Topological cyclic homology of local fields

Wang Guozhen

(joint with Liu Ruochuan)

Shanghai Center for Mathematical Sciences

Topological Hochschild Homology

Fixed a prime p. We will work in the p-completed world throughout. Let A be an E_{∞}-ring spectrum. We have

$$
T H H(A)=A^{\otimes \mathbb{T}}
$$

to be the free \mathbb{T} - E_{∞}-ring spectrum generated by A.
We will follow Nikolaus-Scholze's definition of a cyclotomic structure. There is a cyclotomic structure on $\operatorname{THH}(A)$, i.e. an E_{∞}-homomorphism

$$
\varphi: T H H(A) \rightarrow T H H(A)^{t C_{p}}
$$

equivariant with respect to the group isomorphism $\mathbb{T} \cong \mathbb{T} / C_{p}$.

Topological Cyclic Homology

Topological periodic homology

$$
T P(A)=T H H(A)^{t \mathbb{T}}
$$

Topological negetive cyclic homology

$$
T C^{-}(A)=T H H(A)^{h \mathbb{T}}
$$

Topological cyclic homology
$T C(A)$ is the equalizer of the canonical map

$$
\operatorname{can}: T C^{-}(A) \rightarrow T P(A)
$$

and the Frobenius

$$
\varphi: T C^{-}(A) \rightarrow T P(A)
$$

Relative THH

Let

$$
S_{n}=\mathbb{S}\left[z_{0}, \ldots, z_{n}\right]
$$

be the E_{∞}-ring spectrum $\mathbb{S} \wedge \mathbb{N}_{+}^{n+1}$. Then the ∞-category of S_{n}-modules is symmetric monoidal.

For any $E_{\infty}-S_{n}$-algebra A, define

$$
T H H\left(A / S_{n}\right)=A^{\otimes S_{n} \mathbb{T}}
$$

as the free \mathbb{T} - $E_{\infty}-S_{n}$-algebra generated by A.

Cyclotomic Structure

By construction of Bhatt-Morrow-Scholze, there is a cyclotomic structure on S_{n} with trivial \mathbb{T}-action such that the Frobenius

$$
\phi: S_{n} \rightarrow S_{n}^{t \mathbb{T}}
$$

is defined by sending z_{i} to z_{i}^{p}.
For any $E_{\infty}-S_{n}$-algebra $A, \operatorname{THH}\left(A / S_{n}\right) \cong \operatorname{THH}(A) \otimes_{T H H\left(S_{n}\right)} S_{n}$ has a structure as a cyclotomic E_{∞}-spectrum over S_{n}.

Relative TP

$$
T P\left(A / S_{n}\right)=T H H\left(A / S_{n}\right)^{t T}
$$

Relative $T C^{-}$

$$
T C^{-}\left(A / S_{n}\right)=T H H\left(A / S_{n}\right)^{h \mathbb{T}}
$$

Locally Complete Intersections

Let K to be a finite extension of \mathbb{Q}_{p}, with ring of integers \mathcal{O}_{K}. Let K_{0} be the maximal unramified subextension in K.
Let

$$
P=\mathcal{O}_{K}\left[z_{1}, \ldots, z_{n}\right]
$$

Let I be an ideal of P which is a locally complete intersection, i.e. Zariski locally generated by a regular sequence.
Let $R=P / I$. Then $L=I / I^{2}$ is a projective R-module.
The above data amounts to a locally complete intersection algebra R together with a set of generators z_{i}. For fixed R, the choices of set of generators form a filtered system.

We make P an S_{n}-algebra by sending z_{0} to a fixed uniformizer ϖ of K. We further assume that ϖ is not a zero divizor in R.

