The Johnson filtration is finitely generated

Andrew Putman

University of Notre Dame

MIT Topology Seminar

 $\Sigma_g = \mathsf{cpt}$ oriented genus g surface

 $\Sigma_g = \mathsf{cpt}$ oriented genus g surface

The mapping class group Mod_g is group of homotopy classes of orientation-preserving diffeomorphisms $f \colon \Sigma_g \to \Sigma_g$.

 $\Sigma_g = \mathsf{cpt}$ oriented genus g surface

The mapping class group Mod_g is group of homotopy classes of orientation-preserving diffeomorphisms $f \colon \Sigma_g \to \Sigma_g$.

Basic object in topology:

 $\Sigma_g = \mathsf{cpt}$ oriented genus g surface

The mapping class group Mod_g is group of homotopy classes of orientation-preserving diffeomorphisms $f \colon \Sigma_g \to \Sigma_g$.

Basic object in topology:

gluing data for 3-manifolds.

 $\Sigma_g = \mathsf{cpt}$ oriented genus g surface

The mapping class group Mod_g is group of homotopy classes of orientation-preserving diffeomorphisms $f \colon \Sigma_g \to \Sigma_g$.

Basic object in topology:

- gluing data for 3-manifolds.
- monodromies of Σ_g -bundles (e.g. families of alg. curves).

 $\Sigma_g = \mathsf{cpt}$ oriented genus g surface

The mapping class group Mod_g is group of homotopy classes of orientation-preserving diffeomorphisms $f \colon \Sigma_g \to \Sigma_g$.

Basic object in topology:

- gluing data for 3-manifolds.
- monodromies of Σ_g -bundles (e.g. families of alg. curves).
- π_1 of moduli space of algebraic curves.

x = simple closed curve

x = simple closed curve

x = simple closed curve

Theorem (Dehn)

Mod_g is gen by fin many Dehn twists.

x = simple closed curve

Theorem (Dehn)

Mod_g is gen by fin many Dehn twists.

x = simple closed curve

Theorem (Dehn)

Mod_g is gen by fin many Dehn twists.

 Mod_g has many other finiteness properties: finitely presentable (McCool, Hatcher–Thurston), all H_k finitely generated (Harer?), etc.

 $\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g)$, preserves alg. isect. pairing.

 $\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g)$, preserves alg. isect. pairing.

 $\rightsquigarrow \mathsf{Mod}_g \to \mathsf{Sp}_{2g}(\mathbb{Z}).$

 $\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g)$, preserves alg. isect. pairing.

$$\leadsto \operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Sp}}_{2g}({\mathbb Z}).$$

Torelli group \mathcal{I}_g is kernel: mapping classes acting trivially on $H_1(\Sigma_g)$.

 $\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g)$, preserves alg. isect. pairing.

$$\leadsto \operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Sp}}_{2g}(\mathbb{Z}).$$

Torelli group \mathcal{I}_g is kernel: mapping classes acting trivially on $H_1(\Sigma_g)$.

$$1 \longrightarrow \mathcal{I}_g \longrightarrow \mathsf{Mod}_g \longrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \longrightarrow 1$$

 $\mathcal{I}_g = \mathsf{ker}(\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g))$

 $\mathcal{I}_g = \mathsf{ker}(\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g))$

Action of Dehn twist T_x on $H_1(\Sigma_g)$ determined by $[x] \in H_1(\Sigma_g)$.

 $\mathcal{I}_g = \mathsf{ker}(\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g))$

Action of Dehn twist T_x on $H_1(\Sigma_g)$ determined by $[x] \in H_1(\Sigma_g)$.

Separating twists: T_x w/ [x] = 0, i.e. x separating.

$$\mathcal{I}_g = \mathsf{ker}(\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g))$$

Action of Dehn twist T_x on $H_1(\Sigma_g)$ determined by $[x] \in H_1(\Sigma_g)$.

Separating twists: T_x w/ [x] = 0, i.e. x separating.

