Global group laws and the equivariant Quillen theorem

Markus Hausmann

Bonn University

June 30th, 2020

Complex oriented ring spectra

- E complex oriented ring spectrum
- $\diamond\ y\in E^*(\mathbb{C}P^\infty)$ Euler class of the universal complex line bundle
- \diamond Then $E^*(\mathbb{C}P^{\infty})\cong E^*[|y|]$
- The tensor product of line bundles give a comultiplication

$$E^*[|y|] \cong E^*(\mathbb{C}P^{\infty}) \xrightarrow{\Delta} E^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) \cong E^*[|y_1, y_2|]$$

The element

$$F(y_1, y_2) = \Delta(y) = \sum_{i,j \in \mathbb{N}} a_{i,j} \cdot y_1^i y_2^j$$

defines a formal group law over E^* , i.e.,

$$F(y_1, 0) = y_1; F(0, y_2) = y_2$$
 (counitality)
 $F(y_1, y_2) = F(y_2, y_1)$ (cocommutativity)
 $F(y_1, F(y_2, y_3)) = F(F(y_1, y_2), y_3)$ (coassociativity)

Quillen's theorem

- ⋄ MU complex bordism spectrum
- ⋄ L Lazard ring (carrying the universal formal group law)

Theorem (Quillen, '69)

For E=MU, the associated formal group law is the universal one, i.e., the map

 $L \rightarrow MU^*$

is an isomorphism.

Starting point for chromatic homotopy theory

What happens equivariantly?

- ⋄ A abelian compact Lie group.
- \diamond $S(\mathcal{U}_A) \times_{\mathbb{T}} \mathbb{C} \to \mathbb{C}P(\mathcal{U}_A)$ universal A-equivariant complex line bundle. $(\mathcal{U}_A \text{ a complete complex } A\text{-universe})$
- \diamond Thom space again *A*-homeomorphic to $\mathbb{C}P(\mathcal{U}_A)$.
- \diamond ϵ trivial 1-dimensional *A*-representation.

Definition: Equivariant orientations

A complex orientation of an A-ring spectrum E is a class $t \in \widetilde{E}^2(\mathbb{C}P(\mathcal{U}_A))$ which restricts to an RO(A)-graded unit in

$$\widetilde{E}^2(\underbrace{\mathbb{C}P(\epsilon\oplus V)})\cong\widetilde{E}^2(S^V)$$

for every character V of A, and to the element $1 \in E^0 \cong \widetilde{E}^2(S^2)$ for $V = \epsilon$.

Algebraic structure of $E^*(\mathbb{C}P(\mathcal{U}_A))$?

- $\diamond \ y(\epsilon) \in E^*(\mathbb{C}P(\mathcal{U}_A))$ universal Euler class (coordinate)
- \diamond Action by $A^* = \operatorname{Hom}(A, \mathbb{T})$ via tensor products with characters. In particular: Have elements $y(V) = V \cdot y(\epsilon)$ for $V \in A^*$.
- Complete:

$$E^{*}(\mathbb{C}P(\mathcal{U}_{A})) \cong \lim_{V_{1},...,V_{n} \in A^{*}} E^{*}(\mathbb{C}P(V_{1} \oplus ... \oplus V_{n}))$$

$$\cong \lim_{V_{1},...,V_{n} \in A^{*}} \underbrace{E^{*}(\mathbb{C}P(\mathcal{U}_{A}))/y(V_{1})y(V_{2}) \cdots y(V_{n})}_{E^{*}\text{-basis: }1, \ y(V_{1}), \ y(V_{1})y(V_{2}), \ y(V_{1})y(V_{2}) \cdots y(V_{n-1})}$$

The tensor product of line bundles gives a comultiplication

$$E^*(\mathbb{C}P(\mathcal{U}_A)) \xrightarrow{\Delta} E^*(\mathbb{C}P(\mathcal{U}_A) \times \mathbb{C}P(\mathcal{U}_A))$$

$$\cong E^*(\mathbb{C}P(\mathcal{U}_A)) \hat{\otimes}_{E^*} E^*(\mathbb{C}P(\mathcal{U}_A))$$

Definition (Cole-Greenlees-Kriz '00)

An A-equivariant formal group law is a quintuple

$$(k,R,\Delta,\ell,y(\epsilon))$$

- $\diamond k = \text{ground ring}$
- \diamond R = complete, augmented, topological k-algebra
- \diamond $\Delta \colon R \to R \hat{\otimes}_k R$ comultiplication: counital, cocommutative, coassociative
- $\diamond \ \ell = A^*$ -action on R, compatible with Δ , such that

$$R \cong \lim_{V_1,\ldots,V_n \in A^*} (R/y(V_1)\cdots y(V_n)))$$

 $\diamond y(\epsilon) \in R$ regular generator of augmentation ideal (coordinate).

