Introduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
•0	000	0000	00	0000

Tangent $\infty\text{-}\mathsf{categories}$ and Goodwillie calculus

Michael Ching

Amherst College

27 April 2020 MIT Topology Seminar

Introduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00				

Joint with:

Kristine Bauer (Calgary)

Matthew Burke (Calgary)

Inspired by:

Kristine Bauer, Brenda Johnson, Christina Osborne, Emily Riehl and Amelia Tebbe, Directional derivatives and higher order chain rules for abelian functor calculus, *Topology Appl.* 235 (2018)

	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00	•00	0000	00	0000

Goodwillie Calculus: Analyze functors between ∞ -categories by analogy with ordinary calculus / differential geometry:

How far does this analogy go?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Introduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00	000	0000	00	0000

Definition (Lurie, Higher Algebra 7.3.1)

The tangent bundle on a (differentiable) ∞ -category \mathfrak{C} is the ∞ -category

 $\mathcal{TC} := \mathsf{Exc}(\mathsf{Top}^{\mathsf{fin}}_*, \mathcal{C})$

of excisive functors $\mathsf{Top}^{\mathsf{fin}}_* \to \mathbb{C},$ together with the projection map

 $p_{\mathbb{C}}: T\mathbb{C} \to \mathbb{C}; \quad L \mapsto L(*).$

 T_X Top \simeq Sp_X (spectra parameterized over a space X)

 $T_R \operatorname{CRing}_{\operatorname{Sp}} \simeq \operatorname{Mod}_R$ (modules over a commutative ring spectrum R)

In general, the tangent space to \mathcal{C} at X is: $T_X \mathcal{C} \simeq \operatorname{Sp}(\mathcal{C}_{/X})$.

	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00	000	0000	00	0000

Definition

The tangent bundle on a (differentiable) ∞ -category \mathcal{C} is the ∞ -category

 $T\mathcal{C} := \mathsf{Exc}(\mathsf{Top}^{\mathsf{fin}}_*, \mathcal{C}).$

The total derivative of a (finitary) functor $F : \mathcal{C} \to \mathcal{D}$ is

 $TF: T\mathcal{C} \to T\mathcal{D}; \quad L \mapsto P_1(FL).$

These constructions form a tangent bundle functor $T : \operatorname{Cat}_{\infty}^{\operatorname{diff}} \to \operatorname{Cat}_{\infty}^{\operatorname{diff}}$ on the ∞ -category of differentiable ∞ -categories and finitary functors.

Goal of this Talk

Make precise the analogy between T and the ordinary tangent bundle functor on the category Mfld of smooth manifolds and smooth maps.

Introduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00	000	0000	00	0000

A notion of tangent category was developed by:

- Jiří Rosický, Abstract tangent functors, Diagrammes 12 (1984);
- Robin Cockett and Geoff Cruttwell, Differential structure, tangent structure and SDG, *Applied Categorical Structures* 22 (2014);

in order to axiomatize the categorical properties of the tangent bundle functor

T : Mfld \rightarrow Mfld,

and to highlight connections to other "tangent" structures, including

- Zariski tangent spaces in algebraic geometry;
- synthetic differential geometry (SDG);
- "differential" structures in computer science and logic.

We give an equivalent definition from

• Poon Leung, Classifying tangent structures using Weil algebras, *Theory and Applications of Categories* 32(9), (2017).

	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00	000	0000	00	0000

Definition (Leung)

Weil: the category of augmented commutative $\mathbb N\text{-algebras}$ (semirings / rigs) with:

- objects: $\mathbb{N}[x_1, \ldots, x_n]/(x_i x_j \mid (i, j) \in R)$ for an equivalence relation R on $\{1, \ldots, n\}$ for some $n \ge 0$;
- $\bullet\,$ morphisms: maps of commutative $\mathbb N\text{-algebras}$ that commute with the augmentation.

