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Abstract

We give an algorithm to compute the associated variety of a Harish-
Chandra module for a real reductive group G(R). The algorithm is
implemented in the atlas software package.

Contents

1 Introduction 2

2 Kostant-Sekiguchi correspondence 10

3 Asymptotic cones 20

4 Equivariant K-theory 26

5 Associated varieties for (g,K)-modules 32

6 The case of complex reductive groups 36

7 Representation basis for K-theory: C case 42

8 Geometric basis for K-theory: C case 44

9 Associated varieties for complex groups 52

10 Representation basis for K-theory: R case 53

11 Standard representations restricted to K 64

12 Geometric basis for K-theory: R case 69

13 Associated varieties for real groups 73

1



1 Introduction

A great guiding principle of infinite-dimensional representation theory is the
method of coadjoint orbits of Alexandre Kirillov and Bertram Kostant. It
says that there should be a close relationship

ig∗R/GR =
orbits of a real Lie group on the
imaginary dual of its Lie algebrayΠ(

ĜR

)
unitary

= irreducible unitary representations.

(1.1a)

The phrase “coadjoint orbit” means an orbit of a Lie group on the vector
space dual of its Lie algebra. Here

OiR 7→ Π(OiR)

is informal notation for the desired construction attaching a unitary repre-
sentation to a coadjoint orbit. This map Π is not intended to be precisely
defined or even definable: in the cases where such a correspondence is known,
the domain of Π consists of just certain coadjoint orbits (satisfying integral-
ity requirements), and endowed with some additional structure (something
like local systems). We introduce the name Π just to talk about the problem.

We will be concerned here with the case of real reductive groups. For
the remainder of this introduction, we therefore assume

G =
complex connected reductive algebraic
group defined over R,

G(R) = group of real points of G.

(1.1b)

The status of the orbit method for real reductive groups is discussed in
some detail for example in [26]. There it is explained that

the construction of a map Π (from orbits to representations)
reduces to the case of nilpotent coadjoint orbits.

(1.1c)

(The phrase nilpotent coadjoint orbit is defined in (2.3) below.)
This nilpotent case remains open in general. We write

N ∗iR = nilpotent elements in ig(R)∗. (1.1d)

(A precise definition appears in Section 2.) We write informally

Ĝ(R)unip =
representations corresponding to
nilpotent coadjoint orbits,

(1.1e)
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the unipotent representations; this is not a definition, because the Kirillov-
Kostant orbit correspondence Π has not been defined.

Harish-Chandra found that the study of irreducible unitary representa-
tions could proceed more smoothly inside the larger set

Ĝ(R) ⊃ Ĝ(R)unitary (1.1f)

of irreducible quasisimple representations. These are the irreducible objects
of the category introduced in (1.2a) below. (These are irreducible topological
representations on nice topological vector spaces. “Quasisimple” means that
the center of the enveloping algebra is required to act by scalars, as Schur’s
lemma (not available in this topological setting) suggests that it should.)

The present paper is concerned with how to tell whether a proposed
map Π is reasonable. The idea comes from [15], [6], and [25]. To each
coadjoint orbit we can attach an asymptotic cone, a closed GR-invariant
cone (Definition 3.3)

OiR ∈ ig(R)∗/G(R) −→ ConeR(OiR) ⊂ N ∗iR. (1.1g)

An easy but important property is that the asymptotic cone of a nilpotent
orbit is just its closure:

ConeR(OiR) = OiR, OiR ∈ N ∗iR/G(R). (1.1h)

In a parallel way, to each irreducible quasisimple representation, Howe
in [15] (see also [6]) attached a wavefront set, a closed cone

π ∈ Ĝ(R) −→WFR(π) ⊂ N ∗iR/G(R). (1.1i)

Here is an outline of Howe’s definition. If D is a generalized function on a
manifold M , and m is a point of M , then the wavefront set of D at M is

0 ∈WFm(D) ⊂ iT ∗mM, (1.1j)

a nonzero closed cone in the cotangent space at m. The size of WFm(D)
measures the singularity of D near m: the wavefront set of a smooth function
is just the point zero, and the wavefront set of the Dirac delta function is the
full cotangent space at m. The factor of i is helpful because the definition
of WFm involves the Fourier transform of D “near m;” and this Fourier
transform is most naturally a function on iT ∗mM .

Harish-Chandra attached to the irreducible quasisimple representation π
a distribution character Θπ, which is a generalized function on G(R). If π is

3



finite-dimensional, then Θπ is a smooth function (whose value at g ∈ G(R)
is trπ(g)), so WFe(Θπ) = {0}. If π is infinite-dimensional, then Θπ must
be singular at the identity, since its “value” would be the dimension of π;
so in this case WFe(Θπ) is a nonzero cone.

In general Howe’s definition amounts to

WFR(π) =def WFe(Θπ) ⊂ ig∗R (1.1k)

Howe proves ([15, Proposition 2.4]) that

WFR(π) ⊂ N ∗iR, (1.1l)

a closed finite union of nilpotent coadjoint orbits for G(R).
One of the desiderata of the orbit method is that the asymptotic cone

and wavefront set constructions should be compatible with the proposed
map Π of (1.1a): if OiR is a coadjoint orbit, then

WFR(Π(OiR))
?
= ConeR(OiR). (1.1m)

When OiR is nilpotent, (1.1h) shows that this desideratum simplifies to

WFR(Π(OiR))
?
= OiR (OiR nilpotent). (1.1n)

Our motivation (not achieved) is the construction of a Kirillov-Kostant
orbit-to-representation correspondence Π as in (1.1a). According to (1.1c),
it is enough to construct Π(OiR) for each nilpotent orbit OiR. A common
method to do this has been to construct a candidate representation π, and
then to test whether the requirement (1.1n) is satisfied. That is,

if OiR is nilpotent, candidates for
Π(OiR) must satisfy WFR(π) = OiR.

(1.1o)

In order to use this idea to guide the construction of Π, we therefore need
to know how to

compute the wavefront set of any quasisimple
irreducible representation.

(1.1p)

That is the problem solved in this paper.
Everything so far has been phrased in terms of real nilpotent coadjoint

orbits, but all of the ideas that we will use come from complex algebraic
geometry. In Sections 2 and 5 we will recall results of Kostant-Sekiguchi
[21] and Schmid-Vilonen [20] allowing a reformulation of (1.1p) in complex-
algebraic terms.
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We do not know even how properly to formulate our main results except
in this complex-algebraic language, so a proper summary of them will appear
only in Section 7. For the moment we will continue as if it were possible
to make a real-groups formulation of the solution to (1.1p). The reader can
take this as an outline of an interesting problem: to make precise sense of
the statements in the rest of the introduction.

We continue with the assumption (1.1b) that G(R) is a real reductive
algebraic group. Write

Fmod(G(R)) =
Z(g)-finite finite length smooth Fréchet
representations of moderate growth

(1.2a)

(see [29, Chapter 11.6]). Casselman and Wallach proved that this is a nice
category; the irreducible objects are precisely the irreducible quasisimple

representations Ĝ(R), so the Grothendieck group of the category is

K0(Fmod(G(R))) = Z · Ĝ(R), (1.2b)

a free abelian group with basis the irreducible quasisimple representations.
About notation: the maximal compact subgroup of a reductive group

is more or less universally denoted K, and we are unwilling to change that
notation. This paper makes extensive use of K-theory, beginning with the
Grothendieck group K0. To try to reduce the confusion with the compact
group K, we will write K to refer to K-theory.

We do not know a good notion of equivariant K-theory for real alge-
braic groups. But such a notion ought to exist; and there ought to be an
“associated graded” map

grR : K0(Fmod(G(R)))
?→ KG(R)(N ∗iR). (1.2c)

Each element of KG(R)(N ∗iR) should have a well-defined “support,” which
should be a closed G(R)-invariant subset of N ∗iR. In the case of a quasisimple
representation π of finite length, this support should be the wavefront set of
(1.1i):

suppR grR([π])
?
= WFR(π). (1.2d)

The question mark is included because the left side is for the moment unde-
fined; in the algebraic geometry translation of Definition 5.2, this equality
will become meaningful and true. The problem (1.1p) becomes

compute explicitly the map suppR ◦ grR. (1.2e)
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Evidently this can be done in two stages: to compute explicitly the map
grR, and then to compute explicitly the map suppR.

Here is the first step. Just as in the case of highest weight represen-
tations, each irreducible quasisimple representation π is described by the
Langlands classification as the unique irreducible quotient of a “standard
representation.” Standard representations have very concrete parameters

Γ = (Λ, ν), Γ ∈ PL(G(R)) (1.2f)

which we will explain in Section 10 (see in particular (10.5)). For the mo-
ment, the main points are that

Λ ∈ Pdisc(G(R)) (1.2g)

runs over a countable discrete set, and

ν ∈ a∗(Λ) (1.2h)

runs over a complex vector space associated to the discrete parameter Λ.
Attached to each parameter Γ we have

I(Γ) � J(Γ), (1.2i)

a standard representation and its unique irreducible quotient.

