Diffeomorphisms of discs

Oscar Randal-Williams

LEVERHULME TRUST

Smoothing theory

M a topological *d*-manifold, maybe with smooth boundary ∂M $Sm(M) = \{$ space of smooth structures on *M*, fixed near $\partial M \}$ ("space" interpreted liberally).

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

 $Sm(M) = \{$ space of smooth structures on M, fixed near $\partial M \}$

("space" interpreted liberally).

Recording germs of smooth structure near each point gives a map

 $\mathcal{S}m(M) \longrightarrow \Gamma_{\partial}(\mathcal{S}m(TM) \to M)$

(the space of sections of the bundle with fibre $Sm(T_mM) \cong Sm(\mathbb{R}^d)$)

Smoothing theory

M a topological d-manifold, maybe with smooth boundary ∂M

 $Sm(M) = \{$ space of smooth structures on M, fixed near $\partial M \}$

("space" interpreted liberally).

Recording germs of smooth structure near each point gives a map

 $\mathcal{S}m(M) \longrightarrow \Gamma_{\partial}(\mathcal{S}m(TM) \to M)$

(the space of sections of the bundle with fibre $Sm(T_mM) \cong Sm(\mathbb{R}^d)$)

Theorem. [Hirsch-Mazur '74, Kirby-Siebenmann '77] For $d \neq 4$ this map is a homotopy equivalence. M a topological d-manifold, maybe with smooth boundary ∂M

 $Sm(M) = \{ \text{ space of smooth structures on } M, \text{ fixed near } \partial M \}$

("space" interpreted liberally).

Recording germs of smooth structure near each point gives a map

 $\mathcal{S}m(M) \longrightarrow \Gamma_{\partial}(\mathcal{S}m(TM) \to M)$

(the space of sections of the bundle with fibre $\mathcal{S}m(T_mM) \cong \mathcal{S}m(\mathbb{R}^d)$)

Theorem. [Hirsch-Mazur '74, Kirby-Siebenmann '77] For $d \neq 4$ this map is a homotopy equivalence.

 $Homeo_{\partial}(M)$ acts on Sm(M), giving

$$Sm(M) \cong \bigsqcup_{[W]} Homeo_{\partial}(W) / Diff_{\partial}(W)$$

Similarly, $\mathcal{S}m(\mathbb{R}^d) \cong Homeo(\mathbb{R}^d)/Diff(\mathbb{R}^d)$

Write $Top(d) := Homeo(\mathbb{R}^d)$. By linearising have $Diff(\mathbb{R}^d) \simeq O(d)$, so $\mathcal{S}m(\mathbb{R}^d) \simeq Top(d)/O(d)$.

Write $Top(d) := Homeo(\mathbb{R}^d)$. By linearising have $Diff(\mathbb{R}^d) \simeq O(d)$, so $\mathcal{S}m(\mathbb{R}^d) \simeq Top(d)/O(d)$.

Applied to D^d , $d \neq 4$, smoothing theory gives a map $Homeo_{\partial}(D^d)/Diff_{\partial}(D^d) \longrightarrow \Gamma_{\partial}(Sm(TD^d) \rightarrow D^d) = map_{\partial}(D^d, Top(d)/O(d))$ which is a homotopy equivalence to the path components it hits.

Write $Top(d) := Homeo(\mathbb{R}^d)$. By linearising have $Diff(\mathbb{R}^d) \simeq O(d)$, so $\mathcal{S}m(\mathbb{R}^d) \simeq Top(d)/O(d)$.

Applied to D^d , $d \neq 4$, smoothing theory gives a map $Homeo_{\partial}(D^d)/Diff_{\partial}(D^d) \longrightarrow \Gamma_{\partial}(Sm(TD^d) \to D^d) = map_{\partial}(D^d, Top(d)/O(d))$ which is a homotopy equivalence to the path components it hits. The Alexander trick $Homeo_{\partial}(D^d) \simeq *$ implies $BDiff_{\partial}(D^d) \simeq \Omega_0^d Top(d)/O(d)$ (Morlet)

$$\textit{Diff}_{\partial}(\textit{D}^d) \simeq \Omega^{d+1}\textit{Top}(d)/O(d).$$

Write $Top(d) := Homeo(\mathbb{R}^d)$. By linearising have $Diff(\mathbb{R}^d) \simeq O(d)$, so $\mathcal{S}m(\mathbb{R}^d) \simeq Top(d)/O(d)$.

Applied to D^d , $d \neq 4$, smoothing theory gives a map $Homeo_{\partial}(D^d)/Diff_{\partial}(D^d) \longrightarrow \Gamma_{\partial}(Sm(TD^d) \to D^d) = map_{\partial}(D^d, Top(d)/O(d))$ which is a homotopy equivalence to the path components it hits. The Alexander trick $Homeo_{\partial}(D^d) \simeq *$ implies $BDiff_{\partial}(D^d) \simeq \Omega^d_{\partial}Top(d)/O(d)$ (Morlet)

or if you prefer

$$Diff_{\partial}(D^d) \simeq \Omega^{d+1} Top(d) / O(d).$$

O(d) is "well understood" so $Diff_{\partial}(D^d)$ and Top(d) are equidifficult. But $Diff_{\partial}(D^d)$ is more approachable: can *use* smoothness.

What do we know?