Relative TP for P

We will call the filtration defined by the Tate spectral sequence the Nygaard filtration.

$$
T H H\left(P / S_{n}\right) \cong P[u]
$$

with $|u|=2$ being the Bökstedt element.
The Tate spectral sequence for $\operatorname{TP}\left(P / S_{n}\right)$ collapses for degree reasons, but by Bhatt-Morrow-Scholze there is a non-trivial extension:

Let E be the mininal equation for ϖ over $\mathcal{O}_{K_{0}}$ with constant term p.

$$
T P_{0}\left(P / S_{n}\right)=\mathcal{O}_{K_{0}}\left[x_{0}, \ldots, x_{n}\right]^{\wedge}
$$

with Nygaard filtration defined by powers of E.

$$
T P_{*}\left(P / S_{n}\right)=T P_{0}(P / S)\left[\sigma^{ \pm}\right]
$$

Relative TC $^{-}$and the Frobenius

Relatice $T C^{-}$

$$
T C_{*}^{-}\left(P / S_{n}\right)=T P_{0}(P / S)[u, v] /(u v-E)
$$

Formula for Frobenius

$$
\begin{gathered}
\operatorname{can}(v)=\sigma^{-1} \\
\varphi(u)=\sigma
\end{gathered}
$$

It is essential that the constant term of E to be p to have the above formula without an unspecified unit.

Relative $T H H$ for R

- $\operatorname{THH}\left(R / S_{n}\right)$ is concentrated in even degrees.
- The Tate and homotopy fixed point spectral sequences for $\operatorname{THH}\left(R / S_{n}\right)$ collapses.
- There is a filtration on $\operatorname{THH}\left(R / S_{n}\right)$ such that the graded pieces is isomorphic to

$$
R[u] \otimes \Gamma(L)
$$

with $L=I / I^{2}$ lying in degree 2 .

Relative TP for R

Divisibility property

If $\alpha \in T P_{0}\left(R / S_{n}\right)$ has Nygaard filtration i, then $\varphi(\alpha)$ is divisible by $\varphi(E)^{i}$. In fact $\varphi\left(\alpha \sigma^{i}\right)=\frac{\varphi(\alpha)}{\varphi(E)^{i}} \sigma^{i}$.

For any $f \in I$, define $h_{f}=\frac{\varphi(f)}{\varphi(E)}$.

Theorem

$T P_{0}\left(R / S_{n}\right)$ is the completion under the Nygaard filtration of the δ-ring over $\mathcal{O}_{K_{0}}\left[x_{0}, \ldots, x_{n}\right]$ generated by h_{f} for $f \in I$, modulo the relations

$$
\begin{gathered}
\varphi(E) h_{f}=\varphi(f) \\
h_{a f}=\varphi(a) h_{f}
\end{gathered}
$$

We can call this to be the h-envelope of I, which is a deformation of the divided polynomial ring.

The Structure of $T P_{0}\left(R / S_{n}\right)$

For $f \in I$, define

$$
f^{(1)}=\frac{f^{p}-h_{f} E^{p}}{p}
$$

Inductively, we define $f_{i}^{(k)}$ and $h_{f}^{(k)}$ by:

- Define

$$
f^{(k)}=\frac{\left(f^{(k-1)}\right)^{p}-h_{f}^{(k-1)} E^{p^{k}}}{p}
$$

- $f^{(k)}$ lies in $\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{n}\right]\left[h_{f}, \ldots, h_{f}^{(k-1)}\right]$.
- $f_{i}^{(k)}$ lies in Nygaard filtration p^{k}.
- $\varphi\left(f^{(k)}\right)$ is divisible by $\varphi(E)^{p^{k}}$.
- Define $h_{f}^{(k)}$ by the equation

$$
h_{f}^{(k)} \varphi(E)^{p^{k}}=\varphi\left(f^{(k)}\right)
$$

(Continued)

- By construction

$$
\varphi\left(f^{(k)}\right)=\frac{\varphi\left(f^{(k-1)}\right)^{p}-\varphi\left(h_{f}^{(k-1)}\right) \varphi(E)^{p^{k}}}{p}
$$

- Since $\varphi(E)$ is not a zero divisor,

$$
h_{f}^{(k)}=\frac{\left(h_{f}^{(k-1)}\right)^{p}-\varphi\left(h_{f}^{(k-1)}\right)}{p}
$$

- $\left(f^{(k)}\right)^{p}-\varphi\left(f^{(k)}\right)$ is divisible by p.