“Proposition” 1.3. Suppose we are in the setting of (1.2).

1. The irreducible modules

{J(Γ) | Γ ∈ PL(G(R))}

are a Z basis of the Grothendieck group K0(Fmod(G(R))).

2. The standard modules

{I(Γ) | Γ ∈ PL(G(R))}

are a Z basis of K0(Fmod(G(R))).

3. The change of basis matrix

J(Γ) =
∑

Ξ

M(Ξ,Γ)I(Ξ)

is computed by Kazhdan-Lusztig theory ([18]).
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4. The image
grR(I(Λ, ν)) ∈ KG(R)(N ∗iR)

is independent of the continuous parameter ν ∈ a(Λ)∗.

5. The classes
{grR(I(Λ, 0)) | Λ ∈ Pdisc(G(R))}

are a Z-basis of the equivariant K-theory KG(R)(N ∗iR).

The quotation marks are around the proposition for two reasons. First,
we do not have a definition of G(R)-equivariant K-theory; we will actually
prove algebraic geometry analogues of (4) and (5) (Corollary 10.9 and The-
orem 10.11). Second, the description of the Langlands classification above
is slightly imprecise; the corrected statement is just as concrete and precise,
but slightly more complicated.

One way to think about (4) is that K-theory is a topological notion,
which ought to be invariant under homotopy. Varying the continuous pa-
rameter in a standard representation is a continuous deformation of the
representations, and so does not change the class in K-theory.

This proposition is a complete computation of grR: it provides Z bases
for the range and domain, and says that the map is given by identifying
certain continuous families of basis vectors. Furthermore it explains how to
write each irreducible module in the specified basis.

We turn next to the explicit computation of suppR. Again the key point
is a change of basis: this time from the representation-theoretic basis of
equivariant K-theory given by Proposition 1.3(5) (or rather Corollary 10.9)
to one related to the geometry of N ∗iR.

Suppose that H(R) is any real algebraic subgroup of G(R). Assuming
that there is a reasonable notion of equivariant K-theory for real algebraic
groups, it ought to be true that

KG(R)(G(R)/H(R))
?' KH(R)(point), (1.4)

(As usual the question mark is a reminder that we do not know how to
define this K-theory.) The right side in turn should be a free abelian group
with natural basis indexed by the irreducible representations of a maximal
compact subgroup HK(R). Combining these facts with the notion of support
in equivariant K-theory, we get

“Proposition” 1.5. Suppose Y is a closed G(R)-invariant subset of N ∗iR
(a union of orbit closures). Write

{Y1, · · · , Yr}, Yj ' G(R)/Hj(R)

7



for the open orbits in Y , and

∂Y = Y −
⋃
j

Yj

for their closed complement. Write finally

K
G(R)
Y (N ∗iR)

for the subspace of classes supported on Y .

1. There is a natural short exact sequence

0→ K
G(R)
∂Y (N ∗iR)→ K

G(R)
Y (N ∗iR)→

∑
j

KG(R)(Yj)→ 0.

2. There are natural isomorphisms

KG(R)(Yj) ' KHj(R)(point) ' Z · Ĥj,K(R),

a free abelian group with basis indexed by irreducible representations
of a maximal compact subgroup Hj,K(R) ⊂ Hj(R).

3. The equivariant K-theory space KG(R)(N ∗iR) has a Z-basis

{e(OiR, τ)}

indexed by pairs (OiR, τ), with

OiR ' G(R)/H(R) ⊂ N ∗iR

a nilpotent coadjoint orbit, and τ ∈ ĤK(R) an irreducible representa-
tion of a maximal compact subgroup of H(R).

4. The basis vector e(OiR, τ) is supported on OiR, and has a well-defined
image in

KY
G(R)/K

∂Y
G(R);

that is, it is unique up to a combination of basis vectors e(O′iR, τ ′),
with

O′iR ⊂ ∂OiR.

5. Each subspace
span

(
{e(O′iR, τ ′) | O′iR ⊂ OiR}

)
has an explicitly computable spanning set S(OiR) expressed in the basis
of Proposition 1.3(5).
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6. Suppose that σ ∈ KG(R)(N ∗iR) is a class in equivariant K-theory; write

σ =
∑
OiR,τ

mOiR,τe(OiR, τ).

Then
suppR(σ) =

⋃
OiR⊂N ∗iR,

some mOiR,τ 6= 0

OiR.

7. The open orbits OiR,j in suppR(σ) are the minimal ones so that

σ ∈
∑
j

S(OiR,j).

The quotation marks are around this proposition again because we do
not know a good definition of G(R)-equivariant K-theory, much less whether
it has these nice properties; we will actually prove versions in algebraic
geometry (Theorem 4.5 and Corollary 12.3). The “explicitly computable”
assertion is explained in Algorithm 12.4.

Part (7) of the proposition provides a (linear algebra) computation of the
support from the expression of σ in the basis for K-theory of Proposition
1.3(5) ((or rather Corollary 7.4): we must decide whether a vector of integers
(a Kazhdan-Lusztig character formula, computed using deep results about
perverse sheaves) is in the span of other vectors of integers (the spanning
sets S(OiR), computed by much more elementary geometry in part (5)).

In case G(R) is a complex group regarded as a real group, these two
propositions (and therefore the algorithm for (1.1p)) are closely related to a
conjecture of Lusztig, proved by Bezrukavnikov in [7], establishing a bijection
between some objects on nilpotent orbits (related to equivariant K-theory)
and dominant weights. These ideas of Lusztig and Bezrukavnikov, and es-
pecially Achar’s work in [1], guided all of our work. This may be clearest
in Section 8, which explains (still in the complex case) Achar’s ideas for
computing the spanning set of Proposition 1.5(5).

Section 9 will explain how to solve (1.1p) for a complex reductive alge-
braic group.

Section 10 explains the general formalism for extending matters to real
groups. Section 11 has some information about the geometry of cohomo-
logical induction, needed to relate the geometry of nilpotent orbits to the
Langlands classification. This is used in Section 12 to complete the proof of
Proposition 1.5 for real groups.
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The wavefront set of (1.1i) has a refinement, the wavefront cycle:

WFR(π) =
∑

OiR open
in WFR(π)

µOiR(π)OiR. (1.6a)

Here the coefficient µOiR(π) is a genuine virtual representation of a maximal
compact subgroup of the isotropy group G(R)y of a point y ∈ OiR. In the
formalism explained in Proposition 1.5, this means that there should be a
natural definition

µOiR(π) ∈ KG(R)(OiR); (1.6b)

but we will actually use an algebraic geometry definition (Definition 5.2).
In the setting of Proposition 1.5(6), the coefficient µOiR(π) is

µOiR(π) =
∑

mOiR,τ (π)τ ; (1.6c)

so the wavefront cycle can be computed from knowledge of the basis vectors
e(OiR, τ). But what we actually know how to compute, as explained in
Proposition 1.5(5), is not these individual basis vectors but rather the span
of all those attached to a single OiR. For this reason we cannot compute the
full wavefront cycle.

There is a weaker invariant, the weak wavefront cycle:

WFweak,R(π) =
∑

OiR open
in WFR(π)

mOiR(π)OiR, mOiR(π) = dimµOiR(π). (1.6d)

Here the coefficient mOiR(π) is just a positive integer instead of a compact
group representation. The algorithm computing the spanning set S(OiR)
computes the multiplicity ms for each of its spanning vectors s; so the al-
gorithm of Proposition 1.5 actually computes the weak wavefront cycle as
well as the wavefront set for any finite length representation π.

2 Kostant-Sekiguchi correspondence

We work in the setting (1.1b), with G(R) the group of real points of a
complex connected reductive algebraic group G. Write

σR : G→ G, GσR = G(R) (2.1a)
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for the Galois action. As usual we fix also a compact real form σ0 of G, so
that

σRσ0 = σ0σR =def θ : G→ G (2.1b)

is an (algebraic) involutive automorphism of G, the Cartan involution. The
group

K =def G
θ, K(R) = K ∩G(R) (2.1c)

is a (possibly disconnected) complex reductive algebraic group, and K(R)
is a compact real form. What Cartan showed is that K(R) is a maximal
compact subgroup of G(R). We write

g(R) = Lie(G(R)), g = g(R)⊗R C ' Lie(G), (2.1d)

and use parallel notation for other algebraic groups. The very familiar de-
composition

g = g(R) + ig(R) (2.1e)

is the +1 and −1 eigenspaces of σR. The analogue for θ is the Cartan
decomposition

g = k + s, s = g−θ. (2.1f)

In this setting, we can define

Mf (g,K) = finite length (g,K)-modules (2.1g)

([24]). An invariant Hermitian form on a (g,K)-module X is a Hermitian
bilinear form 〈, 〉 on X satisfying

〈k · x, y〉 = 〈x, σR(k−1)y〉 (x, y ∈ X, k ∈ K)

〈Z · x, y〉 = 〈x, σR(−Z)y〉 (x, y ∈ X,Z ∈ g).
(2.1h)

Harish-Chandra showed that many questions about functional analysis
and representations of G(R) on Hilbert spaces could be reduced to algebraic
questions about (g,K)-modules. Here are some of his main results, and a
related result of Casselman and Wallach. We will use Theorem 2.2(2) to
identify the objects of our ultimate interest (irreducible unitary representa-
tions) with something easier (irreducible (g,K)-modules).

