Nonabelian Poincaré duality theorem and equivariant factorization homology of Thom spectra

Foling Zou

University of Michigan

May 10, 2021

Mindmap

Factorization homology, introduction

• Inputs: M and A

M is a framed *n*-manifold (with given isomorphism $TM \cong M \times \mathbb{R}^n$) *A* is an E_n -algebra in (Top, \times) , (Sp, \wedge) or (\mathcal{C}, \otimes)

- Output: $\int_M A$, an object of Top, Sp or C.
- Generalize ordinary homology theories on manifolds.
 - Special case: $\hat{C} = (\mathcal{D}(\mathbb{Z}), \oplus)$, where $\mathcal{D}(\mathbb{Z})$ consists of suitable chain complexes of \mathbb{Z} -modules. Let A be an abelian group, then

$$\int_M A \simeq C_*(M;A)$$

PropertiesEilenberg–Steenrod axiomsAyala–Francis axioms $H_*(X, \mathbb{Z})$ $\int_M A$ $H_*(pt, \mathbb{Z}) \cong \mathbb{Z}$ $\int_{\mathbb{R}^n} A \simeq A$ $H_*(X \sqcup Y, \mathbb{Z}) \cong H_*(X, \mathbb{Z}) \oplus H_*(Y, \mathbb{Z})$ $\int_{M \sqcup N} A \simeq \int_M A \otimes \int_N A$ excision / MV-sequencetensor excision

Detour: Λ -sequences and reduced operads

Goal

Describe reduced operads and reduced monads categorically.

Notation

Let Σ be the category of finite sets and bijections; Λ be the category of based finite sets and based injections. Objects: $\mathbf{n} = \{0, 1, 2, \dots, n\}$.

- We work with $(Top, \times, *)$, $(GTop, \times, *)$ or $(\mathcal{V}, \otimes, I)$.
- A symmetric sequence or Σ -sequence is a functor $\Sigma^{\mathrm{op}} \to \mathrm{Top}$; A Λ -sequence is a functor $\Lambda^{\mathrm{op}} \to \mathrm{Top}$.
- \bullet All such functors are denoted $\Sigma^{\rm op}[{\rm Top}]$ or $\Lambda^{\rm op}[{\rm Top}]$
- Examples. Suppose \mathscr{C} is an operad. Then $\{\mathscr{C}(n)\}$ forms a Σ -sequence. If moreover \mathscr{C} is reduced, meaning $\mathscr{C}(0) = *$, then $\{\mathscr{C}(n)\}$ forms a Λ -sequence. For $\mathbf{n} \hookrightarrow \mathbf{n} + \mathbf{1}$, we have

$$\mathscr{C}(n+1) = \mathscr{C}(n+1) \times *^{n+1} \to \mathscr{C}(n+1) \times \mathcal{C}(1) \times \cdots \times \mathcal{C}(1) \times \mathcal{C}(0) \to \mathcal{C}(n).$$

First monoidal product: the Day convolution

Unit: $\mathcal{I}_0 = \Lambda(-, \mathbf{0})$

Proposition (May-Zhang-Z.)

 $i^*\mathscr{D}\boxtimes_{\Sigma} i^*\mathscr{E}\cong i^*(\mathscr{D}\boxtimes_{\Lambda}\mathscr{E})$

Explicitly,

$$(\mathscr{D}\boxtimes\mathscr{E})(\mathsf{n})=\coprod_{n_1+n_2=n}(\mathscr{D}(\mathsf{n}_1)\times\mathscr{E}(\mathsf{n}_2))\times_{\Sigma_{n_1}\times\Sigma_{n_2}}\Sigma_n$$

Notation: Use $\Lambda^{\operatorname{op}}[\operatorname{Top}]_*$ to denote the category under the unit \mathcal{I}_0 , i.e. Λ -sequences that are pointed at **0**. Remark: Symmetric envolope $\widetilde{\mathscr{C}}$ of an operad \mathscr{C} :

objects *n*; morphisms $\widetilde{C}(m, n) = \mathscr{C}^{\boxtimes n}(m)$.

