The homotopy of the motivic image-of-J spectrum

joint with Eva Belmont and Dan Isaksen

Hana Jia Kong

Institute for Advanced Study

November 27, 2021

We work 2-primarily: Most of things are either 2-local or 2-complete without notational indications.

► *J*-homomorphism:

► *J*-homomorphism:

▶ an orthogonal map $\mathbb{R}^n \to \mathbb{R}^n \rightsquigarrow$ a self map $S^n \to S^n$.

► *J*-homomorphism:

an orthogonal map ℝⁿ → ℝⁿ → a self map Sⁿ → Sⁿ.
compatible maps O(n) → ΩⁿSⁿ for all n.

► *J*-homomorphism:

an orthogonal map ℝⁿ → ℝⁿ → a self map Sⁿ → Sⁿ.
compatible maps O(n) → ΩⁿSⁿ for all n.

$$\blacktriangleright J_*: \pi_*(O) \to \pi_*(S).$$

► *J*-homomorphism:

an orthogonal map ℝⁿ → ℝⁿ → a self map Sⁿ → Sⁿ.
compatible maps O(n) → ΩⁿSⁿ for all n.

$$J_*: \pi_*(O) \to \pi_*(S).$$

$$j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^4 \mathbf{ksp}).$$

► *J*-homomorphism:

an orthogonal map ℝⁿ → ℝⁿ → a self map Sⁿ → Sⁿ.
 compatible maps O(n) → ΩⁿSⁿ for all n.
 L → Ξ (Ω) → Ξ (Ω)

$$J_*: \pi_*(O) \to \pi_*(S)$$

$$j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^4 \mathbf{ksp}).$$

► *J*-homomorphism:

an orthogonal map ℝⁿ → ℝⁿ → a self map Sⁿ → Sⁿ.
compatible maps O(n) → ΩⁿSⁿ for all n.
J_{*} : π_{*}(O) → π_{*}(S).

$$j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^4 \mathbf{ksp}).$$

- **ko**: connective real *K*-theory spectrum.
- **ksp**: connective quaternionic *K*-theory spectrum.

► *J*-homomorphism:

an orthogonal map ℝⁿ → ℝⁿ → a self map Sⁿ → Sⁿ.
compatible maps O(n) → ΩⁿSⁿ for all n.
J_{*} : π_{*}(O) → π_{*}(S).

$$j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^4 \mathbf{ksp}).$$

- **ko**: connective real *K*-theory spectrum.
- ksp: connective quaternionic K-theory spectrum.
- ψ^3 : the Adams operation.

Bott periodicity:

Bott periodicity: $\mathbb{Z} \times BO, O, O/U, U/Sp, \mathbb{Z} \times BSp, Sp, Sp/U, U/O.$

- Bott periodicity: $\mathbb{Z} \times BO, O, O/U, U/Sp, \mathbb{Z} \times BSp, Sp, Sp/U, U/O.$
- \triangleright $\Sigma^4 \mathbf{ksp}$ is the 4th connective cover of **ko**.

Bott periodicity: $\mathbb{Z} \times BO, O, O/U, U/Sp, \mathbb{Z} \times BSp, Sp, Sp/U, U/O.$

- \triangleright $\Sigma^4 \mathbf{ksp}$ is the 4th connective cover of **ko**.
- Homotopy groups:

Bott periodicity: $\mathbb{Z} \times BO, O, O/U, U/Sp, \mathbb{Z} \times BSp, Sp, Sp/U, U/O.$

- \triangleright $\Sigma^4 \mathbf{ksp}$ is the 4th connective cover of **ko**.
- Homotopy groups:

	0	1	2	3	4	5	6	7	8	9	10	11
$\pi_*\mathbf{ko}$	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2	0
$\pi \Sigma^4$ kep	0	0	0	0	77	0	0	Ο	77	"	्या	Ο
″∗∠ кsp	U	0	0	0		0	0	0		\mathbb{T}_2	\mathbb{F}_2	0

homotopy of j

 $\cdots \to \pi_n(j) \to \pi_n(\mathbf{ko}) \to \pi_n(\Sigma^4 \mathbf{ksp}) \to \pi_{n-1}(j) \to \cdots$

homotopy of j

$$\cdots \to \pi_n(j) \to \pi_n(\mathbf{ko}) \to \pi_n(\Sigma^4 \mathbf{ksp}) \to \pi_{n-1}(j) \to \cdots$$

$$\boxed{\begin{array}{c|c}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\\hline \pi_* \mathbf{ko} & \mathbb{Z} & \mathbb{F}_2 & \mathbb{F}_2 & 0 & \mathbb{Z} & 0 & 0 & 0 & \mathbb{Z} & \mathbb{F}_2 & \mathbb{F}_2\\\hline\end{array}}$$