Bounding pair: $T_x T_y^{-1}$ w/ $x \cap y = \emptyset$ and [x] = [y], i.e. $x \cup y$ bounds.

$$\mathcal{I}_g = \mathsf{ker}(\mathsf{Mod}_g \circlearrowright \mathsf{H}_1(\Sigma_g))$$

Action of Dehn twist T_x on $H_1(\Sigma_g)$ determined by $[x] \in H_1(\Sigma_g)$.

Separating twists: T_x w/ [x] = 0, i.e. x separating.

Bounding pair: $T_x T_y^{-1}$ w/ $x \cap y = \emptyset$ and [x] = [y], i.e. $x \cup y$ bounds.

Theorem (Birman, Powell)

 \mathcal{I}_g is gen. by sep twists and bounding pairs.

Theorem (Classical) $\mathcal{I}_1 = 1$, so $Mod_1 \cong SL_2(\mathbb{Z})$.

Theorem (Classical) $\mathcal{I}_1 = 1$, so $Mod_1 \cong SL_2(\mathbb{Z})$.

Theorem (Mess) I_2 an ∞ -rank free group.

Theorem (Classical) $\mathcal{I}_1 = 1$, so $Mod_1 \cong SL_2(\mathbb{Z})$.

Theorem (Mess) \mathcal{I}_2 an ∞ -rank free group.

Theorem (Johnson) \mathcal{I}_g is fin gen for $g \geq 3$.

Theorem (Classical) $\mathcal{I}_1 = 1$, so $Mod_1 \cong SL_2(\mathbb{Z})$.

Theorem (Mess) \mathcal{I}_2 an ∞ -rank free group.

Theorem (Johnson) \mathcal{I}_g is fin gen for $g \geq 3$.

Open question Is \mathcal{I}_g fin pres?

Theorem (Johnson)

For $g \geq 3$, following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

Theorem (Johnson)

For $g\geq 3,$ following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

• $\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g)/torsion).$

Theorem (Johnson)

For $g\geq 3,$ following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

- $\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g) / \textit{torsion}).$
- \mathcal{K}_g subgroup of \mathcal{I}_g gen. by sep twists.

Theorem (Johnson)

For $g\geq 3,$ following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

- $\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g)/torsion).$
- \mathcal{K}_g subgroup of \mathcal{I}_g gen. by sep twists.
- \mathcal{K}_g is $f \in \mathcal{I}_g$ s.t. map. torus M_f has same cup products as $\Sigma_g \times S^1$.

Theorem (Johnson)

For $g \geq 3$, following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

- $\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g)/torsion).$
- \mathcal{K}_g subgroup of \mathcal{I}_g gen. by sep twists.
- \mathcal{K}_g is $f \in \mathcal{I}_g$ s.t. map. torus M_f has same cup products as $\Sigma_g \times S^1$.

Remark

For all $f \in \mathcal{I}_g$, M_f has homology of $\Sigma_g imes S^1$.
Johnson kernel

Theorem (Johnson)

For $g \geq 3$, following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

- $\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g)/torsion).$
- \mathcal{K}_g subgroup of \mathcal{I}_g gen. by sep twists.
- \mathcal{K}_g is $f \in \mathcal{I}_g$ s.t. map. torus M_f has same cup products as $\Sigma_g \times S^1$.

Remark For all $f \in \mathcal{I}_g$, M_f has homology of $\Sigma_g \times S^1$.

Observation

 $\mathcal{K}_g = \mathsf{ker}(\mathcal{I}_g \to \mathsf{H}_1(\mathcal{I}_g)/\mathsf{torsion}) \Rightarrow \mathcal{K}_g \text{ is commensurable with } [\mathcal{I}_g, \mathcal{I}_g].$

Johnson kernel

Theorem (Johnson)

For $g\geq 3,$ following are same subgroup \mathcal{K}_g of \mathcal{I}_g (Johnson kernel):

- $\mathcal{K}_g = \ker(\mathcal{I}_g \to H_1(\mathcal{I}_g)/torsion).$
- \mathcal{K}_g subgroup of \mathcal{I}_g gen. by sep twists.
- \mathcal{K}_g is $f \in \mathcal{I}_g$ s.t. map. torus M_f has same cup products as $\Sigma_g \times S^1$.

