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Introduction

Operads: Useful way to collect multiple input operations and
encode their interactions for varying n.

µn : An
−→ A

In particular, useful to encode relations up to homotopy
between operations.
Example: For a based topological space (X , x0), concatenation
of loops defines operations on

Ω(X) = maps(([0,1], ∂), (X , x0)) = loops space on (X , x0)

that have inverses and are associative up to homotopy.
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Introduction

Example: For a based topological space (X , x0), and n ≥ 2 we
obtain operations on

Ωn(X) = maps(([0,1]n, ∂), (X , x0))

= Ω(Ω(· · ·Ω(X , x0)) = n-th loop space on (X , x0)

that have inverses, are associative and commutative up to
homotopy. And, coherent homotopies of homotopies increasing
with higher n.
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Introduction: Operads

Definition
An operad is a collection of spaces

O = {O(n)}n≥0

with base point ∗ ∈ O(0), 1 ∈ O(1), a right action of the
symmetric group Σn on O(n) and structure maps

γ : O(k ) × [O(j1) × . . . × O(jk )] −→ O(j1 + . . .+ jk )

that are required to be associative, unital, and equivariant.
A map of operads O −→ V is a a collection of Σn equivariant
maps O(n) −→ V(n) which commute witht the structure maps
and preserve ∗ and 1.
Remark: Note that above we do not insist that O(0) = ∗.
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Introduction: Operads

Definition
An O-algebra is a based space (X , ∗) with equivariant structure
maps

O(j) × X j
−→ X .

For a based space (X , ∗), the free O-algebra on X is

O(X) B
∐
n≥0

(O(n) ×Σn Xn)
/
∼

where ∼ is a base point relation generated by

(γ(c; 1i , ∗,1n−i−1); x1, . . . , xn−1) ∼ (c; x1, . . . xi , ∗, xi+1, . . . , xn−1)).

The class of (1, ∗) ∈ O(1) × X is the base point of O(X). Note
that it coincides with the class of ∗ ∈ O(0).

Remark: We will identify O(0) with O(∗). In the cases of interest
it will be a non-trivial O-algebra.
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Introduction: Operads

Example: The little n-disks operad Cn.

Cn(k ) ⊂ Emb(
∐

k

Dn,Dn) ' Confk (Rn)

Figure: From Wikipidea

γ : C2(3) × [C2(2) × C2(3) × C2(4)] −→ C2(9)
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Introduction: Operads

We have maps of operads:

C1 −→ C2 −→ · · · −→ Cn −→ · · · −→ C∞

Example: Ωn(X) is a Cn-algebra.

Recognition Principle (Stasheff, Boardman-Vogt, May,
Barrett-Eccless, Milgram ... (1970’s):
Connected Cn-algebras are Ωn. More generally, the group
completion of a Cn-algebra is an Ωn space.
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Tillmann’s surface operadM

(Motivated by Segal’s cobordism category and definition of
CFT)

Let Γg,n+1 = π0(Diff+(Fg,n+1; ∂)) the mapping class group of an
oriented surface of genus g and n + 1 boundary components.

M(n) '
∐
g≥0

BΓg,n+1

A version of the little 2-disk operad is a sub-operad ofM so
that a grouplikeM-algebra is in particular a double loop space.
But the surprising part is that

Theorem (Tillmann, 2000)
Group likeM-algebras are infinite-loop spaces with an infinite
loop space action byM+ (= the group completion of the free
M-algebra on a point).
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Tillmann’s surface operad theorem

Main ingredient on the proof:
Harer’s homology stability theorem: H∗BΓg,n+1 is independent
of g and n for g large enough.

Inconvenient feature of the proof:
Requires strict multiplication: some surfaces had to be
identified and diffeomorphisms are replaced by mapping class
groups.
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Tools: Bar construction

Lemma (May (GILS))
For a monad T, a T-functor F and a T-algebra X , define

B•(F ,T,X) := {q 7→ F(TqX)}

1. For any functor G, |B•(GF ,T,X)| � |GB•(F ,T,X)|.

2. |B•(T,T,X)| ' X .
3. |B•(F ,T,T(X))| ' F(X).

