The Johnson filtration is finitely generated

Andrew Putman
University of Notre Dame

MIT Topology Seminar

Mapping class group

Mapping class group

$\Sigma_{g}=\mathrm{cpt}$ oriented genus g surface

Mapping class group

$\Sigma_{g}=\mathrm{cpt}$ oriented genus g surface

The mapping class group Mod $_{g}$ is group of homotopy classes of orientation-preserving diffeomorphisms $f: \Sigma_{g} \rightarrow \Sigma_{g}$.

Mapping class group

$\Sigma_{g}=\mathrm{cpt}$ oriented genus g surface

The mapping class group Mod $_{g}$ is group of homotopy classes of orientation-preserving diffeomorphisms $f: \Sigma_{g} \rightarrow \Sigma_{g}$.

Basic object in topology:

Mapping class group

$\Sigma_{g}=\mathrm{cpt}$ oriented genus g surface

The mapping class group Mod $_{g}$ is group of homotopy classes of orientation-preserving diffeomorphisms $f: \Sigma_{g} \rightarrow \Sigma_{g}$.

Basic object in topology:

- gluing data for 3-manifolds.

Mapping class group

$\Sigma_{g}=\mathrm{cpt}$ oriented genus g surface

The mapping class group Mod $_{g}$ is group of homotopy classes of orientation-preserving diffeomorphisms $f: \Sigma_{g} \rightarrow \Sigma_{g}$.

Basic object in topology:

- gluing data for 3-manifolds.
- monodromies of Σ_{g}-bundles (e.g. families of alg. curves).

Mapping class group

$\Sigma_{g}=\mathrm{cpt}$ oriented genus g surface

The mapping class group Mod $_{g}$ is group of homotopy classes of orientation-preserving diffeomorphisms $f: \Sigma_{g} \rightarrow \Sigma_{g}$.

Basic object in topology:

- gluing data for 3-manifolds.
- monodromies of Σ_{g}-bundles (e.g. families of alg. curves).
- π_{1} of moduli space of algebraic curves.

Dehn twists

Dehn twists

$x=$ simple closed curve

Dehn twists

$x=$ simple closed curve
$T_{x} \in \operatorname{Mod}_{g}=$ cut, twist, reglue.

Dehn twists

$x=$ simple closed curve
$T_{x} \in \operatorname{Mod}_{g}=$ cut, twist, reglue.

Theorem (Dehn)
Modg $_{g}$ is gen by fin many Dehn twists.

Dehn twists

$x=$ simple closed curve
$T_{x} \in \operatorname{Mod}_{g}=$ cut, twist, reglue.

Theorem (Dehn)
Modg $_{g}$ is gen by fin many Dehn twists.

Dehn twists

$x=$ simple closed curve
$T_{x} \in \operatorname{Mod}_{g}=$ cut, twist, reglue.

Theorem (Dehn)
Modg $_{g}$ is gen by fin many Dehn twists.

Mod $_{g}$ has many other finiteness properties: finitely presentable (McCool, Hatcher-Thurston), all H_{k} finitely generated (Harer?), etc.

Torelli group

Torelli group

$\operatorname{Mod}_{g} \circlearrowright \mathrm{H}_{1}\left(\Sigma_{g}\right)$, preserves alg. isect. pairing.

Torelli group

$\operatorname{Mod}_{g} \circlearrowright \mathrm{H}_{1}\left(\Sigma_{g}\right)$, preserves alg. isect. pairing.
$\rightsquigarrow \operatorname{Mod}_{g} \rightarrow \mathrm{Sp}_{2 g}(\mathbb{Z})$.

Torelli group

$\operatorname{Mod}_{g} \circlearrowright H_{1}\left(\Sigma_{g}\right)$, preserves alg. isect. pairing.

$$
\rightsquigarrow \operatorname{Mod}_{g} \rightarrow \mathrm{Sp}_{2 g}(\mathbb{Z}) .
$$

Torelli group \mathcal{I}_{g} is kernel: mapping classes acting trivially on $\mathrm{H}_{1}\left(\Sigma_{g}\right)$.