Remark For all $f \in \mathcal{I}_g$, M_f has homology of $\Sigma_g \times S^1$.

Observation

$$\begin{split} \mathcal{K}_g &= \ker(\mathcal{I}_g \to \mathsf{H}_1(\mathcal{I}_g)/\mathsf{torsion}) \Rightarrow \mathcal{K}_g \text{ is commensurable with } [\mathcal{I}_g, \mathcal{I}_g]. \\ \Rightarrow \mathcal{K}_g \text{ has same finiteness properties as } [\mathcal{I}_g, \mathcal{I}_g]. \end{split}$$

The lower central series of a group G is

$$\gamma_1(G) = G$$
 and $\gamma_{k+1}(G) = [\gamma_k(G), G].$

The lower central series of a group G is

$$\gamma_1(G) = G$$
 and $\gamma_{k+1}(G) = [\gamma_k(G), G].$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

The lower central series of a group G is

$$\gamma_1(G) = G$$
 and $\gamma_{k+1}(G) = [\gamma_k(G), G].$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

 \mathcal{I}_g is residually nilpotent:

The lower central series of a group G is

$$\gamma_1(G) = G$$
 and $\gamma_{k+1}(G) = [\gamma_k(G), G].$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

 \mathcal{I}_g is residually nilpotent:

$$\bigcap_{k=1}^{\infty} \gamma_k(\mathcal{I}_g) = 1.$$

The lower central series of a group G is

$$\gamma_1(G) = G$$
 and $\gamma_{k+1}(G) = [\gamma_k(G), G].$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

 \mathcal{I}_{g} is residually nilpotent:

$$\bigcap_{k=1}^{\infty} \gamma_k(\mathcal{I}_g) = 1.$$

Each $\gamma_{k+1}(\mathcal{I}_g)$ is infinite-index normal subgroup of $\gamma_k(\mathcal{I}_g)$ with $\gamma_k(\mathcal{I}_g)/\gamma_{k+1}(\mathcal{I}_g)$ fin gen abelian group.

The lower central series of a group G is

$$\gamma_1(G) = G$$
 and $\gamma_{k+1}(G) = [\gamma_k(G), G].$

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \gamma_3(G) \supset \cdots$$

 \mathcal{I}_{g} is residually nilpotent:

$$\bigcap_{k=1}^{\infty} \gamma_k(\mathcal{I}_g) = 1.$$

Each $\gamma_{k+1}(\mathcal{I}_g)$ is infinite-index normal subgroup of $\gamma_k(\mathcal{I}_g)$ with $\gamma_k(\mathcal{I}_g)/\gamma_{k+1}(\mathcal{I}_g)$ fin gen abelian group.

 \Rightarrow naively, expects finiteness of $\gamma_k(\mathcal{I}_g)$ to get worse as $k \mapsto \infty$.

Theorem (Dimca–Papadima, 2007) $H_1([\mathcal{I}_g, \mathcal{I}_g]; \mathbb{Q})$ is fin. dim. for $g \ge 4$.

Theorem (Dimca–Papadima, 2007) $H_1([\mathcal{I}_g, \mathcal{I}_g]; \mathbb{Q})$ is fin. dim. for $g \ge 4$.

Theorem (Ershov–He, 2017) $[\mathcal{I}_g, \mathcal{I}_g]$ is fin. gen. for $g \ge 12$.

Theorem (Dimca–Papadima, 2007) $H_1([\mathcal{I}_g, \mathcal{I}_g]; \mathbb{Q})$ is fin. dim. for $g \ge 4$.

Theorem (Ershov–He, 2017) $[\mathcal{I}_g, \mathcal{I}_g]$ is fin. gen. for $g \ge 12$.

