

u(x, t)− φ(x, t) > u(x0, t0)− φ(x0, t0) if (x, t) 6= (x0, t0).

Using the uniform convergence of uε to u there exists a sequence (xε, tε)→ (x0, t0) such that

uε(x, t)− φ(x, t) ≥ uε(xε, tε)− φ(xε, tε)− o(ε2) for every (x, t) in a neighborhood of (x0, t0).

Hence max
(y,r)∈Aε(xε,tε)

uε(y, r) ≥
(

max
(y,r)∈Aε(xε,tε)

φ(y, r)

)
+ uε(xε, tε)− φ(xε, tε)− o(ε2) and similarly

for the min.

By the same argument,∫
Aε(xε,tε)

uε(y, r)µε(xε,tε)(dydr) ≥ u
ε(xε, tε)− φ(xε, tε)− o(ε2) +

∫
Aε(xε,tε)

φ(y, r)µε(xε,tε)(dydr).

Thus we have

uε(xε, tε) =
α

2

{
max

(y,r)∈Aε(xε,tε)
uε(y, r) + min

(y,r)∈Aε(xε,tε)
uε(y, r)

}
+ β

∫
Aε(xε,tε)

uε(y, r)µε(xε,tε)(dydr)

≥ α

2

{
max

(y,r)∈Aε(xε,tε)
φ(y, r) + min

(y,r)∈Aε(xε,tε)
φ(y, r)

}
+ α(uε(xε, tε)− φ(xε, tε)− o(ε2))

+ β

∫
Aε(xε,tε)

φ(y, r)µε(xε,tε)(dydr) + β(uε(xε, tε)− φ(xε, tε)− o(ε2))

and we conclude that

(4.1)

φ(xε, tε) ≥
α

2

{
max

(y,r)∈Aε(xε,tε)
φ(y, r) + min

(y,r)∈Aε(xε,tε)
φ(y, r)

}
+β

∫
Aε(xε,tε)

φ(y, r)µε(xε,tε)(dydr)−o(ε
2).

Let (xmε , t
m
ε ) ∈ Aε(xε, tε) be such that

(4.2) min
(y,r)∈Aε(xε,tε)

φ(y, r) = φ(xmε , t
m
ε )

and let x̃mε by the symmetrical point of xmε with respect to xε, i.e. x̃mε = 2xε − xmε . We have

(4.3) x̃mε − xε = xε − xmε ,

and by A2 we have that (x̃mε , t
m
ε ) ∈ Aε(xε, tε). By (2.1) there exists (ymε , s

m
ε ) ∈ A(xε, tε) such that

(xmε , t
m
ε ) = (xε, tε) +

(
εymε , ε

2

(
1− c
c

smε −
c+ 1

2

))
(x̃mε , t

m
ε ) = (xε, tε) +

(
−εymε , ε2

(
1− c
c

smε −
c+ 1

2

))
.(4.4)
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Then by (4.1) and (4.2) we have

(4.5) φ(xε, tε) ≥
α

2

{
φε(x̃mε , t

m
ε ) + φ(xmε , t

m
ε )
}

+ β

∫
Aε(xε,tε)

φ(y, r)µε(xε,tε)(dydr)− o(ε
2)

and using a second order Taylor expansion of φ(·, tmε ) and by (4.4) we get

α

2

{
φ(x̃mε , t

m
ε ) + φ(xmε , t

m
ε )
}

= α

{
φ(xε, t

m
ε ) +

ε2

2
〈D2φ(xε, t

m
ε )ymε , y

m
ε 〉+ o(ε2)

}
.

We denote ∂2φ
∂y2i

(spatial second derivatives) by φii. Then by the symmetry of A(xε, tε) in the sense

of A2, using a second order Taylor expansion of φ(·, r), a first order Taylor expansion of φ(y, ·)

and A5 we have

β

∫
Aε(xε,tε)

φ(y, r)µε(xε,tε)(dydr)

=β

∫
π2(Aε(xε,tε))

∫
Arε(xε,tε)

φ(y, r)µ1,r,ε
(xε,tε)

(dy)µ2,ε
(xε,tε)

(dr)

=β

∫
π2(Aε(xε,tε))

∫
Arε(xε,tε)

(φ(xε, r) +∇φ(xε, r)(y − xε)

+
1

2
〈D2φ(xε, r)(y − xε), (y − xε)〉+ o(|y − xε|2))µ1,r,ε

(xε,tε)
(dy)µ2,ε

(xε,tε)
(dr)

=β

∫
π2(Aε(xε,tε))

(φ(xε, r)

+
1

2

(
N∑
i=1

φii(xε, r)

∫
A
r,i
ε (xε,tε)

(yi − (xε)i)
2µ1,r,i,ε

(xε,tε)
(dyi)

)
µ2,ε

(xε,tε)
(dr) + o(ε2)