The theorem of Farrell and Hsiang

The classical approach to studying $Diff_{\partial}(M)$ breaks up as

1. Space of homotopy self-equivalences $hAut_{\partial}(M)$ analysed by homotopy theory.

The theorem of Farrell and Hsiang

The classical approach to studying $Diff_{\partial}(M)$ breaks up as

- 1. Space of homotopy self-equivalences $hAut_{\partial}(M)$ analysed by homotopy theory.
- 2. Comparison $hAut_{\partial}(M)/Diff_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.

- 1. Space of homotopy self-equivalences $hAut_{\partial}(M)$ analysed by homotopy theory.
- 2. Comparison $hAut_{\partial}(M)/Diff_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
- 3. Comparison $Diff_{\partial}(M)/Diff_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence *K*-theory), but only valid in the "pseudoisotopy stable range".

- 1. Space of homotopy self-equivalences $hAut_{\partial}(M)$ analysed by homotopy theory.
- 2. Comparison $hAut_{\partial}(M)/Diff_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
- 3. Comparison $Diff_{\partial}(M)/Diff_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".

[Igusa '84]: this is at least $min(\frac{d-7}{2}, \frac{d-4}{3}) \sim \frac{d}{3}$.

- 1. Space of homotopy self-equivalences $hAut_{\partial}(M)$ analysed by homotopy theory.
- 2. Comparison $hAut_{\partial}(M)/Diff_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
- 3. Comparison $Diff_{\partial}(M)/Diff_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence K-theory), but only valid in the "pseudoisotopy stable range".

[Igusa '84]: this is at least $min(\frac{d-7}{2}, \frac{d-4}{3}) \sim \frac{d}{3}$. [RW '17]: it is at most d - 2.

- 1. Space of homotopy self-equivalences $hAut_{\partial}(M)$ analysed by homotopy theory.
- 2. Comparison $hAut_{\partial}(M)/Diff_{\partial}(M)$ with "block-diffeomorphisms" analysed by surgery theory.
- 3. Comparison $Diff_{\partial}(M)/Diff_{\partial}(M)$ with diffeomorphisms analysed by pseudoisotopy theory (and hence *K*-theory), but only valid in the "pseudoisotopy stable range". [Igusa '84]: this is at least $min(\frac{d-7}{2}, \frac{d-4}{2}) \sim \frac{d}{2}$.

[RW '17]: it is at most *d* − 2.

Theorem. [Farrell-Hsiang '78]

$$\pi_*(BDiff_{\partial}(D^d)) \otimes \mathbb{Q} = \begin{cases} \mathsf{O} & d \text{ even} \\ \mathbb{Q}[4] \oplus \mathbb{Q}[8] \oplus \mathbb{Q}[12] \oplus \cdots & d \text{ odd} \end{cases}$$

in the pseudoisotopy stable range for *d* (so certainly for $* \leq \frac{d}{3}$).

Theorem. [Watanabe '09]

For $2n + 1 \ge 5$ and $r \ge 2$ there is a surjection

```
\pi_{(2r)(2n)}(BDiff_{\partial}(D^{2n+1}))\otimes \mathbb{Q} \twoheadrightarrow \mathcal{A}_{r}^{odd}
```

Theorem. [Watanabe '09] For $2n + 1 \ge 5$ and $r \ge 2$ there is a surjection

$$\pi_{(2r)(2n)}(BDiff_{\partial}(D^{2n+1}))\otimes \mathbb{Q}\twoheadrightarrow \mathcal{A}_{r}^{odd}$$

where

Theorem. [Watanabe '09] For $2n + 1 \ge 5$ and $r \ge 2$ there is a surjection

$$\pi_{(2r)(2n)}(BDiff_{\partial}(D^{2n+1}))\otimes \mathbb{Q}\twoheadrightarrow \mathcal{A}_{r}^{odd}$$

where

has $dim(\mathcal{A}_r^{odd}) = 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, \dots$

Theorem. [Watanabe '09] For $2n + 1 \ge 5$ and $r \ge 2$ there is a surjection

$$\pi_{(2r)(2n)}(BDiff_{\partial}(D^{2n+1}))\otimes \mathbb{Q}\twoheadrightarrow \mathcal{A}_{r}^{odd}$$

where

has $dim(\mathcal{A}_r^{odd}) = 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, \dots$

Theorem. [Watanabe '18] There is a surjection

 $\pi_r(\mathsf{BDiff}_\partial(\mathsf{D}^4))\otimes \mathbb{Q}\twoheadrightarrow \mathcal{A}_r^{even}$

Theorem. [Watanabe '09] For $2n + 1 \ge 5$ and $r \ge 2$ there is a surjection

$$\pi_{(2r)(2n)}(BDiff_{\partial}(D^{2n+1}))\otimes \mathbb{Q}\twoheadrightarrow \mathcal{A}_{r}^{odd}$$

where

has $dim(\mathcal{A}_r^{odd}) = 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, \dots$

Theorem. [Watanabe '18] There is a surjection

 $\pi_r(\mathsf{BDiff}_\partial(\mathsf{D}^4))\otimes \mathbb{Q}\twoheadrightarrow \mathcal{A}_r^{even}$

where $dim(A_r^{even}) = 0, 1, 0, 0, 1, 0, 0, 0, 1, ...$ (so $\pi_2(BDiff_{\partial}(D^4)) \neq 0$)

