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Mapping class group

Σg = cpt oriented genus g surface

The mapping class group Modg is group of homotopy classes of
orientation-preserving diffeomorphisms f : Σg → Σg .

Basic object in topology:

I gluing data for 3-manifolds.

I monodromies of Σg -bundles (e.g. families of alg. curves).

I π1 of moduli space of algebraic curves.
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Dehn twists

x = simple closed curve

Tx ∈ Modg = cut, twist, reglue.

x

Tx

Theorem (Dehn)
Modg is gen by fin many Dehn twists.

Modg has many other finiteness properties: finitely presentable (McCool,
Hatcher–Thurston), all Hk finitely generated (Harer?), etc.
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Torelli group

Modg � H1(Σg ), preserves alg. isect. pairing.

 Modg → Sp2g (Z).

Torelli group Ig is kernel: mapping classes acting trivially on H1(Σg ).

1 −→ Ig −→ Modg −→ Sp2g (Z) −→ 1
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Examples of elts of Torelli

Ig = ker(Modg � H1(Σg ))

Action of Dehn twist Tx on H1(Σg ) determined by [x ] ∈ H1(Σg ).

Separating twists: Tx w/ [x ] = 0, i.e. x separating.

x

Bounding pair: TxT−1y w/ x ∩ y = ∅ and [x ] = [y ], i.e. x ∪ y bounds.

x

y

Theorem (Birman, Powell)
Ig is gen. by sep twists and bounding pairs.
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Finiteness properties of Torelli

Theorem (Classical)
I1 = 1, so Mod1

∼= SL2(Z).

Theorem (Mess)
I2 an ∞-rank free group.

Theorem (Johnson)
Ig is fin gen for g ≥ 3.

Open question
Is Ig fin pres?
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Johnson kernel

Theorem (Johnson)
For g ≥ 3, following are same subgroup Kg of Ig (Johnson kernel):

I Kg = ker(Ig → H1(Ig )/torsion).

I Kg subgroup of Ig gen. by sep twists.

I Kg is f ∈ Ig s.t. map. torus Mf has same cup products as Σg × S1.

Remark
For all f ∈ Ig , Mf has homology of Σg × S1.

Observation
Kg = ker(Ig → H1(Ig )/torsion) ⇒ Kg is commensurable with [Ig , Ig ].
⇒ Kg has same finiteness properties as [Ig , Ig ].
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Lower central series of Torelli

The lower central series of a group G is

γ1(G ) = G and γk+1(G ) = [γk(G ),G ].

G = γ1(G ) ⊃ γ2(G ) ⊃ γ3(G ) ⊃ · · ·

Ig is residually nilpotent:

∞⋂
k=1

γk(Ig ) = 1.

Each γk+1(Ig ) is infinite-index normal subgroup of γk(Ig ) with
γk(Ig )/γk+1(Ig ) fin gen abelian group.

⇒ naively, expects finiteness of γk(Ig ) to get worse as k 7→ ∞.
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Deeper finiteness properties

Theorem (Dimca–Papadima, 2007)
H1([Ig , Ig ];Q) is fin. dim. for g ≥ 4.

Theorem (Ershov–He, 2017)
[Ig , Ig ] is fin. gen. for g ≥ 12.

Theorem (Church–Ershov–P, 2017)
γk(Ig ) is fin. gen. for g ≥ max(2k − 1, 4)

Goal for rest of talk
Prove that [Ig , Ig ] (and hence Johnson kernel) is fin gen. for g ≥ 4.
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Bieri–Neumann-Strebel (BNS) invariants

G grp w/ fin genset S .

Cayley graph: Cay(G ,S) = vertices G , edges g–gs for g ∈ G , s ∈ S .

Characters: G∗ = Hom(G ,R).

Definition
The BNS invariant Σ(G ) ⊂ G∗ is set of all f ∈ G∗ s.t.
{g ∈ G | f (g) ≥ 0} is connected subgraph of Cay(G ,S).

Nonobvious fact: independent of genset S .
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Definition
The BNS invariant Σ(G ) ⊂ G∗ = Hom(G ,R) is set of all f ∈ G∗ s.t.
{g ∈ G | f (g) ≥ 0} is connected subgraph of Cay(G ,S).

