Operads with Homological Stability detect Infinite Loop Spaces

Maria Basterra

University of New Hampshire

MIT Topology Seminar March 19, 2018

Maria Basterra OHS detect infinite loops spaces

< 同 > < 回 > < 回 > -

크

joint with Irina Bobkova, Kate Ponto, Ulrike Tillmann and Sarah Yeakel

Figure: Sarah, Kate and Ulrike (WIT II- BIRS 2016)

< 同 > < ∃ >

- Introduction: Operads and infinite loop spaces.
- **Tillmann's surface operad**: Surprise Theorem.
- **Tools**: Bar construction. Group completion theorem.
- **OHS**: Operads with homological stability.
- Main Theorem: Group completions of algebras over OHS are infinite loop spaces.
- Proof sketch.
- Examples and applications

ロト・コート・ロト・コート

크

Operads: Useful way to collect multiple input operations and encode their interactions for varying *n*.

$$\mu_n: \mathbf{A}^n \longrightarrow \mathbf{A}$$

In particular, useful to encode relations *up to homotopy* between operations.

Example: For a based topological space (X, x_0) , concatenation of loops defines operations on

 $\Omega(X) = maps(([0, 1], \partial), (X, x_0)) = loops space on (X, x_0)$

that have inverses and are associative up to homotopy.

Example: For a based topological space (X, x_0) , and $n \ge 2$ we obtain operations on

$$\Omega^{n}(X) = \operatorname{maps}(([0, 1]^{n}, \partial), (X, x_{0}))$$

= $\Omega(\Omega(\dots \Omega(X, x_{0})) = n$ -th loop space on (X, x_{0})

that have inverses, are associative and commutative up to homotopy. And, coherent homotopies of homotopies increasing with higher *n*.

(日)

Definition An **operad** is a collection of spaces

 $O = \{O(n)\}_{n \geq 0}$

with base point $* \in O(0)$, $1 \in O(1)$, a right action of the symmetric group Σ_n on O(n) and structure maps

$$\gamma: O(k) \times [O(j_1) \times \ldots \times O(j_k)] \longrightarrow O(j_1 + \ldots + j_k)$$

that are required to be associative, unital, and equivariant. A **map of operads** $O \longrightarrow V$ is a collection of Σ_n equivariant maps $O(n) \longrightarrow V(n)$ which commute with the structure maps and preserve * and 1.

Remark: Note that above we do not insist that O(0) = *.

Definition

An *O*-**algebra** is a based space (X, *) with equivariant structure maps

$$O(j) \times X^j \longrightarrow X.$$

For a based space (X, *), the **free** *O***-algebra on** *X* is

$$\mathbb{O}(X) \coloneqq \prod_{n \ge 0} \left(O(n) \times_{\Sigma_n} X^n \right) \Big/ \sim$$

where \sim is a base point relation generated by

$$(\gamma(c; 1^{i}, *, 1^{n-i-1}); x_1, \ldots, x_{n-1}) \sim (c; x_1, \ldots, x_i, *, x_{i+1}, \ldots, x_{n-1})).$$

The class of $(1, *) \in O(1) \times X$ is the base point of $\mathbb{O}(X)$. Note that it coincides with the class of $* \in O(0)$.

Remark: We will identify O(0) with $\mathbb{O}(*)$. In the cases of interest it will be a non-trivial *O*-algebra.

Introduction: Operads

Example: The little *n*-disks operad C_n .

$$C_n(k) \subset Emb(\prod_k D^n, D^n) \simeq Conf_k(\mathbb{R}^n)$$

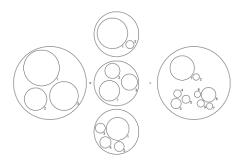


Figure: From Wikipidea

 $\gamma: C_2(3) \times [C_2(2) \times C_2(3) \times C_2(4)] \longrightarrow C_2(9)$

We have maps of operads:

$$C_1 \longrightarrow C_2 \longrightarrow \cdots \longrightarrow C_n \longrightarrow \cdots \longrightarrow C_{\infty}$$

Example: $\Omega^n(X)$ is a C_n -algebra.

Recognition Principle (Stasheff, Boardman-Vogt, May, Barrett-Eccless, Milgram ... (1970's): Connected C_n -algebras are Ω^n . More generally, the group completion of a C_n -algebra is an Ω^n space.