Torelli group

$\operatorname{Mod}_{g} \circlearrowright \mathrm{H}_{1}\left(\Sigma_{g}\right)$, preserves alg. isect. pairing.

$$
\rightsquigarrow \operatorname{Mod}_{g} \rightarrow \mathrm{Sp}_{2 g}(\mathbb{Z})
$$

Torelli group \mathcal{I}_{g} is kernel: mapping classes acting trivially on $\mathrm{H}_{1}\left(\Sigma_{g}\right)$.

$$
1 \longrightarrow \mathcal{I}_{g} \longrightarrow \operatorname{Mod}_{g} \longrightarrow \mathrm{Sp}_{2 g}(\mathbb{Z}) \longrightarrow 1
$$

Examples of elts of Torelli

Examples of elts of Torelli

$$
\mathcal{I}_{g}=\operatorname{ker}\left(\operatorname{Mod}_{g} \circlearrowright \mathrm{H}_{1}\left(\Sigma_{g}\right)\right)
$$

Examples of elts of Torelli

$$
\mathcal{I}_{g}=\operatorname{ker}\left(\operatorname{Mod}_{g} \circlearrowright H_{1}\left(\Sigma_{g}\right)\right)
$$

Action of Dehn twist T_{x} on $\mathrm{H}_{1}\left(\Sigma_{g}\right)$ determined by $[x] \in \mathrm{H}_{1}\left(\Sigma_{g}\right)$.

Examples of elts of Torelli

$\mathcal{I}_{g}=\operatorname{ker}\left(\operatorname{Mod}_{g} \circlearrowright \mathrm{H}_{1}\left(\Sigma_{g}\right)\right)$
Action of Dehn twist T_{x} on $\mathrm{H}_{1}\left(\Sigma_{g}\right)$ determined by $[x] \in \mathrm{H}_{1}\left(\Sigma_{g}\right)$.
Separating twists: $T_{x} w /[x]=0$, i.e. x separating.

Examples of elts of Torelli

$\mathcal{I}_{g}=\operatorname{ker}\left(\operatorname{Mod}_{g} \circlearrowright \mathrm{H}_{1}\left(\Sigma_{g}\right)\right)$
Action of Dehn twist T_{x} on $\mathrm{H}_{1}\left(\Sigma_{g}\right)$ determined by $[x] \in \mathrm{H}_{1}\left(\Sigma_{g}\right)$.
Separating twists: $T_{x} w /[x]=0$, i.e. x separating.

Bounding pair: $T_{x} T_{y}^{-1} \mathrm{w} / x \cap y=\emptyset$ and $[x]=[y]$, i.e. $x \cup y$ bounds.

Examples of elts of Torelli

$\mathcal{I}_{g}=\operatorname{ker}\left(\operatorname{Mod}_{g} \circlearrowright \mathrm{H}_{1}\left(\Sigma_{g}\right)\right)$
Action of Dehn twist T_{x} on $\mathrm{H}_{1}\left(\Sigma_{g}\right)$ determined by $[x] \in \mathrm{H}_{1}\left(\Sigma_{g}\right)$.
Separating twists: $T_{x} w /[x]=0$, i.e. x separating.

Bounding pair: $T_{x} T_{y}^{-1} \mathrm{w} / x \cap y=\emptyset$ and $[x]=[y]$, i.e. $x \cup y$ bounds.

Theorem (Birman, Powell)
\mathcal{I}_{g} is gen. by sep twists and bounding pairs.

Finiteness properties of Torelli

Finiteness properties of Torelli
Theorem (Classical)
$\mathcal{I}_{1}=1$, so $\operatorname{Mod}_{1} \cong \operatorname{SL}_{2}(\mathbb{Z})$.

Finiteness properties of Torelli

Theorem (Classical)
$\mathcal{I}_{1}=1$, $\operatorname{so~}_{\operatorname{Mod}_{1}} \cong \mathrm{SL}_{2}(\mathbb{Z})$.
Theorem (Mess)
\mathcal{I}_{2} an ∞-rank free group.

Finiteness properties of Torelli

Theorem (Classical)
$\mathcal{I}_{1}=1, \operatorname{so~}_{\operatorname{Mod}}^{1}$ $\cong \mathrm{SL}_{2}(\mathbb{Z})$.
Theorem (Mess)
\mathcal{I}_{2} an ∞-rank free group.

Theorem (Johnson)
\mathcal{I}_{g} is fin gen for $g \geq 3$.

Finiteness properties of Torelli

Theorem (Classical)
$\mathcal{I}_{1}=1, \operatorname{so~}_{\operatorname{Mod}}^{1}$ $\cong \mathrm{SL}_{2}(\mathbb{Z})$.
Theorem (Mess)
\mathcal{I}_{2} an ∞-rank free group.