4. If δ : T −→ T′ is a natural transformation of monads, then
T′ is an T-functor and B•(T′,T,X) is a simplicial
T′-algebra.
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Tools: Monoid rectification

Corollary
Let A be an A∞-operad and let δ : A −→ As be the map of
monads associated to the augmentation of operads A −→ As.
For an A-algebra X , there is a topological monoid
MA(X) := |B•(As,A,X)| and a strong deformation retract

ρ : X −→ MA(X)

that is natural in X and induces an isomorphism of homology
Pontryagin rings.
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Group Completion

Algebraic monoids: M −→ GM the Grothendieck group of M.
Topological monoids: M −→ GM = ΩBM where BM = |N•M|
A∞ algebras: X −→ GX = ΩBMA(X) the composite

X −→ MA(X) −→ ΩBMA(X)

Theorem (Quillen, McDuff-Segal)
Let M =

∐
n≥0 Mn be a topological monoid such that the

multiplication on H∗(M) is commutative. Then

H∗(ΩBM) = Z × lim
n−→∞

H∗(Mn) = Z × H∗(M∞).
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OHS: Preliminary definitions

Definition
Let I be a commutative, finitely generated monoid. An
I-grading on an operad O is a decomposition

O(n) =
∐
g∈I

Og(n)

for each n so that:
1. the basepoint ∗ lies in O0(0);
2. the Σn action on O(n) restricts to an action on each Og(n);
3. the structure maps restrict to maps

γ : Og(k )×
[
Og1(j1) × . . . × Ogk (jk )

]
−→ Og+g1+...+gk (j1+. . .+jk ).
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OHS: Notation

For an I-graded operad O let s be the product of a set of
generators for I, and choose a propagator s̃ ∈ Os(1).
Let D = γ(−; ∗, · · · , ∗) and s̃ := γ(s̃,−). The diagram

Og(n)
s̃ //

D
��

Og+s(n)

D
��

Og(0)
s̃ // Og+s(0)

commutes and defines a map D∞ : O∞(n) −→ O∞(0) where

O∞(n) =: hocolim
s̃

Og(n)
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Operads with homological stability

Definition
An operad O is an operad with homological stability (OHS) if

1. it is I-graded;
2. there is an A∞-operad A and a map of graded operads

µ : A −→ O (multiplication map)

with µ(A(2)) ⊂ O0(2) path connected; and
3. the maps

D∞ : O∞(n) −→ O∞(0)

induce homology isomorphisms.
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Operads with homological stability

Examples:
1. C∞ is and OHS concentrated in degree zero and

multiplication µ : C1 −→ C∞. Since C∞(n) is contractible,
conditions 2 and 3 are trivially satisfied.

2. The Riemann surfaces operadM with
M(n) =

∐
g≥0Mg,n+1 '

∐
g≥0 BΓg,n+1

Figure: γ :M0,2+1 × [M1,2+1 ×M0,0+1] −→M1,2+1
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Main Theorem

Theorem (B., Bobkova, Ponto, Tillmann, Yeakel)
Suppose O is an OHS. Then,

G : O − algebras −→ Ω∞ − spaces

is a functor with image Ω∞-spaces with a compatible Ω∞-map

GO(∗) × GX −→ GX ,

where the source is given the product Ω∞-space structure.
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Proof sketch: Step 1 - Operad replacement

Let O be an OHS.
Then the product operad Õ B O × C∞ is an OHS with
compatible maps of operads

O
π1
←− Õ

π
−→ C∞.