E complex oriented A-ring spectrum. Then

$$(E^*, E^*(\mathbb{C}P(\mathcal{U}_A)), \Delta, \ell, y(\epsilon))$$

forms an A-equivariant formal group law.

Euler classes of equivariant formal group laws

- $(k, R, \Delta, \ell, y(\epsilon))$ A-equivariant formal group law, $V \in A^*$.
 - $\diamond e_V = \text{augmentation of } y(V) \text{ 'Euler class of } V'.$
 - \diamond Topologically: Euler classes $e_V \in E^*$ for bundles over a point.

Example

- \diamond If e_V is invertible for all $V \neq \epsilon$, then $R \cong \text{map}(A^*, k[|y|])$.
- \diamond If $e_V = 0$ for all $V \in A^*$, then $R \cong k[|y|]$.

The equivariant Lazard ring

Proposition (Cole-Greenlees-Kriz)

There exists a universal A-equivariant formal group law, defined over an A-equivariant Lazard ring L_A .

MU_A (stable) A-equivariant complex bordism (tom Dieck, '70). Get a map

$$\varphi_A \colon L_A \to MU_A^*$$

Theorem (Greenlees, '01)

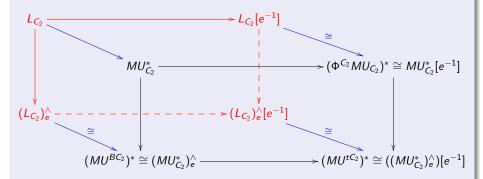
A finite abelian. Then

$$\varphi_A \colon L_A \to MU_A^*$$

is surjective, with Euler-torsion and infinitely Euler-divisible kernel.

Sketch of the argument for $A = C_2$

The Tate square for MU_{C_2} yields a pullback square \square



Problem: Unclear that \square is a pullback square.

Upshot: Main issue is controlling the Euler torsion in L_A .

An equivariant Quillen theorem

Theorem (Strickland '02)

Presentation of $MU_{C_2}^*$ and section $MU_{C_2}^* \to L_{C_2}$ of φ_{C_2} .

Theorem (Hanke-Wiemeler '17)

 φ_{C_2} is an isomorphism.

Theorem (H.)

 φ_A is an isomorphism for every abelian compact Lie group A.

Main tool: Global homotopy theory (Schwede)

Slogan

Global spectrum = compatible collection of A-spectra for all A

 E_A A-spectrum – – – – \rightarrow cohomology theory E_A^* on A-spaces

Remark

$$E_A^* \cong E^*(* /\!\!/ A)$$

Examples

 \mathbb{S}_{gl} , KU_{gl} , Borel theories, MU_{gl}

- ♦ E complex oriented global ring spectrum ($\Rightarrow E_A$ complex oriented for all A)
- $\diamond \ \mathbb{C} \ /\!\!/ \ \mathbb{T} \to * \ /\!\!/ \ \mathbb{T} \ \text{universal global complex line bundle}$

Question

What is the algebraic structure of $E^*(* /\!\!/ \mathbb{T}) = E_{\mathbb{T}}^*$?

Have:

- \diamond universal Euler class $e \in E_{\mathbb{T}}^*$.
- \diamond comultiplication $m^* \colon E^*_{\mathbb{T}} \to E^*_{\mathbb{T} imes \mathbb{T}}.$

Problems/differences:

- \diamond $E_{\mathbb{T}}^*$ is generally not complete. Example: $KU_{\mathbb{T}}^* \cong RU(\mathbb{T}) \cong \mathbb{Z}[t^{\pm 1}]$
- \diamond $E^*_{\mathbb{T} imes \mathbb{T}}$ is generally not a tensor product of two copies of $E^*_{\mathbb{T}}$.

 \Rightarrow Need to consider all of $E^*, E^*_{\mathbb{T}}, E^*_{\mathbb{T} \vee \mathbb{T}}, \dots$ as a functor

 \underline{E}^* : tori^{op} \rightarrow commutative rings,

together with $e \in E_{\mathbb{T}}^*$.

New question

What are the properties of the pair (\underline{E}^*, e) ?