Theorem (Johnson)
\mathcal{I}_{g} is fin gen for $g \geq 3$.

Open question
Is \mathcal{I}_{g} fin pres?

Johnson kernel

Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_{g} of \mathcal{I}_{g} (Johnson kernel):

Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_{g} of \mathcal{I}_{g} (Johnson kernel):

- $\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $)$.

Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_{g} of \mathcal{I}_{g} (Johnson kernel):

- $\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $)$.
- \mathcal{K}_{g} subgroup of \mathcal{I}_{g} gen. by sep twists.

Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_{g} of \mathcal{I}_{g} (Johnson kernel):

- $\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $)$.
- \mathcal{K}_{g} subgroup of \mathcal{I}_{g} gen. by sep twists.
- \mathcal{K}_{g} is $f \in \mathcal{I}_{g}$ s.t. map. torus M_{f} has same cup products as $\Sigma_{g} \times S^{1}$.

Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_{g} of \mathcal{I}_{g} (Johnson kernel):

- $\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $)$.
- \mathcal{K}_{g} subgroup of \mathcal{I}_{g} gen. by sep twists.
- \mathcal{K}_{g} is $f \in \mathcal{I}_{g}$ s.t. map. torus M_{f} has same cup products as $\Sigma_{g} \times S^{1}$.

Remark

For all $f \in \mathcal{I}_{g}, M_{f}$ has homology of $\Sigma_{g} \times S^{1}$.

Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_{g} of \mathcal{I}_{g} (Johnson kernel):

- $\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $)$.
- \mathcal{K}_{g} subgroup of \mathcal{I}_{g} gen. by sep twists.
- \mathcal{K}_{g} is $f \in \mathcal{I}_{g}$ s.t. map. torus M_{f} has same cup products as $\Sigma_{g} \times S^{1}$.

Remark

For all $f \in \mathcal{I}_{g}, M_{f}$ has homology of $\Sigma_{g} \times S^{1}$.
Observation
$\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $) \Rightarrow \mathcal{K}_{g}$ is commensurable with $\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$.

Johnson kernel

Theorem (Johnson)
For $g \geq 3$, following are same subgroup \mathcal{K}_{g} of \mathcal{I}_{g} (Johnson kernel):

- $\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $)$.
- \mathcal{K}_{g} subgroup of \mathcal{I}_{g} gen. by sep twists.
- \mathcal{K}_{g} is $f \in \mathcal{I}_{g}$ s.t. map. torus M_{f} has same cup products as $\Sigma_{g} \times S^{1}$.

Remark

For all $f \in \mathcal{I}_{g}, M_{f}$ has homology of $\Sigma_{g} \times S^{1}$.
Observation
$\mathcal{K}_{g}=\operatorname{ker}\left(\mathcal{I}_{g} \rightarrow \mathrm{H}_{1}\left(\mathcal{I}_{g}\right) /\right.$ torsion $) \Rightarrow \mathcal{K}_{g}$ is commensurable with $\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$.
$\Rightarrow \mathcal{K}_{g}$ has same finiteness properties as $\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$.

Lower central series of Torelli

Lower central series of Torelli

The lower central series of a group G is

$$
\gamma_{1}(G)=G \quad \text { and } \quad \gamma_{k+1}(G)=\left[\gamma_{k}(G), G\right] .
$$

Lower central series of Torelli

The lower central series of a group G is

$$
\begin{gathered}
\gamma_{1}(G)=G \quad \text { and } \quad \gamma_{k+1}(G)=\left[\gamma_{k}(G), G\right] . \\
G=\gamma_{1}(G) \supset \gamma_{2}(G) \supset \gamma_{3}(G) \supset \cdots
\end{gathered}
$$

Lower central series of Torelli

The lower central series of a group G is

$$
\begin{gathered}
\gamma_{1}(G)=G \quad \text { and } \quad \gamma_{k+1}(G)=\left[\gamma_{k}(G), G\right] . \\
G=\gamma_{1}(G) \supset \gamma_{2}(G) \supset \gamma_{3}(G) \supset \cdots
\end{gathered}
$$

\mathcal{I}_{g} is residually nilpotent:

Lower central series of Torelli

The lower central series of a group G is

$$
\begin{gathered}
\gamma_{1}(G)=G \quad \text { and } \quad \gamma_{k+1}(G)=\left[\gamma_{k}(G), G\right] . \\
G=\gamma_{1}(G) \supset \gamma_{2}(G) \supset \gamma_{3}(G) \supset \cdots
\end{gathered}
$$