Resolution of the base

We have an Adams resolution for \mathbb{S} :

$$
\mathbb{S} \rightarrow S_{n} \rightarrow S_{n} \otimes_{\mathbb{S}} S_{n} \rightarrow S_{n}^{\otimes 3} \rightarrow \ldots
$$

R is a $S_{n}^{\otimes m}$-algebra via the map

$$
S_{n}^{\otimes m} \rightarrow S_{n} \rightarrow R
$$

We have the augmented cosimplicial cyclotomic E_{∞} spectrum
$\operatorname{THH}(R) \rightarrow \operatorname{THH}\left(R / S_{n}\right) \rightarrow \operatorname{THH}\left(R / S_{n}^{\otimes 2}\right) \rightarrow \operatorname{THH}\left(R / S_{n}^{\otimes 3}\right) \rightarrow \ldots$

Convergence

- $\operatorname{THH}(R) \stackrel{\cong}{\leftrightarrows} \operatorname{Tot}\left(\operatorname{THH}\left(R / S_{n}^{\otimes \bullet \bullet}\right)\right)$.
- $T P(R) \xrightarrow{\cong} \operatorname{Tot}\left(T P\left(R / S_{n}^{\otimes \bullet}\right)\right)$.
- $T C^{-}(R) \stackrel{\cong}{\rightrightarrows} \operatorname{Tot}\left(T C^{-}\left(R / S_{n}^{\otimes \bullet}\right)\right)$.

The descent spectral sequence

- $T P_{0}\left(R / S_{n}^{\otimes 2}\right)$ is flat over $T P_{0}\left(R / S_{n}\right)$.
- $\left(T P_{0}\left(R / S_{n}\right), T P_{0}\left(R / S_{n}^{\otimes 2}\right)\right)$ forms a Hopf algebroid.
- $T P_{*}\left(R / S_{n}\right)$ is a $T P_{0}\left(R / S_{n}^{\otimes 2}\right)$-comodule.
- $T P_{*}\left(R / S_{n}^{\otimes \bullet}\right)$ is isomorphic to the cobar complex:

$$
C^{\bullet}\left(T P_{*}\left(R / S_{n}\right), T P_{0}\left(R / S_{n}^{\otimes 2}\right), T P_{0}\left(R / S_{n}\right)\right)
$$

- We have a spectral sequence

$$
E x t_{T P_{0}\left(R / S_{n}^{\otimes 2)}\right.}^{j}\left(T P_{0}\left(R / S_{n}\right), T P_{i}\left(R / S_{n}\right)\right) \Rightarrow T P_{i-j}(R)
$$

Descent spectral sequences for $T C^{-}$and $T C$

TC ${ }^{-}$

The coskeleton filtration on $\operatorname{Tot}\left(\operatorname{TC}^{-}\left(R / S_{n}^{\otimes \bullet}\right)\right)$ gives the descent spectral sequence for $T C^{-}$:

$$
T C_{*}^{-}\left(R / S_{n}^{\otimes *}\right) \Rightarrow T C_{*}^{-}(R)
$$

TC
Define the filtration on $T C(R)$ such that $T C(R)_{(n)}$ to be the fiber of

$$
\operatorname{can}-\varphi: \operatorname{Tot}_{n}\left(T C^{-}\left(R / S_{n}^{\otimes \bullet}\right)\right) \rightarrow \operatorname{Tot}_{n-1}\left(T P\left(R / S_{n}^{\otimes \bullet \bullet}\right)\right)
$$

Then $E_{1}^{*, *}(T C(R))$ is the mapping cone of

$$
\operatorname{can}-\varphi: E_{1}^{*, *}\left(T C^{-}(R)\right) \rightarrow E_{1}^{*, *}(T P(R))
$$

Relationship with Bhatt-Morrow-Scholze theory

Let

$$
S_{n}^{\infty}=\mathbb{S}\left[z_{0}^{\frac{1}{\rho^{\infty}}}, \ldots, z_{n}^{\frac{1}{p^{\infty}}}\right]
$$

There are maps

$$
\operatorname{THH}\left(R / S_{n}\right) \rightarrow \operatorname{THH}\left(R \otimes S_{n} S_{n}^{\infty} / S_{n}^{\infty}\right) \cong \operatorname{THH}\left(R \otimes S_{n} S_{n}^{\infty}\right)
$$

Note that the p-completion of $R \otimes s_{n} S_{n}^{\infty}$ is semi-perfectoid.
The above map induces a morphism from the descent resolution to the Čech resolution in the quasi-syntomic site.