 $\pi_* \Sigma^4 \mathbf{ksp} \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \mathbb{Z} & 0 & 0 & 0 \\ \mathbb{Z} & \mathbb{F}_2 & \mathbb{F}_2 \end{vmatrix}$

homotopy of j

$$\cdots \to \pi_n(j) \to \pi_n(\mathbf{ko}) \to \pi_n(\Sigma^4 \mathbf{ksp}) \to \pi_{n-1}(j) \to \cdots$$

	0	1	2	3	4	5	6	7	8	9	10
$\pi_*\mathbf{ko}$	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2
$\pi_* \Sigma^4 \mathbf{ksp}$	0	0	0	0	, Z	۶ 0	0	0)× Z	16 F ₂	\mathbb{F}_2
π_*j	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2	$\mathbb{Z}/8$	0	0	0	$\mathbb{Z}/16$	\mathbb{F}_2	$(\mathbb{F}_2)^2$	

homotopy of \boldsymbol{j}

$$\cdots \to \pi_n(j) \to \pi_n(\mathbf{ko}) \to \pi_n(\Sigma^4 \mathbf{ksp}) \to \pi_{n-1}(j) \to \cdots$$

	0	1	2	3	4	5	6	7	8	9	10
$\pi_*\mathbf{ko}$	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2
)>	8			J×	16	
$\pi_* \Sigma^4 \mathbf{ksp}$	0	0	0	0	Z	0	0	0	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2 .
$\pi_* j$	\mathbb{Z}	\mathbb{F}_2	\mathbb{F}_2	$\mathbb{Z}/8$	0	0	0	$\mathbb{Z}/16$	\mathbb{F}_2	$(\mathbb{F}_2)^2$	

Adams–Novikov α-family:

What is the motivic analogue?

What is the motivic analogue?

▶ SH(k): motivic stable homotopy category over base field k.

What is the motivic analogue?

- SH(k): motivic stable homotopy category over base field k.
- (Bachmann–Hopkins) Motivice $j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 1} \Sigma^4 \mathbf{ksp})$

What is the motivic analogue?

• SH(k): motivic stable homotopy category over base field k.

• (Bachmann–Hopkins) Motivice $j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^4 \mathbf{ksp})$

$$\Rightarrow j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^{4,2} \mathbf{ksp})$$

What is the motivic analogue?

• SH(k): motivic stable homotopy category over base field k.

• (Bachmann–Hopkins) Motivice $j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^4 \mathbf{ksp})$

$$\Rightarrow j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^{4,2} \mathbf{ksp})$$

ko: very effective motivic Hermitian *K*-theory spectrum.

What is the motivic analogue?

• SH(k): motivic stable homotopy category over base field k.

• (Bachmann–Hopkins) Motivice $j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^4 \mathbf{ksp})$

$$\Rightarrow j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^{4,2} \mathbf{ksp})$$

ko: very effective motivic Hermitian K-theory spectrum.
 Σ^{4,2}ksp: 2nd very effective cover of ko.

What is the motivic analogue?

• SH(k): motivic stable homotopy category over base field k.

• (Bachmann–Hopkins) Motivice $j := \operatorname{fib}(\operatorname{\mathbf{ko}} \xrightarrow{\psi^3-1} \Sigma^4 \operatorname{\mathbf{ksp}})$

$$\Rightarrow j := \operatorname{fib}(\mathbf{ko} \xrightarrow{\psi^3 - 1} \Sigma^{4,2} \mathbf{ksp})$$

- **ko**: very effective motivic Hermitian *K*-theory spectrum.
- $\Sigma^{4,2}$ ksp: 2nd very effective cover of ko.
- ψ^3 : motivic Adams operation.

▶ How do *j* and the motivic sphere compare?

. . . .

How do j and the motivic sphere compare?

Computational tools for the motivic sphere:

- The motivic Adams spectral sequence.
- The effective slice spectral sequence.

• Motivic bigraded spheres $S^{s,w}$:

• Motivic bigraded spheres $S^{s,w}$:

S^{1,1}: Tate circle A¹ − {0};
 S^{1,0}: topological circle.

• Motivic bigraded spheres $S^{s,w}$:

- S^{1,1}: Tate circle A¹ − {0};
 S^{1,0}: topological circle.
- ▶ *s*: stem;
- ► w: weight;

• Motivic bigraded spheres $S^{s,w}$:

S^{1,1}: Tate circle A¹ − {0};
 S^{1,0}: topological circle.