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$O = \operatorname*{colim}_{d \to \infty} O(d) \longrightarrow \mathit{Top} = \operatorname*{colim}_{d \to \infty} \mathit{Top}(d)$$

is a $\mathbb{Q}\text{-equivalence, and hence}$

$$H^*(BTop; \mathbb{Q}) \cong H^*(BO; \mathbb{Q}) = \mathbb{Q}[p_1, p_2, p_3, \ldots].$$

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$O = \operatorname*{colim}_{d \to \infty} O(d) \longrightarrow \mathit{Top} = \operatorname*{colim}_{d \to \infty} \mathit{Top}(d)$$

is a $\mathbb{Q}\text{-equivalence, and hence}$

$$H^*(BTop; \mathbb{Q}) \cong H^*(BO; \mathbb{Q}) = \mathbb{Q}[p_1, p_2, p_3, \ldots].$$

In $H^*(BO(2n); \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$p_n = e^2$$
 and $p_{n+i} = 0$ for all $i > 0$. (!)

The theorem of Weiss

Closely related to the classical story is the fact that the stable map

$$O = \operatorname*{colim}_{d \to \infty} O(d) \longrightarrow \mathit{Top} = \operatorname*{colim}_{d \to \infty} \mathit{Top}(d)$$

is a $\mathbb{Q}\text{-equivalence, and hence}$

$$H^*(BTop; \mathbb{Q}) \cong H^*(BO; \mathbb{Q}) = \mathbb{Q}[p_1, p_2, p_3, \ldots].$$

In $H^*(BO(2n); \mathbb{Q})$ the usual definition of Pontrjagin classes shows

$$p_n = e^2$$
 and $p_{n+i} = 0$ for all $i > 0$. (!)

Theorem. [Weiss '15]

For many *n* and $i \ge 0$ there are classes $w_{n,i} \in \pi_{4(n+i)}(BTop(2n))$ which pair nontrivially with p_{n+i} (i.e. (!) does not hold on BTop(2n)).

 $\Rightarrow \pi_{2n-1+4i}(BDiff_{\partial}(D^{2n})) \otimes \mathbb{Q} \neq 0$ for such *n* and *i*.

 $\pi_*(BDiff_\partial(D^{2n}))\otimes \mathbb{Q}$

as completely as possible. The first installment just came out:

A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

 $\pi_*(BDiff_\partial(D^{2n}))\otimes \mathbb{Q}$

as completely as possible. The first installment just came out:

A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

1. fully determine these groups in degrees $* \leq 4n - 10$,

 $\pi_*(BDiff_\partial(D^{2n}))\otimes \mathbb{Q}$

as completely as possible. The first installment just came out:

A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

- 1. fully determine these groups in degrees $* \leq 4n 10$,
- 2. determine them in higher degrees outside of certain "bands",

 $\pi_*(BDiff_\partial(D^{2n}))\otimes \mathbb{Q}$

as completely as possible. The first installment just came out:

A. Kupers, O. R-W, On diffeomorphisms of even-dimensional discs (arXiv:2007.13884)

Here we

- 1. fully determine these groups in degrees $* \leq 4n 10$,
- 2. determine them in higher degrees outside of certain "bands",
- 3. understand something about the structure of these bands.

Theorem. [Kupers-R-W]

Let $2n \ge 6$.

(i) If d < 2n - 1 then $\pi_d(BDiff_\partial(D^{2n})) \otimes \mathbb{Q}$ vanishes, and

(ii) if $d \geq 2n - 1$ then $\pi_d(BDiff_\partial(D^{2n})) \otimes \mathbb{Q}$ is

$$\left\{ \begin{array}{ll} \mathbb{Q} & \text{if } d \equiv 2n-1 \mod 4 \text{ and } d \notin \bigcup_{\substack{r \geq 2}} [2r(n-2)-1, 2rn-1], \\ \text{o} & \text{if } d \not\equiv 2n-1 \mod 4 \text{ and } d \notin \bigcup_{\substack{r \geq 2}} [2r(n-2)-1, 2rn-1], \\ \text{? otherwise.} \end{array} \right.$$

Using the fibre sequence $\frac{Top(2n)}{O(2n)} \rightarrow \frac{Top}{O(2n)} \rightarrow \frac{Top}{Top(2n)}$ we have the **Reformulation (slightly stronger).** For $2n \ge 6$ the groups $\pi_*(\Omega_0^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ are supported in degrees

$$* \in \bigcup_{r \ge 2} [2r(n-2)-1, 2rn-2].$$

Using the fibre sequence $\frac{Top(2n)}{O(2n)} \rightarrow \frac{Top}{O(2n)} \rightarrow \frac{Top}{Top(2n)}$ we have the **Reformulation (slightly stronger).** For $2n \ge 6$ the groups $\pi_*(\Omega_0^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ are supported in degrees

$$* \in \bigcup_{r \ge 2} [2r(n-2)-1, 2rn-2].$$

Reflecting D^{2n} or \mathbb{R}^{2n} induces compatible involutions on

$$\Omega_{o}^{2n+1} \xrightarrow{\text{Top}} \longrightarrow \text{BDiff}_{\partial}(D^{2n}) \simeq \Omega_{o}^{2n} \xrightarrow{\text{Top}(2n)} \longrightarrow \Omega_{o}^{2n} \xrightarrow{\text{Top}}_{O(2n)}.$$