< □ > < □ > < □ > < □

(Motivated by Segal's cobordism category and definition of CFT)

Let $\Gamma_{g,n+1} = \pi_0(Diff^+(F_{g,n+1}; \partial))$ the mapping class group of an oriented surface of genus g and n + 1 boundary components.

$$\mathcal{M}(n) \simeq \prod_{g \ge 0} B\Gamma_{g,n+1}$$

A version of the little 2-disk operad is a sub-operad of \mathcal{M} so that a grouplike \mathcal{M} -algebra is in particular a double loop space. But the surprising part is that

Theorem (Tillmann, 2000)

Group like \mathcal{M} -algebras are infinite-loop spaces with an infinite loop space action by \mathcal{M}^+ (= the group completion of the free \mathcal{M} -algebra on a point).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Main ingredient on the proof:

Harer's homology stability theorem: $H_*B\Gamma_{g,n+1}$ is independent of *g* and *n* for *g* large enough.

Inconvenient feature of the proof:

Requires strict multiplication: some surfaces had to be identified and diffeomorphisms are replaced by mapping class groups.

▲圖 → ▲ 国 → ▲ 国 →

Lemma (May (GILS))

For a monad \mathbb{T} , a \mathbb{T} -functor F and a \mathbb{T} -algebra X, define

$$B_{\bullet}(F,\mathbb{T},X):=\{q\mapsto F(\mathbb{T}^qX)\}$$

- 1. For any functor G, $|B_{\bullet}(GF, \mathbb{T}, X)| \cong |GB_{\bullet}(F, \mathbb{T}, X)|$.
- $2. |B_{\bullet}(\mathbb{T},\mathbb{T},X)| \simeq X.$
- 3. $|B_{\bullet}(F, \mathbb{T}, \mathbb{T}(X))| \simeq F(X).$
- If δ : T → T' is a natural transformation of monads, then T' is an T-functor and B_•(T', T, X) is a simplicial T'-algebra.

<ロ> <同> <同> <同> < 同> < 同> < 同> < 同>

Corollary

Let \mathcal{A} be an A_{∞} -operad and let $\delta \colon \mathbb{A} \longrightarrow \mathbb{A}s$ be the map of monads associated to the augmentation of operads $\mathcal{A} \longrightarrow \mathcal{A}s$. For an \mathcal{A} -algebra X, there is a topological monoid $\mathbf{M}_{\mathcal{A}}(X) := |B_{\bullet}(\mathbb{A}s, \mathbb{A}, X)|$ and a strong deformation retract

$$\rho\colon X\longrightarrow \mathbf{M}_{\mathcal{A}}(X)$$

that is natural in X and induces an isomorphism of homology Pontryagin rings.

< □ > < □ > < □ > < □

Algebraic monoids: $M \longrightarrow \mathcal{G}M$ the *Grothendieck group* of M. Topological monoids: $M \longrightarrow \mathcal{G}M = \Omega BM$ where $BM = |N_{\bullet}M|$ A_{∞} algebras: $X \longrightarrow \mathcal{G}X = \Omega B\mathbf{M}_{\mathcal{R}}(X)$ the composite

$$X \longrightarrow \mathsf{M}_{\mathcal{A}}(X) \longrightarrow \Omega B \mathsf{M}_{\mathcal{A}}(X)$$

Theorem (Quillen, McDuff-Segal)

Let $M = \prod_{n \ge 0} M_n$ be a topological monoid such that the multiplication on $H_*(M)$ is commutative. Then

$$H_*(\Omega BM) = \mathbb{Z} \times \lim_{n \to \infty} H_*(M_n) = \mathbb{Z} \times H_*(M_\infty).$$

(日)

Definition

Let *I* be a commutative, finitely generated monoid. An *I*-grading on an operad *O* is a decomposition

$$O(n) = \prod_{g \in I} O_g(n)$$

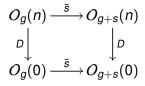
for each *n* so that:

- 1. the basepoint * lies in $O_0(0)$;
- 2. the Σ_n action on O(n) restricts to an action on each $O_g(n)$;
- 3. the structure maps restrict to maps

$$\gamma: O_g(k) \times \left[O_{g_1}(j_1) \times \ldots \times O_{g_k}(j_k)\right] \longrightarrow O_{g+g_1+\ldots+g_k}(j_1+\ldots+j_k).$$

