Nonabelian Poincaré duality theorem and equivariant factorization homology of Thom spectra

Foling Zou

University of Michigan

May 10, 2021

Mindmap

Factorization homology, introduction

- Inputs: M and A
M is a framed n-manifold (with given isomorphism $T M \cong M \times \mathbb{R}^{n}$)
A is an E_{n}-algebra in $(\mathrm{Top}, \times),(\mathrm{Sp}, \wedge)$ or (\mathcal{C}, \otimes)
- Output: $\int_{M} A$, an object of Top, Sp or \mathcal{C}.
- Generalize ordinary homology theories on manifolds.
- Special case: $\mathcal{C}=(\mathcal{D}(\mathbb{Z}), \oplus)$, where $\mathcal{D}(\mathbb{Z})$ consists of suitable chain complexes of \mathbb{Z}-modules. Let A be an abelian group, then

$$
\int_{M} A \simeq C_{*}(M ; A)
$$

Properties

Eilenberg-Steenrod axioms
Ayala-Francis axioms
$\int_{M} A$

$\mathrm{H}_{*}(\mathrm{pt}, \mathbb{Z}) \cong \mathbb{Z}$	$\int_{\mathbb{R}^{n}} A \simeq A$
$\mathrm{H}_{*}(X \sqcup Y, \mathbb{Z}) \cong \mathrm{H}_{*}(X, \mathbb{Z}) \oplus \mathrm{H}_{*}(Y, \mathbb{Z})$	$\int_{M \sqcup N} A \simeq \int_{M} A \otimes \int_{N} A$
excision $/ \mathrm{MV}$-sequence	tensor excision

Detour: Λ-sequences and reduced operads

Goal

Describe reduced operads and reduced monads categorically.

Notation

Let Σ be the category of finite sets and bijections; Λ be the category of based finite sets and based injections. Objects: $\mathbf{n}=\{0,1,2, \cdots, n\}$.

- We work with (Top, $\times, *)$, (G Top, $\times, *$) or $(\mathcal{V}, \otimes, I)$.
- A symmetric sequence or Σ-sequence is a functor $\Sigma^{\text {op }} \rightarrow$ Top;

A Λ-sequence is a functor $\Lambda^{o p} \rightarrow$ Top.

- All such functors are denoted $\Sigma^{\text {op }}\left[\right.$ Top] or $\Lambda^{\text {op }}[$ Top]
- Examples. Suppose \mathscr{C} is an operad. Then $\{\mathscr{C}(n)\}$ forms a Σ-sequence. If moreover \mathscr{C} is reduced, meaning $\mathscr{C}(0)=*$, then $\{\mathscr{C}(n)\}$ forms a Λ-sequence. For $\mathbf{n} \hookrightarrow \mathbf{n}+\mathbf{1}$, we have

$$
\mathscr{C}(n+1)=\mathscr{C}(n+1) \times *^{n+1} \rightarrow \mathscr{C}(n+1) \times \mathcal{C}(1) \times \cdots \times \mathcal{C}(1) \times \mathcal{C}(0) \rightarrow \mathcal{C}(n) .
$$

First monoidal product: the Day convolution

Unit: $\mathcal{I}_{0}=\Lambda(-, \mathbf{0})$

Proposition (May-Zhang-Z.)

$i^{*} \mathscr{D} \boxtimes_{\Sigma} i^{*} \mathscr{E} \cong i^{*}\left(\mathscr{D} \boxtimes_{\Lambda} \mathscr{E}\right)$
Explicitly,

$$
(\mathscr{D} \boxtimes \mathscr{E})(\mathbf{n})=\coprod_{n_{1}+n_{2}=n}\left(\mathscr{D}\left(\mathbf{n}_{1}\right) \times \mathscr{E}\left(\mathbf{n}_{2}\right)\right) \times \Sigma_{n_{1} \times \Sigma_{n_{2}}} \Sigma_{n}
$$

Notation: Use $\Lambda^{\mathrm{op}}[\mathrm{Top}]_{*}$ to denote the category under the unit \mathcal{I}_{0}, i.e. Λ-sequences that are pointed at $\mathbf{0}$.
Remark: Symmetric envolope $\widetilde{\mathscr{C}}$ of an operad \mathscr{C} :
objects n; morphisms $\widetilde{\mathscr{C}}(m, n)=\mathscr{C}^{\boxtimes n}(m)$.

