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Cohomology of extended powers

The extended powers construction

Dn(X ) = X n
hSn = (ESn × X n)/Sn

was introduced by Steenrod and plays a number of important roles
in algebraic topology.

For example, the group completion of
⊔

n X
n
hSn is the free infinite

loopspace on X+.

Today I will focus on the cohomology ring structure of these
spaces.

2



Homology and cohomology of symmetric groups

The ranks of homology groups of BSn has been understood since
work of Kudo-Araki, Dyer-Lashof, and Nakaoka.

The ring structure of the cohomology of BS∞ at the prime two
was calculated by Nakaoka in 1960.

The coproduct structure for H∗(BSn) was given by
Cohen-Lada-May. It is difficult to work with because of a need to
apply Adem relations.

Through the ’80s and ’90s, Hưng, Adem, Milgram, McGinnis and
Feshbach studied individual symmetric groups to better understand
cohomology ring and Steenrod structure.
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Homology and cohomology of symmetric groups
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Main results (at two)

Theorem (Giusti-Guerra-Salvatore-S)

• The direct sum of cohomology
⊕

n H
∗(BSn;F2) is the free

divided-powers component Hopf ring primitively generated by
classes γ` ∈ H2`−1(BS2`).

• The direct sum over n of the cohomology of DnX is the free
divided powers Hopf ring over this ring (X = pt.) generated
by the cohomology ring of X .

All of the information from the previous slide follows from the first
statement.

We also explicitly treat Steenrod structure. We start with algebra
and move to geometry, though our insight flowed in the other
direction. We will end with applications and further directions.

5



Part one: algebra

1. What is... a divided power Hopf ring structure?

2. Graphical representation of Hopf ring monomial basis

3. Multiplication

4. Extended powers and free infinite loop spaces
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Hopf ring structure

Definition

A Hopf ring is a ring object in the category of coalgebras.

Explicitly, a Hopf ring is vector space V with two multiplications,
one comultiplication, and an antipode (�, ·,∆, S) such that the
first multiplication forms a Hopf algebra with the comultiplication
and antipode, the second multiplication forms a bialgebra with the
comultiplication, and these structures satisfy the distributivity
relation

α · (β � γ) =
∑

∆α=
∑

a′⊗a′′
(a′ · β)� (a′′ · γ).
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Hopf ring structure

A free algebra (or magma) on two products would be very large,
but the distributivity relation cuts things down considerably.

α · (β � γ) =
∑

∆α=
∑

a′⊗a′′
(a′ · β)� (a′′ · γ).

Consequence: every element can be reduced to Hopf monomials
m1 �m2 � · · · �mi , where the mi are monomials in the ·-product
alone.
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Hopf ring structure

Hopf rings occur “categorically” in topology, as the homology of
infinite loop spaces which represent ring spectra. But Strickland
and Turner saw these structures in (generalized) group cohomology
of symmetric groups.

Theorem (Strickland-Turner)

For any ring-theory E ∗, the cohomology of symmetric groups⊕
n E
∗(BSn) forms a (derived) Hopf ring where

• The · product is the standard (cup) product (with zero
products between distinct summands).

• The coproduct ∆ is induced by the standard covering
p : BSn × BSm → BSn+m.

• The product � is the transfer associated to p.

These operations are familiar in the case of K -theory.
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Hopf ring structure

Definition

A divided powers Hopf ring generated by a finite set a1, · · · ak is
the Hopf ring generated under the two products by variables ai [n]

with 1 ≤ i ≤ k and n ≥ 1 with coproducts determined by

∆ai [n] =
∑

k+`=n

ai [k] ⊗ ai [`],

and �-products

ai [n] � ai [m] =

(
n + m

n

)
ai [n+m].

It is better (but not as quick) to describe free divided powers Hopf
rings as a left adjoint to a forgetful functor to rings.
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Component divided powers Hopf ring structure

A component Hopf ring decomposes as
⊕

n Rn, where the · is zero
between summands. This is immediate for

⊕
n H
∗(BSn).

The divided powers structure is for the “plus product” �, giving
operations H∗(BSm)→ H∗(BSkm). We typically denote it
x 7→ x[k] (reserving superscripts for exponentiation of ·). Recall
that divided powers over F2 is exterior, as x � x = 2x[2] = 0.