Theorem (Church–Ershov–P, 2017) $\gamma_k(\mathcal{I}_g)$ is fin. gen. for $g \ge \max(2k-1,4)$

Theorem (Dimca–Papadima, 2007) $H_1([\mathcal{I}_g, \mathcal{I}_g]; \mathbb{Q})$ is fin. dim. for $g \ge 4$.

Theorem (Ershov–He, 2017) $[\mathcal{I}_g, \mathcal{I}_g]$ is fin. gen. for $g \ge 12$.

Theorem (Church–Ershov–P, 2017) $\gamma_k(\mathcal{I}_g)$ is fin. gen. for $g \ge \max(2k - 1, 4)$

Goal for rest of talk Prove that $[\mathcal{I}_g, \mathcal{I}_g]$ (and hence Johnson kernel) is fin gen. for $g \ge 4$.

G grp w/ fin genset S.

 $G \operatorname{grp} w/\operatorname{fin} \operatorname{genset} S.$

Cayley graph: Cay(G, S) = vertices G, edges g-gs for $g \in G$, $s \in S$.

 $G \operatorname{grp} w/\operatorname{fin} \operatorname{genset} S.$

Cayley graph: Cay(G, S) = vertices G, edges g-gs for $g \in G$, $s \in S$.

Characters: $G^* = Hom(G, \mathbb{R})$.

 $G \operatorname{grp} w/ \operatorname{fin} \operatorname{genset} S.$

Cayley graph: Cay(G, S) = vertices G, edges g-gs for $g \in G$, $s \in S$.

Characters: $G^* = Hom(G, \mathbb{R})$.

Definition

The BNS invariant $\Sigma(G) \subset G^*$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

 $G \operatorname{grp} w/\operatorname{fin} \operatorname{genset} S.$

Cayley graph: Cay(G, S) = vertices G, edges g-gs for $g \in G$, $s \in S$.

Characters: $G^* = Hom(G, \mathbb{R})$.

Definition

The BNS invariant $\Sigma(G) \subset G^*$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Nonobvious fact: independent of genset S.

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(\mathbb{Z}^n) = (\mathbb{Z}^n)^*$

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Consider nonzero $f \in (\mathbb{Z}^n)^*$.

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Consider nonzero $f \in (\mathbb{Z}^n)^*$. $f(x) \ge 0$ is a halfspace.

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Consider nonzero $f \in (\mathbb{Z}^n)^*$. $f(x) \ge 0$ is a halfspace.

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

 $F_2 = \langle a, b \rangle$

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

 $F_2 = \langle a, b \rangle$ Consider $f : F_2 \to \mathbb{R}$, f(a) = 1 and f(b) = 0.

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Example: $\Sigma(F_2) = 0$

 $F_2 = \langle a, b \rangle$ Consider $f : F_2 \to \mathbb{R}$, f(a) = 1 and f(b) = 0.

The BNS invariant $\Sigma(G) \subset G^* = \text{Hom}(G, \mathbb{R})$ is set of all $f \in G^*$ s.t. $\{g \in G \mid f(g) \ge 0\}$ is connected subgraph of Cay(G, S).

Basic facts:

Basic facts:

Cone on open subset of sphere.

Basic facts:

- Cone on open subset of sphere.
- ► For 3-manifold group, is cone on interiors of fibered faces.

Basic facts:

- Cone on open subset of sphere.
- ► For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel) G fin gen grp, $H < G w / [G, G] \subset H \subset G$.
BNS Properties

Basic facts:

- Cone on open subset of sphere.
- ► For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel) G fin gen grp, $H < G w / [G, G] \subset H \subset G$.

$$H ext{ is fin gen } \iff \{f \in G^* \mid f|_H = 0\} \subset \Sigma(G).$$

BNS Properties

Basic facts:

- Cone on open subset of sphere.
- ► For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel) G fin gen grp, $H < G w / [G, G] \subset H \subset G$.

$$H ext{ is fin gen } \iff \{f \in G^* \mid f|_H = 0\} \subset \Sigma(G).$$

Previous examples reflect that all $0 \subset H \subset \mathbb{Z}^n$ are fin gen, but no $[F_n, F_n] \subset H \subset F_n$ are fin gen except H finite-index in F_n .