Second monoidal product: the Kelly product

For symmetric sequences, the Kelly product is

$$
(\mathscr{C} \odot \Sigma \mathscr{D})(\mathbf{n})=\coprod_{k, n_{1}+\cdots+n_{k}=n} \mathscr{C}(\mathbf{k}) \times \Sigma_{n_{1} \times \cdots \times \Sigma_{n_{k}}}\left(\mathscr{D}\left(\mathbf{n}_{1}\right) \times \cdots \times \mathscr{D}\left(\mathbf{n}_{\mathbf{k}}\right)\right)
$$

This formula can be reinterpreted in a way that works for Λ-sequences.
For $\mathscr{C} \in \Lambda^{\mathrm{op}}[\mathrm{Top}]$ and $\mathscr{D} \in \Lambda^{\mathrm{op}}[\mathrm{Top}]_{*}$, define

$$
\mathscr{C} \odot_{\wedge} \mathscr{D}=\mathscr{C} \otimes_{\wedge} \mathscr{D}^{\boxtimes *}
$$

- The unit of \odot_{\wedge} is $\mathcal{I}_{1, \wedge}=\Lambda(-, \mathbf{1})$.
- There is an isomorphism

$$
(\mathscr{C} \boxtimes \mathscr{D}) \odot \mathscr{E} \cong(\mathscr{C} \odot \mathscr{E}) \boxtimes(\mathscr{D} \odot \mathscr{E}) .
$$

Using this, we have associativity of \odot.

- Remark: $\mathcal{I}_{1}^{\boxtimes k} \cong \Lambda(-, \mathbf{k})=: \mathcal{I}_{k}, \mathcal{I}_{m} \odot \mathcal{I}_{n} \cong \mathcal{I}_{m n}$.

Reduced operad and monad

Proposition

- (Kelly) An operad is a monoid in ($\Sigma^{\text {op }}[\mathrm{Top}], \odot_{\Sigma}, \mathcal{I}_{1, \Sigma}$).
- (May-Zhang-Z.) A reduced operad is a monoid in ($\left.\Lambda^{\mathrm{OP}}[\mathrm{Top}], \odot_{\wedge}, \mathcal{I}_{1, \Lambda}\right)$.

Adjunction:

$$
\begin{gathered}
i_{0}: \mathrm{Top}_{*} \rightleftharpoons \Lambda^{\circ \mathrm{D}}[\mathrm{Top}]_{*}: p_{0} \\
i_{0}(X)(\mathbf{n})=\left\{\begin{array}{ll}
x & n=0 \\
\varnothing & n>0
\end{array} \quad p_{0}(\mathscr{C})=\mathscr{C}(\mathbf{0})\right.
\end{gathered}
$$

- Any $\mathscr{C} \in \Lambda^{\text {op }}[\mathrm{Top}]$ yields a functor $\mathrm{C}: \mathrm{Top}_{*} \rightarrow \mathrm{Top}_{*}$ by

$$
\mathrm{C} X=p_{0}\left(\mathscr{C} \odot i_{0} X\right)
$$

- The associated functor of $\mathscr{C} \odot \mathscr{D}$ is CD.
- When \mathscr{C} is a reduced operad, C is a monad.
- Let X be a based space, then $i_{0} X$ is a left \mathscr{C}-module for $\odot \Leftrightarrow X$ is a left C-module. Such X is called an algebra over the operad \mathscr{C}.
- The little V-disk operad \mathscr{D}_{V} (Guillou-May) has the following data:
- $\left(G \times \Sigma_{k}\right)$-spaces $\mathscr{D}_{V}(k)=\left\{\left(e_{1}, \cdots, e_{k}\right) \mid\right.$ conditions $\}$.
- G acts on $\mathscr{D}_{v}(k)$ by conjugation.
- G-equivariant structure maps $\gamma: \mathscr{D}_{V}(k) \times \mathscr{D} v\left(j_{1}\right) \times \cdots \times \mathscr{D}_{V}\left(j_{k}\right) \rightarrow \mathscr{D}_{v}\left(j_{1}+\cdots+j_{k}\right)$.

$$
D_{2}(1+2)=D_{2}(3)
$$

- $\mathscr{D}_{M}(k)=\left\{\right.$ embeddings of V-framed G-manifolds $\left.\coprod_{k} V \rightarrow M\right\}$
- $\mathscr{D}_{V}, \mathscr{D}_{M} \in \Lambda^{o p}$ [GTop].
- \mathscr{D}_{M} has the same homotopy type as the ordered configuration spaces of M;
- We have a map $\mathscr{D}_{M} \odot \mathscr{D}_{V} \rightarrow \mathscr{D}_{M}$, which induces a map of functors $\mathrm{D}_{M} \mathrm{D}_{V} \rightarrow \mathrm{D}_{M}$.