Theorem 2.2. (Harish-Chandra and Casselman-Wallach; see [11, Theo-
rems 2, 3, 6, 8, and 9] and [29, 11.6.8]) Suppose we are in the setting (1.2a)
and (2.1).

11



1. The functor

V 7→ VK(R) =def {v ∈ V | dim span〈k · v | k ∈ K(R)〉 <∞}

is an equivalence of categories from Fmod(G(R)) to Mf (g,K). (Here
we implicitly extend the differentiated action of g(R) on V to the com-
plexification g, and the locally finite representation of the compact
group K(R) to an algebraic representation of its complexification K.)

In particular, the set Ĝ(R) of irreducible quasisimple smooth Fréchet
representations of moderate growth is naturally identified with the set
of irreducible (g,K)-modules.

2. If (π,H) is a unitary representation of G of finite length, then

H∞ = {v ∈ H | G→ H, g 7→ π(g)v is smooth}

is a Z(g)-finite finite length smooth Fréchet representation of moderate
growth. This functor defines an inclusion

Ĝ(R)unitary ⊂ Ĝ(R).

3. The image of the functor

H 7→ H∞K(R)

(from finite length unitary representations to Mf (g,K)) consists pre-
cisely of those (g,K)-modules X admitting a positive definite invariant
Hermitian form.

We now describe the geometry that we will use to make geometric in-
variants of finite-length representations.

The complex nilpotent cone consists of elements of g∗ whose orbits are
weak (complex) cones (Definition 3.5 below):

N ∗ = {ξ ∈ g∗ | C× · ξ ⊂ G · ξ}. (2.3a)

The imaginary nilpotent cone consists of elements of ig(R)∗ whose orbits are
(positive real) cones:

N ∗iR = N ∗ ∩ ig(R)∗

= {−1 eigenspace of σR on N ∗}
= {iξ ∈ ig(R)∗ | R×+ · iξ ⊂ G(R) · iξ}.

(2.3b)
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It is classical that G acts on N ∗ with finitely many orbits; consequently
G(R) acts on N ∗iR with finitely many orbits.

The K-nilpotent cone is

N ∗θ = N ∗ ∩ (g/k)∗

= {−1 eigenspace of θ on N ∗}
= {ξ ∈ s∗ | C× · ξ ⊂ K · ξ}.

(2.3c)

Kostant and Rallis proved in [17] that K acts on N ∗θ with finitely many
orbits.

We wish now to describe the Kostant-Sekiguchi relationship betweenN ∗iR
and N ∗θ . It is a gap in our understanding that there is no really satisfactory
description of this relationship in terms of orbits on g∗; rather we need to
use an identification of g∗ with g. Our reductive algebraic group G may
always be realized as a group of matrices, in a way respecting the real form
and the Cartan involution:

G ⊂ GL(n,C), σR(g) = g, θ(g) = tg−1 (g ∈ G). (2.4a)

This provides first of all inclusions

g ⊂ gl(n,C),

k(R) ⊂ real skew-symmetric matrices

s ⊂ complex symmetric matrices

(2.4b)

(and others of a similar nature) and then an invariant bilinear form on g,

〈X,Y 〉 = tr(XY ) (2.4c)

taking positive real values on k(R) and negative real values on s(R), and
making these spaces orthogonal. It follows that the (complex-valued) form
〈, 〉 is nondegenerate on g and makes θ orthogonal (so that the Cartan de-
composition (2.1f) is orthogonal).

We use the nondegenerate form 〈, 〉 to identify

g ' g∗, X 7→ ξX , ξX(Y ) = 〈X,Y 〉, (2.4d)

and so also to define a nondegenerate form (still written 〈, 〉) on g∗.
We define adjoint nilpotent cones by

N = {nilpotent X ∈ g}
NiR = {nilpotent X ∈ ig(R)}
Nθ = {nilpotent X ∈ s}

(2.4e)
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In each line the term “nilpotent” can be interpreted equivalently as “nilpo-
tent in gl(n,C) (see (2.4b))” or as “X belongs to [g, g] and ad(X) is nilpo-
tent.”

The identification (2.4d) provides equivariant identifications N ∗ ' N ,
N ∗iR ' NiR, and so on. The choice of form is unique up to a positive scalar
on each simple factor of g, so the identification of nilpotent adjoint and
coadjoint orbits that it provides is independent of choices.

Before discussing nilpotent orbits, we record a familiar but critical fact
about the form 〈, 〉.

Proposition 2.5. In the setting of (2.4), suppose that H ⊂ G is a complex
maximal torus, so that h ⊂ g is a Cartan subalgebra. Write X∗(H) for the
lattice of weights (algebraic characters) of H, so that

X∗(H) ⊂ h∗, h∗ = X∗(H)⊗Z C.

Then the bilinear form 〈, 〉 has nondegenerate restriction to h and h∗. It
is real-valued and positive on X∗(H), and therefore positive definite on the
“canonical real form”

h∗RE =def X
∗(H)⊗Z R

(see [3, Definition 5.5]).

Theorem 2.6 (Jacobson-Morozov). In the setting of (2.4), suppose that
ξ ∈ N ∗ is a nilpotent linear functional. Define

E ∈ N ⊂ g

by the requirement ξE = ξ (cf. (2.4d)).

1. We can find elements D and F in g so that

[D,E] = 2E, [D,F ] = −2F, [E,F ] = D.

These elements specify an algebraic map

φ = φD,E,F : SL(2,C)→ G,

dφ

(
1 0
0 −1

)
= D, dφ

(
0 1
0 0

)
= E, dφ

(
0 0
1 0

)
= F.

2. The element F is uniquely determined up to the adjoint action of

GE =def {g ∈ G | Ad(g)(E) = E};

and the elements E and F determine D and φ.
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3. The Lie algebra grading

gr =def {X ∈ g | [D,X] = rX}

is by integers. Consequently

q =def

∑
r≥0

gr

is a parabolic subalgebra of g, with Levi decomposition

l = g0 = gD, u =
∑
r>0

gr.

We write
Q = LU, L = GD

for the corresponding parabolic subgroup.

4. The centralizer GE (defined in (2)) is contained in Q. Hence q depends
only on E (and not on the choice of F and D used to define it).

5. The Levi decomposition Q = LU of Q restricts to a Levi decomposition

GE = LEUE = Gφ(SL(2))UE .

Here the first factor is reductive (but possibly disconnected), and the
second is connected, unipotent, and normal.

6. The orbit
L · E ' L/LE ⊂ g2

is open and dense. Furthermore

Q · E ' Q/GE = (L · E) +
∑
r>2

gr.

A convenient reference for the proof is [9, Theorem 3.3.1].
It is standard to call the elements of the “SL(2) triple” (E,H,F ), but

we prefer to reserve the letter H for algebraic groups and particularly for
maximal tori. The letter D may be taken to stand for “diagonal,” or just
to be the predecessor of E and F .

Corollary 2.7 (Mal’cev [19]). Suppose E and E′ are nilpotent elements of
g; choose Lie triples (E,D,F ) and (E′, D′, F ′) as in Theorem 2.6. Then D
is conjugate to D′ if and only if E is conjugate to E′.
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Proof. The assertion “if” follows from Theorem 2.6(2). So assume that D
and D′ are conjugate; we may as well assume that they are equal. Then
the parabolic subalgebras q and q′ are equal, along with their gradings. By
Theorem 2.6(6), the two orbits L · E and L · E′ are both open and Zariski
dense in g2, so they must coincide. That is, E′ is conjugate to E by L.

It was our intention to credit the preceding corollary to Jacobson and
Morozov, of whose work in the 1940s this seemed to be an immediate corol-
lary. A referee has suggested that more careful attribution is appropriate.
Kostant offers a proof in [16, Corollary 4.2], and he attributes the statement
to Mal’cev.

Theorem 2.8 (Kostant-Rallis [17], Kostant-Sekiguchi [21]). Use the nota-
tion of (2.1), (2.3), and Theorem 2.6.

1. Assume that iξR ∈ N ∗iR is a real nilpotent element, or equivalently that
the element iER belongs to NiR. Then the element iFR may also be
chosen to belong to NiR (so that automatically DR ∈ g(R)). Such a
choice is unique up to conjugation by G(R)E. Equivalently, the map φ
may be chosen to be defined over R:

φR : SL(2,R)→ G(R).

dφR

(
1 0
0 −1

)
= DR, dφR

(
0 1
0 0

)
= ER, dφR

(
0 0
1 0

)
= FR.

2. With choices as in (1), the Jacobson-Morozov parabolic Q = LU of
Theorem 2.6(2) is defined over R. The Levi decomposition

Q(R) = L(R)U(R)

restricts to a Levi decomposition

GiER = LiERU iER .