The divided powers operation commutes with · on ∆-primitives,
and satisfies the coproduct formula ∆x[n] =

∑
i+j=n x[i ] ⊗ x[j].
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Unpacking the structure and graphical
representation

The Hopf monomial basis of a Hopf ring can represented
graphically.

In our setting, generators γ` are represented by blocks. We give
them width 2`−1, so that the width corresponds to half the
component.
We choose height so that area is equal to degree, namely 2` − 1.

The cup · product is represented by stacking vertically, and the
transfer � product is represented by stacking horizontally. Divided
power is denoted by repeated stacking horizontally with dashed
lines.

The unit class 1m on the BSm component is indicated by an
“empty space.”
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Graphical representation

γ3
1 � γ1[2] · γ2 � 12

is represented by:

These graphical representations for Hopf ring monomials are called
“skyline diagrams.”
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Additive basis

To form an additive basis, inductively:

• Take transfer products (without repeats) of basis elements for
previous symmetric groups.

• On 2` components, take all · products of γi [2j ] with i + j = `
(that is, a basis for the polynomial algebra on these).

These latter form a basis for the �-indecompsibles of this Hopf
ring, from which everything else is built through �. (For experts:
under restriction to transitive elementary abelian subgroup, these
map to Dickson algebras, isomorphically as algebras but not over
the Steenrod algebra.)
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Hopf ring generators

15 γ4

14 γ3[2]

13
12 γ2[4]

11
10
9 γ2[3]

8 γ1[8]

7 γ3 γ1[7]

6 γ2[2] γ1[6]

5 γ1[5]

4 γ1[4]

3 γ2 γ1[3]

2 γ1[2]

1 γ1

BS2 BS4 BS6 BS8 BS10 BS12 BS14 BS16
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Multiplication

The main payoff of our techniques are much better control of
mulitplication, as well as new insight into Steenrod structure.

Multiplication requires repeated use of Hopf ring distributivity,
though we will be able to streamline things graphically.

(γ1[2] � 12) · (γ2
1[2] � 12) =

∑
∆γ1[2]�12=

∑
ai⊗bi

(ai · γ2
1[2])� (bi · 12)

= (γ1[2] · γ2
1[2])� (12 · 12) + (γ1 � 12 · γ2

1[2])� (γ1 · 12)

= γ3
1[2] � 12 + γ3

1 � γ2
1 � γ1
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Multiplication

Graphically, transfer product corresponds to placing two column
Skyline diagrams next to each other and merging columns with the
same constituent blocks, with a coefficient of zero if any of those
column widths share a one in their dyadic expansion.

For cup product, we start with two column diagrams and consider
all possible ways to split each into columns, along either original
boundaries of columns or along the vertical lines of full height
internal to the rectangles representing γ`,n. We then match
columns of each in all possible ways up to automorphism, and
stack the resulting matched columns to get a new set of columns –
a Tetris-like game.
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Multiplication

· = +

(γ i1 � γ
j
1) · (γ1 � 12) = γ i+1

1 � γj1 + γ i1 � γ
j+1
1
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Multiplication

· =

(γ i1 � γ
j
1) · γ1[2] = γ i+1

1 � γj+1
1

· = 0

(γ i1 � γ
j
1) · γ2 = 0
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Multiplication

· = +

(γ3
1 � γ2 � 12) · (γ1[2] � 14) = γ4

1 � γ2 � 12 + γ3
1 � γ1[2]γ2 � 12
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Exercises

Calculate products such as

• (γ1 � 12) · γ2
1[2]

• (γ1 � 12) · (γ2
1 � γ1)

• (γ1 � 12) · γ2

• (γ3
1 � γ2 � 12) · (γ1[2] � 14).

Or (start to) give a basis of BS12

Or ponder this presentation as you like.

Talking with your neighbors is strongly encouraged.

21



Ring presentations and beyond

If one wants generators and relations for an individual symmetric
groups, finding such from an additive basis with multiplication
rules is readily algorithmic, by proceeding by degree.

Such are necessarily complicated; the Adem-Mcginnis-Milgram
presentation for BS12 shown previously is minimal, for example.

We readily recover Feshbach’s generators. His relations are
inductively defined - it would be nice to have a “closed form.”

