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Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

Sm(M) = { space of smooth structures on M, fixed near ∂M }

(“space” interpreted liberally).

Recording germs of smooth structure near each point gives a map

Sm(M) −→ Γ∂(Sm(TM)→ M)

(the space of sections of the bundle with fibre Sm(TmM) ∼= Sm(Rd))

Theorem. [Hirsch–Mazur ’74, Kirby–Siebenmann ’77]
For d 6= 4 this map is a homotopy equivalence.

Homeo∂(M) acts on Sm(M), giving

Sm(M) ∼=
⊔
[W]

Homeo∂(W)/Di�∂(W)

Similarly, Sm(Rd) ∼= Homeo(Rd)/Di� (Rd)
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A consequence of smoothing theory

Write Top(d) := Homeo(Rd). By linearising have Di� (Rd) ' O(d), so

Sm(Rd) ' Top(d)/O(d).

Applied to Dd, d 6= 4, smoothing theory gives a map

Homeo∂(Dd)/Di�∂(Dd) −→ Γ∂(Sm(TDd)→ Dd) = map∂(Dd, Top(d)/O(d))

which is a homotopy equivalence to the path components it hits.

The Alexander trick Homeo∂(Dd) ' ∗ implies

BDi�∂(Dd) ' Ωd
0Top(d)/O(d) (Morlet)

or if you prefer
Di�∂(Dd) ' Ωd+1Top(d)/O(d).

O(d) is “well understood” so Di�∂(Dd) and Top(d) are equidi�cult.

But Di�∂(Dd) is more approachable: can use smoothness.
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What do we know?



The theorem of Farrell and Hsiang

The classical approach to studying Di�∂(M) breaks up as

1. Space of homotopy self-equivalences hAut∂(M)

analysed by homotopy theory.
2. Comparison hAut∂(M)/D̃i�∂(M) with “block-di�eomorphisms”

analysed by surgery theory.
3. Comparison D̃i�∂(M)/Di�∂(M) with di�eomorphisms

analysed by pseudoisotopy theory (and hence K-theory), but
only valid in the “pseudoisotopy stable range”.

[Igusa ’84]: this is at least min( d−7
2 , d−4

3 ) ∼ d
3 .

[RW ’17]: it is at most d− 2.

Theorem. [Farrell–Hsiang ’78]

π∗(BDi�∂(Dd))⊗Q =

{
0 d even
Q[4]⊕Q[8]⊕Q[12]⊕ · · · d odd

in the pseudoisotopy stable range for d (so certainly for ∗ . d
3 ).
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The theorems of Watanabe

Theorem. [Watanabe ’09]
For 2n + 1 ≥ 5 and r ≥ 2 there is a surjection

π(2r)(2n)(BDi�∂(D2n+1))⊗Q� Aodd
r

where

has dim(Aodd
r ) = 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, . . .

Theorem. [Watanabe ’18]
There is a surjection

πr(BDi�∂(D4))⊗Q� Aeven
r

where dim(Aeven
r ) = 0, 1,0,0, 1,0,0,0, 1, . . . (so π2(BDi�∂(D4)) 6= 0)
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The theorem of Weiss

Closely related to the classical story is the fact that the stable map

O = colim
d→∞

O(d) −→ Top = colim
d→∞

Top(d)

is a Q-equivalence, and hence

H∗(BTop;Q) ∼= H∗(BO;Q) = Q[p1,p2,p3, . . .].

In H∗(BO(2n);Q) the usual definition of Pontrjagin classes shows

pn = e2 and pn+i = 0 for all i > 0. (!)

Theorem. [Weiss ’15]
For many n and i ≥ 0 there are classes wn,i ∈ π4(n+i)(BTop(2n)) which
pair nontrivially with pn+i (i.e. (!) does not hold on BTop(2n)).