\mathcal{I}_{g} is residually nilpotent:

$$
\bigcap_{k=1}^{\infty} \gamma_{k}\left(\mathcal{I}_{g}\right)=1 .
$$

Lower central series of Torelli

The lower central series of a group G is

$$
\begin{gathered}
\gamma_{1}(G)=G \quad \text { and } \quad \gamma_{k+1}(G)=\left[\gamma_{k}(G), G\right] . \\
G=\gamma_{1}(G) \supset \gamma_{2}(G) \supset \gamma_{3}(G) \supset \cdots
\end{gathered}
$$

\mathcal{I}_{g} is residually nilpotent:

$$
\bigcap_{k=1}^{\infty} \gamma_{k}\left(\mathcal{I}_{g}\right)=1 .
$$

Each $\gamma_{k+1}\left(\mathcal{I}_{g}\right)$ is infinite-index normal subgroup of $\gamma_{k}\left(\mathcal{I}_{g}\right)$ with $\gamma_{k}\left(\mathcal{I}_{g}\right) / \gamma_{k+1}\left(\mathcal{I}_{g}\right)$ fin gen abelian group.

Lower central series of Torelli

The lower central series of a group G is

$$
\begin{gathered}
\gamma_{1}(G)=G \quad \text { and } \quad \gamma_{k+1}(G)=\left[\gamma_{k}(G), G\right] . \\
G=\gamma_{1}(G) \supset \gamma_{2}(G) \supset \gamma_{3}(G) \supset \cdots
\end{gathered}
$$

\mathcal{I}_{g} is residually nilpotent:

$$
\bigcap_{k=1}^{\infty} \gamma_{k}\left(\mathcal{I}_{g}\right)=1 .
$$

Each $\gamma_{k+1}\left(\mathcal{I}_{g}\right)$ is infinite-index normal subgroup of $\gamma_{k}\left(\mathcal{I}_{g}\right)$ with $\gamma_{k}\left(\mathcal{I}_{g}\right) / \gamma_{k+1}\left(\mathcal{I}_{g}\right)$ fin gen abelian group.
\Rightarrow naively, expects finiteness of $\gamma_{k}\left(\mathcal{I}_{g}\right)$ to get worse as $k \mapsto \infty$.

Deeper finiteness properties

Deeper finiteness properties

Theorem (Dimca-Papadima, 2007)
$\mathrm{H}_{1}\left(\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right] ; \mathbb{Q}\right)$ is fin. dim. for $g \geq 4$.

Deeper finiteness properties

Theorem (Dimca-Papadima, 2007)
$\mathrm{H}_{1}\left(\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right] ; \mathbb{Q}\right)$ is fin. dim. for $g \geq 4$.

Theorem (Ershov-He, 2017)
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin. gen. for $g \geq 12$.

Deeper finiteness properties

Theorem (Dimca-Papadima, 2007)
$\mathrm{H}_{1}\left(\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right] ; \mathbb{Q}\right)$ is fin. dim. for $g \geq 4$.
Theorem (Ershov-He, 2017)
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin. gen. for $g \geq 12$.
Theorem (Church-Ershov-P, 2017)
$\gamma_{k}\left(\mathcal{I}_{g}\right)$ is fin. gen. for $g \geq \max (2 k-1,4)$

Deeper finiteness properties

Theorem (Dimca-Papadima, 2007)
$\mathrm{H}_{1}\left(\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right] ; \mathbb{Q}\right)$ is fin. dim. for $g \geq 4$.

Theorem (Ershov-He, 2017)
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin. gen. for $g \geq 12$.
Theorem (Church-Ershov-P, 2017)
$\gamma_{k}\left(\mathcal{I}_{g}\right)$ is fin. gen. for $g \geq \max (2 k-1,4)$
Goal for rest of talk
Prove that $\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ (and hence Johnson kernel) is fin gen. for $g \geq 4$.

Bieri-Neumann-Strebel (BNS) invariants

Bieri-Neumann-Strebel (BNS) invariants

G grp w/ fin genset S.

Bieri-Neumann-Strebel (BNS) invariants

G grp w/fin genset S.
Cayley graph: $\operatorname{Cay}(G, S)=$ vertices G, edges $g-g s$ for $g \in G, s \in S$.