There are many other open questions, starting with for example
computing the prime ideal spectrum, as needed for applications to
the study of support varieties.
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Extended powers

Theorem (Giusti-Guerra-Salvatore-S)

• The direct sum of cohomology
⊕

n H
∗(BSn;F2) is the free

divided-powers component Hopf ring primitively generated by
classes γ` ∈ H2`−1(BS2`).

• The direct sum over n of the cohomology of DnX is the free
divided powers Hopf ring over this ring (X = pt.) generated
by the cohomology ring of X .

Graphical basis for the cohomology of extended powers:
skyline diagrams where each column is labeled by a cohomology
class of X (which is at least implicitly repeated twice in each
column).

Hopf ring structure essentially as before, but includes
multiplication of labels when columns are stacked.
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The cohomology of BS∞

The cohomology of BS∞ is the inverse limit, which by explicit
calculation or application of homological stability can be
represented by skyline diagrams with “infinite room.”

Hopf ring structure of finite approximations can be used to
calculate products. We notice that relations “die” in the inverse
system. In fact, as Nakaoka first show, the limit is a polynomial
ring.

We have shown that there is no consistent Hopf ring structure on
the limit, so in this case the finite approximations illuminate the
infinite, instead of the other way around.
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The cohomology of BS∞

Exercise:

a. Define and use a width filtration to show that “single columns”
generate the cohomology of BS∞ (under cup product).

b. Show that the cohomology is polynomial (as proven by
Nakaoka), and find a set of generators.
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The cohomology of QX

Barratt-Priddy showed that the cohomology of QX is that of
C∞X , a quotient of D∞X . (Quillen and Segal then showed this
follows from a stronger group completion theorem.)

Analysis of skyline diagrams with infinite room, with columns
labeled by H∗(X ) shows that the cohomology of QX is generated
by columns of width one with at least one block type occurring an
odd number of times or with a label which is not a square in
H∗(X ), modulo the relation that if a label satisfies x2n = 0 then a
column with that label will also have such a relation.
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Steenrod structure

Because transfers are stable maps, our transfer product has a
Cartan formula - there are two!

Thus, Steenrod operations on all cohomology of symmetric groups
is thus determined by that on the γi [j].

Definition

• The height of a skyline diagram is the largest number of
blocks stacked in a column. (This is not the degree of that
column.)

• The effective scale of a column is the index of the largest
block-type which occurs. (The largest i for which γi ,2j
appears in the column.) The effective scale of a skyline
diagram is the minimum of the effective scales of its columns.

• We say a skyline diagram is not full width if it has an empty
space. (That is, it represents a non-trivial transfer product of
some monomial with some 1k .)
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Steenrod structure

Theorem

Sqiγ`[2k ] is the sum of all full-width skyline diagrams of total degree

2k(2` − 1) + i , height one or two, and effective scale at least `.

We call monomials represented by such skyline diagrams the
outgrowth monomials of γ`[2k ].

For example,

Sq3γ2[4] = γ4 + γ3 � γ2γ1[2] � γ2 + γ2
2 � γ2 � γ2[2].

Sq3( ) = + + .
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Part two: geometry

1. Configuration space models of structures in homology and
cohomology

2. Further directions: derived divided powers (aka "transfer
Kudo-Araki”) operations
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Configuration models

Let Confn(Rm) denote the configuration space of ndistinct ordered
points in Rm - that is the subspace of (x1, . . . , xn) where xi 6= xj
when i 6= j .

We denote by Confn(Rm) the quotient Confn(Rm)/Sn, which is
the space of unlabeled configurations of n points in Rm.
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Configuration models

Familiar group-theoretic constructions have geometric
representatives.

The inclusion Sn × Sm ↪→ Sn+m is given by “ ‘stacking
configurations next to each other.”

Explicitly, if f : M → Confi (I∞) and g : NConfj(I∞) represent
homology classes x and y then x ∗ y is represented by a map
M × N → Confi+j(I∞) sending (m, n) to

1

3
(f (m)− v)

⊔ 1

3
(g(n) + v),

for a fixed unit vector v .
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Homology of symmetric groups

This makes
⊔
BSn =

⊔
Confn(R∞) an H-space (in fact, A∞).

There is a choice of in which direction one stacks. By making
continuous families of such choices, in the case of the product of a
class with itself, we get “higher products” or operations.