Using the fibre sequence $\frac{Top(2n)}{O(2n)} \rightarrow \frac{Top}{O(2n)} \rightarrow \frac{Top}{Top(2n)}$ we have the **Reformulation (slightly stronger).** For $2n \ge 6$ the groups $\pi_*(\Omega_0^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ are supported in degrees

$$* \in \bigcup_{r \ge 2} [2r(n-2)-1, 2rn-2].$$

Reflecting D^{2n} or \mathbb{R}^{2n} induces compatible involutions on

$$\Omega_0^{2n+1} \frac{\text{Top}}{\text{Top}(2n)} \longrightarrow \text{BDiff}_{\partial}(D^{2n}) \simeq \Omega_0^{2n} \frac{\text{Top}(2n)}{O(2n)} \longrightarrow \Omega_0^{2n} \frac{\text{Top}}{O(2n)}.$$

We show this acts as -1 on

 $\pi_*(\Omega_0^{2n} \frac{Top}{O(2n)}) \otimes \mathbb{Q} = \mathbb{Q}[2n-1] \oplus \mathbb{Q}[2n+3] \oplus \mathbb{Q}[2n+7] \oplus \cdots$ and acts on $\pi_*(\Omega_0^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ as $(-1)^r$ in the *r*th band.

Using the fibre sequence $\frac{Top(2n)}{O(2n)} \rightarrow \frac{Top}{O(2n)} \rightarrow \frac{Top}{Top(2n)}$ we have the **Reformulation (slightly stronger).** For $2n \ge 6$ the groups $\pi_*(\Omega_0^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ are supported in degrees

$$* \in \bigcup_{r \ge 2} [2r(n-2)-1, 2rn-2].$$

Reflecting D^{2n} or \mathbb{R}^{2n} induces compatible involutions on

$$\Omega_0^{2n+1} \frac{\text{Top}}{\text{Top}(2n)} \longrightarrow \text{BDiff}_{\partial}(D^{2n}) \simeq \Omega_0^{2n} \frac{\text{Top}(2n)}{O(2n)} \longrightarrow \Omega_0^{2n} \frac{\text{Top}}{O(2n)}.$$

We show this acts as -1 on

 $\pi_*(\Omega_0^{2n} \frac{Top}{O(2n)}) \otimes \mathbb{Q} = \mathbb{Q}[2n-1] \oplus \mathbb{Q}[2n+3] \oplus \mathbb{Q}[2n+7] \oplus \cdots$ and acts on $\pi_*(\Omega_0^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ as $(-1)^r$ in the *r*th band. The orange/blue colours in the chart are the +1/-1 eigenspaces.
We also determine to some extent what happens in the first band shown in the chart:

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_*(\Omega^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ in degrees [4n - 9, 4n - 4] are calculated by a chain complex of the form

$$\mathbb{Q}^2 \longleftarrow \mathbb{Q}^4 \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftrightarrow \mathbb{Q}^3$$

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_*(\Omega^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ in degrees [4n - 9, 4n - 4] are calculated by a chain complex of the form

$$\mathbb{Q}^2 \longleftarrow \mathbb{Q}^4 \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftrightarrow \mathbb{Q}^3$$

We don't know the differentials, but it has Euler characteristic 1 so must have some homology.

It lies in the +1-eigenspace, so injects into $\pi_*(BDiff_{\partial}(D^{2n})) \otimes \mathbb{Q}$.

We also determine to some extent what happens in the first band shown in the chart: the groups $\pi_*(\Omega^{2n+1}(\frac{Top}{Top(2n)})) \otimes \mathbb{Q}$ in degrees [4n - 9, 4n - 4] are calculated by a chain complex of the form

$$\mathbb{Q}^2 \longleftarrow \mathbb{Q}^4 \longleftarrow \mathbb{Q}^{10} \longleftarrow \mathbb{Q}^{21} \longleftarrow \mathbb{Q}^{15} \longleftrightarrow \mathbb{Q}^3$$

We don't know the differentials, but it has Euler characteristic 1 so must have some homology.

It lies in the +1-eigenspace, so injects into $\pi_*(BDiff_{\partial}(D^{2n})) \otimes \mathbb{Q}$.

By analogy with Watanabe's theorem for D⁴ one expects

 $\dim \pi_{4n-6}(BDiff_{\partial}(D^{2n}))\otimes \mathbb{Q}\geq 1$

which is compatible with the above.

Remarks on the proof

Many results in this flavour of geometric topology are *relative*: they describe the difference between

- 1. topological/smooth manifolds (smoothing)
- 2. homotopy equivalences/block diffeomorphisms (surgery)
- 3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Many results in this flavour of geometric topology are *relative*: they describe the difference between

- 1. topological/smooth manifolds (smoothing)
- 2. homotopy equivalences/block diffeomorphisms (surgery)
- 3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss suggested a new kind of relativisation:

for M with $\partial M = S^{d-1}$ and $\frac{1}{2}\partial M := D^{d-1} \subset S^{d-1}$ he showed that $\frac{Diff_{\partial}(M)}{Diff_{\partial}(D^d)} \simeq Emb^{\cong}_{1/2\partial}(M).$

Many results in this flavour of geometric topology are *relative*: they describe the difference between

- 1. topological/smooth manifolds (smoothing)
- 2. homotopy equivalences/block diffeomorphisms (surgery)
- 3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss suggested a new kind of relativisation:

for
$$M$$
 with $\partial M = S^{d-1}$ and $\frac{1}{2}\partial M := D^{d-1} \subset S^{d-1}$ he showed that
$$\frac{Diff_{\partial}(M)}{Diff_{\partial}(D^d)} \simeq Emb_{1/2\partial}^{\simeq}(M).$$

Under mild conditions on M such a self-embedding space can be analysed using the theory of embedding calculus. (The "codimension" of such embeddings can be \geq 3.)