⇒ π2n−1+4i(BDi�∂(D2n))⊗Q 6= 0 for such n and i.
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A pattern



A pattern

Inspired by Weiss’ argument, Alexander Kupers and I have begun a
programme to determine

π∗(BDi�∂(D2n))⊗Q

as completely as possible. The first installment just came out:

A. Kupers, O. R-W, On di�eomorphisms of even-dimensional discs
(arXiv:2007.13884)

Here we

1. fully determine these groups in degrees ∗ ≤ 4n− 10,
2. determine them in higher degrees outside of certain “bands”,
3. understand something about the structure of these bands.
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π∗(BDi�∂(D2n))⊗Q

= Q{Weiss class}

= uncertainty, but • survives

= uncertainty, • may not survive
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A pattern

Theorem. [Kupers–R-W]
Let 2n ≥ 6.

(i) If d < 2n− 1 then πd(BDi�∂(D2n))⊗Q vanishes, and
(ii) if d ≥ 2n− 1 then πd(BDi�∂(D2n))⊗Q is

Q if d ≡ 2n−1 mod 4 and d /∈
⋃

r≥2
[2r(n−2)− 1, 2rn− 1],

0 if d 6≡ 2n−1 mod 4 and d /∈
⋃

r≥2
[2r(n−2)− 1, 2rn− 1],

? otherwise.

8



A pattern

Using the fibre sequence Top(2n)
O(2n) →

Top
O(2n) →

Top
Top(2n) we have the

Reformulation (slightly stronger).
For 2n ≥ 6 the groups π∗(Ω2n+1

0 ( Top
Top(2n) ))⊗Q are supported in

degrees
∗ ∈

⋃
r≥2

[2r(n− 2)− 1, 2rn− 2].

Reflecting D2n or R2n induces compatible involutions on

Ω2n+1
0

Top
Top(2n) −→ BDi�∂(D2n) ' Ω2n

0
Top(2n)
O(2n) −→ Ω2n

0
Top

O(2n) .

We show this acts as −1 on

π∗(Ω2n
0

Top
O(2n) )⊗Q = Q[2n− 1]⊕Q[2n + 3]⊕Q[2n + 7]⊕ · · ·

and acts on π∗(Ω2n+1
0 ( Top

Top(2n) ))⊗Q as (−1)r in the rth band.

The orange/blue colours in the chart are the +1/−1 eigenspaces.
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The first uncertainty

We also determine to some extent what happens in the first band
shown in the chart:

the groups π∗(Ω2n+1( Top
Top(2n) ))⊗Q in degrees

[4n− 9, 4n− 4] are calculated by a chain complex of the form

Q2 Q4 Q10 Q21 Q15 Q3

We don’t know the di�erentials, but it has Euler characteristic 1 so
must have some homology.

It lies in the +1-eigenspace, so injects into π∗(BDi�∂(D2n))⊗Q.

By analogy with Watanabe’s theorem for D4 one expects

dimπ4n−6(BDi�∂(D2n))⊗Q ≥ 1

which is compatible with the above.
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Remarks on the proof



Philosophy

Many results in this flavour of geometric topology are relative: they
describe the di�erence between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block di�eomorphisms (surgery)
3. block di�eomorphisms/di�eomorphisms (pseudoisotopy)

Weiss suggested a new kind of relativisation:

for M with ∂M = Sd−1 and 1
2∂M := Dd−1 ⊂ Sd−1 he showed that

Di�∂(M)

Di�∂(Dd)
' Emb∼=1/2∂(M).

Under mild conditions on M such a self-embedding space can be
analysed using the theory of embedding calculus.
(The “codimension” of such embeddings can be ≥ 3.)

Strategy: find a manifold M for which one can understand
Emb∼=1/2∂(M) and Di�∂(M), then deduce things about Di�∂(Dd).

11



Philosophy

Many results in this flavour of geometric topology are relative: they
describe the di�erence between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block di�eomorphisms (surgery)
3. block di�eomorphisms/di�eomorphisms (pseudoisotopy)

Weiss suggested a new kind of relativisation:

for M with ∂M = Sd−1 and 1
2∂M := Dd−1 ⊂ Sd−1 he showed that

Di�∂(M)

Di�∂(Dd)
' Emb∼=1/2∂(M).