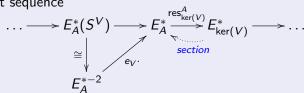
Lemma

For every torus A and split character $V \in A^*$ (i.e., $V: A \to \mathbb{T}$ has a section), the Euler class $e_V = V^*(e) \in E_A^*$ is a regular generator of the kernel of the restriction map

$$E_A^* \to E_{\ker(V)}^*$$
.

Proof

- \diamond Note: $S(V) \cong A/\ker(V)$
- \Rightarrow A-cofiber sequence $(A/\ker(V))_+ \to S^0 \to S^V$.
- ⇒ long exact sequence



Observation

For every torus A, the A-equivariant formal group law

$$(E_A^*, E_A^*(\mathbb{C}P(\mathcal{U}_A)), \Delta, \ell, y(\epsilon))$$

can be reconstructed from (\underline{E}^*, e) , using only the lemma.

Uses a completion theorem

$$E_A^*(\mathbb{C}P(\mathcal{U}_A))\cong \lim_{V_1,\ldots,V_n\in A^*}(E_{A imes\mathbb{T}}^*/y(V_1)\cdots y(V_n)),$$

with
$$y(V) = e_{(V, id_{\mathbb{T}})} \in E_{A \times \mathbb{T}}^*$$
.

 \diamond Δ and ℓ are induced by the global functoriality, from the maps

$$id_A \times m \colon A \times \mathbb{T} \times \mathbb{T} \to A \times \mathbb{T}$$

and

$$\begin{pmatrix} \mathsf{id}_{\mathcal{A}} & V \\ 0 & \mathsf{id}_{\mathbb{T}} \end{pmatrix} : A \times \mathbb{T} \to A \times \mathbb{T}.$$

Global group laws

This motivates:

Definition

A global group law is a pair (X, e) of

- \diamond a functor X: tori^{op} \rightarrow commutative rings, and
- \diamond an element $e \in X(\mathbb{T})$,

such that for every torus A and split character $V \in A^*$ the element $e_V = V^*(e) \in X(A)$ is a regular generator of the kernel of the restriction map

$$X(A) \rightarrow X(\ker(V)).$$

Lemma

There exists an initial global group law (L_{gl}, e) .

How does L_{gl} relate to L_A ?

There is an adjunction

 $F: \{global group laws\} \rightleftarrows \{A-equivariant formal group laws\}: G$

given by

$$F(X, e) = (X(A), X(A \times \mathbb{T})^{\wedge}, \Delta, \ell, e_{(\epsilon, id_{\mathbb{T}})})$$

and

$$G(k, R, \Delta, \ell, y(\epsilon)) = (\mathbb{T}^n \mapsto R^{\hat{\otimes}_k n}, y(\epsilon)).$$

Corollary

$$L_{gl}(A) \cong L_A$$
.

Regularity of Euler classes

Corollary

If A is a torus and $V \in A^*$ is split, then $e_V \in L_A$ is a regular element.

With more work we can show:

Theorem (H.)

If A is a torus and $V \in A^*$ is non-trivial, then $e_V \in L_A$ is a regular element.

Corollary

If A is a torus, then L_A is an integral domain.

Using this, it is not hard to show that

$$\varphi_A \colon L_A \to MU_A^*$$

is an isomorphism for every torus A. The general case follows by embedding into tori.

A global Quillen theorem

Theorem (H.)

The pair $(\underline{MU}_{\sigma l}^*, e)$ is the universal global group law.

Slogan: Global group laws are an uncompleted version of formal group laws.

Examples of global group laws

- \diamond *F* ordinary formal group law over k, then $\mathbb{T}^n \mapsto k[|y_1, \ldots, y_n|]$ with functoriality via F is a global group law. This defines a fully-faithful embedding of formal group laws into global group laws. (topologically: Borel theories)
- \diamond additive group: $\mathbb{G}_{\mathsf{a}}(\mathbb{T}^n) = \mathbb{Z}[e_1,\ldots,e_n]$
- \diamond multiplicative group: $\mathbb{G}_m(\mathbb{T}^n)=\mathbb{Z}[t_1^{\pm 1},\ldots,t_n^{\pm 1}]$ (topologically: KU_{gl})
- ♦ Elliptic curve C over a scheme S, then $\mathbb{T}^n \mapsto C^{\times_S n}$ is a 'global group' (topologically: ??)
- \diamond Universal constructions: e.g., initial global group law (MU_{gl}) , a free global group law on two coordinates $(MU_{gl} \land MU_{gl})$, or a free global group law satisfying $e_{V^{-1}} = -e_V$, ...

Thank you for your attention!