Many results in this flavour of geometric topology are *relative*: they describe the difference between

- 1. topological/smooth manifolds (smoothing)
- 2. homotopy equivalences/block diffeomorphisms (surgery)
- 3. block diffeomorphisms/diffeomorphisms (pseudoisotopy)

Weiss suggested a new kind of relativisation:

for
$$M$$
 with $\partial M = S^{d-1}$ and $\frac{1}{2}\partial M := D^{d-1} \subset S^{d-1}$ he showed that
$$\frac{Diff_{\partial}(M)}{Diff_{\partial}(D^d)} \simeq Emb_{1/2\partial}^{\simeq}(M).$$

Under mild conditions on *M* such a self-embedding space can be analysed using the theory of embedding calculus. (The "codimension" of such embeddings can be \geq 3.)

Strategy: find a manifold *M* for which one can understand $Emb_{1/2\partial}^{\cong}(M)$ and $Diff_{\partial}(M)$, then deduce things about $Diff_{\partial}(D^d)$.

The manifold $W_{g,1}$

A good choice is

$$W_{g,1} := D^{2n} \# g(S^n \times S^n)$$

especially for "arbitrarily large" g.

The manifold $W_{g,1}$

A good choice is

$$W_{g,1} := D^{2n} \# g(S^n \times S^n)$$

especially for "arbitrarily large" g.

Theorem. [Madsen–Weiss '07 2n = 2, Galatius–R-W '14 $2n \ge 4$]

$$\lim_{g\to\infty} H^*(BDiff_{\partial}(W_{g,1});\mathbb{Q}) = \mathbb{Q}[\kappa_c \,|\, c\in\mathcal{B}]$$

Here \mathcal{B} is the set of monomials in $e, p_{n-1}, p_{n-2}, \dots, p_{\lceil \frac{n+1}{L} \rceil}$.

A good choice is

$$W_{g,1} := D^{2n} \# g(S^n \times S^n)$$

especially for "arbitrarily large" g.

Theorem. [Madsen–Weiss '07 2n = 2, Galatius–R-W '14 $2n \ge 4$]

 $\lim_{g\to\infty} H^*(BDiff_{\partial}(W_{g,1});\mathbb{Q}) = \mathbb{Q}[\kappa_c \,|\, c\in\mathcal{B}]$

Here \mathcal{B} is the set of monomials in $e, p_{n-1}, p_{n-2}, \dots, p_{\lceil \frac{n+1}{4} \rceil}$.

Theorem. [Berglund–Madsen '20 $2n \ge 6$]

 $\lim_{g\to\infty} H^*(B\widetilde{Diff}_{\partial}(W_{g,1});\mathbb{Q}) = \mathbb{Q}[\tilde{\kappa}^{\xi}_{c} \mid (c,\xi) \in \mathcal{B}']$

 $\lim_{g\to\infty} H^*(BhAut_\partial(W_{g,1});\mathbb{Q}) = \mathbb{Q}[\tilde{\kappa}^{\xi}_{\mathsf{c}} \,|\, (\mathsf{c},\xi)\in\mathcal{B}'']$

Here \mathcal{B}' and \mathcal{B}'' are much more complicated than \mathcal{B} , and we will probably never be able to enumerate them completely.

Embedding calculus describes $Emb^{\cong}_{1/2\partial}(W_{g,1})$ as the limit of a tower

Embedding calculus describes $Emb_{1/2\partial}^{\cong}(W_{g,1})$ as the limit of a tower

The term $T_1 Emb_{1/2\partial}^{\simeq}(W_{g,1})$ is close to being the space of homotopy self-equivalences of $W_{g,1}$ relative to half the boundary; if we instead use *framed* self-embeddings then it is:

$$T_1 Emb_{1/2\partial}^{\cong,fr}(W_{g,1}) \simeq hAut_{1/2\partial}^{\cong}(W_{g,1})$$

(and the higher layers don't change).

Embedding calculus describes $Emb_{1/2\partial}^{\cong}(W_{g,1})$ as the limit of a tower

The term $T_1 Emb_{1/2\partial}^{\simeq}(W_{g,1})$ is close to being the space of homotopy self-equivalences of $W_{g,1}$ relative to half the boundary; if we instead use *framed* self-embeddings then it is:

$$T_1 Emb_{1/2\partial}^{\cong,fr}(W_{g,1}) \simeq hAut_{1/2\partial}^{\cong}(W_{g,1})$$

(and the higher layers don't change).

By rational homotopy theory, for $L := Lie(s^{-1}H_n(W_{g,1}; \mathbb{Q}))$ have

 $\pi_{*>0}(hAut_{1/2\partial}(W_{g,1})) \otimes \mathbb{Q} = Der^+(L,L) = Hom_{\mathbb{Q}}(s^{-1}H_n(W_{g,1};\mathbb{Q}),L),$ supported in degrees which are multiples of n-1.