Under mild conditions on M such a self-embedding space can be
analysed using the theory of embedding calculus.
(The “codimension” of such embeddings can be ≥ 3.)

Strategy: find a manifold M for which one can understand
Emb∼=1/2∂(M) and Di�∂(M), then deduce things about Di�∂(Dd).

11



Philosophy

Many results in this flavour of geometric topology are relative: they
describe the di�erence between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block di�eomorphisms (surgery)
3. block di�eomorphisms/di�eomorphisms (pseudoisotopy)

Weiss suggested a new kind of relativisation:

for M with ∂M = Sd−1 and 1
2∂M := Dd−1 ⊂ Sd−1 he showed that

Di�∂(M)

Di�∂(Dd)
' Emb∼=1/2∂(M).

Under mild conditions on M such a self-embedding space can be
analysed using the theory of embedding calculus.
(The “codimension” of such embeddings can be ≥ 3.)

Strategy: find a manifold M for which one can understand
Emb∼=1/2∂(M) and Di�∂(M), then deduce things about Di�∂(Dd).

11



Philosophy

Many results in this flavour of geometric topology are relative: they
describe the di�erence between

1. topological/smooth manifolds (smoothing)
2. homotopy equivalences/block di�eomorphisms (surgery)
3. block di�eomorphisms/di�eomorphisms (pseudoisotopy)

Weiss suggested a new kind of relativisation:

for M with ∂M = Sd−1 and 1
2∂M := Dd−1 ⊂ Sd−1 he showed that

Di�∂(M)

Di�∂(Dd)
' Emb∼=1/2∂(M).

Under mild conditions on M such a self-embedding space can be
analysed using the theory of embedding calculus.
(The “codimension” of such embeddings can be ≥ 3.)

Strategy: find a manifold M for which one can understand
Emb∼=1/2∂(M) and Di�∂(M), then deduce things about Di�∂(Dd).

11



The manifold Wg,1

A good choice is

Wg,1 := D2n#g(Sn × Sn)

especially for “arbitrarily large” g.

Theorem. [Madsen–Weiss ’07 2n = 2, Galatius–R-W ’14 2n ≥ 4]

lim
g→∞

H∗(BDi�∂(Wg,1);Q) = Q[κc | c ∈ B]

Here B is the set of monomials in e,pn−1,pn−2, . . . ,pdn+1
4 e

.

Theorem. [Berglund–Madsen ’20 2n ≥ 6]

lim
g→∞

H∗(BD̃i�∂(Wg,1);Q) = Q[κ̃ξc | (c, ξ) ∈ B′]

lim
g→∞

H∗(BhAut∂(Wg,1);Q) = Q[κ̃ξc | (c, ξ) ∈ B′′]

Here B′ and B′′ are much more complicated than B, and we will
probably never be able to enumerate them completely.
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Di�culties I

Embedding calculus describes Emb∼=1/2∂(Wg,1) as the limit of a tower

T1Emb∼=1/2∂(Wg,1) T2Emb∼=1/2∂(Wg,1) T3Emb∼=1/2∂(Wg,1) · · ·

L2Emb∼=1/2∂(Wg,1) L3Emb∼=1/2∂(Wg,1)

The term T1Emb∼=1/2∂(Wg,1) is close to being the space of homotopy
self-equivalences of Wg,1 relative to half the boundary; if we instead
use framed self-embeddings then it is:

T1Emb∼=,fr1/2∂(Wg,1) ' hAut∼=1/2∂(Wg,1)

(and the higher layers don’t change).

By rational homotopy theory, for L := Lie(s−1Hn(Wg,1;Q)) have

π∗>0(hAut1/2∂(Wg,1))⊗Q = Der+(L, L) = HomQ(s−1Hn(Wg,1;Q), L),

supported in degrees which are multiples of n− 1.

