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Mapping class group

>, = cpt oriented genus g surface

The mapping class group Mod, is group of homotopy classes of
orientation-preserving diffeomorphisms f: ¥, — ¥,.

Basic object in topology:
» gluing data for 3-manifolds.
» monodromies of X ,-bundles (e.g. families of alg. curves).

» 71 of moduli space of algebraic curves.
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x = simple closed curve

T« € Mod, = cut, twist, reglue.

Theorem (Dehn)
Mod, is gen by fin many Dehn twists.

e

Mod, has many other finiteness properties: finitely presentable (McCool,
Hatcher—Thurston), all Hy finitely generated (Harer?), etc.
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Modg © Hi(Xg), preserves alg. isect. pairing.

> Modg — Spa, (Z).

Torelli group Z, is kernel: mapping classes acting trivially on Hi(X,).

1 — Ty — Modg — Spy,(Z) — 1
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Examples of elts of Torelli
T, = ker(Modg O Hy(Z,))

Action of Dehn twist T, on Hi(X,) determined by [x] € Hi(X,).

Separating twists: T, w/ [x] =0, i.e. x separating.

Bounding pair: T, 7' w/ xNy =0 and [x] = [y], i.e. xUy bounds.

Theorem (Birman, Powell)
I, is gen. by sep twists and bounding pairs.
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Finiteness properties of Torelli

Theorem (Classical)
Il = 1, SO M0d1 = SLQ(Z)

Theorem (Mess)

T» an oo-rank free group.

Theorem (Johnson)
I, is fin gen for g > 3.

Open question
Is Zg fin pres?
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Johnson kernel

Theorem (Johnson)

For g > 3, following are same subgroup KCg of I, (Johnson kernel):
> Kg = ker(Z; — H1(Zg)/torsion).
> [Cq subgroup of I, gen. by sep twists.

> Kg isf € I, s.t. map. torus M¢ has same cup products as ¥ g x St

Remark
For all f € Z;, M¢ has homology of ¥, x S*.

Observation
K¢ = ker(Zg — H1(Zg)/torsion) = K is commensurable with [Zz, Z,].
= K¢ has same finiteness properties as [Z;,Zg].

6
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Lower central series of Torelli

The lower central series of a group G is

1(G)=G and y41(G) = [w(G), G].

G =7(G) D7(G) D1(G) D -

1, is residually nilpotent:

() (Ze) = 1.

Each vx41(Zg) is infinite-index normal subgroup of y4(Zz) with
Vi(Zg)/vk+1(Zg) fin gen abelian group.

= naively, expects finiteness of v,(Zg) to get worse as k — oo.
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Deeper finiteness properties

Theorem (Dimca—Papadima, 2007)
H1i([Zg, Zs); Q) is fin. dim. for g > 4.

Theorem (Ershov—He, 2017)
[Zg,Zg] is fin. gen. for g > 12.

Theorem (Church—Ershov-P, 2017)
vi(Zg) is fin. gen. for g > max(2k — 1, 4)

Goal for rest of talk

Prove that [Z,,Z,] (and hence Johnson kernel) is fin gen. for g > 4.
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Characters: G* = Hom(G,R).

Definition
The BNS invariant X(G) C G* is set of all f € G* s.t.
{g € G| f(g) > 0} is connected subgraph of Cay(G,S).

Nonobvious fact: independent of genset S.
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Definition

The BNS invariant X(G) C G* = Hom(G,R) is set of all f € G* s.t.

{g € G| f(g) > 0} is connected subgraph of Cay(G, S).
Example: X(F,) =0
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Consider f: F, = R, f(a) =1 and f(b) = 0.
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BNS Properties

Basic facts:
» Cone on open subset of sphere.

» For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri-Neumann-Strebel)
G fingengrp, H< G w/ [G,G]C HCG.

Hisfingen <« {feG"|flu=0}CX(G).

Previous examples reflect that all 0 C H C Z" are fin gen, but no
[Fn, Fa] € H C F, are fin gen except H finite-index in F,,.

Special Case
[G, G] is fin gen iff X(G) = G™.
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{f €(Zg)" | f(s) #0forall s € S} C X(Zg).

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between
s,s' € S when [s,s'| =1 connected. Then

{f € G" | f(s)#0 forall s € S} C £(G).

Lemma
For g > 4, graph w/ vertices genus 1 bounding pairs and edges between
disjoint bounding pairs is connected.

Take S finite subgraph containing genset for Z,.
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Give Mod, pullback of Zariski topology under

Mod, — Aut ((Zg)") = GL,(R).

Claim 1 (proved next slide)

Mody is irreducible space (not finite union of proper closed subspaces).

Forse S, set Z; = {¢ € Modg | (¢ )(s) =0} (a closed set!).

Claim 2 (proved slide after that)
Zs proper subspace of Mod,.

= | J Z < Mod,
seS
Desired ¢ is any elt of Mod, not in this union.
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Fors € S, set Z; = {¢ € Mod, | (¢ f)(s) = 0}.

Claim 2: Push everything into that piece of BNS
Zs proper subspace of Mod,.

Assume Z; = Mod,. Write s = T, T, *.

%
For ¢ € Modg,

0=(¢-NTT, ) = FOTT, 07h) = F( Ty Tophy)-

All genus 1 bounding pairs of form Ty, qu(;) for some ¢ € Mod,.

These generate Z,, so f = 0, contradiction.