The higher layers are described as spaces of sections

$$L_{k}Emb_{1/2\partial}^{\cong}(W_{g,1}) \simeq \Gamma_{\partial} \begin{pmatrix} Z_{k} \longleftarrow tohofib_{I\subseteq[k]}Emb(I, W_{g,1}) \\ \downarrow \\ Conf_{k}(W_{g,1}) \end{pmatrix}$$

The higher layers are described as spaces of sections

$$L_{k}Emb_{1/2\partial}^{\cong}(W_{g,1}) \simeq \Gamma_{\partial} \left(\begin{array}{c} Z_{k} \longleftarrow \text{ tohofib}_{I\subseteq[k]}Emb(I, W_{g,1}) \\ \downarrow \\ Conf_{k}(W_{g,1}) \end{array} \right)$$

The homotopy groups of such a space can be computed by a twisted form of the Federer spectral sequence. Rationally express this as

$$\begin{split} E_{p,q}^{2}\otimes \mathbb{Q} &= [H^{p}(W_{g,1}^{k}, \Delta_{1/2\partial}; \mathbb{Q}) \otimes \pi_{q}(tohofib_{I \subseteq [k]} Emb(I, W_{g,1}))]^{\mathfrak{S}_{k}} \\ &\Rightarrow \pi_{q-p}(L_{k} Emb_{1/2\partial}^{\cong}(W_{g,1})) \otimes \mathbb{Q}. \end{split}$$

The higher layers are described as spaces of sections

$$L_{k}Emb_{1/2\partial}^{\cong}(W_{g,1}) \simeq \Gamma_{\partial} \left(\begin{array}{c} Z_{k} \longleftarrow tohofib_{I\subseteq[k]}Emb(I, W_{g,1}) \\ \downarrow \\ Conf_{k}(W_{g,1}) \end{array} \right)$$

The homotopy groups of such a space can be computed by a twisted form of the Federer spectral sequence. Rationally express this as

$$\begin{split} E_{p,q}^{2}\otimes \mathbb{Q} &= [H^{p}(W_{g,1}^{k}, \Delta_{1/2\partial}; \mathbb{Q}) \otimes \pi_{q}(tohofib_{I \subseteq [k]} Emb(I, W_{g,1}))]^{\mathfrak{S}_{k}} \\ &\Rightarrow \pi_{q-p}(L_{k} Emb_{1/2\partial}^{\cong}(W_{g,1})) \otimes \mathbb{Q}. \end{split}$$

The main issue is to determine/estimate the characters of

 $H^{p}(W_{g,1}^{k}, \Delta_{1/2\partial}; \mathbb{Q})$ and $\pi_{q}(Emb([k], W_{g,1})) \otimes \mathbb{Q}$ as representations of $\mathfrak{S}_{k} \times \pi_{o}(\text{Diff}_{\partial}(W_{g,1})).$

The character of $H^p(W^k_{g,1}, \Delta_{1/2\partial}; \mathbb{Q})$ can be determined easily using a theorem of Petersen '20.

The character of $\pi_q(Emb([k], W_{g,1})) \otimes \mathbb{Q}$ is much more complicated.

The character of $H^p(W^k_{g,1}, \Delta_{1/2\partial}; \mathbb{Q})$ can be determined easily using a theorem of Petersen '20.

The character of $\pi_q(Emb([k], W_{g,1})) \otimes \mathbb{Q}$ is much more complicated.

Briefly: identify these homotopy groups with an extended form of the Drinfel'd–Kohno Lie algebra; show that up to filtration this is Koszul, and identify its Koszul dual with the Kriz–Totaro algebra; show that the collection of all Kriz–Totaro algebras for all *k* may be given a new–external–product, and that they form a free commutative algebra with this product; calculate.

The character of $H^p(W^k_{g,1}, \Delta_{1/2\partial}; \mathbb{Q})$ can be determined easily using a theorem of Petersen '20.

The character of $\pi_q(Emb([k], W_{g,1})) \otimes \mathbb{Q}$ is much more complicated.

Briefly: identify these homotopy groups with an extended form of the Drinfel'd–Kohno Lie algebra; show that up to filtration this is Koszul, and identify its Koszul dual with the Kriz–Totaro algebra; show that the collection of all Kriz–Totaro algebras for all *k* may be given a new—external—product, and that they form a free commutative algebra with this product; calculate.

We are able to *completely* determine rational homotopy of the layers of the embedding calculus tower, but not their interaction.

The character of $H^p(W^k_{g,1}, \Delta_{1/2\partial}; \mathbb{Q})$ can be determined easily using a theorem of Petersen '20.

The character of $\pi_q(Emb([k], W_{g,1})) \otimes \mathbb{Q}$ is much more complicated.

Briefly: identify these homotopy groups with an extended form of the Drinfel'd–Kohno Lie algebra; show that up to filtration this is Koszul, and identify its Koszul dual with the Kriz–Totaro algebra; show that the collection of all Kriz–Totaro algebras for all *k* may be given a new—external—product, and that they form a free commutative algebra with this product; calculate.

We are able to *completely* determine rational homotopy of the layers of the embedding calculus tower, but not their interaction.