=β

(∫
π2(Aε(xε,tε))

(φ(xε, t
m
ε ) + φt(xε, t

m
ε )(r − tmε ) + o(|r − tmε )|))µ2,ε

(xε,tε)
(dr)

)

+β

(∫
π2(Aε(xε,tε))

1

2

(
N∑
i=1

φii(xε, r)

∫
Asr,i(xε,tε)

ε2y2
i µ

1,sr,i
(xε,tε)

(dyi)

)
µ2,ε

(xε,tε)
(dr)

)
+ o(ε2)

=βφ(xε, t
m
ε ) + βφt(xε, t

m
ε )

∫
π2(Aε(xε,tε))

(r − tmε )µ2,ε
(xε,tε)

(dr)

+ β

(∫
π2(Aε(xε,tε))

(
ε2

2

N∑
i=1

φii(xε, r)Var(µ1,sr,i
(xε,tε)

)

)
µ2,ε

(xε,tε)
(dr)

)
+ o(ε2).

14



So we finally get

φ(xε, tε) ≥αφ(xε, t
m
ε ) + α

{
ε2

2
〈D2φ(xε, t

m
ε )ymε , y

m
ε 〉
}

+ βφ(xε, t
m
ε ) + βφt(xε, t

m
ε )

∫
π2(Aε(xε,tε))

(r − tmε )µ2,ε
(xε,tε)

(dr)

+ β

(∫
π2(Aε(xε,tε))

(
ε2

2

N∑
i=1

φii(xε, r)Var(µ1,sr,i
(xε,tε)

)

)
µ2,ε

(xε,tε)
(dr)

)
− o(ε2)

from which it follows that

φ(xε, tε)− φ(xε, t
m
ε )

ε2
≥ α

{
1

2
〈D2φ(xε, t

m
ε )ymε , y

m
ε 〉
}

+
β

ε2
φt(xε, t

m
ε )

∫
π2(Aε(xε,tε))

(r − tmε )µ2,ε
(xε,tε)

(dr)

+ β

(∫
π2(Aε(xε,tε))

1

2

(
N∑
i=1

φii(xε, r)Var(µ1,sr,i
(xε,tε)

)

)
µ2,ε

(xε,tε)
(dr)

)
− o(ε2)

ε2
.

Using the first order Taylor approximation of φ(xε, ·) and (4.4) we get

−
(

1− c
c

smε −
c+ 1

2

)
φt(xε, tε) ≥ α

{
1

2
〈D2φ(xε, t

m
ε )ymε , y

m
ε 〉
}(4.6)

+
β

ε2
φt(xε, t

m
ε )

∫
π2(Aε(xε,tε))

(r − tmε )µ2,ε
(xε,tε)

(dr)

+ β

(∫
π2(Aε(xε,tε))

1

2

(
N∑
i=1

φii(xε, r)Var(µ1,sr,i
(xε,tε)

)

)
µ2,ε

(xε,tε)
(dr)

)
− o(ε2)

ε2
.

Since (ymε , s
m
ε ) ∈ Aε(xε, tε) ⊂ B(0, 1) × [− c

2 ,
c
2 ] and by compactness, for all ε > 0 there exists a

relabeled subsequence {(ymε , smε )}ε>0 which converges to some (y0, s0) ∈ B(0, 1)× [− c
2 ,

c
2 ] as ε→ 0+

and by A3 (y0, s0) ∈ A(x0, t0). By the change of variables formula for pushforward measures, A3,

(4.4) and realizing that h(xε, tε, s) := 1 and h(xε, tε, s) := s satisfy the conditions of Lemma 2.6 we
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have

lim
ε→0+

1

ε2

∫
π2(Aε(xε,tε))

(r − tmε )µ2,ε
(xε,tε)

(dr)

= lim
ε→0+

1

ε2

∫
π2(A(xε,tε))

(tε +

(
1− c
c

s− c+ 1

2

)
− tmε )µ2

(xε,tε)
(ds)

= lim
ε→0+

∫
π2(A(xε,tε))

((
−1− c

c
smε +

c+ 1

2

)
+

(
1− c
c

s− c+ 1

2

))
µ2

(xε,tε)
(ds)

=− 1− c
c

s0 +
1− c
c

E[µ2
(x0,t0)].

We now analyze the limit

lim
ε→0+

(∫
π2(Aε(xε,tε))

1

2

N∑
i=1

Var(µ1,sr,i
(xε,tε)

)φii(xε, r)µ
2,ε
(xε,tε)

(dr)

)

= lim
ε→0+

(∫
π2(A(xε,tε))

1

2

N∑
i=1

Var(µ1,s,i
(xε,tε)

)φii

(
xε, tε + ε2

(
−c+ 1

2
+
c− 1

c
s

))
µ2

(xε,tε)
(ds)

)
.