Example: Σ(Zn) = (Zn)∗

Consider nonzero f ∈ (Zn)∗.
f (x) ≥ 0 is a halfspace.
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Definition
The BNS invariant Σ(G ) ⊂ G∗ = Hom(G ,R) is set of all f ∈ G∗ s.t.
{g ∈ G | f (g) ≥ 0} is connected subgraph of Cay(G ,S).

Example: Σ(F2) = 0

F2 = 〈a, b〉
Consider f : F2 → R, f (a) = 1 and f (b) = 0.
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BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



BNS Properties

Basic facts:

I Cone on open subset of sphere.

I For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel)
G fin gen grp, H < G w/ [G ,G ] ⊂ H ⊂ G .

H is fin gen ⇐⇒ {f ∈ G∗ | f |H = 0} ⊂ Σ(G ).

Previous examples reflect that all 0 ⊂ H ⊂ Zn are fin gen, but no
[Fn,Fn] ⊂ H ⊂ Fn are fin gen except H finite-index in Fn.

Special Case
[G ,G ] is fin gen iff Σ(G ) = G∗.

12 / 18



Main goal

Goal
[Ig , Ig ] is fin gen for g ≥ 4, i.e. Σ(Ig ) = (Ig )∗.

Step 1: Find large piece of BNS invariant
Exists fin genset S ⊂ Ig of genus 1 bounding pairs s.t.

{f ∈ (Ig )∗ | f (s) 6= 0 for all s ∈ S} ⊂ Σ(Ig ).
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{f ∈ (Ig )∗ | f (s) 6= 0 for all s ∈ S} ⊂ Σ(Ig ).

Lemma (Folklore)
G grp w/ fin genset S. Assume graph w/ vertices S and edge between
s, s ′ ∈ S when [s, s ′] = 1 connected. Then

{f ∈ G∗ | f (s) 6= 0 for all s ∈ S} ⊂ Σ(G ).

Lemma
For g ≥ 4, graph w/ vertices genus 1 bounding pairs and edges between
disjoint bounding pairs is connected.

Take S finite subgraph containing genset for Ig .
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Step 1: Find large piece of BNS invariant
Exists fin genset S ⊂ Ig of genus 1 bounding pairs s.t.

{f ∈ (Ig )∗ | f (s) 6= 0 for all s ∈ S} ⊂ Σ(Ig ).

Modg � Ig by conjugation  Modg � (Ig )∗ preserving Σ(Ig ).

Step 2: Push everything into that piece of BNS
For nonzero f ∈ (Ig )∗, exists φ ∈ Modg s.t. (φ · f )(s) 6= 0 for all s ∈ S .

=⇒ φ · f ∈ Σ(Ig ) =⇒ f ∈ Σ(Ig )
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Step 2: Push everything into that piece of BNS
For nonzero f ∈ (Ig )∗, exists φ ∈ Modg s.t. (φ · f )(s) 6= 0 for all s ∈ S .

Give Modg pullback of Zariski topology under

Modg → Aut
(
(Ig )∗

) ∼= GLn(R).

Claim 1 (proved next slide)
Modg is irreducible space (not finite union of proper closed subspaces).

For s ∈ S , set Zs = {φ ∈ Modg | (φ · f )(s) = 0} (a closed set!).

Claim 2 (proved slide after that)
Zs proper subspace of Modg .

=⇒
⋃
s∈S

Zs ( Modg

Desired φ is any elt of Modg not in this union.
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Modg has pullback of Zariski topology under

Modg → Aut
(
(Ig )∗

) ∼= GLn(R).

Claim 1
Modg irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)
For g ≥ 3, H1(Ig ;R) ∼= (∧3H)/H w/ H = H1(Σg ;R).

⇒ Have factorization

Modg → Sp2g (R) ↪→ Aut
(
(Ig )∗

)
.
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For s ∈ S , set Zs = {φ ∈ Modg | (φ · f )(s) = 0}.

Claim 2: Push everything into that piece of BNS
Zs proper subspace of Modg .

Assume Zs = Modg . Write s = TxT−1y .

x

y

For φ ∈ Modg ,

0 = (φ · f )(TxT−1y ) = f (φTxT−1y φ−1) = f (Tφ(x)T
−1
φ(y)).

All genus 1 bounding pairs of form Tφ(x)T
−1
φ(y) for some φ ∈ Modg .

These generate Ig , so f = 0, contradiction.
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