Conjecture

The descent spectral sequence is isomorphic to the BMS spectral sequence.

Structure of $T P_{0}\left(R / S_{n}^{\otimes 2}\right)$

For simplicity, suppose R is a complete intersection defined by $f_{1}(z), \ldots, f_{k}(z)$. We also have:
$R=\mathcal{O}_{K_{0}}\left[z_{1}, \ldots, z_{n}, z_{0}^{\prime}, z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right] /\left(f_{1}(z), \ldots, f_{k}(z), z_{0}^{\prime}-\varpi, z_{1}^{\prime}-z_{1}, \ldots, z_{n}^{\prime}-z_{n}\right)$
$T P_{0}\left(R / S_{n}^{\otimes 2}\right)$ is the completion under the Nygaard filtration of the δ-ring generated over $T P_{0}\left(R / S_{n}\right)\left[z_{0}^{\prime}, \ldots, z_{n}^{\prime}\right]$ by $h_{z_{0}^{\prime}-z_{0}}, h_{z_{1}^{\prime}-z_{1}}, \ldots, h_{z_{n}^{\prime}-z_{n}}$, modulo the relations

$$
\begin{aligned}
& h_{z_{0}^{\prime}-z_{0}} \varphi\left(E\left(z_{0}\right)\right)=z_{0}^{\prime p}-z_{0}^{p} \\
& h_{z_{i}^{\prime}-z_{i}} \varphi\left(E\left(z_{0}\right)\right)=z_{i}^{\prime p}-z_{i}^{p}
\end{aligned}
$$

Hopf Algebroid Structures

units

$$
\begin{aligned}
& \eta_{L}\left(z_{i}\right)=z_{i} \\
& \eta_{R}\left(z_{i}\right)=z_{i}^{\prime}
\end{aligned}
$$

comultiplication

$$
\begin{aligned}
& \psi\left(z_{i}\right)=z_{i} \otimes 1 \\
& \psi\left(z_{i}^{\prime}\right)=1 \otimes z_{i}^{\prime}
\end{aligned}
$$

comodule structure on $T P_{*}\left(R / S_{n}\right)$

$$
\begin{gathered}
T P_{*}\left(R / S_{n}\right)=T P_{0}\left(R / S_{n}\right)\left[\sigma^{ \pm}\right] \\
\psi(\sigma)=\epsilon^{-1} \sigma \\
\epsilon^{-1} \varphi(\epsilon)=\frac{\varphi\left(E\left(z_{0}^{\prime}\right)\right)}{\varphi\left(E\left(z_{0}\right)\right)}
\end{gathered}
$$

Naturality

Let

$$
\tilde{R}=\mathcal{O}_{K}\left[y_{1}, \ldots, y_{l}\right] /\left(h_{1}(y), \ldots, h_{m}(y)\right)
$$

with $p, h_{1}(y), \ldots, h_{m}(y)$ a regular sequence.
Let $g_{1}(z), \ldots, g_{l}(z) \in \mathcal{O}_{K}\left[z_{1}, \ldots, z_{n}\right]$ be polynomials such that

$$
h_{i}(y) \in\left(f_{1}(z), \ldots, f_{k}(z), y_{1}-g_{1}(z), \ldots, y_{l}-g_{l}(z)\right)
$$

Then $g_{i}(z)$ defines a ring homomorphism $g: \tilde{R} \rightarrow R$

Naturality

- We have a morphism of Hopf algebroids

$$
\left(T P_{0}\left(\tilde{R} / S_{l}\right), T P_{0}\left(\tilde{R} / S_{l}^{\otimes 2}\right)\right) \rightarrow\left(T P_{0}\left(R / S_{I+n}\right), T P_{0}\left(R / S_{l+n}^{\otimes 2}\right)\right)
$$

- There is a Morita equivalence

$$
\left(T P_{0}\left(R / S_{n}\right), T P_{0}\left(R / S_{n}^{\otimes 2}\right)\right) \rightarrow\left(T P_{0}\left(R / S_{I+n}\right), T P_{0}\left(R / S_{I+n}^{\otimes 2}\right)\right)
$$