Bieri-Neumann-Strebel (BNS) invariants

G grp w/fin genset S.
Cayley graph: $\operatorname{Cay}(G, S)=$ vertices G, edges $g-g s$ for $g \in G, s \in S$.
Characters: $G^{*}=\operatorname{Hom}(G, \mathbb{R})$.

Bieri-Neumann-Strebel (BNS) invariants

G grp w/fin genset S.
Cayley graph: $\operatorname{Cay}(G, S)=$ vertices G, edges $g-g s$ for $g \in G, s \in S$.
Characters: $G^{*}=\operatorname{Hom}(G, \mathbb{R})$.

Definition
The BNS invariant $\Sigma(G) \subset G^{*}$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Bieri-Neumann-Strebel (BNS) invariants

G grp w/fin genset S.
Cayley graph: $\operatorname{Cay}(G, S)=$ vertices G, edges $g-g s$ for $g \in G, s \in S$.
Characters: $G^{*}=\operatorname{Hom}(G, \mathbb{R})$.

Definition

The BNS invariant $\Sigma(G) \subset G^{*}$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Nonobvious fact: independent of genset S.

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(\mathbb{Z}^{n}\right)=\left(\mathbb{Z}^{n}\right)^{*}$

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(\mathbb{Z}^{n}\right)=\left(\mathbb{Z}^{n}\right)^{*}$

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(\mathbb{Z}^{n}\right)=\left(\mathbb{Z}^{n}\right)^{*}$

Consider nonzero $f \in\left(\mathbb{Z}^{n}\right)^{*}$.

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(\mathbb{Z}^{n}\right)=\left(\mathbb{Z}^{n}\right)^{*}$

Consider nonzero $f \in\left(\mathbb{Z}^{n}\right)^{*}$. $f(x) \geq 0$ is a halfspace.

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(\mathbb{Z}^{n}\right)=\left(\mathbb{Z}^{n}\right)^{*}$

Consider nonzero $f \in\left(\mathbb{Z}^{n}\right)^{*}$. $f(x) \geq 0$ is a halfspace.

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(F_{2}\right)=0$

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(F_{2}\right)=0$

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(F_{2}\right)=0$

$F_{2}=\langle a, b\rangle$

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(F_{2}\right)=0$

$F_{2}=\langle a, b\rangle$
Consider $f: F_{2} \rightarrow \mathbb{R}, f(a)=1$ and $f(b)=0$.

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(F_{2}\right)=0$

$F_{2}=\langle a, b\rangle$
Consider $f: F_{2} \rightarrow \mathbb{R}, f(a)=1$ and $f(b)=0$.

Definition

The BNS invariant $\Sigma(G) \subset G^{*}=\operatorname{Hom}(G, \mathbb{R})$ is set of all $f \in G^{*}$ s.t. $\{g \in G \mid f(g) \geq 0\}$ is connected subgraph of $\operatorname{Cay}(G, S)$.

Example: $\Sigma\left(F_{2}\right)=0$

$F_{2}=\langle a, b\rangle$
Consider $f: F_{2} \rightarrow \mathbb{R}, f(a)=1$ and $f(b)=0$.

BNS Properties

BNS Properties

Basic facts:

BNS Properties

Basic facts:

- Cone on open subset of sphere.

BNS Properties

Basic facts:

- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

BNS Properties

Basic facts:

- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri-Neumann-Strebel)
G fin gen grp, $H<G w /[G, G] \subset H \subset G$.

BNS Properties

Basic facts:

- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri-Neumann-Strebel)
G fin gen grp, $H<G w /[G, G] \subset H \subset G$.

$$
H \text { is fin gen } \Longleftrightarrow\left\{f \in G^{*}|f|_{H}=0\right\} \subset \Sigma(G) .
$$

BNS Properties

Basic facts:

- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri-Neumann-Strebel)
G fin gen grp, $H<G w /[G, G] \subset H \subset G$.

$$
H \text { is fin gen } \Longleftrightarrow \quad\left\{f \in G^{*}|f|_{H}=0\right\} \subset \Sigma(G)
$$

Previous examples reflect that all $0 \subset H \subset \mathbb{Z}^{n}$ are fin gen, but no $\left[F_{n}, F_{n}\right] \subset H \subset F_{n}$ are fin gen except H finite-index in F_{n}.