Using the continuity of φii we would like to show that

h(xε, tε, s) :=
N∑
i=1

Var(µ1,s,i
(xε,tε)

)φii

(
xε, tε + ε2

(
−c+ 1

2
+
c− 1

c
s

))
satisfies the conditions of Lemma 2.6 so we can conclude

lim
ε→0+

(∫
π2(A(xε,tε))

1

2

N∑
i=1

Var(µ1,s,i
(xε,tε)

)φii

(
xε, tε + ε2

(
−c+ 1

2
+
c− 1

c
s

))
µ2

(xε,tε)
(ds)

)

=
1

2

N∑
i=1

Eµ2
(x0,t0)

[Var(µ1,s,i
(x0,t0))]φii(x0, t0)

=
1

2
〈~Eµ2

(x0,t0)
[Var(µ1,s,i

(x0,t0))],Diag(D2φ(x0, t0))〉.

Indeed, h(xε, tε, s) is uniformly bounded by the construction of the measures, and since φii is

continuous it attains its maximum on the compact set B̄(0, 1) × [− c
2 ,

c
2 ]. Moreover Var(µ1,s,i

(xε,tε)
)

converges uniformly in s by using A1 and a proof similar to the proof of Lemma 2.6.

Thus, taking ε→ 0+ in (4.6) gives(
(αs0 + βE[µ2

(x0,t0)])
c− 1

c
+
c+ 1

2

)
φt(x0, t0)− α

2
〈D2φ(x0, t0)y0, y0〉

−β
2
〈~Eµ2

(x0,t0)
[Var(µ1,s,i

(x0,t0))],Diag(D2φ(x0, t0))〉 ≥ 0
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If ∇φ(x0, t0) = 0 then we have

0 ≤
(

(αs0 + βE[µ2
(x0,t0)])

c− 1

c
+
c+ 1

2

)
φt(x0, t0)

− α

2
〈D2φ(x0, t0)y0, y0〉 −

β

2
〈~Eµ2

(x0,t0)
[Var(µ1,s,i

(x0,t0))],Diag(D2φ(x0, t0))〉

≤ max
(z,w)∈A(x0,t0)

(
(αw + βE[µ2

(x0,t0)])
c− 1

c
+
c+ 1

2

)
φt(x0, t0)

− α

2
〈D2φ(x0, t0)z, z〉 − β

2
〈~Eµ2

(x0,t0)
[Var(µ1,s,i

(x0,t0))],Diag(D2φ(x0, t0))〉

=G∗(D2φ(x0, t0),∇φ(x0, t0), φt(x0, t0), x0, t0).

If ∇φ(x0, t0) 6= 0 it suffices to show that (y0, s0) = (J(x0,t0)(∇φ(x0, t0)), I(x0,t0)(∇φ(x0, t0))) and

take the limit in (4.6).

We show that 〈∇φ(x0, t0)), y0〉 ≤ 〈∇φ(x0, t0)), J(x0,t0)(∇φ(x0, t0))〉 and that 〈∇φ(x0, t0)), y0〉 ≥

〈∇φ(x0, t0)), J(x0,t0)(∇φ(x0, t0))〉. (The latter is true by the definition of J(x0,t0)(∇φ(x0, t0)) and

since (y0, s0) ∈ A(x0, t0).) Then we conclude that 〈∇φ(x0, t0)), y0〉 = 〈∇φ(x0, t0)), J(x0,t0)(∇φ(x0, t0))〉

which by A4 implies that (y0, s0) = (J(x0,t0)(∇φ(x0, t0)), I(x0,t0)(∇φ(x0, t0))).

Indeed, by A3 there exists (yε, sε) ∈ A(xε, tε) such that

(yε, sε)→ (J(x0,t0)(∇φ(x0, t0)), I(x0,t0)(∇φ(x0, t0))) as ε→ 0+. Let (zε, wε) be defined by

(zε, wε) = (xε, tε) +

(
εyε, ε

2

(
1− c
c

sε −
c+ 1

2

))
and note that by the definition of (xmε , t

m
ε ) we have φ(zε, wε) − φ(xmε , t

m
ε ) ≥ 0. As ε → 0+ the

expression φ(zε,wε)−φ(xmε ,t
m
ε )

ε is the directional derivative of φ in the direction of J(x0,t0)(∇φ(x0, t0))−

y0 so we get that 〈∇φ(x0, t0)), y0〉 ≤ 〈∇φ(x0, t0)), J(x0,t0)(∇φ(x0, t0))〉. �

References

[1] http://www.stat.berkeley.edu/ aldous/Research/OP/river.html

[2] E.N. Barron, L.C. Evans and R. Jensen, The infinity laplacian, Aronssons equation and their generalizations.

Trans. Amer. Math. Soc. 360, (2008), 77101.
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