Definition (Kudo-Araki, Dyer-Lashof)

Let f : M → Confn(I∞) represent a homology class x .
Then qi (x) is represented by a map from S i ×S2 (M ×M) to
Conf2n(I∞) sending (v ,m1,m2) to 1

3(f (m)− v)
⊔ 1

3(g(n) + v).
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Homology of symmetric groups

These operations can be defined using the transfer of
Sn o S2 ↪→ S2n (along with a little equivariant homology
calculation).

These are non-trivial even (especially!) on the non-zero class ι in
H0(BS1), in which case the qi (ι) are the homology of
BS2 = RP∞.

One can of course compose these operations, with the following a
picture of q1(q2(ι)).
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Homology of symmetric groups

These operations are close cousins to Steenrod operations.

• There is an additive - but highly mixing of degrees -
isomorphism between mod-two homology of symmetric
groups and cohomology of Eilenberg-MacLane spaces. (Below
we might make note of explicit isomorphisms between
Fox-Neuwirth resolutions and the iterated bar construction for
C2.)

• The diagonal on X yields a multiplicaton on its
Spanier-Whitehead dual, and its Kudo-Araki operations reflect
the Steenrod operations of X .

• (Adem) For m > n, qm ◦ qn =
∑

i

( i−n−1
2i−m−n

)
qm+2n−2i ◦ qi .
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Homology of symmetric groups

Theorem (Nakaoka; Kudo-Araki; Cohen-Lada-May)

H∗(
∐

n BSn), as a ring under ∗ is the polynomial algebra generated
by the nonzero class ι ∈ H0(BS1) and qI (ι) ∈ H∗(BS2k ) for I
strongly admissible.

Our first definition of the key γ` classes in cohomology is as the
linear duals of the q1,...,1 classes in this monomial basis.
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Cohomology and geometry

Through Poincaré duality, Thom cochains or other technology, a
proper submanifold (subvariety) of a manifold represents a
cohomology class.

Theorem

The class γ` is represented by the subvariety of Confn(R∞) in
which all 2` points share their first coordinate.

For odd primes, we have analogues of all of the above results. In
particular, there are γ` classes in which p` points share two
coordinates, or one complex coordinate. (But these aren’t all the
Hopf ring generators.)
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Cohomology and geometry

Digression: the one-point compactifications of Confn(Rd) admit
Fox-Neuwirth cell structures defined by looking at coordinates
shared by consecutive points in the dictionary order on the
configuration.

These are Sn-equivariant. By Alexander duality, these chain
complexes yield (Fox-Neuwirth) resolutions of the trivial module
for kSn. The γ` have simple representatives in terms of these
resolutions.

Ayala and Hepworth noticed that the boundary category of this cell
structure is Θn.

37



Hopf ring structure and geometry

For such representatives, these Hopf ring structures are interpreted
as follows

• The · product is the cup product, which as always is defined
by intersection, which means imposing both conditions
(simultaneously, on the same collection of points, and keeping
in mind the configurations are unordered).

• The coproduct ∆ means restricting conditions to
configurations which have been “stacked”.

• The product � means taking conditions on m and n points
and getting a condition on m + n points by finding disjoint
subsets which satisfy those conditions.

We re-discovered these structures through this geometry.
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Divided powers structure

The divided powers structure geometrically corresponds to
“repeating a condition.”

That is, if W is a submanifold of X which represents a cohomology
class, its divided power in DnX corresponds to having all labels of
the configuration in W .

One then uses the transfer associated to Dn ◦ Dm → Dnm to define
a divided powers operation on the cohomology of all extended
powers.

We can alternately use wreath products/ operad insertion. We
found these in the process of finding a geometric proof of the first
Adem relation.
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Derived divided powers structure

Instead of imposing conditions only on labels, we could impose
conditions on the configuration as well.

Given any γ ∈ H i (BSn) and some x ∈ H∗(X ) we consider again
the cohomology class with condition γ on the points in the
configuration and condition associated to x on the labels. This was
denoted by having x label all the columns in the skyline diagram
for γ.

Shifting perspective, we can view this as an operation -
x[γ] ∈ H∗(DnX ). The previous x[k] is x[1k ] in this notation.

These can be viewed as “derived divided power operations” or
“transfer Kudo-Araki operations.”
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Derived divided powers structure

Theorem

γn[γ1] = γn+1.