Examples:

- N
- $W = \mathbb{N}[x]/(x^2)$
- $W \otimes W = \mathbb{N}[x, y]/(x^2, y^2)$ (the coproduct in Weil)
- $W^2 = \mathbb{N}[x, y]/(x^2, xy, y^2)$ (the product in Weil)
- $W^{n_1} \otimes \cdots \otimes W^{n_k}$ (every object of Weil is isomorphic to one of these)

	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}
00	000	0000	00

Definition (Leung (for 1-categories); Bauer-Burke-C (for ∞-categories))

A *tangent structure* on an ∞ -category $\mathcal X$ is a (strong) monoidal functor

 $T^{\bullet}: (\mathsf{Weil}, \otimes, \mathbb{N}) \to (\mathsf{End}(\mathfrak{X}), \circ, \mathrm{Id})$

that preserves the following pullback squares in Weil: for any $A \in$ Weil and n, m > 0:

- The value of T[•] on an arbitrary Weil-algebra Wⁿ¹ ⊗···· ⊗ W^{nk} is determined by the endofunctor T = T^W : X → X.
- The value of T[•] on the augmentation ε : W → N determines a natural transformation T^ε : T^W → T^N, the projection p : T → Id.

Applications

Introduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00	000	0000	00	0000

Examples

• $\mathfrak{X} = Mfld: T: Mfld \rightarrow Mfld$ is the usual tangent bundle functor with the pullbacks:

$$TM \times_M TM \longrightarrow T(TM)$$

$$\downarrow^{P} \qquad \qquad \downarrow^{T(P_M)}$$

$$M \longrightarrow TM$$

In particular: $T(T_xM) \cong T_xM \times T_xM$.

- **2** $\mathcal{X} = commutative rings: T(R) = R[x]/(x^2)$
- **3** $\mathcal{X} = schemes over Spec \mathbf{k}: T(S) = \underline{Hom}_{\mathbf{k}}(Spec \mathbf{k}[x]/(x^2), S)$
- $\mathfrak{X} = category of 'microlinear' objects in a model of SDG$
- **(9)** $\chi = model$ for the differential λ -calculus
- **(** $\chi = comm.$ ring spectra: $T(R) := R \oplus R$ (square-zero extension)
- (?) X = derived schemes
- **(**?) $\mathfrak{X} =$ derived smooth manifolds

An $\infty\text{-category } {\mathbb C}$ is differentiable if it has finite limits and sequential colimits, which commute.

 ${\tt Cat}^{\tt diff}_\infty:$ the $\infty\mbox{-category}$ of (small) differentiable $\infty\mbox{-categories}$ and sequential-colimit-preserving functors.

Theorem (Bauer-Burke-C)

There is a tangent structure on $\operatorname{Cat}^{\operatorname{diff}}_\infty$ for which:

- $T : \operatorname{Cat}_{\infty}^{\operatorname{diff}} \to \operatorname{Cat}_{\infty}^{\operatorname{diff}}; \quad \operatorname{C} \mapsto \operatorname{Exc}(\operatorname{Top}_{*}^{\operatorname{fin}}, \operatorname{C});$
- the projection $p : T \mathfrak{C} \to \mathfrak{C}$ is

 $L \mapsto L(*);$

• the zero section $0: {\mathfrak C} \to T {\mathfrak C}$ is

 $X \mapsto \operatorname{const}_X;$

• the fibrewise addition $+: T\mathfrak{C} \times_{\mathfrak{C}} T\mathfrak{C} \to T\mathfrak{C}$ is given by

 $(L,L')\mapsto L(-)\times_{L(*)=L'(*)}L'(-).$

	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on Cat_{∞}^{diff}	Applications
00	000	0000	00	0000

Lemma ('Universality of Vertical Lift')

For a differentiable ∞ -category \mathcal{C} , there is a pullback square (in $\operatorname{Cat}_{\infty}^{\operatorname{diff}}$):

For any object $X \in \mathbb{C}$: $T(T_X \mathbb{C}) \simeq T_X \mathbb{C} \times T_X \mathbb{C}$. (In fact, the tangent bundle on any stable ∞ -category splits in this way.)

Proof.