BNS Properties

Basic facts:

- Cone on open subset of sphere.
- ► For 3-manifold group, is cone on interiors of fibered faces.

Fundamental Theorem (Bieri–Neumann-Strebel) G fin gen grp, $H < G w / [G, G] \subset H \subset G$.

$$H ext{ is fin gen } \iff \{f \in G^* \mid f|_H = 0\} \subset \Sigma(G).$$

Previous examples reflect that all $0 \subset H \subset \mathbb{Z}^n$ are fin gen, but no $[F_n, F_n] \subset H \subset F_n$ are fin gen except H finite-index in F_n .

Special Case [G, G] is fin gen iff $\Sigma(G) = G^*$.

 $\begin{array}{l} \mathsf{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \text{ is fin gen for } g \geq 4 \end{array}$

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g \geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*. \end{array}$

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g \geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*. \end{array}$

Step 1: Find large piece of BNS invariant Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

 $\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$

$$\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$$

$$\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s' \in S$ when [s, s'] = 1 connected. Then

 $\{f \in G^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(G).$

$$\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s' \in S$ when [s, s'] = 1 connected. Then

$$\{f \in G^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(G).$$

Lemma

For $g \ge 4$, graph w/ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.

$$\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s' \in S$ when [s, s'] = 1 connected. Then

$$\{f \in G^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(G).$$

Lemma

For $g \ge 4$, graph w/ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.

$$\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$$

Lemma (Folklore)

G grp w/ fin genset S. Assume graph w/ vertices S and edge between $s, s' \in S$ when [s, s'] = 1 connected. Then

$$\{f \in G^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(G).$$

Lemma

For $g \ge 4$, graph w/ vertices genus 1 bounding pairs and edges between disjoint bounding pairs is connected.

Take S finite subgraph containing genset for \mathcal{I}_g .

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g \geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*. \end{array}$

Step 1: Find large piece of BNS invariant Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

 $\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g \geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*. \end{array}$

Step 1: Find large piece of BNS invariant Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

 $\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$

 $\mathsf{Mod}_g \circlearrowright \mathcal{I}_g$ by conjugation

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g\geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g)=(\mathcal{I}_g)^*. \end{array}$

Step 1: Find large piece of BNS invariant Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

 $\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$

 $\mathsf{Mod}_g \circlearrowright \mathcal{I}_g \text{ by conjugation } \rightsquigarrow \quad \mathsf{Mod}_g \circlearrowright (\mathcal{I}_g)^* \text{ preserving } \Sigma(\mathcal{I}_g).$

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g \geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g) = (\mathcal{I}_g)^*. \end{array}$

Step 1: Find large piece of BNS invariant Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

 $\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$

 $\mathsf{Mod}_g \circlearrowright \mathcal{I}_g \text{ by conjugation } \rightsquigarrow \quad \mathsf{Mod}_g \circlearrowright (\mathcal{I}_g)^* \text{ preserving } \Sigma(\mathcal{I}_g).$

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g\geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g)=(\mathcal{I}_g)^*. \end{array}$

Step 1: Find large piece of BNS invariant Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

$$\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$$

 $\mathsf{Mod}_g \circlearrowright \mathcal{I}_g \text{ by conjugation } \rightsquigarrow \quad \mathsf{Mod}_g \circlearrowright (\mathcal{I}_g)^* \text{ preserving } \Sigma(\mathcal{I}_g).$

$$\implies \phi \cdot f \in \Sigma(\mathcal{I}_g)$$

 $\begin{array}{l} \mbox{Goal} \\ [\mathcal{I}_g,\mathcal{I}_g] \mbox{ is fin gen for } g\geq 4, \mbox{ i.e. } \Sigma(\mathcal{I}_g)=(\mathcal{I}_g)^*. \end{array}$