BNS Properties

Basic facts:

- Cone on open subset of sphere.
- For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri-Neumann-Strebel)
G fin gen grp, $H<G w /[G, G] \subset H \subset G$.

$$
H \text { is fin gen } \Longleftrightarrow \quad\left\{f \in G^{*}|f|_{H}=0\right\} \subset \Sigma(G)
$$

Previous examples reflect that all $0 \subset H \subset \mathbb{Z}^{n}$ are fin gen, but no $\left[F_{n}, F_{n}\right] \subset H \subset F_{n}$ are fin gen except H finite-index in F_{n}.

Special Case
[$G, G]$ is fin gen iff $\Sigma(G)=G^{*}$.

Main goal

Main goal

Goal
[$\left.\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

Step 1: Find large piece of BNS invariant

Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s^{\prime} \in S$ when $\left[s, s^{\prime}\right]=1$ connected. Then

$$
\left\{f \in G^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma(G)
$$

Step 1: Find large piece of BNS invariant

Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s^{\prime} \in S$ when $\left[s, s^{\prime}\right]=1$ connected. Then

$$
\left\{f \in G^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma(G)
$$

Lemma
For $g \geq 4$, graph $w /$ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.

Step 1: Find large piece of BNS invariant

Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s^{\prime} \in S$ when $\left[s, s^{\prime}\right]=1$ connected. Then

$$
\left\{f \in G^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma(G)
$$

Lemma

For $g \geq 4$, graph $w /$ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.

Step 1: Find large piece of BNS invariant

Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s^{\prime} \in S$ when $\left[s, s^{\prime}\right]=1$ connected. Then

$$
\left\{f \in G^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma(G)
$$

Lemma

For $g \geq 4$, graph $w /$ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.

Take S finite subgraph containing genset for \mathcal{I}_{g}.

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

$\operatorname{Mod}_{g} \circlearrowright \mathcal{I}_{g}$ by conjugation

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

$\operatorname{Mod}_{g} \circlearrowright \mathcal{I}_{g}$ by conjugation $\rightsquigarrow \operatorname{Mod}_{g} \circlearrowright\left(\mathcal{I}_{g}\right)^{*}$ preserving $\Sigma\left(\mathcal{I}_{g}\right)$.

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

$\operatorname{Mod}_{g} \circlearrowright \mathcal{I}_{g}$ by conjugation $\rightsquigarrow \operatorname{Mod}_{g} \circlearrowright\left(\mathcal{I}_{g}\right)^{*}$ preserving $\Sigma\left(\mathcal{I}_{g}\right)$.
Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

$\operatorname{Mod}_{g} \circlearrowright \mathcal{I}_{g}$ by conjugation $\rightsquigarrow \operatorname{Mod}_{g} \circlearrowright\left(\mathcal{I}_{g}\right)^{*}$ preserving $\Sigma\left(\mathcal{I}_{g}\right)$.
Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

$$
\Longrightarrow \phi \cdot f \in \Sigma\left(\mathcal{I}_{g}\right)
$$

Main goal

Goal
$\left[\mathcal{I}_{g}, \mathcal{I}_{g}\right]$ is fin gen for $g \geq 4$, i.e. $\Sigma\left(\mathcal{I}_{g}\right)=\left(\mathcal{I}_{g}\right)^{*}$.
Step 1: Find large piece of BNS invariant
Exists fin genset $S \subset \mathcal{I}_{g}$ of genus 1 bounding pairs s.t.

$$
\left\{f \in\left(\mathcal{I}_{g}\right)^{*} \mid f(s) \neq 0 \text { for all } s \in S\right\} \subset \Sigma\left(\mathcal{I}_{g}\right) .
$$

$\operatorname{Mod}_{g} \circlearrowright \mathcal{I}_{g}$ by conjugation $\rightsquigarrow \operatorname{Mod}_{g} \circlearrowright\left(\mathcal{I}_{g}\right)^{*}$ preserving $\Sigma\left(\mathcal{I}_{g}\right)$.
Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

$$
\Longrightarrow \phi \cdot f \in \Sigma\left(\mathcal{I}_{g}\right) \Longrightarrow f \in \Sigma\left(\mathcal{I}_{g}\right)
$$

Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.
Give Mod_{g} pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.
Give Mod_{g} pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R})
$$

Claim 1 (proved next slide)
Mod_{g} is irreducible space (not finite union of proper closed subspaces).

Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.
Give Mod_{g} pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R})
$$

Claim 1 (proved next slide)
Mod_{g} is irreducible space (not finite union of proper closed subspaces).
For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$ (a closed set!).

Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

Give Mod $_{g}$ pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R})
$$

Claim 1 (proved next slide)
Mod $_{g}$ is irreducible space (not finite union of proper closed subspaces).
For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$ (a closed set!).
Claim 2 (proved slide after that)
Z_{s} proper subspace of Mod $_{g}$.

Step 2: Push everything into that piece of BNS
For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.

Give Mod $_{g}$ pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R})
$$

Claim 1 (proved next slide)
Mod $_{g}$ is irreducible space (not finite union of proper closed subspaces).
For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$ (a closed set!).
Claim 2 (proved slide after that)
Z_{s} proper subspace of Mod $_{g}$.

$$
\Longrightarrow \bigcup_{s \in S} Z_{s} \subsetneq \operatorname{Mod}_{g}
$$

Step 2: Push everything into that piece of BNS

For nonzero $f \in\left(\mathcal{I}_{g}\right)^{*}$, exists $\phi \in \operatorname{Mod}_{g}$ s.t. $(\phi \cdot f)(s) \neq 0$ for all $s \in S$.
Give Mod_{g} pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R})
$$

Claim 1 (proved next slide)
Mod_{g} is irreducible space (not finite union of proper closed subspaces).
For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$ (a closed set!).
Claim 2 (proved slide after that)
Z_{s} proper subspace of Mod_{g}.

$$
\Longrightarrow \bigcup_{s \in S} Z_{s} \subsetneq \operatorname{Mod}_{g}
$$

Desired ϕ is any elt of Mod_{g} not in this union.

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Mod $_{g}$ irreducible space (not finite union of proper closed subspaces).

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Mod $_{g}$ irreducible space (not finite union of proper closed subspaces).
Theorem (Johnson)
For $g \geq 3, \mathrm{H}_{1}\left(\mathcal{I}_{g} ; \mathbb{R}\right) \cong\left(\wedge^{3} H\right) / H w / H=H_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$.

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Mod $_{g}$ irreducible space (not finite union of proper closed subspaces).
Theorem (Johnson)
For $g \geq 3, \mathrm{H}_{1}\left(\mathcal{I}_{g} ; \mathbb{R}\right) \cong\left(\wedge^{3} H\right) / H w / H=H_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$.
\Rightarrow Have factorization

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{R}) \hookrightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right)
$$

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Mod $_{g}$ irreducible space (not finite union of proper closed subspaces).
Theorem (Johnson)
For $g \geq 3, \mathrm{H}_{1}\left(\mathcal{I}_{g} ; \mathbb{R}\right) \cong\left(\wedge^{3} H\right) / H w / H=\mathrm{H}_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$.
\Rightarrow Have factorization

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \hookrightarrow \operatorname{Sp}_{2 g}(\mathbb{R}) \hookrightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) .
$$

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Mod $_{g}$ irreducible space (not finite union of proper closed subspaces).
Theorem (Johnson)
For $g \geq 3, \mathrm{H}_{1}\left(\mathcal{I}_{g} ; \mathbb{R}\right) \cong\left(\wedge^{3} H\right) / H w / H=\mathrm{H}_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$.
\Rightarrow Have factorization

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \hookrightarrow \operatorname{Sp}_{2 g}(\mathbb{R}) \hookrightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right)
$$

Induced topology on $\mathrm{Sp}_{2 g}(\mathbb{R})$ is usual Zariski topology.

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Modg irreducible space (not finite union of proper closed subspaces).
Theorem (Johnson)
For $g \geq 3, H_{1}\left(\mathcal{I}_{g} ; \mathbb{R}\right) \cong\left(\wedge^{3} H\right) / H w / H=H_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$.
\Rightarrow Have factorization

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \hookrightarrow \operatorname{Sp}_{2 g}(\mathbb{R}) \hookrightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right)
$$

Induced topology on $\mathrm{Sp}_{2 g}(\mathbb{R})$ is usual Zariski topology.
$\mathrm{Sp}_{2 g}(\mathbb{R})$ connected alg. group, so $\mathrm{Sp}_{2 g}(\mathbb{R})$ irreducible.