The first factor is G(R)φR, a (possibly disconnected) real reductive alge-
braic group, and the second factor is connected, unipotent, and normal.

3. The orbit
L(R) · iER ' L(R)/L(R)iER ⊂ ig2(R)

is open but not necessarily dense. The open orbits of L(R) on this
vector space are in one-to-one correspondence with the G(R) orbits on
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NiR having associated semisimple element (Corollary 2.7) conjugate
to DR. Furthermore

Q(R) · iER ' Q(R)/Q(R)iER = (L(R) · iER) +
∑
r>2

ig(R)r.

4. After replacing (iER, φR) by a conjugate (iER,θ, φR,θ) under G(R), we
may assume that the map φ also respects the Cartan involution:

φR,θ(
tg−1) = θ (φR,θ(g)) , iFR,θ = −θ(iER,θ)

5. Assume that ξθ ∈ N ∗θ is a K-nilpotent element, or equivalently that
the element Eθ belongs to Nθ ⊂ s (the −1 eigenspace of θ). Then the
element Fθ may also be chosen in s, and in this case Dθ belongs to
k. Such choices are unique up to conjugation by KEθ . They define an
algebraic map

φθ : SL(2,C)→ G,

dφθ

(
0 i
−i 0

)
= Dθ,

1

2
· dφθ

(
1 −i
−i −1

)
= Eθ,

1

2
· dφθ

(
1 i
i −1

)
= Fθ

which respects θ:
φθ(

tg−1) = θ (φθ(g)) .

6. With choices as in (5), the Jacobson-Morozov parabolic Qθ = LθUθ
(defined as in Theorem 2.6(2) using Dθ) is θ-stable. The Levi decom-
position

Qθ ∩K = (Lθ ∩K)(Uθ ∩K)

restricts to a Levi decomposition

KEθ = (Lθ ∩K)Eθ(Uθ ∩K)Eθ .

The first factor is Kφθ , a (possibly disconnected) complex reductive
algebraic group, and the second factor is connected, unipotent, and
normal.

7. The orbit

(Lθ ∩K) · Eθ ' (Lθ ∩K)/(Lθ ∩K)Eθ ⊂ s2

is open and (Zariski) dense. Furthermore

(Qθ ∩K) · Eθ ' (Qθ ∩K)/(Qθ ∩K)Eθ = ((Lθ ∩K) · Eθ) +
∑
r>2

sr.
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8. After replacing (Eθ, φθ) by a conjugate (Eθ,R, φθ,R) under K, we may
assume that the map φθ also respects the real form:

φθ,R(g) = σR(φθ,R(g)), Fθ,R = σR(Eθ,R).

Corollary 2.9. Suppose that iER and iE′R are nilpotent elements of ig(R);
choose Lie triples (iER, DR, iFR) and (iE′R, D

′
R, iF

′
R) as in Proposition 2.8.

1. The semisimple Lie algebra elements

iER − iFR and iE′R − iF ′R

are conjugate by G(R) if and only if iER is conjugate to iE′R by G(R)

2. Suppose Eθ and E′θ are nilpotent elements of s; choose Lie triples
(Eθ, Dθ, Fθ) and (E′θ, D

′
θ, F

′
θ) as in Proposition 2.8. Then Dθ is con-

jugate to D′θ by K if and only if Eθ is conjugate to E′θ by K.

The first assertion is not quite immediate from the proposition, and we
will not use it; we include it only to show that there is a way of parametrizing
real nilpotent classes by real semisimple classes.

Corollary 2.10. In the setting of (2.1) and (2.3), there are bijections
among the following sets:

1. G(R) orbits on N ∗iR;

2. G(R) orbits on NiR;

3. G(R) orbits of group homomorphisms

φR : SL(2,R)→ G(R);

4. K(R) orbits of group homomorphisms

φR,θ : SL(2,R)→ G(R)

sending inverse transpose to the Cartan involution θ;

5. K(R) orbits of group homomorphisms

φ : SL(2)→ G

sending inverse transpose to the Cartan involution θ, and sending com-
plex conjugation to σR;
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6. K orbits of group homomorphisms

φ : SL(2)→ G

sending inverse transpose to the Cartan involution θ;

7. K orbits on Nθ; and

8. K orbits on N ∗θ .

The correspondences (1)↔(2) and (7)↔(8) are given by (2.4); (2)↔(3) by
Theorem 2.8(2); and so on.

All the maximal compact subgroups of the isotropy groups for the or-
bits above are naturally isomorphic, with isomorphisms defined up to inner
automorphisms, to K(R)φR,θ .

The bijection (1)↔(8) preserves the closure relations between orbits.
Corresponding orbits OR and Oθ are K(R)-equivariantly diffeomorphic.

The assertions in the last paragraph are due to Barbasch-Sepanski [5]
and Vergne [23] respectively.

The bijection may also be characterized by either of the following equiv-
alent conditions:

1

2
(−iER − iFR +DR) is conjugate by K to Eθ

iER − iFR is conjugate by K to Dθ.
(2.11)

This formulation makes clear what is slightly hidden in the formulas of
Theorem 2.8(5): that the bijection does not depend on a chosen square root
of -1. Changing the choice replaces iER by −iER, and therefore twists the
SL(2,R) homomorphism φR by inverse transpose. At the same time Eθ and
Fθ are interchanged, which has the effect of twisting φθ by inverse transpose.

Definition 2.12. If O is a G-orbit on N ∗, then a G(R) orbit

OR ⊂ N ∗iR ∩ O

is called a real form of O. We will call a K orbit

Oθ ⊂ N ∗θ ∩ O

a θ form of O. The Kostant-Sekiguchi theorem says that there is a
natural bijection between real forms and θ forms.
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Definition 2.13. A (global) geometric parameter for (G,K) is a nilpo-
tent K-orbit Y ⊂ N ∗θ , together with an irreducible K-equivariant vector
bundle

E → Y.

Equivalently, a (local) geometric parameter is a K-conjugacy class of
pairs

(ξ, (τ, E)),

with ξ ∈ N ∗θ a nilpotent element, and (τ, E) an irreducible (algebraic)
representation of the isotropy group Kξ. This bijection between local
and global parameters identifies (ξ, (τ, E)) with the pair

Y = K · ξ ' K/Kξ, E ' K ×Kξ E.

We write Pg(G,K) for the collection of geometric parameters.

3 Asymptotic cones

This section is a digression, intended as another kind of motivation for the
orbit method. The (very elementary) ideas play no role in the proofs of
our main theorems. They appear only in the desideratum (1.1m) for decid-
ing which representations might reasonably be attached to which coadjoint
orbits. In order to provide some mathematical excuse for the material, we
will include a single serious conjecture (Conjecture 3.11) about automorphic
forms.

Suppose
V ' Rn (3.1a)

is a finite-dimensional real vector space. A ray in V is by definition a subset

R(v) = R≥0 · v ⊂ V (0 6= v ∈ V ). (3.1b)

We write
R(V ) = {rays in V } ' Sn−1; (3.1c)

an isomorphism with the (n−1)-sphere is induced by an isomorphism (3.1a).
The resulting smooth manifold structure on R(V ) is of course independent
of the isomorphism. There is a natural fiber bundle

B(V ) = {(v, r) | r ∈ R(V ), v ∈ r} π−→ R(V ), (3.1d)
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the tautological ray bundle over R(V ). Projection on the first factor defines
a proper map

B(V )
µ−→ V, (v, r) 7→ v; (3.1e)

the map µ is an isomorphism over the preimage of V \{0} (consisting of the
open rays in the bundle), and µ−1(0) = R(V ) (the compact sphere).

Definition 3.2. In the setting of (3.1), a cone C ⊂ V is any subset
closed under scalar multiplication by R≥0. A weak cone is any subset
closed under scalar multiplication by R>0.

Definition 3.3. In the setting of (3.1), suppose S ⊂ V is an arbitrary
subset. The asymptotic cone of S is

ConeR(S) = {v ∈ V | ∃εi → +0, si ∈ S, lim
i→∞

εisi = v}.

Here {εi} is a sequence of positive real numbers going to 0, and si is
any sequence of elements of S.

Here are some elementary properties of the asymptotic cone.

1. The set ConeR(S) is a closed cone.

2. The set ConeR(S) is nonempty if and only if S is nonempty.

3. The set ConeR(S) is contained in {0} ⊂ V if and only if S is bounded.

4. If C is a weak cone (Definition 3.2), then the asymptotic cone is the
closure of C:

ConeR(C) = C.

The last assertion includes (1.1h) from the introduction.
Here are the same ideas in the setting of algebraic geometry. Suppose

V ' Cn (3.4a)

is a finite-dimensional complex vector space. We write

P(V ) = {(complex) lines through the origin in V }. (3.4b)

There is a natural line bundle

O(−1)(V ) = {(v, `) | ` ∈ P(V ), v ∈ `} π−→ P(V ), (3.4c)
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the tautological line bundle over P(V ). Projection on the first factor defines
a proper map

O(−1)(V )
µ−→ V, (v, `) 7→ v; (3.4d)

the map µ is an isomorphism over the preimage of V \{0} (consisting of the
bundle minus the zero section), and µ−1(0) = P(V ).

