Topology Seminar

Larry Guth

of MIT will be speaking on

Contraction of areas and homotopy-type of mappings

on September 24 at 4:30 in MIT Room 2-131

I'm going to talk about connections between the geometry of a map and its homotopy type. Suppose we have a maps from the unit *m*-sphere to the unit *n*-sphere. We say that the *k*-dilation of the map is < L if each *k*-dimensional surface with *k*-dim volume *V* is mapped to an image with *k*-dim volume at most *LV*. Informally, if the *k*-dilation of a map is less than a small ϵ , it means that the map strongly shrinks each *k*-dimensional surface. Our main question is: can a map with very small *k*-dilation still be homotopically non-trivial? Here are the main results. If k > (m + 1)/2, then there are homotopically non-trivial maps from S^m to S^{m-1} with arbitrarily small *k*-dilation. But if $k \leq (m+1)/2$, then every homotopically non-trivial map from S^m to S^{m-1} has *k*-dilation at least c(m) > 0.