13



Di�culties I

Embedding calculus describes Emb∼=1/2∂(Wg,1) as the limit of a tower

T1Emb∼=1/2∂(Wg,1) T2Emb∼=1/2∂(Wg,1) T3Emb∼=1/2∂(Wg,1) · · ·

L2Emb∼=1/2∂(Wg,1) L3Emb∼=1/2∂(Wg,1)

The term T1Emb∼=1/2∂(Wg,1) is close to being the space of homotopy
self-equivalences of Wg,1 relative to half the boundary; if we instead
use framed self-embeddings then it is:

T1Emb∼=,fr1/2∂(Wg,1) ' hAut∼=1/2∂(Wg,1)

(and the higher layers don’t change).

By rational homotopy theory, for L := Lie(s−1Hn(Wg,1;Q)) have

π∗>0(hAut1/2∂(Wg,1))⊗Q = Der+(L, L) = HomQ(s−1Hn(Wg,1;Q), L),

supported in degrees which are multiples of n− 1.

13



Di�culties I

Embedding calculus describes Emb∼=1/2∂(Wg,1) as the limit of a tower

T1Emb∼=1/2∂(Wg,1) T2Emb∼=1/2∂(Wg,1) T3Emb∼=1/2∂(Wg,1) · · ·

L2Emb∼=1/2∂(Wg,1) L3Emb∼=1/2∂(Wg,1)

The term T1Emb∼=1/2∂(Wg,1) is close to being the space of homotopy
self-equivalences of Wg,1 relative to half the boundary; if we instead
use framed self-embeddings then it is:

T1Emb∼=,fr1/2∂(Wg,1) ' hAut∼=1/2∂(Wg,1)

(and the higher layers don’t change).

By rational homotopy theory, for L := Lie(s−1Hn(Wg,1;Q)) have

π∗>0(hAut1/2∂(Wg,1))⊗Q = Der+(L, L) = HomQ(s−1Hn(Wg,1;Q), L),

supported in degrees which are multiples of n− 1. 13



Di�culties I

The higher layers are described as spaces of sections

LkEmb∼=1/2∂(Wg,1) ' Γ∂


Zk tohofibI⊆[k]Emb(I,Wg,1)

Confk(Wg,1)



The homotopy groups of such a space can be computed by a twisted
form of the Federer spectral sequence. Rationally express this as

E2
p,q ⊗Q = [Hp(Wk

g,1,∆1/2∂ ;Q)⊗ πq(tohofibI⊆[k]Emb(I,Wg,1))]Sk

⇒ πq−p(LkEmb∼=1/2∂(Wg,1))⊗Q.

The main issue is to determine/estimate the characters of

Hp(Wk
g,1,∆1/2∂ ;Q) and πq(Emb([k],Wg,1))⊗Q

as representations of Sk × π0(Di�∂(Wg,1)).
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Di�culties I

The character of Hp(Wk
g,1,∆1/2∂ ;Q) can be determined easily using a

theorem of Petersen ’20.

The character of πq(Emb([k],Wg,1))⊗Q is much more complicated.

Briefly: identify these homotopy groups with an extended form of
the Drinfel’d–Kohno Lie algebra; show that up to filtration this is
Koszul, and identify its Koszul dual with the Kriz–Totaro algebra;
show that the collection of all Kriz–Totaro algebras for all k may be
given a new—external—product, and that they form a free
commutative algebra with this product; calculate.

We are able to completely determine rational homotopy of the
layers of the embedding calculus tower, but not their interaction.

Nonetheless this lets us prove that π∗(Emb∼=,fr1/2∂(Wg,1))⊗Q
is supported in degrees ∗ ∈ ∪r≥1[r(n − 2) − 1, r(n − 1)].
This is the darkly shaded region in the chart.
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Di�culties II

While we have very good understanding of H∗(BDi�∂(Wg,1);Q), the
strategy requires π∗(BDi�∂(Wg,1))⊗Q.

π1(BDi�∂(Wg,1)) ∼ Sp2g(Z) (n odd) or Og,g(Z) (n even)
⇒ wildly complicated group, not nilpotent: cannot expect to
determine the rational homotopy of BDi�∂(Wg,1) from cohomology.

Can pass to the Torelli subgroup

Tor∂(Wg,1) := ker(Di�∂(Wg,1)→ Aut(Hn(Wg,1;Z)))

to eliminate the arithmetic group, but this changes the cohomology.