Monadic bar construction of equivariant factorization homology
Let A be a $\mathscr{D} v$-algebra in G Top. Then we have:

- Associated functors

$$
\mathrm{D}_{v}, \mathrm{D}_{M}: \mathrm{GTop}_{*} \rightarrow \mathrm{GTop}_{*}
$$

- A simplicial G-space $\mathbf{B}_{q}\left(\mathrm{D}_{M}, \mathrm{D}_{V}, A\right)=\mathrm{D}_{M}\left(\mathrm{D}_{V}\right)^{q} A=p_{0}\left(\mathscr{D}_{M} \odot \mathscr{D}_{V}^{\odot}{ }^{q} \odot i_{0} A\right)$.

$$
\int_{M} A:=\mathbf{B}\left(\mathrm{D}_{M}, \mathrm{D}_{V}, A\right)=p_{0} \mathbf{B}\left(\mathscr{D}_{M}, \mathscr{D}_{V}, i_{0} A\right)
$$

SMA is the "configuration space on M with summable labels in $A^{\prime \prime}$ use the Ev-stuntuce of A to sum the labels

$$
S_{M} A=\left|\cdots B_{3} \Rightarrow B_{2} \Rightarrow B_{1}\right|
$$

levels of iterated disks

Summary: Equivariant factorization homology of V-framed manifolds

G : finite group. V : orthogonal G-representation.

- Inputs: M and A M is a V-framed G-manifold A is an E_{V}-space
- Output: $\int_{M} A=\mathrm{B}\left(\mathrm{D}_{M}, \mathrm{D}_{V}, A\right)$, a G-space
(Andrade, Miller-Kupers, Z.)
Likewise, we can work with G-spectra A.
- Remark: If M is not framed, we require A to have more structure than an E_{n}-algebra.
- Related question: What is the E_{2}-page of the homology geometric realization spectral sequence? $\mathrm{H}_{*}\left(\mathrm{D}_{n} X, k\right)$ is an explicit functor of $\mathrm{H}_{*}(X, k)$. We need to know $\mathrm{H}_{*}\left(\mathrm{D}_{M} X, k\right)$ as a functor of $\mathrm{H}_{*}(X, k)$.
Equivariantly, even the calculation of $\mathrm{H}_{*}^{G}\left(\mathrm{D}_{V} X\right)$ is unknown.

Examples of E_{V}-algebra

- $\Omega^{V} X=\operatorname{Map}_{*}\left(S^{V}, X\right)$ is an $E_{V-\text { space }}$.
- An $E_{n}-G$-space is an E_{n}-space such that the structure maps are G-equivariant.
- Let $G=C_{2}=\{e, g\}$ and $V=\sigma$.

An $E_{\sigma}-C_{2}$-space is an underlying E_{1}-space such that g acts by "anti- E_{1}-map".
Example. $A=\Sigma_{+}^{\infty} G$

Examples of factorization homology

Examples

- $\int_{S^{1}} A \simeq \operatorname{THH}(A)$.
- $\int_{T^{n}} A$ is iterated $T H$.

Cardinality filtration of $\int_{s^{\prime}} A$
\Rightarrow cyclic bal construction of $\operatorname{THH}(A)$.

Properties

- The extra degeneracy gives $\int_{V} A=\mathbf{B}\left(\mathrm{D}_{v}, \mathrm{D}_{v}, A\right) \simeq A$ for an E_{v}-algebra A.
- Recall

$$
(\mathscr{C} \boxtimes \mathscr{D}) \odot \mathscr{E} \cong(\mathscr{C} \odot \mathscr{E}) \boxtimes(\mathscr{D} \odot \mathscr{E})
$$

This gives

$$
\int_{M \sqcup N} A=p_{0} \mathbf{B}\left(\mathscr{D}_{M \cup N}, \mathscr{D}_{v}, i_{0} A\right) \cong p_{0} \mathbf{B}\left(\mathscr{D}_{M} \boxtimes \mathscr{D}_{N}, \mathscr{D}_{v}, i_{0} A\right) \cong \int_{M} A \otimes \int_{N} A
$$