Step 1: Find large piece of BNS invariant Exists fin genset $S \subset I_g$ of genus 1 bounding pairs s.t.

$$\{f \in (\mathcal{I}_g)^* \mid f(s) \neq 0 \text{ for all } s \in S\} \subset \Sigma(\mathcal{I}_g).$$

 $\mathsf{Mod}_g \circlearrowright \mathcal{I}_g \text{ by conjugation } \rightsquigarrow \quad \mathsf{Mod}_g \circlearrowright (\mathcal{I}_g)^* \text{ preserving } \Sigma(\mathcal{I}_g).$

$$\Longrightarrow \phi \cdot f \in \Sigma(\mathcal{I}_g) \Longrightarrow f \in \Sigma(\mathcal{I}_g)$$

Give Mod_g pullback of Zariski topology under

$$\operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Aut}} ig((\mathcal{I}_g)^*ig) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Give Mod_g pullback of Zariski topology under

```
\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left(\left(\mathcal{I}_g\right)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).
```

Claim 1 (proved next slide)

 Mod_g is irreducible space (not finite union of proper closed subspaces).

Give Mod_g pullback of Zariski topology under

$$\operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Aut}}\left(\left({\mathcal{I}}_g\right)^*
ight)\cong \operatorname{\mathsf{GL}}_n({\mathbb{R}}).$$

Claim 1 (proved next slide)

 Mod_g is irreducible space (not finite union of proper closed subspaces).

For $s \in S$, set $Z_s = \{\phi \in \mathsf{Mod}_g \mid (\phi \cdot f)(s) = 0\}$ (a closed set!).

Give Mod_g pullback of Zariski topology under

$$\operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Aut}}\left(\left({\mathcal{I}}_g\right)^*
ight)\cong \operatorname{\mathsf{GL}}_n({\mathbb{R}}).$$

Claim 1 (proved next slide)

 Mod_g is irreducible space (not finite union of proper closed subspaces).

For $s \in S$, set $Z_s = \{\phi \in \mathsf{Mod}_g \mid (\phi \cdot f)(s) = 0\}$ (a closed set!).

Claim 2 (proved slide after that) Z_s proper subspace of Mod_g .

Give Mod_g pullback of Zariski topology under

$$\operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Aut}}\left(\left({\mathcal{I}}_g\right)^*
ight)\cong \operatorname{\mathsf{GL}}_n({\mathbb{R}}).$$

Claim 1 (proved next slide)

 Mod_g is irreducible space (not finite union of proper closed subspaces).

For $s \in S$, set $Z_s = \{\phi \in \mathsf{Mod}_g \mid (\phi \cdot f)(s) = 0\}$ (a closed set!).

Claim 2 (proved slide after that) Z_s proper subspace of Mod_g .

$$\Longrightarrow \bigcup_{s \in S} Z_s \subsetneq \mathsf{Mod}_g$$

Give Mod_g pullback of Zariski topology under

$$\operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Aut}}\left(\left({\mathcal{I}}_g\right)^*
ight)\cong \operatorname{\mathsf{GL}}_n({\mathbb{R}}).$$

Claim 1 (proved next slide)

 Mod_g is irreducible space (not finite union of proper closed subspaces).

For $s \in S$, set $Z_s = \{\phi \in \mathsf{Mod}_g \mid (\phi \cdot f)(s) = 0\}$ (a closed set!).

Claim 2 (proved slide after that) Z_s proper subspace of Mod_g .

$$\Longrightarrow \bigcup_{s \in S} Z_s \subsetneq \mathsf{Mod}_g$$

Desired ϕ is any elt of Mod_g not in this union.

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

Mod_g has pullback of Zariski topology under

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

Theorem (Johnson)

For $g \geq 3$, $H_1(\mathcal{I}_g; \mathbb{R}) \cong (\wedge^3 H)/H$ w/ $H = H_1(\Sigma_g; \mathbb{R})$.