- We have a morphism of spectral sequences

$$
\begin{gathered}
\operatorname{Ext}_{T P_{0}\left(\tilde{R} / S_{l}^{\otimes 2}\right)}\left(T P_{*}\left(\tilde{R} / S_{l}\right)\right) \longrightarrow E x t_{T P_{0}\left(R / S_{n}^{\otimes 2}\right)}\left(T P_{*}\left(R / S_{n}\right)\right) \\
\downarrow \\
T P_{*}(\tilde{R}) \longrightarrow T P_{*}(R)
\end{gathered}
$$

Localization

Let $h(x) \in \mathcal{O}_{K}\left[z_{1}, \ldots, z_{n}\right]$ be a polynomials. We have:

$$
R\left[h^{-1}\right]=\mathcal{O}_{K}\left[z_{1}, \ldots, z_{n}, y\right] /\left(f_{1}(z), \ldots, f_{k}(z), y h(z)-1\right)
$$

Theorem

The Hopf algebroid

$$
\left(T P_{0}\left(R\left[h^{-1}\right] / S_{n+1}\right), T P_{0}\left(R\left[h^{-1}\right] / S_{n+1}^{\otimes 2}\right)\right)
$$

is Morita equivalent to

$$
\left(T P_{0}\left(R / S_{n}\right)\left[h(x)^{-1}\right], T P_{0}\left(R / S_{n}^{\otimes 2}\right)\left[h(x)^{-1}\right]\right)
$$

Breuil-Kisin Twists

Let T be the free comodule of rank 1 generated by σ, such that

$$
\begin{gathered}
\psi(\sigma)=\epsilon^{-1} \sigma \\
\epsilon^{-1} \phi(\epsilon)=\frac{\varphi\left(E\left(z_{0}\right)\right)}{\varphi\left(E\left(z_{0}^{\prime}\right)\right)}
\end{gathered}
$$

For any comodule A, we have its Breuil-Kisin twist by

$$
A\{i\}=A \otimes T^{\otimes i}
$$

Algebraic Tate/homotopy fixed points spectral sequences

The E_{1} terms of the descent spectral sequences has the Nygaard filtration, which induces the algebraic Tate spectral sequence:

$$
E_{2}(T H H(R))\left[\sigma^{ \pm}\right] \Rightarrow E_{2}(T P(R))
$$

and the algebraic homotopy fixed points spectral sequence:

$$
E_{2}(T H H(R))[v] \Rightarrow E_{2}\left(T C^{-}(R)\right)
$$

Square of four spectral sequences

The Hopf algebroid for \mathcal{O}_{K}

$$
T P_{0}\left(\mathcal{O}_{K} / \mathbb{S}[z]\right)=\mathcal{O}_{K_{0}}[z]^{\wedge}
$$

$T P_{0}\left(\mathcal{O}_{K} / \mathbb{S}\left[z, z^{\prime}\right]\right)$ is the completion of the δ-ring over $\mathcal{O}_{K_{0}}\left[z, z^{\prime}\right]$ generated by h, modulo the relation

$$
h \varphi(E(z))=\varphi\left(E\left(z^{\prime}\right)\right)
$$

The structure maps are

$$
\begin{aligned}
\eta_{L}(z) & =z \\
\eta_{R}(z) & =z^{\prime}
\end{aligned}
$$

Decent SS for $\operatorname{THH}\left(\mathcal{O}_{K} ; \mathbb{F}_{p}\right)$

We have the following description of the E_{2} term of the descent spectral sequence for $\operatorname{THH}\left(\mathcal{O}_{K} ; \mathbb{F}_{p}\right)$:

Theorem

- $E_{2}^{0, *}\left(\operatorname{THH}\left(\mathcal{O}_{K} ; \mathbb{F}_{p}\right)\right)$ is generated by $z^{\prime} u^{n}$ for $1 \leq I \leq e-1$ or p en if $e>1$, and by u^{n} for $p \mid n$ if $e=1$.
- $E_{2}^{1, *}\left(\operatorname{THH}\left(\mathcal{O}_{K} ; \mathbb{F}_{p}\right)\right)$ is generated by $z^{\prime} u^{n-1} d z$ for $0 \leq I \leq e-2$ or $p \mid e n$ if $e>1$, and by $u^{n-1} d z$ for $p \mid n$ if $e=1$.
- $E_{2}^{i, *}\left(T H H\left(\mathcal{O}_{K} ; \mathbb{F}_{p}\right)\right)=0$ for $i \geq 2$.