Examples

(1) $G=C_{2}, \sigma=$ sign rep. Then S^{σ} is σ-framed.
$\int_{S_{\sigma}} A \simeq \operatorname{THR}(A)$ for an $E_{\sigma}-C_{2}$-spectra A. (Horev)
(THR: Hessolholt-Madsen)
(2) $G=C_{p}$. Then S_{rot}^{1} is \mathbb{R}-framed.
$\Phi^{C_{p}}\left(\int_{S_{\mathrm{rot}}^{1}} A\right) \simeq \mathrm{THH}\left(A ; A^{\tau}\right) \simeq i_{e}^{*} \mathrm{THH}_{C_{p}} A$ for an $E_{1}-C_{p}$-spectra A. (Horev)
(twisted / relative THH: Angeltveit-Blumberg-Gerhardt-Hill-Lawson-Mandell)

Another construction: axiomatic approach (Horev)

- Uses G- ∞-categories (Barwick-Dotto-Glasman-Nardin-Shah) and equivariant Morse theory (Wasserman).
- Coefficient: A is a package of H-spaces for each $H \subset G$.
- Input: H-manifold N. Output: H-space $\int_{N} A$.

$$
\int_{\operatorname{Res}_{K}^{H} N} A \simeq \operatorname{Res}_{K}^{H}\left(\int_{N} A\right) ; \int_{G \times_{H} N} A \simeq N_{H}^{G}\left(\int_{N} A\right)
$$

Comparison with my construction: (They are the same!)

- In the V-framed case, Horev's A is just an $E_{V}-G$-space. For a G-manifold M, Horev's $\int_{M} A$ is a derived operad left Kan extension.
- The derived operad left Kan extension agrees with the homotopy left Kan extension, which can be computed by the bar construction. (Berger-Moerdijk, Horel)

When the coefficient is a V-fold loop space.

Theorem (Equivariant nonabelian Poincaré duality theorem, Z.)

M: V-framed G-manifold, A: G-connected E_{V}-algebra in G Top. Then there is a weak G-equivalence:

$$
\int_{M} A \rightarrow \operatorname{Map}_{*}\left(M^{+}, \mathbf{B}^{v} A\right)
$$

where $\mathbf{B}^{V} A$ is the V-fold deloop of A, i.e., $A \simeq \Omega^{V} \mathbf{B}^{V} A$ as G-spaces.
Non-equivariant statement: Salvatore, Lurie, Miller, Ayala-Francis, Recall

$$
\int_{M} A=\left|\mathrm{D}_{M}\left(\mathrm{D}_{V}\right)^{\bullet}(A)\right| \text { and } \mathbf{B}^{\vee} A=\left|\Sigma^{V}\left(\mathrm{D}_{V}\right)^{\bullet} A\right|
$$

scanning map (McDuff, Segal, Bödigheimer, ...)

$$
s: \mathrm{D}_{M}(X) \rightarrow \operatorname{Map}_{*}\left(M^{+}, \Sigma^{V} X\right)
$$

Theorem (Rourke-Sanderson)

The scanning map s: $\mathrm{D}_{M}(X) \rightarrow \operatorname{Map}_{*}\left(M^{+}, \Sigma^{\vee} X\right)$ is a weak G-equivalence if X is G-connected.

Related question: scanning map when X is a spectrum?
(Equivariant) Thom spectra functor
(Ando-Blumberg-Gepner-Hopkins-Rezk)

- X : ∞-groupoid, R : ring spectra.
- R-line: the ∞-category of free rank one R-modules and equivalences. This is an ∞-groupoid that models $B G L_{1} R$.
- Definition. A bundle is $f: X \rightarrow R$-line .
- The Thom R-module spectrum of f is

$$
M f=\operatorname{colim}(X \xrightarrow{f} R \text {-line } \subset R \text {-mod })
$$

(Horev-Klang-Z.)

- $\underline{\mathrm{Sp}}^{G}$: parametrized G - ∞-category of G-spectra.
- $\underline{\text { Pic }}:=\underline{\operatorname{Pic}}\left(\underline{S p}^{G}\right)$: spanned by invertible objects.
- Pic is a G-symmetric monoidal G - ∞-groupoid (modeling a G - E_{∞}-space).
- Definition. The Thom spectra functor is the G-left Kan extension along Yoneda embedding

- For $G=e$, this is equivalent to the ABGHR functor in the case of $R=\mathbb{S}$.