< 同 > < 回 > < 回 > -

For an *I*-graded operad *O* let *s* be the product of a set of generators for *I*, and choose a **propagator** $\tilde{s} \in O_s(1)$. Let $D = \gamma(-; *, \cdots, *)$ and $\tilde{s} := \gamma(\tilde{s}, -)$. The diagram



commutes and defines a map $D_{\infty}: O_{\infty}(n) \longrightarrow O_{\infty}(0)$ where

$$O_{\infty}(n) =: \operatorname{hocolim}_{\widetilde{s}} O_g(n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Definition

An operad O is an operad with homological stability (OHS) if

- 1. it is *I*-graded;
- 2. there is an A_{∞} -operad \mathcal{R} and a map of graded operads

 $\mu : \mathcal{A} \longrightarrow O$ (multiplication map)

with $\mu(\mathcal{A}(2)) \subset O_0(2)$ path connected; and

3. the maps

$$D_{\infty}: O_{\infty}(n) \longrightarrow O_{\infty}(0)$$

induce homology isomorphisms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Operads with homological stability

Examples:

- 1. C_{∞} is and OHS concentrated in degree zero and multiplication $\mu : C_1 \longrightarrow C_{\infty}$. Since $C_{\infty}(n)$ is contractible, conditions 2 and 3 are trivially satisfied.
- 2. The Riemann surfaces operad \mathcal{M} with $\mathcal{M}(n) = \coprod_{g \ge 0} \mathcal{M}_{g,n+1} \simeq \coprod_{g \ge 0} \mathcal{B}\Gamma_{g,n+1}$

Figure: $\gamma : \mathcal{M}_{0,2+1} \times [\mathcal{M}_{1,2+1} \times \mathcal{M}_{0,0+1}] \longrightarrow \mathcal{M}_{1,2+1}$

▲御▶ ▲理▶ ▲理▶

Theorem (B., Bobkova, Ponto, Tillmann, Yeakel) Suppose O is an OHS. Then,

 $\mathcal{G}: \mathcal{O} - algebras \longrightarrow \Omega^{\infty} - spaces$

is a functor with image Ω^{∞} -spaces with a compatible Ω^{∞} -map

 $\mathcal{GO}(*) \times \mathcal{GX} \longrightarrow \mathcal{GX},$

where the source is given the product Ω^{∞} -space structure.

Let O be an OHS. Then the product operad $\widetilde{O} := O \times C_{\infty}$ is an OHS with compatible maps of operads

$$O \stackrel{\pi_1}{\longleftarrow} \widetilde{O} \stackrel{\pi}{\longrightarrow} C_{\infty}.$$

Then, any *O*-algebra is an \overline{O} -algebra. W.L.O.G we assume a compatible map $\pi : O \longrightarrow C_{\infty}$. For any space *X*, there is a map of *O*-algebras

$$\tau \times \pi \colon \mathbb{O}(X) \longrightarrow \mathbb{O}(*) \times \mathbb{C}_{\infty}(X),$$

where τ is induced by $X \longrightarrow *$ and the target has the diagonal action of O.

(日本)(日本)(日本)

Step 2 - Group completion of free O-algebras

Claim: For any based space X,

 $\mathcal{G}(\tau) \times \mathcal{G}(\pi) \colon \mathcal{G}(\mathbb{O}(X)) \longrightarrow \mathcal{G}(\mathbb{O}(*)) \times \mathcal{G}(\mathbb{C}_{\infty}(X))$

is a weak homotopy equivalence.

"**Proof**": By Whitehead theorem e.t.s isomorphism in homology.

By the group completion theorem e.t.s

$$\tau_{\infty} \times \pi_{\infty} \colon \mathbb{O}_{\infty}(X) \longrightarrow \mathbb{O}_{\infty}(*) \times \mathbb{C}_{\infty}(X)$$

induces isomorphism in homology.

Filtering by *arity* in the operad and taking filtration quotients reduces to show that for each *n* and Σ_n space *Y*

$$\bar{D}_{\infty} \times (\pi_{\infty} \times 1_{Y}) \colon O_{\infty}(n) \times_{\Sigma_{n}} Y \longrightarrow O_{\infty}(0) \times (C_{\infty}(n) \times_{\Sigma_{n}} Y)$$

is a homology isomorphism. This follows by **homological stability of** *O*.