Definition 3.5. In the setting of (3.4), a cone C ⊂ V is any subset
closed under scalar multiplication by C. A weak cone is any subset
closed under scalar multiplication by C×.

Definition 3.6. In the setting of (3.4), suppose S ⊂ V is an arbitrary
subset. Define

I(S) = {p ∈ Poly(V ) | p|S = 0},

the ideal of polynomial functions vanishing on S. This ideal is filtered
by the degree filtration on polynomial functions, so we can define

gr I(S) ⊂ Poly(V )

a graded ideal. This is the ideal generated by the highest degree term
of each nonzero polynomial vanishing on S. The algebraic asymptotic
cone of S is

Conealg(S) = {v ∈ V | q(v) = 0 all q ∈ gr I(S)},

a Zariski-closed cone in V ; or, equivalently, a closed subvariety of P(V ).

This definition looks formally like the definition of the tangent cone to
S at {0} (see for example [13, Lecture 20]). In that definition one considers
the graded ideal generated by lowest degree terms in the ideal of S.

Here are some elementary properties of the algebraic asymptotic cone.

1. The set Conealg(S) is a closed cone, of dimension equal to dimS (the
Krull dimension of the Zariski closure of S).

2. The set Conealg(S) is nonempty if and only if S is nonempty.

3. The set Conealg(S) is contained in {0} ⊂ V if and only if S is finite.

4. If C is a weak cone (Definition 3.2), then the asymptotic cone is the
Zariski closure of C:

Conealg(C) = C.
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5. If S is a constructible algebraic set (finite union of Zariski closed in-
tersect Zariski open) then

Conealg(S) = {v ∈ V | ∃εi → 0, si ∈ S, lim
i→∞

εisi = v}.

Here {εi} is a sequence of nonzero complex numbers going to zero, and
{si} is any sequence of elements of S.

Finally, we note that the definition given for asymptotic cones over R
extends to any local field. It is not quite clear what dilations ought to be
allowed “in general”; we make a choice that behaves well for the coadjoint
orbits we are interested in.

Suppose K is a local field of characteristic not 2, and

V ' Kn (3.7a)

is a finite-dimensional K-vector space. A ray in V is by definition a subset

R(v) = (K×)2 · v ⊂ V (0 6= v ∈ V ). (3.7b)

We write
R(V ) = {rays in V } → P(V ); (3.7c)

the map is #(K×/(K×)2) to one. It follows that there is a natural compact
K-manifold topology on R(V ), of dimension equal to n − 1. There is a
natural fiber bundle

B(V ) = {(v, r) | r ∈ R(V ), v ∈ r} π−→ R(V ), (v, r) 7→ r (3.7d)

the tautological ray bundle over R(V ). Projection on the first factor defines
a proper map

B(V )
µ−→ V, (v, r) 7→ v; (3.7e)

the map µ is an isomorphism over the preimage of V \{0} (consisting of the
open rays in the bundle), and µ−1(0) = R(V ) (the compact space of all rays
in V ).

Definition 3.8. In the setting of (3.7), a cone C ⊂ V is any subset
closed under scalar multiplication by K2. A weak cone is any subset
closed under scalar multiplication by (K×)2.

Definition 3.9. In the setting of (3.7), suppose S ⊂ V is an arbitrary
subset. The asymptotic cone of S is

ConeK(S) = {v ∈ V | ∃εi → 0, si ∈ S, lim
i→∞

εisi = v}.

Here {εi} is a sequence in (K×)2 going to 0, and si is any sequence of
elements of S.
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Here are some elementary properties of the asymptotic cone.

1. The set ConeK(S) is a closed cone.

2. The set ConeK(S) is nonempty if and only if S is nonempty.

3. The set ConeK(S) is contained in {0} ⊂ V if and only if S is bounded.

4. If C is a weak cone (Definition 3.8), then the asymptotic cone is the
closure of C:

ConeK(C) = C.

The reformulation in [6] of Howe’s definition from [15] of the wavefront
set of a representation (see (1.1i)) extends to groups over other local fields,
by means of the germ expansion of characters. If G is a reductive algebraic
group defined over a p-adic field K of characteristic zero, then we write

N ∗K = nilpotent elements in g(K)∗

= {ξ ∈ g(K)∗ | t2ξ ∈ Ad∗(G(K))(ξ) (t ∈ K×)}
(3.10a)

for the nilpotent cone in the dual of the Lie algebra. (That a nilpotent linear
functional ξ is conjugate to t2ξ can be proved by transferring the statement
to g(K) as in (2.4d), and using the Jacobson-Morozov theorem to reduce to
the case of SL(2).) Dilation therefore defines an action of the finite group
K×/(K×)2 on G(K) orbits in N ∗K .

The Fourier transform is an isomorphism

C∞c (g(K))→ C∞c (g(K)∗)

f̂(ξ) =

∫
X∈g(K)

f(X)ψ(ξ(X))dX.
(3.10b)

Here dX is a choice of Lebesgue measure on g(K): scaling the measure scales
the values of the Fourier transform (and so does not change its support).
Furthermore ψ is a nontrivial additive unitary character of K, which is
therefore unique up to dilation by t ∈ K×. Dilating ψ dilates the Fourier
transform as a function on g(K)∗, and therefore dilates the support.

Taking the transpose of the Fourier transform defines an isomorphism of
distributions

C−∞(g(K))∗ → C−∞(g(K))

qD(f) = D(f̂).
(3.10c)
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Each nilpotent coadjoint orbit O ⊂ N ∗K carries a natural G(K)-invariant
measure dµ(O). This distribution has a Fourier transform

qO ∈ C−∞(g(K)). (3.10d)

This map from orbits to generalized functions will change according to the
K×/(K×)2 action on orbits when the character ψ of K changes.

Harish-Chandra proved in [12] that for every smooth admissible irre-
ducible representation π of G(K), the distribution character Θπ has a unique
germ expansion

Θπ(exp(X)) =
∑

O∈N ∗K/G(K)

cO qO, (3.10e)

valid for sufficiently small X ∈ g(K). We may therefore define

WF(π) =
⋃
cO 6=0

O ⊂ N ∗K , (3.10f)

a G(K)-invariant closed cone. (Our understanding is that there may be a
way to make sense of (3.10f) also for K local of positive characteristic, but
that it is not completely established.)

Conjecture 3.11. (global coherence of WF sets) Suppose that k is a number
field, and that G is a reductive algebraic group defined over k. Suppose that

π = ⊗vπv

is an automorphic representation. This means (among other things) that
{v} is the set of places of k, so that each corresponding completion

kv ⊃ k

is a local field, G(kv) is a reductive group over a local field as above, and πv
is a smooth irreducible admissible representation of G(kv). Accordingly for
each place we get a closed G(kv)-invariant cone

WF(πv) ⊂ N ∗kv ⊂ g(kv)
∗.

Suppose that all the local characters ψv of kv (used in defining the Fourier
transforms behind the wavefront sets) are chosen in such a way that∏

v

ψv(x) = 1, (x ∈ k).

25



The conjecture is that there is a coadjoint orbit (depending on π)

O = G(k) · ξ ⊂ g(k)∗

with the property that
WF(πv) = Conekv(O)

for every place v.

It is easy to see (by considering characteristic polynomials, for example)
that

Conekv(O) ⊂ N ∗kv .

For similar reasons,

Conealg(G(k) · ξ) = Z ⊂ g(k)∗,

the Zariski closure of a single nilpotent coadjoint orbit Z0 over the algebraic
closure k. It follows that

Conekv(O) ⊂ Z(kv),

the kv-points of Z. But this local cone need not meet the open orbit Z0.
(We believe it should be possible to show that Conekv(O) does meet Z0 for
all but finitely many v.)

The local cones control expansions of the local characters near the iden-
tity. It would be nice if there were some global analogue of these local
expansions, involving orbits like G(k) · ξ. But we can offer no suggestion
about how to formulate any such thing.

Since all the local cones are nilpotent, it is natural to ask whether the
global orbit G(k) · ξ in the conjecture can be taken to be nilpotent. This is
not possible. If G is anisotropic over k (admitting no nontrivial k-split torus)
then N ∗k = {0}; so the conjecture would require that all the local factors
πv of any automorphic representation would have to be finite-dimensional.
This does not happen (for nonabelian G).

4 Equivariant K-theory

In this section we recall the algebraic geometry version of equivariant K-
theory, which for us will replace the G(R)-equivariant theory discussed in
the introduction (for which we lack even many definitions, and certainly lack
proofs of good properties).
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Suppose H is a complex algebraic group. Write Hunip for the unipotent
radical of H, and

Hred ⊂ H, Hred ' H/Hunip (4.1a)

for a choice of Levi subgroup. We are interested in the category

Rep(H) = finite-dimensional algebraic representations of H. (4.1b)

The Grothendieck group of this category is called the representation ring of
H, and written

R(H) =def K Rep(H). (4.1c)

We use the bold R as a reminder that this is a Grothendieck group, one of
the K-theory tools that we use constantly.