Second monoidal product: the Kelly product

For symmetric sequences, the Kelly product is

$$(\mathscr{C} \odot_{\Sigma} \mathscr{D})(\mathbf{n}) = \prod_{k,n_1+\dots+n_k=n} \mathscr{C}(\mathbf{k}) \times_{\Sigma_{n_1} \times \dots \times \Sigma_{n_k}} (\mathscr{D}(\mathbf{n}_1) \times \dots \times \mathscr{D}(\mathbf{n_k}))$$

This formula can be reinterpreted in a way that works for Λ -sequences. For $\mathscr{C} \in \Lambda^{\operatorname{op}}[\operatorname{Top}]$ and $\mathscr{D} \in \Lambda^{\operatorname{op}}[\operatorname{Top}]_*$, define

$$\mathscr{C} \odot_{\Lambda} \mathscr{D} = \mathscr{C} \otimes_{\Lambda} \mathscr{D}^{\boxtimes *}$$

• The unit of
$$\odot_{\Lambda}$$
 is $\mathcal{I}_{1,\Lambda} = \Lambda(-, 1)$.

• There is an isomorphism

$$(\mathscr{C} \boxtimes \mathscr{D}) \odot \mathscr{E} \cong (\mathscr{C} \odot \mathscr{E}) \boxtimes (\mathscr{D} \odot \mathscr{E}).$$

Using this, we have associativity of \odot .

• Remark:
$$\mathcal{I}_1^{\boxtimes k} \cong \Lambda(-, \mathbf{k}) =: \mathcal{I}_k, \ \mathcal{I}_m \odot \mathcal{I}_n \cong \mathcal{I}_{mn}.$$

Reduced operad and monad

Proposition

- (Kelly) An operad is a monoid in $(\Sigma^{\mathrm{op}}[\mathrm{Top}], \odot_{\Sigma}, \mathcal{I}_{1,\Sigma})$.
- (May-Zhang-Z.) A reduced operad is a monoid in $(\Lambda^{op}[Top], \odot_{\Lambda}, \mathcal{I}_{1,\Lambda})$.

Adjunction:

$$i_0: \mathrm{Top}_* \rightleftharpoons \Lambda^{\mathrm{op}}[\mathrm{Top}]_*: p_0$$

$$i_0(X)(\mathbf{n}) = \begin{cases} X & n = 0 \\ \varnothing & n > 0 \end{cases} \qquad p_0(\mathscr{C}) = \mathscr{C}(\mathbf{0})$$

• Any $\mathscr{C}\in\Lambda^{\rm op}[{\rm Top}]$ yields a functor ${\rm C}:{\rm Top}_*\to{\rm Top}_*$ by

$$\mathbf{C} X = p_0(\mathscr{C} \odot i_0 X)$$

- The associated functor of $\mathscr{C} \odot \mathscr{D}$ is CD.
- When \mathscr{C} is a reduced operad, C is a monad.
- Let X be a based space, then *i*₀X is a left *C*-module for ⊙ ⇔ X is a left C-module. Such X is called an algebra over the operad *C*.

Two Λ -sequences: \mathscr{D}_V and \mathscr{D}_M

• The little V-disk operad \mathscr{D}_V (Guillou–May) has the following data:

- $(G \times \Sigma_k)$ -spaces $\mathscr{D}_V(k) = \{(e_1, \cdots, e_k) | \text{ conditions } \}.$
- G acts on $\mathscr{D}_V(k)$ by conjugation.
- ► G-equivariant structure maps $\gamma : \mathscr{D}_V(k) \times \mathscr{D}_V(j_1) \times \cdots \times \mathscr{D}_V(j_k) \to \mathscr{D}_V(j_1 + \cdots + j_k).$

- $\mathscr{D}_M(k) = \{ \text{ embeddings of } V \text{-framed } G \text{-manifolds } \coprod_k V \to M \}$
- $\mathscr{D}_V, \mathscr{D}_M \in \Lambda^{op}[G \operatorname{Top}].$
 - \mathscr{D}_M has the same homotopy type as the ordered configuration spaces of M;
 - We have a map $\mathscr{D}_M \odot \mathscr{D}_V \to \mathscr{D}_M$, which induces a map of functors $D_M D_V \to D_M$.

Monadic bar construction of equivariant factorization homology

Let A be a \mathcal{D}_V -algebra in GTop. Then we have:

Associated functors

$$D_V, D_M : GTop_* \to GTop_*$$

• A simplicial G-space $\mathbf{B}_q(\mathbf{D}_M,\mathbf{D}_V,A) = \mathbf{D}_M(\mathbf{D}_V)^q A = p_0(\mathscr{D}_M \odot \mathscr{D}_V^{\odot q} \odot i_0 A).$

$$\int_{M} A := \mathbf{B}(D_{M}, D_{V}, A) = p_{0}\mathbf{B}(\mathscr{D}_{M}, \mathscr{D}_{V}, i_{0}A).$$

Summary: Equivariant factorization homology of V-framed manifolds

G: finite group. V: orthogonal G-representation.