It follows that in this case the descent spectral sequence collapses.

The mod p algebraic Tate differentials

For $n \geq 0, j \in \mathbb{Z}, I=v_{p}\left(n-\frac{p e j}{p-1}\right)$, we have algebraic Tate differnetials:

$$
d\left(z^{n} \sigma^{j}\right) \doteq z^{p e \frac{p^{\prime}-1}{p-1}+n-1} \sigma^{j} d z
$$

This is in agreement with results of Bökstedt, Hesselholt, Madsen, Rognes, Tsalidis.

The descent spectral sequence for $\operatorname{TC}\left(\mathcal{O}_{K}\right)$

Let $d=\left[K\left(\zeta_{p}\right): K\right]$. There is a class $\beta \in E_{2}^{0,2 d}\left(T C\left(\mathcal{O}_{K}\right) ; \mathbb{F}_{p}\right)$ detecting the Bott element. As an $\mathbb{F}_{p}[\beta]$-module,

$$
\begin{gathered}
E_{2}^{0, *}\left(T C\left(\mathcal{O}_{K}\right) ; \mathbb{F}_{p} \cong \mathbb{F}_{p}[\beta]\right. \\
E_{2}^{1, *}\left(T C\left(\mathcal{O}_{K}\right) ; \mathbb{F}_{p}\right) \cong \mathbb{F}_{p}[\beta]\{\lambda, \gamma\} \oplus k[\beta]\left\{\alpha_{i}^{(j)} \mid 1 \leq i \leq e, 1 \leq j \leq d\right\} \\
E_{2}^{2, *}\left(T C\left(\mathcal{O}_{K}\right) ; \mathbb{F}_{p}\right) \cong \mathbb{F}_{p}[\beta][\lambda \gamma] \\
E_{2}^{i, *}\left(T C\left(\mathcal{O}_{K}\right) ; \mathbb{F}_{p}\right)=0 \text { for } i \geq 3
\end{gathered}
$$

It follows that the descent spectral sequence for $\operatorname{TC}\left(\mathcal{O}_{K}\right)$ collapses.

The descent spectral sequence for $\operatorname{TC}\left(\mathcal{O}_{K} ; \mathbb{F}_{p}\right)$

The étale spectral sequence for $\mathbb{K}^{e ́ t}\left(K ; \mathbb{F}_{p}\right)$

The motivic spectral sequence for $\mathbb{K}\left(K ; \mathbb{F}_{p}\right)$

Computations for $K=\mathbb{Q}_{p}$ with p odd

Theorem

Let $e=\frac{p-y^{p}}{p-x^{p}}$ The element

$$
\log (e)-\frac{1}{p} \log (\phi(e))=\frac{x^{p}-y^{p}}{p}+\frac{x^{2 p}-y^{2 p}}{2 p^{2}}+\ldots
$$

lies in $T P_{0}\left(\mathbb{Z}_{p} / \mathbb{S}[x, y]\right)$.
So we have

$$
x^{p}-y^{p} \doteq \frac{x^{2 p}-y^{2 p}}{p}+\ldots \quad \bmod p
$$

$$
d_{p}\left(z^{p}\right) \doteq z^{2 p-1} d z
$$

Computations for $K=\mathbb{Q}_{p}$ with p odd

Applying Frobenius, we get

$$
x^{p^{2}}-y^{p^{2}} \doteq \frac{x^{2 p^{2}}-y^{2 p^{2}}}{p}+\ldots \quad \bmod p
$$

Expanding

$$
p^{2 p}\left(\log (e)-\frac{1}{p} \log (\phi(e))\right)
$$

we get

$$
\frac{x^{2 p^{2}}-y^{2 p^{2}}}{p} \doteq \frac{x^{2 p^{2}+p}-y^{2 p^{2}+p}}{p}+\ldots \bmod p
$$

These imply:

$$
d_{p^{2}+p}\left(z^{p^{2}}\right) \doteq z^{2 p^{2}+p-1} d z
$$

Higher Tate differentials can be obtained by induction.

Thanks!