Nonetheless this lets us prove that $\pi_*(Emb_{1/2\partial}^{\cong,fr}(W_{g,1})) \otimes \mathbb{Q}$ is supported in degrees $* \in \bigcup_{r \geq 1} [r(n-2)-1, r(n-1)]$. This is the darkly shaded region in the chart. While we have very good understanding of $H^*(BDiff_{\partial}(W_{g,1}); \mathbb{Q})$, the strategy requires $\pi_*(BDiff_{\partial}(W_{g,1})) \otimes \mathbb{Q}$.

While we have very good understanding of $H^*(BDiff_{\partial}(W_{g,1}); \mathbb{Q})$, the strategy requires $\pi_*(BDiff_{\partial}(W_{g,1})) \otimes \mathbb{Q}$.

 $\pi_1(BDiff_{\partial}(W_{g,1})) \sim Sp_{2g}(\mathbb{Z}) (n \text{ odd}) \text{ or } O_{g,g}(\mathbb{Z}) (n \text{ even})$ \Rightarrow wildly complicated group, not nilpotent: cannot expect to determine the rational homotopy of $BDiff_{\partial}(W_{g,1})$ from cohomology.

While we have very good understanding of $H^*(BDiff_{\partial}(W_{g,1}); \mathbb{Q})$, the strategy requires $\pi_*(BDiff_{\partial}(W_{g,1})) \otimes \mathbb{Q}$.

 $\pi_1(BDiff_{\partial}(W_{g,1})) \sim Sp_{2g}(\mathbb{Z}) (n \text{ odd}) \text{ or } O_{g,g}(\mathbb{Z}) (n \text{ even})$ \Rightarrow wildly complicated group, not nilpotent: cannot expect to determine the rational homotopy of $BDiff_{\partial}(W_{g,1})$ from cohomology.

Can pass to the Torelli subgroup

 $Tor_{\partial}(W_{g,1}) := ker(Diff_{\partial}(W_{g,1}) \rightarrow Aut(H_n(W_{g,1}; \mathbb{Z})))$

to eliminate the arithmetic group, but this changes the cohomology.

While we have very good understanding of $H^*(BDiff_{\partial}(W_{g,1}); \mathbb{Q})$, the strategy requires $\pi_*(BDiff_{\partial}(W_{g,1})) \otimes \mathbb{Q}$.

 $\pi_1(BDiff_{\partial}(W_{g,1})) \sim Sp_{2g}(\mathbb{Z}) (n \text{ odd}) \text{ or } O_{g,g}(\mathbb{Z}) (n \text{ even})$ \Rightarrow wildly complicated group, not nilpotent: cannot expect to determine the rational homotopy of $BDiff_{\partial}(W_{g,1})$ from cohomology.

Can pass to the Torelli subgroup

 $Tor_{\partial}(W_{g,1}) := ker(Diff_{\partial}(W_{g,1}) \rightarrow Aut(H_n(W_{g,1};\mathbb{Z})))$

to eliminate the arithmetic group, but this changes the cohomology.

In two companion papers we prove that the space $BTor_{\partial}(W_{g,1})$ is nilpotent, and determine $H^*(BTor_{\partial}(W_{g,1}); \mathbb{Q})$ as $g \to \infty$.

- A. Kupers, O. R-W, On the cohomology of Torelli groups Forum of Mathematics, Pi, 8 (2020)
- A. Kupers, O. R-W, *The cohomology of Torelli groups is algebraic* Forum of Mathematics, Sigma, to appear

Adapting this to the framed case, we produce a fibration $X_1(g) \longrightarrow BTor_{\partial}^{fr}(W_{g,1}) \longrightarrow X_o$ with $H^*(X_0; \mathbb{Q}) = \mathbb{Q}[\bar{\sigma}_{4j-2n-1} | j > n/2].$

Adapting this to the framed case, we produce a fibration

$$X_1(g) \longrightarrow BTor^{fr}_{\partial}(W_{g,1}) \longrightarrow X_o$$

with $H^*(X_0; \mathbb{Q}) = \mathbb{Q}[\bar{\sigma}_{4j-2n-1} | j > n/2].$

We show that in a stable range, $H^*(X_1(g); \mathbb{Q})$ is generated by classes

 $\kappa(\mathbf{v}_1\otimes\cdots\otimes\mathbf{v}_r)\in H^{(r-2)n}(X_1(g);\mathbb{Q}) \qquad r\geq 3, \quad \mathbf{v}_i\in H^n(W_{g,1};\mathbb{Q})$

subject only to the relations (where $\{a_i\}$ and $\{a_i^{\#}\}$ are dual bases) (i) linearity in each v_i ,

(ii) $\kappa(\mathbf{v}_{\sigma(1)} \otimes \mathbf{v}_{\sigma(2)} \otimes \cdots \otimes \mathbf{v}_{\sigma(r)}) = sign(\sigma)^n \cdot \kappa(\mathbf{v}_1 \otimes \mathbf{v}_2 \otimes \cdots \otimes \mathbf{v}_r),$ (iii) $\sum_i \kappa(\mathbf{v} \otimes a_i) \cdot \kappa(a_i^{\#} \otimes w) = \kappa(\mathbf{v} \otimes w),$ for any tensors \mathbf{v} and w,(iv) $\sum_i \kappa(\mathbf{v} \otimes a_i \otimes a_i^{\#}) = 0$ for any tensor $\mathbf{v}.$