If we write

Ĥ = equivalence classes of irreducible

algebraic representations of H

= Ĥred,

(4.1d)

then elementary representation theory says that

R(H) = K Rep(H) '
∑
ρ∈Ĥ

Zρ ' R(Hred). (4.1e)

The ring structure on R(H) arises from tensor product of representa-
tions. Another way to say it is using the character of a representation (τ, E)
of H:

ΘE(h) = tr τ(h) (h ∈ H).

Clearly the character ΘE is an algebraic class function on H. If (σ, S) and
(κ,Q) are representations forming a short exact sequence

0→ S → E → Q→ 0,

then ΘE = ΘS + ΘQ. Consequently Θ descends to a Z-linear map

Θ: R(H) ↪→ algebraic class functions on H. (4.1f)

The reason for the injectivity is the standard fact that characters of in-
equivalent irreducible representations are linearly independent functions on
H. The trace of the tensor product of two linear maps is the product of the
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traces, so ΘE⊗F = ΘEΘF . Therefore the map of (4.1f) is also a ring homo-
morphism. Because irreducible representations are trivial on the unipotent
radical Hunip of H, we get finally

Θ: R(H) ↪→ algebraic class functions on H/Hunip ' Hred.

After complexification, this map turns out to be an algebra isomorphism

Θ: R(H)⊗Z C ∼−→ algebraic class functions on Hred. (4.1g)

Definition 4.2. Suppose X is a complex algebraic variety and suppose
that H is a complex algebraic group acting on X. We are interested in
the abelian category

QCohH(X)

of H-equivariant quasicoherent sheaves on X, and particularly in the
full subcategory

CohH(X)

of coherent sheaves. We need this theory for cases in which X is not an
affine variety. In that setting the precise definitions (found in [22, 1.2])
are a little difficult to make sense of. We will be able to work largely
with the special case when X is affine; so we recall here just the more
elementary description of these equivariant sheaves in the affine case.

Suppose therefore that X is a complex affine algebraic variety, with
structure sheaf OX and global ring of functions OX(X). Suppose that
H is an affine algebraic group acting on X. This means precisely that
the algebra OX(X) is equipped with an algebraic action

Ad: H → Aut(OX(X))

by algebra automorphisms. A quasicoherent sheaf M ∈ QCoh(X) is
completely determined by the OX(X)-module

M =M(X)

of global sections: any OX(X)-module M determines a quasicoherent
sheaf

M = OX ⊗OX(X) M

of OX -modules. This makes an equivalence of categories

QCoh(X) = OX–Mod ' OX(X)–Mod .

28



The sheaf M is coherent if and only if M is finitely generated:

Coh(X) ' OX(X)–Modfg .

Write (OX(X), H)–Mod for the category of OX(X)-modules M
equipped with an algebraic action of H. This means an algebraic rep-
resentation µ of H on M , such that the module action map

OX(X)⊗C M →M

intertwines Ad⊗µ with µ. We have now identified

QCohH(X) ' (OX(X), H)–Mod

CohH(X) ' (OX(X), H)–Modfg,

always for X affine.
The equivariant K-theory of X is the Grothendieck group KH(X) of

CohH(X). (Thomason and many others prefer to write this K-theory
as GH(X), reserving K for the theory with vector bundles replacing
coherent sheaves. Our notation follows the text [8].)

If M is an H-equivariant coherent sheaf on X, we write

[M] ∈ KH(X) (4.3a)

for its class in K-theory. Similarly, if X is affine and M is a finitely generated
H-equivariant OX(X)-module, we write

[M ] ∈ KH(X). (4.3b)

We record now some general facts about equivariant K-theory of which
we will make constant use.

Suppose X is a single point. Then a coherent sheaf on X is the same
thing as a finite-dimensional vector space E; an H-equivariant structure is
an algebraic representation ρ of H on E. That is, there is an equivalence of
categories

CohH(point) ' Rep(H) (4.3c)

(see (4.1)). Consequently

KH(point) ' K Rep(H) '
∑
ρ∈Ĥ

Zρ = R(H), (4.3d)
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the representation ring of H. More generally, if (τ, V ) is a finite-dimensional
algebraic representation of H, then there is a natural inclusion

Rep(H) ↪→ (Poly(V ), H)–Modfg ' CohH(V ), E 7→ E ⊗ Poly(V ) (4.3e)

(with Poly(V ) = OV (V ) the algebra of polynomial functions on V ). In
contrast to (4.3c), this inclusion is very far from being an equivalence of
categories (unless V = {0}). Nevertheless, just as in (4.3d), it induces an
isomorphism in K-theory

R(H) = K Rep(H) ' KH(V ); (4.3f)

this is [22, Theorem 4.1]. (Roughly speaking, the image of the map (4.3e)
consists of the projective (Poly(V ), H)-modules; the isomorphism in K-
theory arises from the existence of projective resolutions.)

Suppose now that H ⊂ G is an inclusion of affine algebraic groups. Then
there is an equivalence of categories

CohG(G/H) ' CohH(point) ' Rep(H); (4.3g)

so the equivariant K-theory is

KG(G/H) ' KH(point) ' K Rep(H) = R(H). (4.3h)

More generally, if H acts on the variety Y , then we can form a fiber product

X = G×H Y

and calculate
CohG(G×H Y ) ' CohH(Y ),

KG(G×H Y ) ' KH(Y ).
(4.3i)

If Y ⊂ X is a closed H-invariant subvariety, then there is a right exact
sequence

KH(Y )→ KH(X)→ KH(X − Y )→ 0. (4.3j)

This is established without theH for example in [14, Exercise II.6.10(c)], and
the argument there carries over to the equivariant case. This sequence is the
end of a long exact sequence in higher equivariant K-theory ([22, Theorem
2.7]). The next term on the left is KH

1 (X − Y ).
Here are some of the consequences we want.
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Proposition 4.4. Suppose H acts on X with an open orbit U ' H/Hu,
and Y = X − U is the (closed) complement of this orbit. Then there is a
right exact sequence

KH(Y )→ KH(X) � KH(H/Hu) ' KHu
(point) ' R(Hu).

Consequently the quotient

KH(X)/ Im KH(Y )

has a basis naturally indexed by the set Ĥu of irreducible representations of
Hu.

More generally, if U is the disjoint union of finitely many open orbits
Uj ' H/Huj , then KH(X)/ Im KH(Y ) has a basis naturally indexed by the

disjoint union of the sets Ĥuj .

Theorem 4.5. Suppose H acts on the affine variety X with finitely many
orbits

Xi = H · xi ' H/Hi.

1. The (Zariski) closure Xi is the union of Xi and finitely many addi-
tional orbits Xj with dimXj < dimXi.

2. For each irreducible (τ, Vτ ) of Hi, there is an H-equivariant coherent

sheaf Ṽτ on Xi with the property that

Ṽτ |Xi = Vτ =def G×Hi Vτ .

The sheaf Ṽτ may be regarded as a (coherent equivariant) sheaf on X.

3. The equivariant K-theory KH(X) is a free Z-module with basis consist-

ing of the various [Ṽτ ], for Xi ⊂ X and τ an irreducible representation
of Hi. Each such basis vector is uniquely defined modulo the span of
the [Ṽτ ′ ] supported on orbits in the boundary of Xi.

4. If Y ⊂ X is an H-invariant closed subvariety, then (4.3j) is a short
exact sequence

0→ KH(Y )→ KH(X)→ KH(X − Y )→ 0.

Proof. Part (1) is a standard statement about algebraic varieties. Part (2)
is established without the H for example in [14, Exercise 2.5.15], and the
argument there carries over to the equivariant case.
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For (3), we proceed by induction on the number of H-orbits on X. If the
number is zero, then X is empty, and KH(X) = 0 is indeed free. So suppose
that the number of H-orbits is positive, and that (3) is already known in
the case of a smaller number of orbits. Pick an orbit

U = H · xi0 ' H/Hi0 ⊂ X (4.6a)

of maximal dimension. Then necessarily U is open (this follows from (1)),
so Y = X − U is closed. According to (4.3j), there is an exact sequence

KH
1 (U)→ KH(Y )→ KH(X)→ KH(U)→ 0. (4.6b)

By inductive hypothesis, KH(Y ) is a free Z-module with basis the various

[Ṽ ′τ ] living on orbits other than U . By (4.3h), KH(U) is a free Z-module

with basis the images of the various [Ṽτ ] attached to U . To finish the proof
of (3), we need only prove that the map from KH

1 (U) is zero.
According to (4.3g), the first term of our exact sequence is the Quillen

K1 of H/Hi0 ; that is, Quillen K1 of a category of representations (of Hi0).
This category is (up to long exact sequences) a direct sum of categories of
finite-dimensional complex vector spaces. By one of the fundamental facts
about algebraic K-theory, it follows that KH

1 (U) = KH
1 (H/Hi0) is a direct

sum of copies of C×, one for each irreducible representation of Hi0 .
Any group homomorphism from the divisible group C× to Z must be

zero; so the connecting homomorphism KH
1 (U) → KH(Y ) is zero. This

proves (4).