▶ *s*: stem;

► w: weight;

• mASS:
$$E_2^{s,t,w} = \operatorname{Ext}_A^{s,t,w}(H\mathbb{F}_{2^{**}}, H\mathbb{F}_{2^{**}}) \Rightarrow \pi_{t-s,w}(S^{0,0})^{\wedge}_2.$$

• Motivic bigraded spheres $S^{s,w}$:

- S^{1,1}: Tate circle A¹ − {0};
 S^{1,0}: topological circle.
- ▶ *s*: stem;

► w: weight;

• mASS:
$$E_2^{s,t,w} = \operatorname{Ext}_A^{s,t,w}(H\mathbb{F}_{2^{**}}, H\mathbb{F}_{2^{**}}) \Rightarrow \pi_{t-s,w}(S^{0,0})_2^{\wedge}.$$

• Organize by coweight
$$s - w$$
.

\mathbb{R} -motivic Adams spectral sequence

$\mathbb R\text{-motivic}$ Adams spectral sequence

\mathbb{R} -motivic Adams spectral sequence

0 2 4 6 8 10 12 14 16 18 20
η -periodic phenomena

Approximation: η -inverted sphere.

η -periodic phenomena

Approximation: η -inverted sphere.

 π_{*}η⁻¹S: Andrews–Miller, Guillou–Isaksen, G. Wilson, Ormsby–Röndigs, Bachmann–Hopkins.

η -periodic phenomena

Approximation: η -inverted sphere.

 π_{*}η⁻¹S: Andrews–Miller, Guillou–Isaksen, G. Wilson, Ormsby–Röndigs, Bachmann–Hopkins.

► There is a "Image of *J*"-style pattern.

Motivic effective slice spectral sequence on SH(k):

► $SH^{eff}(k) \subset SH(k)$: the smallest triangulated full subcategory containing $\{\Sigma^{\infty}_{+}X, X \in Sm_k\}$.

Motivic effective slice spectral sequence on SH(k):

- SH^{eff}(k) ⊂ SH(k): the smallest triangulated full subcategory containing {Σ[∞]₊X, X ∈ Sm_k}.
- ► Have adjunction $i_q: \Sigma^{q,0} SH^{eff}(k) \rightleftharpoons SH(k) : r_q$.

Motivic effective slice spectral sequence on SH(k):

- SH^{eff}(k) ⊂ SH(k): the smallest triangulated full subcategory containing {Σ[∞]₊X, X ∈ Sm_k}.
- ► Have adjunction $i_q: \Sigma^{q,0} SH^{eff}(k) \rightleftharpoons SH(k) : r_q$.

$$\rightsquigarrow$$
 q th effective cover $f_q := i_q \circ r_q$.

Motivic effective slice spectral sequence on SH(k):

- SH^{eff}(k) ⊂ SH(k): the smallest triangulated full subcategory containing {Σ₊[∞]X, X ∈ Sm_k}.
- Have adjunction $i_q: \Sigma^{q,0} SH^{eff}(k) \rightleftharpoons SH(k) : r_q$.
 - \rightsquigarrow qth effective cover $f_q := i_q \circ r_q$.

For any $X \in SH(k)$, we have a tower and associated graded slices:

Motivic effective slice spectral sequence on SH(k):

- SH^{eff}(k) ⊂ SH(k): the smallest triangulated full subcategory containing {Σ[∞]₊X, X ∈ Sm_k}.
- ► Have adjunction $i_q : \Sigma^{q,0} SH^{eff}(k) \rightleftharpoons SH(k) : r_q$.

$$\rightsquigarrow \ q {\rm th \ effective \ cover} \ f_q := i_q \circ r_q.$$

For any $X \in SH(k)$, we have a tower and associated graded slices:

Motivic effective slice spectral sequence on SH(k):

- SH^{eff}(k) ⊂ SH(k): the smallest triangulated full subcategory containing {Σ[∞]₊X, X ∈ Sm_k}.
- Have adjunction $i_q: \Sigma^{q,0} SH^{eff}(k) \rightleftharpoons SH(k) : r_q$.

$$\rightsquigarrow$$
 q th effective cover $f_q := i_q \circ r_q$.

For any $X \in SH(k)$, we have a tower and associated graded slices:

• Effective slice spectral sequence: $\pi_{s,w}s_f(X) \implies \pi_{s,w}X$.