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

$\begin{array}{l} \mbox{Theorem (Johnson)} \\ \mbox{For } g \geq 3, \mbox{ } H_1(\mathcal{I}_g;\mathbb{R}) \cong (\wedge^3 H)/H \ w/ \ H = H_1(\Sigma_g;\mathbb{R}). \end{array}$

 \Rightarrow Have factorization

$$\operatorname{\mathsf{Mod}}_g o \operatorname{\mathsf{Sp}}_{2g}(\mathbb{R}) \hookrightarrow \operatorname{\mathsf{Aut}}\left(\left(\mathcal{I}_g\right)^*\right).$$

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

$\begin{array}{l} \text{Theorem (Johnson)}\\ \text{For }g\geq 3, \ H_1(\mathcal{I}_g;\mathbb{R})\cong (\wedge^3 H)/H \ w/\ H=H_1(\Sigma_g;\mathbb{R}). \end{array}$

 \Rightarrow Have factorization

$$\mathsf{Mod}_g \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \mathsf{Sp}_{2g}(\mathbb{R}) \hookrightarrow \mathsf{Aut}\left((\mathcal{I}_g)^*\right).$$

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

$\begin{array}{l} \text{Theorem (Johnson)}\\ \text{For }g\geq 3, \ H_1(\mathcal{I}_g;\mathbb{R})\cong (\wedge^3 H)/H \ w/\ H=H_1(\Sigma_g;\mathbb{R}). \end{array}$

 \Rightarrow Have factorization

$$\mathsf{Mod}_g \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \mathsf{Sp}_{2g}(\mathbb{R}) \hookrightarrow \mathsf{Aut}\left(\left(\mathcal{I}_g\right)^*\right).$$

Induced topology on $\operatorname{Sp}_{2g}(\mathbb{R})$ is usual Zariski topology.

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

$\begin{array}{l} \text{Theorem (Johnson)}\\ \text{For }g\geq 3, \ H_1(\mathcal{I}_g;\mathbb{R})\cong (\wedge^3 H)/H \ w/\ H=H_1(\Sigma_g;\mathbb{R}). \end{array}$

 \Rightarrow Have factorization

$$\mathsf{Mod}_g \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \mathsf{Sp}_{2g}(\mathbb{R}) \hookrightarrow \mathsf{Aut}\left(\left(\mathcal{I}_g\right)^*\right).$$

Induced topology on $\operatorname{Sp}_{2g}(\mathbb{R})$ is usual Zariski topology. $\operatorname{Sp}_{2g}(\mathbb{R})$ connected alg. group, so $\operatorname{Sp}_{2g}(\mathbb{R})$ irreducible. Mod_g has pullback of Zariski topology under

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

$\begin{array}{l} \mbox{Theorem (Johnson)}\\ \mbox{For }g\geq 3,\ \mbox{H}_1(\mathcal{I}_g;\mathbb{R})\cong (\wedge^3 H)/H \ \ w/H=\mbox{H}_1(\Sigma_g;\mathbb{R}). \end{array}$

 \Rightarrow Have factorization

$$\mathsf{Mod}_g \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \mathsf{Sp}_{2g}(\mathbb{R}) \hookrightarrow \mathsf{Aut}\left(\left(\mathcal{I}_g\right)^*\right).$$

Induced topology on $\operatorname{Sp}_{2g}(\mathbb{R})$ is usual Zariski topology. $\operatorname{Sp}_{2g}(\mathbb{R})$ connected alg. group, so $\operatorname{Sp}_{2g}(\mathbb{R})$ irreducible. $\operatorname{Sp}_{2g}(\mathbb{Z})$ Zariski dense in $\operatorname{Sp}_{2g}(\mathbb{R})$, so $\operatorname{Sp}_{2g}(\mathbb{Z})$ irreducible.

$$\operatorname{\mathsf{Mod}}_g \to \operatorname{\mathsf{Aut}}\left((\mathcal{I}_g)^*\right) \cong \operatorname{\mathsf{GL}}_n(\mathbb{R}).$$

Claim 1

Mod_g irreducible space (not finite union of proper closed subspaces).