The pullback consists of functors $L : (Top_*^{fin})^2 \to \mathbb{C}$ that are excisive in each variable separately, and reduced in one variable. Such functors split as $L_0(Y) \times L_1(X \wedge Y)$ for excisive functors $L_0, L_1 : Top_*^{fin} \to \mathbb{C}$.

Any constructions that can be done in an arbitrary tangent (∞ -)category can now be applied to our tangent structure on $\operatorname{Cat}_{\infty}^{\operatorname{diff}}$.

- A differential object in a tangent ∞-category X is a commutative monoid M together with a suitable splitting TM ≃ M × M. In Mfld these are the vector spaces ℝⁿ. In Cat^{diff}_∞ these are the stable ∞-categories.
- **②** A differential bundle in \mathcal{X} is a bundle of commutative monoids $q: E \to M$ together with a suitable pullback

$$E \times_M E \longrightarrow TE$$

$$\downarrow \qquad \qquad \downarrow^{T(q)}$$

$$M \longrightarrow TM$$

In Mfld these are the vector bundles (of locally constant rank). In ${\rm Cat}_\infty^{\rm diff}$ they are some kind of bundles of stable ∞ -categories?

 Robin Cockett and Geoff Cruttwell, Differential bundles and fibrations for tangent categories, *Cah. Topol. Géom. Différ. Catég.* 59 (2018).

Introduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on $\mathcal{C}\mathrm{at}^{diff}_{\infty}$	Applications
				0000

- There are notions of connections, curvature and cohomology in a tangent category. What do these look like in Cat^{diff}?
 - Robin Cockett and Geoff Cruttwell, Connections in tangent categories, *Theory and Applications of Categories* 32 (2017).
 - Geoff Cruttwell and Rory Lucyshyn-Wright, A simplicial foundation for differential and sector forms in tangent categories, *J. Homotopy Relat. Struct.* 13 (2018).

ション ふぼう メリン ショー ひゃく

Introduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on $Cat_{\infty}^{\text{diff}}$	Applications
				0000

An *n*-jet at x : * → C is an equivalence class of morphisms C → D where f ~ g if:

- $f(x) \simeq y \simeq g(x)$ for some point y in \mathcal{D} ;
- f, g induce equivalent maps

$$T_x^n f \simeq T_x^n g : T_x^n \mathcal{C} \to T_y^n \mathcal{D}.$$

ション ふぼう メリン ショー シック

In Mfld, this recovers the usual notion of *n*-jets of smooth maps.

Theorem (Bauer-Burke-C)

In ${\rm Cat}^{\rm diff}_\infty$, functors $F,G:{\mathbb C}\to {\mathbb D}$ determine the same n-jet at $X\in {\mathbb C}$ if and only if

$$P_n^{\mathsf{x}} F \simeq P_n^{\mathsf{x}} G.$$

So n-jets correspond to Goodwillie's n-excisive functors.

What about the Taylor tower?

troduction	Tangent bundle on an ∞ -category	Tangent ∞ -categories	Tangent structure on $\operatorname{Cat}_\infty^{diff}$	Applications
O	000	0000		0000

The Taylor tower of $F : \mathcal{C} \to \mathcal{D}$ is a sequence

 $F \rightarrow \cdots \rightarrow P_2 F \rightarrow P_1 F \rightarrow P_0 F$

of 2-morphisms in the $(\infty,2)$ -category $\textbf{Cat}^{diff}_{\infty}$ of differentiable ∞ -categories and sequential-colimit-preserving functors (and natural transformations).

Definition

A tangent structure on an $(\infty, 2)$ -category **X** is a (strong) monoidal functor

 $\mathcal{T}:(\mathsf{Weil},\otimes,\mathbb{N})\to(\mathsf{End}(X),\circ,\mathrm{Id})$

that preserves the relevant pullbacks. (More generally, we can define tangent structures on any object of an arbitary $(\infty, 2)$ -category **C**.)

Theorem (Bauer-Burke-C)

The tangent structure on ${\rm Cat}^{\rm diff}_\infty$ is the restriction of a tangent structure on the $(\infty,2)$ -category ${\rm Cat}^{\rm diff}_\infty$.