Motivic effective slice spectral sequence on SH(k):

- SH^{eff}(k) ⊂ SH(k): the smallest triangulated full subcategory containing {Σ[∞]₊X, X ∈ Sm_k}.
- Have adjunction $i_q : \Sigma^{q,0} SH^{eff}(k) \rightleftharpoons SH(k) : r_q$.

$$\rightsquigarrow$$
 *q*th effective cover $f_q := i_q \circ r_q$.

For any $X \in SH(k)$, we have a tower and associated graded slices:

• Effective slice spectral sequence: $\pi_{s,w}s_f(X) \implies \pi_{s,w}X$. $|d_r|_{(s,f,w)} = (-1, +r, 0)$; in particular $|d_r|_{\text{coweight}} = -1$.

► (Ananyevskiy–Röndigs–Østvær) Effective slices of ko:

(Ananyevskiy-Röndigs-Østvær) Effective slices of ko:
 s_{*}(ko) ≃ HZ ⊗ {Z[α₁, v₁²]/2α₁}.
 |α₁|= (1, 1), |v₁²|= (4, 2).

(Ananyevskiy−Röndigs−Østvær) Effective slices of ko:
 s_{*}(ko) ≃ HZ ⊗ {Z[α₁, v₁²]/2α₁}.
 |α₁|= (1, 1), |v₁²|= (4, 2).

Example: \mathbb{R} -motivic ESSS E_1 of ko

Take $\pi_{*,*}$ of the slices to obtain E_1 -page.

Example: \mathbb{R} -motivic ESSS E_1 of ko

Take $\pi_{*,*}$ of the slices to obtain E_1 -page.

 $\mathbb R\text{-motivic coefficient rings:}$

 $|\tau| = (0, -1), |\rho| = (-1, -1)$

Charts: \mathbb{R} -motivic ESSS E_1 of ko

Compute j using effective slice spectral sequence.

Compute j using effective slice spectral sequence.

Slices

Compute j using effective slice spectral sequence.

Slices

Differentials

Compute j using effective slice spectral sequence.

- Slices
- Differentials
- Hidden extensions

Compute j using effective slice spectral sequence.

- Slices
- Differentials
- Hidden extensions
- Relevance & convergence

Compute j using effective slice spectral sequence.

- Slices
- Differentials
- Hidden extensions
- Relevance & convergence

Theorem (Belmont–Isaksen–K.)

Compute j using effective slice spectral sequence.

- Slices from slices of ko and $\Sigma^{4,2}$ ksp.
- Differentials
- Hidden extensions
- Relevance & convergence

Theorem (Belmont–Isaksen–K.)

Compute j using effective slice spectral sequence.

Slices	from slices of ko and $\Sigma^{4,2}$ ksp.
 Differentials 	connecting homomorphism/
	η -periodic result.

- Hidden extensions
- Relevance & convergence

Theorem (Belmont–Isaksen–K.)

Computation of j

Compute j using effective slice spectral sequence.

Slices	from slices of ko and $\Sigma^{4,2}$ ksp.
Differentials	connecting homomorphism/ η -periodic result.
Hidden extensions	compare ko and $\Sigma^{4,2}$ ksp.

Relevance & convergence

Theorem (Belmont-Isaksen-K.)

Compute j using effective slice spectral sequence.

Slices	from slices of ko and $\Sigma^{4,2}$ ksp.
Differentials	connecting homomorphism/ η -periodic result.
Hidden extensions	compare ko and $\Sigma^{4,2}$ ksp.
Relevance & convergence	$\Rightarrow \pi_{**}j_2^{\wedge}.$

Theorem (Belmont–Isaksen–K.)

Slices of j

Effective slices: captures the α -family in ESSS of the motivic sphere.

E_1 -page of j

 E_1 -page: captures the α -family in ESSS of the \mathbb{R} -sphere.

Charts: E_1 -page, odd coweight

Charts: E_1 -page, even coweight

Charts: E_2 -page

Charts: E_2 -page

Charts: E_2 -page

Charts: E_2 -page

Charts: E_{∞} -page

Charts: E_{∞} -page

E_{∞} -page

▶ η -periodic pattern appears at coweight 4n - 1.

E_{∞} -page

- η -periodic pattern appears at coweight 4n 1.
- \blacktriangleright E_{∞} -page matches the pattern in the mASS of the \mathbb{R} -sphere.

Charts: E_{∞} -page

E_{∞} -page

- η -periodic pattern appears at coweight 4n 1.
- E_{∞} -page matches the pattern in the mASS of the \mathbb{R} -sphere.
- \blacktriangleright E_{∞} -page helps analyze ESSS differentials for the \mathbb{R} -sphere.

Charts: E_{∞} -page

Thank you!