Step 3: A functor from *O*-algebras to Ω^{∞} spaces

Claim: The assignment $X \mapsto |\mathcal{GB}_{\bullet}(\mathbb{C}_{\infty}, \mathbb{O}, X)|$ defines a functor from *O*-algebras to Ω^{∞} -spaces. **Proof:** Recall (May): there is a map of monads

$$\alpha \colon \mathbb{C}_{\infty} \longrightarrow \Omega^{\infty} \Sigma^{\infty};$$

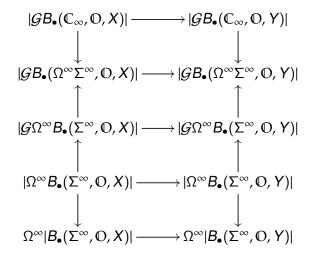
and for every based space Z, the map

$$\alpha \colon \mathbb{C}_{\infty} Z \longrightarrow \Omega^{\infty} \Sigma^{\infty} Z$$

is a group completion.

For any map of *O*-algebras $f : X \longrightarrow Y$ the following diagram commutes. (The vertical arrows are equivalences and the horizontal ones are induced by *f*.)

Step 3: A functor from *O*-algebras to Ω^{∞} spaces



▲ロ▶ ▲郡▶ ▲臣▶ ▲臣▶ ―臣 – のへで

We have seen that for any based space X $\mathcal{G}(\mathbb{O}(X)) \simeq \mathcal{G}(\mathbb{O}(*)) \times \mathcal{G}(\mathbb{C}_{\infty}(X))$ For an *O*-algebra *X* we have a homotopy fibration sequence

$$\mathcal{GO}(*) \longrightarrow |\mathcal{GB}_{\bullet}(\mathbb{O}, \mathbb{O}, X)| \longrightarrow |\mathcal{GB}_{\bullet}(\mathbb{C}_{\infty}, \mathbb{O}, X)|$$

applying it to the product O-algebra $\mathbb{O}(*) \times X$ allows to conclude that

$$\mathcal{G}X \simeq |\mathcal{G}B_{\bullet}(\mathbb{C}_{\infty}, \mathbb{O}, \mathbb{O}(*) \times X)|.$$

which we saw to be an Ω^{∞} -space.

<回>< E> < E> < E> = E

Examples and applications: Surface operads

Oriented surfaces and diffeomorphisms: ${\cal S}$

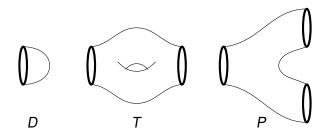


Figure: Orientable Atomic Surfaces

$$\mathcal{S}(n) = \coprod_{g \ge 0} B\mathcal{S}_{g,n+1}.$$

By Madsen-Weiss $\mathcal{GS}(0) \simeq \mathbb{Z} \times B\Gamma_{\infty}^{+} \simeq \Omega^{\infty} \mathbf{MTSO}(2)$

Nonorientable surfaces and diffeomorphisms: N Let $N = \mathbb{R}P^2 \setminus (D^2 \coprod D^2)$. Let $N_{k,n+1}$ be a surface of nonorientable genus k with one outgoing and n incoming boundary components built out of D, P, S^1 and N.

$$\mathcal{N}(n)\simeq \prod_{k\geq 0}B\mathcal{N}_{k,n+1}.$$

Homology stability results of Wahl give that \mathcal{N} is a n OHS and

$$\mathcal{GN}(0) \simeq \mathbb{Z} \times \mathcal{BN}_{\infty}^+ \simeq \Omega^{\infty} \mathbf{MTO}(2),$$

where $N_{\infty} = \lim_{k \to \infty} \pi_0 \text{Diff}(N_{k,1}, \partial)$ denotes the infinite mapping class group.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Let $W_{g,j+1}$ be the connected sum of g copies of $S^k \times S^k$ with j + 1 open disks removed.

Let $\theta: B \longrightarrow BO(2k)$ be the *k*-th connected cover and fix a bundle map $\ell_W: TW \longrightarrow \theta^* \gamma_{2k}$. We construct a graded operad with

$$\mathcal{W}_g^{2k}(j) \simeq \mathcal{M}_k^{\theta}(W_{g,j+1}, \ell_{W_{g,j+1}})$$

By homological stability results of Galatius and Randal-Williams we have that for $2k \ge 2$ the operad \mathcal{W}^{2k} is an OHS and $\Omega B_0 \mathcal{W}^{2k}(0) \simeq \left(\underset{g \longrightarrow \infty}{\text{hocolim}} \mathcal{M}_k^{\theta}(W_{g,1}, \ell_{W_{g,1}}) \right)^+ \simeq \Omega_0^{\infty} \mathbf{MT} \theta.$

ロト (日) (日) (日) (日) (日) (日)