We thank Gonçalo Tabuada for explaining to us this proof of (4).

5 Associated varieties for (g, K)-modules

With the structure of N ∗θ from Section 2, and the generalities about equiv-
ariant K-theory from Section 4, we can now introduce the K-theory functor
we will actually consider (in place of the one from (1.2) that we do not know
how to define). As a replacement for the moderate growth representations
of (1.2a), we will use

Mf (g,K) = category of finite length (g,K)-modules. (5.1a)

This category has a nice Grothendieck group K(g,K), which is a free Z-
module with basis the equivalence classes of irreducible modules. A con-
nection with the incomplete ideas in the introduction is provided by the
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Casselman-Wallach theorem of [29, 11.6.8]: passage to K(R)-finite vectors
is an equivalence of categories

Fmod(G(R))
∼−→Mf (g,K). (5.1b)

We write
[X](g,K) = class of X ∈ K(g,K). (5.1c)

Any such X admits a good filtration (far from unique), so that we can
construct

grX ∈ CohK(N ∗θ ).

(The reason that the S(g) module grX is supported on N ∗θ is explained
in [25, Corollary 5.13].) The class [grX] ∈ KK(N ∗θ ) is independent of the
choice of good filtration (this standard fact is proven in [25, Proposition
2.2]) so we may write it simply as [X]θ. In this way we get a well-defined
homomorphism

gr: K(g,K)→ KK(N ∗θ ), [X](g,K) 7→ [grX] = [X]θ. (5.1d)

This is our replacement for the map (1.2c) that we do not know how to
define. Here are replacements for the undefined ideas in (1.6).

Definition 5.2. Fix a nonzero (g,K)-module

X ∈Mf (g,K). (5.2a)

Then grX is a nonzero K-equivariant coherent sheaf on N ∗θ , and as
such has a well-defined nonempty support

supp(grX) ⊂ N ∗θ (5.2b)

which is a Zariski-closed union of K-orbits. This support is also called
the associated variety of X,

AV(X) =def supp(gr(X))

=def (variety of the ideal Ann(gr(X)) ⊂ N ∗θ .
(5.2c)

(More details about the commutative algebra definition of support are
recalled for example in [25, (1.2)].) Theorem 4.5 provides a formula

gr(X) =
∑

Z=K·EZ⊂AV(X)

∑
τ jZ∈K̂Z

m
τ jZ

(X)[Ṽ
τ jZ

] (5.2d)
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If we write
{Y1, Y2, . . . , Yr}, Yi ' K/Ki (5.2e)

for the open K orbits in AV(X), then [25] shows that each virtual
representation

µYi(X) =
∑
j

m
τ jYi

(X)
τ jYi ∈ R(Ki) (5.2f)

is independent of the choices defining Ṽ
τ jZ

. We define the associated

cycle of X to be

AC(X) =
∑
i

µYi(X)Yi. (5.2g)

The weak associated cycle of X is

ACweak(X) =
∑
i

dimµYi(X)Yi. (5.2h)

The following deep result is part of the connection between what we
prove here (about algebraically defined associated varieties) and the incom-
plete analytic picture outlined in the introduction (involving the analytically
defined wavefront set). This theorem is not used in our results about asso-
ciated varieties.

Theorem 5.3. Schmid-Vilonen [20, Theorem 1.4] Suppose that (π, V ) is a
nonzero Z(g)-finite representation of G(R) of moderate growth (see (1.2a)).
Write X = VK(R) for the underlying Harish-Chandra module (see (5.1b)).
Then

WF(π)←→ supp(grX)

by means of the Kostant-Sekigichi identification Corollary 2.10 (of G(R)
orbits on N ∗R with K orbits on N ∗θ ).

At this point it should be possible for the reader to rewrite the introduc-
tion, replacing the equivariant K-theory for G(R) acting on N ∗R (which we
do not know how to define) by Thomason’s algebraic equivariant K-theory
for K acting on N ∗θ ; and replacing wavefront sets and cycles by associated
varieties and associated cycles. We will not do that explicitly.

Restriction to K is a fundamental tool for us, and we pause here to
introduce a bit of useful formalism about that. Define

Mf (K) = category of admissible algebraic K-modules; (5.4a)
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as usual admissible means that each irreducible representation of K appears
with finite multiplicity. This abelian category has a nice Grothendieck group

K(K) =
∏

(ρ,Eρ)∈K̂

Zρ, (5.4b)

the direct product of one copy of Z for each irreducible representation of K.
A (g,K)-module X of finite length is necessarily admissible:

X|K =
∑

(ρ,Eρ)∈K̂

m(ρ,X)Eρ (m(ρ,X) ∈ N). (5.4c)

Restriction to K is therefore an exact functor

resK : Mf (g,K)→Mf (K). (5.4d)

The corresponding homomorphism of Grothendieck groups is

resK : K(g,K)→ K(K), [X](g,K) 7→
∏

(ρ,Eρ)∈K̂

m(ρ,X)ρ. (5.4e)

In exactly the same way, the fact that K is reductive implies that any
irreducible representation of K must appear with finite multiplicity in global
sections of an equivariant coherent sheaf on a homogeneous space for K. If
K acts on an affine variety Z with finitely many orbits, restriction to K is
therefore an exact functor

resK : CohK(Z)→Mf (K). (5.4f)

The corresponding homomorphism of Grothendieck groups is

resK : KK(Z)→ K(K). (5.4g)

The maps (5.4e) and (5.4g) fit into a commutative diagram

K(g,K) KK(N ∗θ )

K(K)

[gr]

resK resK
(5.4h)
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6 The case of complex reductive groups

The general case of our results requires a discussion of the (rather compli-
cated) Langlands classification of representations of real reductive groups.
In order to explain our new ideas, we will therefore first consider them in the
(less complicated) setting of complex reductive groups. Suppose therefore
(still using the notation of (2.1)) that there is a complex connected reductive
algebraic group G1, and that

G(R) ' G1. (6.1a)

Fix a compact real form

σ1 : G1 → G1, G1(R, σ1) =def G
σ1
1 = K1 ⊂ G1. (6.1b)

Then we can arrange

G = G1 ×G1

σ0(g, g′) = (σ1(g), σ1(g′)), Gσ0 = K1 ×K1

σR(g, g′) = (σ1(g′), σ1(g)),

G(R) = {(g, σ1(g)) | g ∈ G1} ' G1

θ(g, g′) = (g′, g)

K = (G1)∆ = {(g, g) | g ∈ G1}
K(R) = (K1)∆ = {(k, k) | k ∈ K1} ' K1.

(6.1c)

(The notation K1 may be a bit confusing because in general we write K for
the complex group which is the complexification of the maximal compact
K(R) ⊂ G(R); but here K1 is a compact (real) group. We have not found a
reasonable change of notation to address this issue.)

We fix also a (compact) maximal torus

T1 ⊂ K1; (6.1d)

then automatically its complexification

H1 = GT11 (6.1e)

is a (complex) maximal torus in G1. We write

W1 = NK1(T1)/T1 ' NG1(H1)/H1 (6.1f)
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for the Weyl group. Complexifications of these things are

H = H1 ×H1 = complexification of H1

W = W1 ×W1 = Weyl group of H in G.
(6.1g)

We fix also a Borel subgroup B1 ⊃ H1 of G1. Because σ1 preserves T1,
and K1 is compact, the Borel subgroup σ1(B1) is necessarily equal to Bopp

1 .
Therefore the complexification of B1 is

Bqs = B1 × σ1(B1) = B1 ×Bopp
1 , (6.1h)

corresponding to the real Borel subgroup B1 for the quasisplit G(R) = G1.
(The subscript qs stands for “quasisplit.”) We are also interested in the
θ-stable Borel subgroup

Bf = B1 ×B1; (6.1i)

now the subscript f stands for “fundamental.”
We turn next to a discussion of nilpotent orbits in the complex case. We

write N ∗1 for the nilpotent cone in g∗1, and use other notation accordingly.
Then

N ∗ = N ∗1 ×N ∗1
N ∗iR = {(E,−σ1(E)) | E ∈ N ∗1 } ' N ∗1
N ∗θ = {(E,−E)) | E ∈ N ∗1 } ' N ∗1

(6.2a)

Immediately we get identifications of orbits

N ∗/G = N ∗1 /G1 ×N ∗1 /G1

N ∗iR/G(R) ' N ∗1 /G1

N ∗θ /K ' N ∗1 /G1

(6.2b)

and therefore N ∗iR/G(R) ' N ∗θ /K. This last is the Kostant-Sekiguchi bijec-
tion of Corollary 2.10.

Clearly the (antiholomorphic) automorphism σ1 of G1 acts on the set
N ∗1 /G1 of nilpotent orbits. The Jacobson-Morozov theorem implies that
this action is trivial. Here is why. The semisimple element D, whose class
characterizes the orbit, belongs to [g1, g1] and has real eigenvalues in the
adjoint representation; so after conjugation we can arrange

D ∈ it1, σ1(D) = −D.