Adapting this to the framed case, we produce a fibration

$$X_1(g) \longrightarrow BTor^{fr}_{\partial}(W_{g,1}) \longrightarrow X_0$$

with $H^*(X_0; \mathbb{Q}) = \mathbb{Q}[\bar{\sigma}_{4j-2n-1} | j > n/2].$

We show that in a stable range, $H^*(X_1(g); \mathbb{Q})$ is generated by classes

 $\kappa(\mathbf{v}_1\otimes\cdots\otimes\mathbf{v}_r)\in H^{(r-2)n}(X_1(g);\mathbb{Q}) \qquad r\geq 3, \quad \mathbf{v}_i\in H^n(W_{g,1};\mathbb{Q})$

subject only to the relations (where $\{a_i\}$ and $\{a_i^{\#}\}$ are dual bases) (i) linearity in each v_i ,

(ii) $\kappa(\mathbf{v}_{\sigma(1)} \otimes \mathbf{v}_{\sigma(2)} \otimes \cdots \otimes \mathbf{v}_{\sigma(r)}) = sign(\sigma)^n \cdot \kappa(\mathbf{v}_1 \otimes \mathbf{v}_2 \otimes \cdots \otimes \mathbf{v}_r),$ (iii) $\sum_i \kappa(\mathbf{v} \otimes a_i) \cdot \kappa(a_i^{\#} \otimes w) = \kappa(\mathbf{v} \otimes w),$ for any tensors \mathbf{v} and w,(iv) $\sum_i \kappa(\mathbf{v} \otimes a_i \otimes a_i^{\#}) = 0$ for any tensor $\mathbf{v}.$

The unstable Adams spectral sequence then shows

$$\pi_*(BTor^{fr}_{\partial}(W_{g,1})) \otimes \mathbb{Q} = \left(\bigoplus_{j>n/2} \mathbb{Q}[4j-2n-1] \right) \text{ "} \oplus \text{"} \left(\underset{* \in \bigcup_{r \ge o}[r(n-1)+1,rn-2]}{\text{something supported in}} \right)$$

The second piece is the lightly shaded region in the chart.

Optimism

Can apply embedding calculus to diffeomorphisms, considered as codimension o embeddings. It need not converge and in fact does not converge: by work of Fresse, Turchin, and Willwacher '17 it predicts (modulo a subtlety) that $\pi_*(BDiff_\partial(D^{2n})) \otimes \mathbb{Q}$ should be

$$\left(\bigoplus_{i>0}\mathbb{Q}[2n-4i]\right)\oplus\mathbb{Q}[4n-6]\oplus\mathbb{Q}[8n-10]\oplus\mathbb{Q}[10n-15]\oplus\cdots$$

so misses the Weiss classes and starts with some spurious classes. But apart from this it has classes supported in our bands, and here is given precisely by Kontsevich's graph complex GC_{2n}^2 . Can apply embedding calculus to diffeomorphisms, considered as codimension o embeddings. It need not converge and in fact does not converge: by work of Fresse, Turchin, and Willwacher '17 it predicts (modulo a subtlety) that $\pi_*(BDiff_\partial(D^{2n})) \otimes \mathbb{Q}$ should be

$$\left(\bigoplus_{i>0}\mathbb{Q}[2n-4i]\right)\oplus\mathbb{Q}[4n-6]\oplus\mathbb{Q}[8n-10]\oplus\mathbb{Q}[10n-15]\oplus\cdots$$

so misses the Weiss classes and starts with some spurious classes. But apart from this it has classes supported in our bands, and here is given precisely by Kontsevich's graph complex GC_{2n}^2 .

Could there be a rational fibration

$$BDiff_{\partial}(D^{2n}) \longrightarrow BT_{\infty}Diff_{\partial}(D^{2n}) \longrightarrow \Omega^{\infty+2n}L(\mathbb{Z})?$$

Evidence

Could there be a rational fibration

$$BDiff_{\partial}(D^{2n}) \longrightarrow BT_{\infty}Diff_{\partial}(D^{2n}) \longrightarrow \Omega^{\infty+2n}L(\mathbb{Z})?$$

Evidence.

It is consistent with everything we know, and would explain Watanabe's and Weiss' results.

Evidence

Could there be a rational fibration

$$BDiff_{\partial}(D^{2n}) \longrightarrow BT_{\infty}Diff_{\partial}(D^{2n}) \longrightarrow \Omega^{\infty+2n}L(\mathbb{Z})?$$

Evidence.

It is consistent with everything we know, and would explain Watanabe's and Weiss' results.

Evidence. [Knudsen–Kupers '20] If $d \ge 6$, M^d 2-connected, $\partial M = S^{d-1}$ then

 $hofib(BDiff_{\partial}(M) \rightarrow BT_{\infty}Diff_{\partial}(M))$

is independent of M.

Could there be a rational fibration

$$BDiff_{\partial}(D^{2n}) \longrightarrow BT_{\infty}Diff_{\partial}(D^{2n}) \longrightarrow \Omega^{\infty+2n}L(\mathbb{Z})$$
?

Evidence.

It is consistent with everything we know, and would explain Watanabe's and Weiss' results.

Evidence. [Knudsen–Kupers '20] If $d \ge 6$, M^d 2-connected, $\partial M = S^{d-1}$ then

 $hofib(BDiff_{\partial}(M) \rightarrow BT_{\infty}Diff_{\partial}(M))$

is independent of M.

Evidence. [Prigge '20]

The family signature theorem does not hold on $BT_2Diff_{\partial}(M)$.

Questions?