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Mod $_{g}$ irreducible space (not finite union of proper closed subspaces).
Theorem (Johnson)
For $g \geq 3, \mathrm{H}_{1}\left(\mathcal{I}_{g} ; \mathbb{R}\right) \cong\left(\wedge^{3} H\right) / H w / H=\mathrm{H}_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$.
\Rightarrow Have factorization

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \hookrightarrow \operatorname{Sp}_{2 g}(\mathbb{R}) \hookrightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right)
$$

Induced topology on $\mathrm{Sp}_{2 g}(\mathbb{R})$ is usual Zariski topology.
$\mathrm{Sp}_{2 g}(\mathbb{R})$ connected alg. group, so $\mathrm{Sp}_{2 g}(\mathbb{R})$ irreducible.
$\mathrm{Sp}_{2 g}(\mathbb{Z})$ Zariski dense in $\mathrm{Sp}_{2 g}(\mathbb{R})$, so $\mathrm{Sp}_{2 g}(\mathbb{Z})$ irreducible.

Mod $_{g}$ has pullback of Zariski topology under

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right) \cong \mathrm{GL}_{n}(\mathbb{R}) .
$$

Claim 1
Mod $_{g}$ irreducible space (not finite union of proper closed subspaces).
Theorem (Johnson)
For $g \geq 3, H_{1}\left(\mathcal{I}_{g} ; \mathbb{R}\right) \cong\left(\wedge^{3} H\right) / H w / H=H_{1}\left(\Sigma_{g} ; \mathbb{R}\right)$.
\Rightarrow Have factorization

$$
\operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \hookrightarrow \operatorname{Sp}_{2 g}(\mathbb{R}) \hookrightarrow \operatorname{Aut}\left(\left(\mathcal{I}_{g}\right)^{*}\right)
$$

Induced topology on $\mathrm{Sp}_{2 g}(\mathbb{R})$ is usual Zariski topology.
$\mathrm{Sp}_{2 g}(\mathbb{R})$ connected alg. group, so $\mathrm{Sp}_{2 g}(\mathbb{R})$ irreducible.
$\mathrm{Sp}_{2 g}(\mathbb{Z})$ Zariski dense in $\mathrm{Sp}_{2 g}(\mathbb{R})$, so $\mathrm{Sp}_{2 g}(\mathbb{Z})$ irreducible.
$\operatorname{Mod}_{g} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z})$ surjective, so Mod_{g} irreducible.

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.

Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.

Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.

Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.

Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $\phi \in \operatorname{Mod}_{g}$,

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.

Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $\phi \in \operatorname{Mod}_{g}$,

$$
0=(\phi \cdot f)\left(T_{x} T_{y}^{-1}\right)
$$

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.

Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $\phi \in \operatorname{Mod}_{g}$,

$$
0=(\phi \cdot f)\left(T_{x} T_{y}^{-1}\right)=f\left(\phi T_{x} T_{y}^{-1} \phi^{-1}\right)
$$

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.
Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $\phi \in \operatorname{Mod}_{g}$,

$$
0=(\phi \cdot f)\left(T_{x} T_{y}^{-1}\right)=f\left(\phi T_{x} T_{y}^{-1} \phi^{-1}\right)=f\left(T_{\phi(x)} T_{\phi(y)}^{-1}\right) .
$$

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.

Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $\phi \in \operatorname{Mod}_{g}$,

$$
0=(\phi \cdot f)\left(T_{x} T_{y}^{-1}\right)=f\left(\phi T_{x} T_{y}^{-1} \phi^{-1}\right)=f\left(T_{\phi(x)} T_{\phi(y)}^{-1}\right) .
$$

All genus 1 bounding pairs of form $T_{\phi(x)} T_{\phi(y)}^{-1}$ for some $\phi \in \operatorname{Mod}_{g}$.

For $s \in S$, set $Z_{s}=\left\{\phi \in \operatorname{Mod}_{g} \mid(\phi \cdot f)(s)=0\right\}$.
Claim 2: Push everything into that piece of BNS
Z_{s} proper subspace of Mod_{g}.
Assume $Z_{s}=\operatorname{Mod}_{g}$. Write $s=T_{x} T_{y}^{-1}$.

For $\phi \in \operatorname{Mod}_{g}$,

$$
0=(\phi \cdot f)\left(T_{x} T_{y}^{-1}\right)=f\left(\phi T_{x} T_{y}^{-1} \phi^{-1}\right)=f\left(T_{\phi(x)} T_{\phi(y)}^{-1}\right) .
$$

All genus 1 bounding pairs of form $T_{\phi(x)} T_{\phi(y)}^{-1}$ for some $\phi \in \operatorname{Mod}_{g}$.
These generate \mathcal{I}_{g}, so $f=0$, contradiction.