Theorem

The cohomology of extended powers of X is generated by that of
X , as a Hopf ring with divided powers and the derived divided
powers operation associated to γ1 ∈ H1(BS2).

Note that all of the divided powers are generated in this setting by
the (derived) operation associated to 12 ∈ H0(BS2).

This is very much work-in-progress: we haven’t developed the
theory of these operations yet, and in particular do not know the
relations.
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Odd primes, and beyond

At odd primes, the cohomology of extended powers on X is only
free over the cohomology of symmetric groups when we take
coefficients in Fp ⊕ sgn.

The cohomology of symmetric groups themselves is not a free
divided powers Hopf ring, because of Bocksteins. (But we do have
a nice presentation.)

There is an “even backbone” - the divided powers Hopf ring with a
single derived operation associated to γ1 ∈ H2(p−1)(BSp). These
lift to MU-cohomology.

Problem

Define an “inverse Bockstein” operation over which the
odd-primary cohomology would be freely generated (as a Hopf ring
with a single derived operation).
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Part three: further directions

1. Alternating groups

2. Cohomology of symmetric groups over the integers

3. Homology-cohomology pairing

4. Support varieties

5. Characteristic classes for surface bundles - calculations and
geometry

6. The unstable Adams SS for QS0

7. Chromatic cohomology of symmetric groups
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Alternating groups

Giusti and I completed an analogous - but much, much more
intricate - calculation of the mod-two cohomology of alternating
groups, with a presentation as an almost-Hopf ring.

Needed all available techniques, but in the end we “beat the
computer” and found errors in previously published results.

Ring structure itself is much less clear than for symmetric groups
(we know that there are no analogues of Feshbach generators).
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And we ought to work out

The cohomology of symmetric groups over the integers: May
originally proved some results about the Bockstein SS. The
(in)decomposible exact sequence for transfer product illuminates
things greatly.

The pairing between homology and cohomology is “block diagonal”
by partition (of columns in skyline diagram vs. product structure in
Kudo-Araki algebra). But the blocks are not diagonal. What are
they? Conjecturally, pairing coincides with that of admissible basis
and Milnor basis and for the Steenrod algebra and its dual.
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Application to connect with modular representation
theory

Given a representation M of G , consider ExtkG (M,M). This is a
module over the cohomology of G . The support variety of M is the
variety associated to the annihilator ideal of this module.

Problem

Understand the prime ideal spectrum of the cohomology of
symmetric groups, and calculate some support varieties!

And more broadly, what more can we say about modular
representations of symmetric groups now that we better
understand some key Ext groups?
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Characteristic classes for surface bundles

Galatius-Madsen-Tillmann-Weiss: BDiff(Σ∞) ' MTSO(2).

There is a surjection in cohomology that of QCP∞+ to that of
MTSO(2). In his thesis, Galatius used this to make some
calculations, but has noted the possibility of better understanding
of ring structure if one could better understand the cohomology of
QCP∞+ – which we now do!

The cohomology of symmetric groups yields characteristic classes
of finite covering spaces. Our configuration space models represent
these geometrically by embedding a covering space in a product
with a Euclidean space, and “recording conditions.” There are
similar descriptions of Mumford classes. Can we find geometry for
all stable characteristic classes of surfaces?

Barrier: passing from characteristic classes covering spaces to
those of iterated loop spaces is not even clear!
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Applications in homotopy theory

Dana Fry is revisiting Wellington’s calculations of the UASS for
QS0.

Time for another attack on chromatic cohomology of symmetric
groups? We now have

• HKR theory, including evenness

• Hopf ring structure, with transfer-indecomposibles calculated
by Strickland for E -theory

• Input from ordinary cohomology
I an “even backbone” to cohomology which lifts to MU
I restrictions to elementary abelian subgroups
I an ability to calculate Margolis homology, assuming a concrete

conjecture about Margolis homology of Dickson algebras

• New “transfer Kudo-Araki operations” which seem to have
MU-analogues.
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Some takeaways

1. Divided powers Hopf rings are manageable!

2. Transfer maps associated to Sn × Sm ↪→ Sn+m and
Sn o Sm ↪→ Snm, coefficients in the sign representation, and
derived divided powers operations are new key structures.

3. There are rich (complex/ algebro ) geometric representatives
for the “even-degree backbone” of the cohomology.

And many possible further directions!
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