In two companion papers we prove that the space BTor∂(Wg,1) is
nilpotent, and determine H∗(BTor∂(Wg,1);Q) as g→∞.

A. Kupers, O. R-W, On the cohomology of Torelli groups
Forum of Mathematics, Pi, 8 (2020)

A. Kupers, O. R-W, The cohomology of Torelli groups is algebraic
Forum of Mathematics, Sigma, to appear
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determine the rational homotopy of BDi�∂(Wg,1) from cohomology.

Can pass to the Torelli subgroup

Tor∂(Wg,1) := ker(Di�∂(Wg,1)→ Aut(Hn(Wg,1;Z)))

to eliminate the arithmetic group, but this changes the cohomology.

In two companion papers we prove that the space BTor∂(Wg,1) is
nilpotent, and determine H∗(BTor∂(Wg,1);Q) as g→∞.

A. Kupers, O. R-W, On the cohomology of Torelli groups
Forum of Mathematics, Pi, 8 (2020)

A. Kupers, O. R-W, The cohomology of Torelli groups is algebraic
Forum of Mathematics, Sigma, to appear

16



Di�culties II

Adapting this to the framed case, we produce a fibration

X1(g) −→ BTorfr
∂ (Wg,1) −→ X0

with H∗(X0;Q) = Q[σ̄4j−2n−1 | j > n/2].

We show that in a stable range, H∗(X1(g);Q) is generated by classes

κ(v1 ⊗ · · · ⊗ vr) ∈ H(r−2)n(X1(g);Q) r ≥ 3, vi ∈ Hn(Wg,1;Q)

subject only to the relations (where {ai} and {a#
i } are dual bases)

(i) linearity in each vi,
(ii) κ(vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(r)) = sign(σ)n · κ(v1 ⊗ v2 ⊗ · · · ⊗ vr),

(iii)
∑

i κ(v ⊗ ai) · κ(a#
i ⊗ w) = κ(v ⊗ w), for any tensors v and w,

(iv)
∑

i κ(v ⊗ ai ⊗ a#
i ) = 0 for any tensor v.

The unstable Adams spectral sequence then shows

π∗(BTorfr
∂ (Wg,1))⊗Q =

⊕
j>n/2

Q[4j− 2n− 1]

 “⊕”
(

something supported in
∗∈

⋃
r≥0[r(n−1)+1,rn−2]

)
The second piece is the lightly shaded region in the chart.
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Optimism



Divergent embedding calculus

Can apply embedding calculus to di�eomorphisms, considered as
codimension 0 embeddings. It need not converge and in fact does
not converge: by work of Fresse, Turchin, and Willwacher ’17 it
predicts (modulo a subtlety) that π∗(BDi�∂(D2n))⊗Q should be(⊕

i>0

Q[2n− 4i]
)
⊕Q[4n− 6]⊕Q[8n− 10]⊕Q[10n− 15]⊕ · · ·

so misses the Weiss classes and starts with some spurious classes.
But apart from this it has classes supported in our bands, and here
is given precisely by Kontsevich’s graph complex GC2

2n.

Could there be a rational fibration

BDi�∂(D2n) −→ BT∞Di�∂(D2n) −→ Ω∞+2nL(Z)?
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Evidence

Could there be a rational fibration

BDi�∂(D2n) −→ BT∞Di�∂(D2n) −→ Ω∞+2nL(Z)?

Evidence.
It is consistent with everything we know, and would explain
Watanabe’s and Weiss’ results.

Evidence. [Knudsen–Kupers ’20]
If d ≥ 6, Md 2-connected, ∂M = Sd−1 then

hofib(BDi�∂(M)→ BT∞Di�∂(M))

is independent of M.

Evidence. [Prigge ’20]
The family signature theorem does not hold on BT2Di�∂(M).
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Questions?
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π∗(BDi�∂(D2n))⊗Q

= Q{Weiss class}

= uncertainty, but • survives

= uncertainty, • may not survive
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