When the coefficient is the Thom spectra of a V-fold loop map

Lemma

M: a W-framed G-manifold, $A=\operatorname{Th}\left(\Omega^{W} X \rightarrow \underline{\left.\operatorname{Pic}\left(\mathrm{Sp}^{G}\right)\right) \text {. Then }}\right.$
$\int_{M} A \simeq \operatorname{Th}\left(\operatorname{Map}_{*}\left(M^{+}, X\right) \rightarrow \underline{\operatorname{Pic}}\left(\underline{S_{p}}{ }^{6}\right)\right)$.
Past results

- (Blumberg-Cohen-Schlichtkrull) $\mathrm{n}=1, \operatorname{THH}(A) \simeq \operatorname{Th}(L X \rightarrow B F)$.
- (KIang) The nonequivariant statement.

Proof of the lemma

- Step 1: commute Thom spectra with factorization homology

$$
\Omega^{\omega} f \text { is an Ew-algebra in space }{ }^{G} / B . \quad B=\operatorname{Pic}\left(S_{p}^{G}\right) \text {. }
$$

Proposition

$$
\int_{M} T h\left(\Omega^{w} f\right) \simeq \operatorname{Th}\left(\int_{M} \Omega^{w} f\right)
$$

$$
\text { Here, } \int_{M} \Omega^{w} f=\left(\int_{M} \Omega^{w} X \rightarrow \int_{M} B \rightarrow B\right) \text {. }
$$

- Step 2: use the nonabelian Poincare duality theorem.

$$
J_{M} \Omega^{w} X \simeq \operatorname{Map}_{*}\left(M^{+}, X\right)
$$

When the coefficient is the Thom spectra of a $V+1$-fold loop map.

Theorem (Horev-Klang-Z.)

Let A be the Thom spectrum of an $E_{V+1}-\operatorname{map} \Omega^{V+1} X \rightarrow \underline{\operatorname{Pic}}\left(\underline{S p}^{G}\right)$ such that X is suitably connected. Then

$$
\int_{S^{\vee} \times \mathbb{R}} A \simeq A \wedge(\Omega X)_{+}
$$

$G=C_{2}, \sigma$: sign rep, ρ : regular rep
Theorem (Behrens-Wilson)
HF_{2} is the Thom spectrum of a ρ-fold loop map $\Omega^{\rho} S^{\rho+1} \rightarrow B{c_{2}} O$.

$$
\operatorname{THR}\left(\mathrm{HF} \underline{F_{2}}\right) \simeq \int_{S^{\sigma} \times \mathbb{R}} \mathrm{HF}_{2} \simeq \underline{\mathrm{HF}_{2}} \wedge\left(\Omega S^{\rho+1}\right)_{+} .
$$

$$
\operatorname{THR}_{\star}\left(\mathrm{HE}_{2}\right) \cong \pi_{\star}\left(\mathrm{HF}_{2}\right)\left[x_{\rho}\right]
$$

This recovers Dotto-Moi-Patchkoria-Reeh.

Proof of theorem for $A=H \underline{\mathbb{F}}_{2}$ and $V=\sigma$

$$
H \underline{F}_{2} \simeq T h\left(\Omega^{\rho} s^{\rho+1} \rightarrow B\right) \quad \text { (Behiens- } w_{i}(\text { son })
$$

By the lemma, we already have:

$$
\begin{aligned}
& \int_{A_{n n}} H \underline{F}_{2} \simeq \operatorname{Th}\left(\operatorname{Map}_{*}\left(A_{n n}^{+}, s^{p+1}\right) \rightarrow B\right) \\
& \begin{array}{ll}
\\
\hdashline A_{n n} \cong S^{6} \times \mathbb{R}
\end{array} \\
& \operatorname{Map}_{x}\left(A_{n n}^{+}, S^{p+1}\right)=\operatorname{Map}_{x}\left(S^{p} \vee S^{\prime}, S^{p+1}\right) \\
& \cong \Omega^{p} s^{\rho+1} \times \Omega s^{\rho+1} \longrightarrow B \\
& \text { The } \quad L^{\text {Th }} \\
& \Rightarrow S_{A n n} H \mathbb{F}_{2} \simeq H \mathbb{F}_{2} \simeq \Sigma_{G, t}^{\infty} \Omega s^{p+1} .
\end{aligned}
$$