• Inputs: *M* and *A M* is a *V*-framed *G*-manifold *A* is an *E_V*-space

• Output:
$$\int_{M} A = B(D_M, D_V, A)$$
, a *G*-space

(Andrade, Miller-Kupers, Z.) Likewise, we can work with *G*-spectra *A*.

- Remark: If M is not framed, we require A to have more structure than an E_n -algebra.
- Related question: What is the E₂-page of the homology geometric realization spectral sequence? H_{*}(D_nX, k) is an explicit functor of H_{*}(X, k). We need to know H_{*}(D_MX, k) as a functor of H_{*}(X, k). Equivariantly, even the calculation of H^G_{*}(D_VX) is unknown.

Examples of E_V -algebra

• $\Omega^V X = \operatorname{Map}_*(S^V, X)$ is an E_V -space.

- An E_n -G-space is an E_n -space such that the structure maps are G-equivariant.
- Let $G = C_2 = \{e, g\}$ and $V = \sigma$. An E_{σ} - C_2 -space is an underlying E_1 -space such that g acts by "anti- E_1 -map".

Examples of factorization homology

Examples

•
$$\int_{S^1} A \simeq \text{THH}(A).$$

• $\int_{T^n} A$ is iterated THH

Properties

• The extra degeneracy gives $\int_V A = \mathbf{B}(D_V, D_V, A) \simeq A$ for an E_V -algebra A.

Recall

$$(\mathscr{C} \boxtimes \mathscr{D}) \odot \mathscr{E} \cong (\mathscr{C} \odot \mathscr{E}) \boxtimes (\mathscr{D} \odot \mathscr{E}).$$

This gives

$$\int_{M\sqcup N} A = p_0 \mathbf{B}(\mathscr{D}_{M\sqcup N}, \mathscr{D}_V, i_0 A) \cong p_0 \mathbf{B}(\mathscr{D}_M \boxtimes \mathscr{D}_N, \mathscr{D}_V, i_0 A) \cong \int_M A \otimes \int_N A$$

Examples

•
$$G = C_2$$
. $\sigma = sign rep.$ Then S^{σ} is σ -framed.
 $\int_{S^{\sigma}} A \simeq \text{THR}(A)$ for an E_{σ} - C_2 -spectra A. (Horev)
(THR: Hessolholt–Madsen)

2 $G = C_p$. Then S^1_{rot} is \mathbb{R} -framed. $\Phi^{C_p}(\int_{S^1_{rot}} A) \simeq THH(A; A^{\tau}) \simeq i_e^* THH_{C_p}A$ for an E_1 - C_p -spectra A. (Horev) (twisted / relative THH: Angeltveit–Blumberg–Gerhardt–Hill–Lawson-Mandell)

Another construction: axiomatic approach (Horev)

$$\begin{array}{ccc} \operatorname{Disk}_{n}^{\operatorname{fr}} & \stackrel{A}{\longrightarrow} (\operatorname{Top}, \times) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \operatorname{Mfld}_{n}^{\operatorname{fr}} & & & \\ \end{array}$$

- Uses G-∞-categories (Barwick–Dotto–Glasman–Nardin–Shah) and equivariant Morse theory (Wasserman).
- Coefficient: A is a package of H-spaces for each $H \subset G$.
- Input: *H*-manifold *N*. Output: *H*-space $\int_N A$.

$$\int_{\operatorname{Res}_K^H N} A \simeq \operatorname{Res}_K^H (\int_N A); \ \int_{G \times_H N} A \simeq N_H^G (\int_N A).$$

Comparison with my construction: (They are the same!)

- In the V-framed case, Horev's A is just an E_V-G-space. For a G-manifold M, Horev's ∫_M A is a derived operad left Kan extension.
- The derived operad left Kan extension agrees with the homotopy left Kan extension, which can be computed by the bar construction. (Berger-Moerdijk, Horel)

When the coefficient is a V-fold loop space.

Theorem (Equivariant nonabelian Poincaré duality theorem, Z.)

M: V-framed G-manifold, A: G-connected E_V -algebra in GTop. Then there is a weak G-equivalence:

$$\int_{M} A \to \operatorname{Map}_{*}(M^{+}, \mathbf{B}^{V}A),$$

where $\mathbf{B}^V A$ is the V-fold deloop of A, i.e., $A \simeq \Omega^V \mathbf{B}^V A$ as G-spaces.