$\begin{array}{l} \mbox{Theorem (Johnson)} \\ \mbox{For } g \geq 3, \ \mbox{H}_1(\mathcal{I}_g;\mathbb{R}) \cong (\wedge^3 H)/H \ \ w/H = \mbox{H}_1(\Sigma_g;\mathbb{R}). \end{array}$

 \Rightarrow Have factorization

$$\mathsf{Mod}_g \twoheadrightarrow \mathsf{Sp}_{2g}(\mathbb{Z}) \hookrightarrow \mathsf{Sp}_{2g}(\mathbb{R}) \hookrightarrow \mathsf{Aut}\left(\left(\mathcal{I}_g\right)^*\right).$$

Induced topology on $\operatorname{Sp}_{2g}(\mathbb{R})$ is usual Zariski topology. $\operatorname{Sp}_{2g}(\mathbb{R})$ connected alg. group, so $\operatorname{Sp}_{2g}(\mathbb{R})$ irreducible. $\operatorname{Sp}_{2g}(\mathbb{Z})$ Zariski dense in $\operatorname{Sp}_{2g}(\mathbb{R})$, so $\operatorname{Sp}_{2g}(\mathbb{Z})$ irreducible. $\operatorname{Mod}_g \twoheadrightarrow \operatorname{Sp}_{2g}(\mathbb{Z})$ surjective, so Mod_g irreducible. For $s \in S$, set $Z_s = \{\phi \in \operatorname{Mod}_g \mid (\phi \cdot f)(s) = 0\}.$

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

For $s \in S$, set $Z_s = \{\phi \in Mod_g \mid (\phi \cdot f)(s) = 0\}.$

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g.

Assume $Z_s = Mod_g$. Write $s = T_x T_v^{-1}$.

For $s \in S$, set $Z_s = \{\phi \in Mod_g \mid (\phi \cdot f)(s) = 0\}.$

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

Assume $Z_s = Mod_g$. Write $s = T_x T_y^{-1}$.

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

Assume $Z_s = Mod_g$. Write $s = T_x T_v^{-1}$.

For $\phi \in Mod_g$,

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

Assume $Z_s = Mod_g$. Write $s = T_x T_v^{-1}$.

For $\phi \in Mod_g$,

 $0 = (\phi \cdot f)(T_x T_y^{-1})$

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

Assume $Z_s = Mod_g$. Write $s = T_x T_y^{-1}$.

For $\phi \in Mod_g$,

$$0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1})$$

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

Assume $Z_s = Mod_g$. Write $s = T_x T_v^{-1}$.

For $\phi \in Mod_g$,

$$0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1}) = f(T_{\phi(x)} T_{\phi(y)}^{-1}).$$

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

Assume $Z_s = Mod_g$. Write $s = T_x T_v^{-1}$.

For $\phi \in Mod_g$,

$$0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1}) = f(T_{\phi(x)} T_{\phi(y)}^{-1}).$$

All genus 1 bounding pairs of form $T_{\phi(x)}T_{\phi(y)}^{-1}$ for some $\phi \in Mod_g$.

Claim 2: Push everything into that piece of BNS Z_s proper subspace of Mod_g .

Assume $Z_s = Mod_g$. Write $s = T_x T_y^{-1}$.

For $\phi \in Mod_g$,

$$0 = (\phi \cdot f)(T_x T_y^{-1}) = f(\phi T_x T_y^{-1} \phi^{-1}) = f(T_{\phi(x)} T_{\phi(y)}^{-1}).$$

All genus 1 bounding pairs of form $T_{\phi(x)}T_{\phi(y)}^{-1}$ for some $\phi \in Mod_g$. These generate \mathcal{I}_g , so f = 0, contradiction.