Then, any O-algebra is an Õ-algebra.
W.L.O.G we assume a compatible map π : O −→ C∞.
For any space X , there is a map of O-algebras

τ × π : O(X) −→ O(∗) × C∞(X),

where τ is induced by X −→ ∗ and the target has the diagonal
action of O.
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Step 2 - Group completion of free O-algebras

Claim: For any based space X ,

G(τ) × G(π) : G(O(X)) −→ G(O(∗)) × G(C∞(X))

is a weak homotopy equivalence.
‘’Proof”: By Whitehead theorem e.t.s isomorphism in
homology.
By the group completion theorem e.t.s

τ∞ × π∞ : O∞(X) −→ O∞(∗) × C∞(X)

induces isomorphism in homology.
Filtering by arity in the operad and taking filtration quotients
reduces to show that for each n and Σn space Y

D̄∞ × (π∞ × 1Y ) : O∞(n) ×Σn Y −→ O∞(0) × (C∞(n) ×Σn Y)

is a homology isomorphism.
This follows by homological stability of O.

Maria Basterra OHS detect infinite loops spaces



Step 3: A functor from O-algebras to Ω∞ spaces

Claim: The assignment X 7→ |GB•(C∞,O,X)| defines a functor
from O-algebras to Ω∞-spaces.
Proof: Recall (May ): there is a map of monads

α : C∞ −→ Ω∞Σ∞;

and for every based space Z , the map

α : C∞Z −→ Ω∞Σ∞Z

is a group completion.

For any map of O-algebras f : X −→ Y the following diagram
commutes. (The vertical arrows are equivalences and the
horizontal ones are induced by f .)
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Step 3: A functor from O-algebras to Ω∞ spaces

|GB•(C∞,O,X)|

��

// |GB•(C∞,O,Y)|

��

|GB•(Ω∞Σ∞,O,X)| // |GB•(Ω∞Σ∞,O,Y)|

|GΩ∞B•(Σ∞,O,X)| //

OO

|GΩ∞B•(Σ∞,O,Y)|

OO

|Ω∞B•(Σ∞,O,X)|

��

OO

// |Ω∞B•(Σ∞,O,Y)|

��

OO

Ω∞|B•(Σ∞,O,X)| // Ω∞|B•(Σ∞,O,Y)|
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Step 4: Group completion of O-algebras

We have seen that for any based space X
G(O(X)) ' G(O(∗)) × G(C∞(X))
For an O-algebra X we have a homotopy fibration sequence

GO(∗) −→ |GB•(O,O,X)| −→ |GB•(C∞,O,X)|

applying it to the product O-algebra O(∗) × X allows to conclude
that

GX ' |GB•(C∞,O,O(∗) × X)|.

which we saw to be an Ω∞-space.

Maria Basterra OHS detect infinite loops spaces



Examples and applications: Surface operads

Oriented surfaces and diffeomorphisms: S

D T P

Figure: Orientable Atomic Surfaces

S(n) =
∐
g≥0

BSg,n+1.

By Madsen-Weiss GS(0) ' Z × BΓ+
∞ ' Ω∞MTSO(2).
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Examples and applications: Surface operads

Nonorientable surfaces and diffeomorphisms: N Let
N = RP2

\ (D2 ∐
D2). Let Nk ,n+1 be a surface of nonorientable

genus k with one outgoing and n incoming boundary
components built out of D,P,S1 and N.

N(n) '
∐
k≥0

BNk ,n+1.

Homology stability results of Wahl give that N is a n OHS and

GN(0) ' Z × BN+
∞ ' Ω∞MTO(2),

where N∞ = limk−→∞ π0Diff(Nk ,1, ∂) denotes the infinite
mapping class group.
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Examples and applications: Manifold operads

Let Wg,j+1 be the connected sum of g copies of Sk
× Sk with

j + 1 open disks removed .
Let θ : B −→ BO(2k ) be the k -th connected cover and fix a
bundle map `W : TW −→ θ∗γ2k .
We construct a graded operad with

W
2k
g (j) ' Mθ

k (Wg,j+1, `Wg,j+1)

By homological stability results of Galatius and Randal-Williams
we have that for 2k ≥ 2 the operadW2k is an OHS and

ΩB0W
2k (0) '

(
hocolim

g−→∞
M

θ
k (Wg,1, `Wg,1)

)+

' Ω∞0 MTθ.
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