Non-equivariant statement: Salvatore, Lurie, Miller, Ayala-Francis, Recall

$$\int_M A = |\mathrm{D}_M(\mathrm{D}_V)^{\bullet}(A)| \text{ and } \mathbf{B}^V A = |\Sigma^V(\mathrm{D}_V)^{\bullet}A|.$$

scanning map (McDuff, Segal, Bödigheimer, ...)

$$s: D_M(X) \to \operatorname{Map}_*(M^+, \Sigma^V X).$$

Theorem (Rourke–Sanderson)

The scanning map $s : D_M(X) \to Map_*(M^+, \Sigma^V X)$ is a weak G-equivalence if X is G-connected.

Related question: scanning map when X is a spectrum?

Foling Zou (UMich)

(Equivariant) Thom spectra functor

(Ando-Blumberg-Gepner-Hopkins-Rezk)

- X: ∞ -groupoid, R: ring spectra.
- *R*-line: the ∞ -category of free rank one *R*-modules and equivalences. This is an ∞ -groupoid that models BGL_1R .
- Definition. A bundle is $f: X \to R$ -line .
- The Thom *R*-module spectrum of *f* is

$$Mf = \operatorname{colim}(X \xrightarrow{f} R\operatorname{-line} \subset R\operatorname{-mod})$$

(Horev-Klang-Z.)

- $\operatorname{Sp}^{\mathsf{G}}$: parametrized G- ∞ -category of G-spectra.
- $\underline{\operatorname{Pic}} := \underline{\operatorname{Pic}}(\operatorname{Sp}^{\mathsf{G}})$: spanned by invertible objects.
- <u>Pic</u> is a G-symmetric monoidal G- ∞ -groupoid (modeling a G- E_{∞} -space).
- Definition. The Thom spectra functor is the *G*-left Kan extension along Yoneda embedding

• For G = e, this is equivalent to the ABGHR functor in the case of R = S.

When the coefficient is the Thom spectra of a V-fold loop map

Lemma

$$\begin{array}{l} M: \ a \ W\text{-}framed \ G\text{-}manifold, \ A = \operatorname{Th}(\Omega^W X \to \underline{\operatorname{Pic}}(\underline{\operatorname{Sp}}^G)). \ Then \\ \int_M A \simeq \operatorname{Th}(\operatorname{Map}_*(M^+, X) \to \underline{\operatorname{Pic}}(\underline{\operatorname{Sp}}^G)). \end{array}$$

Past results

- (Blumberg-Cohen-Schlichtkrull) n=1, $\text{THH}(A) \simeq \text{Th}(LX \rightarrow BF)$.
- (Klang) The nonequivariant statement.

Proof of the lemma

• Step 1: commute Thom spectra with factorization homology

$$\mathfrak{A}^{w}f$$
 is an \mathbb{E}_{w} -algebra in $\mathfrak{Spuce}^{\sigma}/\mathfrak{B}$. $\mathfrak{B}=\mathfrak{Pic}(\mathfrak{F}^{\mathfrak{P}})$.
 $\mathfrak{S}_{M}\mathfrak{Th}(\mathfrak{A}^{w}f) \simeq \mathfrak{Th}(\mathfrak{S}_{M}\mathfrak{T}^{w}f)$.
 $\mathfrak{Here}, \ \mathfrak{S}_{M}\mathfrak{A}^{w}f = (\ \mathfrak{S}_{M}\mathfrak{Q}^{w}X \rightarrow \mathfrak{S}_{M}\mathfrak{B} \longrightarrow \mathfrak{B})$.

• Step 2: use the nonabelian Poincare duality theorem.

$$\int_{M} \mathfrak{L}^{W} X \simeq Map_{*}(M^{\dagger}, X).$$

When the coefficient is the Thom spectra of a V + 1-fold loop map.

Theorem (Horev-Klang-Z.)

Let A be the Thom spectrum of an E_{V+1} -map $\Omega^{V+1}X \to \underline{\operatorname{Pic}}(\underline{\operatorname{Sp}}^G)$ such that X is suitably connected. Then $\int A \simeq A \wedge (\Omega X)_+.$

$$\int_{\mathcal{S}^V\times\mathbb{R}}A\simeq A\wedge (\Omega X)_+.$$

 $G = C_2$, σ : sign rep, ρ : regular rep

Theorem (Behrens–Wilson)

 $\operatorname{H}\mathbb{F}_{2}$ is the Thom spectrum of a ρ -fold loop map $\Omega^{\rho}S^{\rho+1} \to B_{C_{2}}O$.