A geometric proof that the splitting is E_{1}

$$
\int_{A_{n n}} H_{\mathbb{E}_{2}} \simeq \frac{\operatorname{Th}\left(\frac{\operatorname{Map}_{*}\left(A_{n n}^{+}, s^{p+1}\right)}{\mid s} \rightarrow B\right)}{\operatorname{Map}^{\prime}\left(s^{\rho} v s^{\prime}, s^{p+1}\right)}
$$

$A_{n n} \Perp A_{n n}$

\downarrow pinch

Other applications

Using work of Hahn-Wilson, we also have ($G=C_{2}, \lambda=2 \sigma$)

Corollary (Horev-Klang-Z.)

(- $\operatorname{THR}\left(H \mathbb{F}_{2}\right) \simeq H \underline{F}_{2} \wedge\left(\Omega S^{\rho+1}\right)_{+} \simeq H \mathbb{F}_{2} \wedge\left(\Omega^{\sigma} S^{\lambda+1}\right)_{+}$
(3) $\operatorname{THR}\left(\mathrm{H} \underline{Z}_{(2)}\right) \simeq \mathrm{H} \underline{\underline{Z}}_{(2)} \wedge\left(\Omega^{\sigma}\left(S^{\lambda+1}\langle\lambda+1\rangle\right)\right)_{+}$

- $\int_{S^{\lambda}} \mathrm{HF}_{2} \simeq \mathrm{HF}_{2} \wedge S_{+}^{\lambda+1}$
- $\int_{S^{\lambda}} H \underline{Z}_{(2)} \simeq H \underline{Z}_{(2)} \wedge\left(S^{\lambda+1}\langle\lambda+1\rangle\right)_{+}$

Bökstedt proved

$$
\mathrm{THH}(\mathrm{HZ}) \simeq \mathrm{HZ} \oplus\left(\oplus_{k \geq 2} \Sigma^{2 k-1} \mathrm{HZ} / k\right)
$$

(2) is used to finish

Theorem (Dotto, Moi, Patchkoria, Reeh, Hahn, Wilson)
There is an equivalence of $\mathrm{H} \underline{\mathbb{Z}}$-module spectra

$$
\operatorname{THR}(\mathrm{H} \underline{Z}) \simeq H \underline{Z} \oplus\left(\oplus_{k \geq 2} \Sigma^{k \rho-1} \mathrm{HZ} / k\right)
$$

Other applications

Proposition (Horev-Klang-Z.)

$$
i_{e}^{*} \mathrm{THH}_{\mathrm{C}_{2}}\left(\mathrm{HF}_{2}\right) \simeq \mathrm{HF}_{2} \wedge\left(\Omega S^{3}\right)_{+}
$$

Proof:

$$
\begin{aligned}
\int_{S_{\text {rot }}^{1}} \mathrm{H} \underline{F}_{2} & \simeq \operatorname{Th}\left(\int_{S_{\text {rot }}^{1}} \Omega^{\rho} S^{\rho+1} \rightarrow \underline{\text { Pic }}\right) \\
& \simeq \operatorname{Th}\left(\operatorname{Map}\left(S_{\text {rot }}^{1}, \Omega^{\sigma} S^{\rho+1}\right) \rightarrow \underline{\operatorname{Pic}}\right)
\end{aligned}
$$

Thom isomorphism

$$
H \underline{\underline{F}}_{2} \otimes \int_{S_{\text {rot }}^{1}} H \underline{\underline{F}}_{2} \simeq H \underline{F}_{2} \otimes \Sigma_{+}^{\infty} \operatorname{Map}\left(S_{\text {rot }}^{1}, \Omega^{\sigma} S^{\rho+1}\right)
$$

Taking geometric fixed points

$$
\mathrm{HF}_{2} \otimes \mathrm{THH}_{c_{2}}\left(\mathrm{HF}_{2}\right) \simeq \mathrm{HF}_{2} \otimes \Sigma_{+}^{\infty} \operatorname{Map}_{\mathrm{C}_{2}}\left(S_{\text {rot }}^{1}, \Omega^{\sigma} S^{\rho+1}\right) \simeq \mathrm{HF} \mathbb{F}_{2} \otimes \mathrm{HF}_{2} \otimes \Sigma_{+}^{\infty} \Omega S^{3}
$$

Also proved by Adamyk-Gerhardt-Hess-Klang-Kong.

Thank you!