$$\mathrm{THR}(\mathrm{H}\underline{\mathbb{F}_{2}})\simeq\int_{\mathcal{S}^{\sigma}\times\mathbb{R}}\mathrm{H}\underline{\mathbb{F}_{2}}\simeq\mathrm{H}\underline{\mathbb{F}_{2}}\wedge(\Omega\mathcal{S}^{\rho+1})_{+}.$$

$$\mathrm{THR}_{\star}(\mathrm{H}\underline{\mathbb{F}}_{2}) \cong \pi_{\star}(\mathrm{H}\underline{\mathbb{F}}_{2})[x_{\rho}]$$

This recovers Dotto-Moi-Patchkoria-Reeh.

Proof of theorem for $A = \operatorname{H}\mathbb{F}_2$ and $V = \sigma$

$$\begin{array}{ll} H\underline{F}_{2} \simeq Th(\mathfrak{L}s^{p+1} \rightarrow B) & (15ehuens - Wi(son))\\ By the lemma, we already have: \\ \int_{Ann} H\underline{F}_{2} \simeq Th(\operatorname{Map}_{x}(Ann^{\dagger}, s^{p+1}) \rightarrow B) \\ & (1 - 1) + (1 - 1)$$

A geometric proof that the splitting is E_1

Other applications

Using work of Hahn-Wilson, we also have ($G = C_2$, $\lambda = 2\sigma$)

Corollary (Horev-Klang-Z.)

- THR(H $\underline{\mathbb{F}}_2$) \simeq H $\underline{\mathbb{F}}_2 \land (\Omega S^{\rho+1})_+ \simeq$ H $\underline{\mathbb{F}}_2 \land (\Omega^{\sigma} S^{\lambda+1})_+$

Bökstedt proved

$$\operatorname{THH}(\operatorname{H}\mathbb{Z}) \simeq \operatorname{H}\mathbb{Z} \oplus (\oplus_{k \geq 2} \Sigma^{2k-1} \operatorname{H}\mathbb{Z}/k)$$

(2) is used to finish

Theorem (Dotto, Moi, Patchkoria, Reeh, Hahn, Wilson)

There is an equivalence of $H\underline{\mathbb{Z}}$ -module spectra

 $\mathrm{THR}(\mathrm{H}\underline{\mathbb{Z}})\simeq\mathrm{H}\underline{\mathbb{Z}}\oplus(\oplus_{k\geq 2}\Sigma^{k\rho-1}\mathrm{H}\mathbb{Z}/k)$

Other applications

Proposition (Horev-Klang-Z.)

$$i_e^*\mathrm{THH}_{C_2}(\mathrm{H}\underline{\mathbb{F}}_2)\simeq\mathrm{H}\mathbb{F}_2\wedge(\Omega S^3)_+$$

Proof:

$$\begin{split} \int_{S_{rot}^1} \mathrm{H}\underline{\mathbb{F}}_2 &\simeq \mathrm{Th}\left(\int_{S_{rot}^1} \Omega^{\rho} S^{\rho+1} \to \underline{\mathrm{Pic}}\right) \\ &\simeq \mathrm{Th}\left(\mathrm{Map}(S_{rot}^1, \Omega^{\sigma} S^{\rho+1}) \to \underline{\mathrm{Pic}}\right) \end{split}$$

Thom isomorphism

$$\mathrm{H}\underline{\mathbb{F}}_{2}\otimes \int_{\mathcal{S}_{rot}^{1}}\mathrm{H}\underline{\mathbb{F}}_{2}\simeq \mathrm{H}\underline{\mathbb{F}}_{2}\otimes \Sigma^{\infty}_{+}\mathrm{Map}(\mathcal{S}_{rot}^{1},\Omega^{\sigma}\mathcal{S}^{\rho+1})$$

Taking geometric fixed points

 $\mathrm{H}\mathbb{F}_2\otimes\mathrm{THH}_{\mathcal{C}_2}(\mathrm{H}\underline{\mathbb{F}}_2)\simeq\mathrm{H}\mathbb{F}_2\otimes\Sigma^\infty_+\mathrm{Map}_{\mathcal{C}_2}(S^1_{\mathit{rot}},\Omega^\sigma S^{\rho+1})\simeq\mathrm{H}\mathbb{F}_2\otimes\mathrm{H}\mathbb{F}_2\otimes\Sigma^\infty_+\Omega S^3$

Also proved by Adamyk-Gerhardt-Hess-Klang-Kong.

Foling Zou (UMich)

Thank you!