The Jacobson-Morozov SL(2) shows that D is conjugate to −D, so we have
shown that σ1 preserves the conjugacy class of D. Now apply Corollary 2.7.
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It follows that σR acts on N ∗1 /G1 × N ∗1 /G1 by interchanging the two
factors. The nilpotent G-orbits preserved by this action are exactly the
diagonal classes. What (6.2a) shows is that each such diagonal nilpotent
class for G has a unique real form (and therefore, by Kostant-Sekiguchi, a
unique θ-form).

In light of this identification of the K = G1 action on N ∗θ with the
G1 action on N ∗1 , we can restate Definition 2.13 (in this complex case) as
follows.

Definition 6.3. A (global) geometric parameter for a complex reductive
algebraic group G1 is a nilpotent G1-orbit Y ⊂ N ∗1 , together with an
irreducible G1-equivariant vector bundle

E → Y.

Equivalently, a (local) geometric parameter is a G1-conjugacy class of
pairs

(ξ, (τ, E)),

with ξ ∈ N ∗1 a nilpotent element, and (τ, E) an irreducible (algebraic)

representation of the isotropy group Gξ1. This bijection between local
and global parameters identifies (ξ, (τ, E)) with the pair

Y = G1 · ξ ' G1/G
ξ
1, E ' G1 ×Gξ1 E.

We write Pg(G1) for the collection of geometric parameters. Sometimes
it will be convenient to write E(τ) or E(ξ, τ) to exhibit the underlying
local parameter.

These geometric parameters are exactly what appears on the complicated
side of the Lusztig-Bezrukavnikov bijection [7] for G1. Lusztig’s conjecture,
and its proof by Bezrukavnikov, were critical to the development of the ideas
in this paper. But they are not logically necessary to explain our results, so
for brevity we are going to omit them.

The introduction (after reformulation in terms of K acting on N ∗θ ) out-
lined a connection between the geometric parameters of Definitions 2.13 and
6.3 and the associated varieties we seek to compute. We conclude this section
with an account of the Langlands classification, which describes representa-
tions of G1 in terms that we will be able to relate to geometric parameters.

Definition 6.4. In the setting of (6.1), a Langlands parameter for G1

(or for (G,K) = (G1 ×G1, (G1)∆)) is a pair of linear functionals

(λL, λR) ∈ h∗1 × h∗1 ' h∗,
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subject to the requirement that the restriction of (λL, λR) to t1 = (h1)∆

is the differential of a weight:

λL + λR = γ ∈ X∗(H1).

Two Langlands parameters are said to be equivalent if they are conju-
gate by (W1)∆:

(λL, λR) ∼ (λ′L, λ
′
R) ⇐⇒ (λL, λR) = (w1 · λ′L, w1 · λ′R)

for some w1 ∈W1. We write PL(G,K) for the set of equivalence classes
of Langlands parameters. The discrete part of the Langlands parameter
is by definition

γ = γ(λL, λR) = λL + λR ∈ X∗(H1).

Tbe continuous part of the parameter is

ν = ν(λL, λR) = λL − λR ∈ h∗1.

We can recover the parameter from these two parts:

λL = (γ + ν)/2, λR = (γ − ν)/2.

Equivalence is easily written in terms of the discrete and continuous
parameters:

(λL, λR) ∼ (λ′L, λ
′
R) ⇐⇒ (γ, ν) = (w1 · γ′, w1 · ν ′) (w1 ∈W1)

(with obvious notation).
The Langlands classification (due in this case to Zhelobenko) at-

taches to each equivalence class of parameters a standard representation
I(λL, λR) (more precisely, a Harish-Chandra module for

(g,K) = (g1 × g1, (G1)∆))

with the following properties.

1. There is a unique irreducible quotient J(λL, λR) of I(λL, λR).

2. Any irreducible Harish-Chandra module for (g,K) is equivalent to
some J(λL, λR).

3. Two standard representations are isomorphic (equivalently, their Lang-
lands quotients are isomorphic) if and only if their parameters are
conjugate by W1.
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4. The infinitesimal character of the standard representation I(λL, λR) is
indexed by the W = W1 ×W1 orbit of (λL, λR).

5. The restriction of I(λL, λR) to K1 is the induced representation from
T1 to K1 of γ = λL + λR:

I(λL, λR) ' IndK1
T1

(λL + λR).

6. The restrictions to K1 of two standard representations are isomorphic
if and only if the weights λL + λR and λ′L + λ′R are conjugate by W1.

The representation I(λL, λR) is tempered (an analytic condition due to
Harish-Chandra, and central to Langlands’ original work) if and only if the
continuous parameter is purely imaginary:

ν = λL − λR ∈ iX∗(H1)⊗Z R.

In this case I(λL, λR) = J(λL, λR).
In the general (possibly nontempered) case, the real part of ν controls

the growth of matrix coefficients of J(λL, λR). Tempered representations
have the smallest possible growth, and larger values of Re ν correspond to
larger growth rates.

A K-Langlands parameter is the same thing, but with a larger equiva-
lence relation. (In what follows, remember that K is the complexification of
K1: locally finite continuous representations of the compact group K1 are
the same as algebraic representations of the complex algebraic group K.)

Definition 6.5. A K-Langlands parameter for (G,K) is any of the
following equivalent things.

1. A Langlands parameter (λL, λR). The equvalence relation is

(λL, λR) ∼K (λ′L, λ
′
R) ⇐⇒ I(λ′L, λ

′
R)|K = I(λL, λR)|K .

The equivalence relation is throwing away the continuous parameter
ν(λL, λR). Another way to state this is

(λL, λR) ∼K (λ′L, λ
′
R) ⇐⇒ λL + λR ∈W1 · (λ′L + λ′R).

2. A tempered parameter (γ/2, γ/2) (some γ ∈ X∗(H1)) having real in-
finitesimal character (see [24, Definition 5.4.11]). The equivalence re-
lation is

(γ/2, γ/2) ∼K (γ′/2, γ′/2) ⇐⇒ γ ∈W1 · γ′.
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3. A W1 orbit of weights γ ∈ X∗(H1).

4. A dominant weight γ0 ∈ X∗(H1)+.

The equivalence of the four conditions is standard and easy. The tem-
pered parameter of real infinitesimal character

((λL + λR)/2, (λL + λR)/2)

is a natural representative for the K-equivalence class.
If γ ∈ X∗(T ) is any weight (and γ0 = wγ is its unique dominant

conjugate), then the “fixed restriction to K” in (1) is

IndK1
T1

(γ) ' IndK1
T1

(γ0).

Write PK-L(G,K) for equivalence classes of K-Langlands parameters.

The conjecture of Lusztig proved by Bezrukavnikov in [7] is a bijection
between the geometric parameters of Definition 6.3 and the K-Langlands
parameters of Definition 6.5. Bezrukavnikov proceeds by using these two
sets to index two bases of the same Z-module KK(N ∗θ ). He proves that his
change of basis matrix is upper triangular, and in this way establishes the
bijection between the index sets. He does not offer a method to calculate
his basis indexed by geometric parameters.

Following Achar, we will use geometric parameters to index a different
basis of the same vector space, and we will calculate the change of basis ma-
trix. We are not able to prove that our basis is the same as Bezrukavnikov’s.

Here are some classical properties of K-Langlands parameters that we
will use in Section 7 to construct the basis indexed by geometric parameters.
The results are due to Zhelobenko; but his results are spread over a number
of papers and difficult to reference. A convenient reference is [10].

Theorem 6.6. Suppose (λL, λR) represents a K-Langlands parameter for
the complex group G (Definition 6.5). Write

γ = λL + λR ∈ X∗(H1) ' X∗(T1)

for the corresponding weight of the compact torus (6.1d).

1. The restriction to K1 of I(λL, λR) contains the irreducible representa-
tion

µ(λL, λR) = irreducible of extremal weight γ

with multiplicity one. The other irreducible representations of K1 ap-
pearing have strictly larger extremal weights.
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2. The map

µ : PK-L(G,K)→ K̂1, (λL, λR) 7→ µ(λL, λR)

is a bijection.

3. The classes

[resK I(λL, λR)] ∈ K(K) (λL, λR) ∈ PK-L(G,K)

(see (5.4e)) are linearly independent.

7 Representation basis for K-theory: C case

We continue in the setting (6.1), that is, assuming that (G,K) arises from
a complex reductive group.

Applying Theorem 4.5 to K acting on the K-nilpotent cone gives

Corollary 7.1. Write {Y1, . . . , Yr} for the orbits of K on N ∗θ ( (2.3c)).
For each irreducible K-equivariant vector bundle E on some Yi, fix a K-
equivariant (virtual) coherent sheaf Ẽ supported on the closure of Yi, and
restricting to E on Yi. Then the classes [Ẽ ] are a Z-basis of KK(N ∗θ ). A
little more precisely, the classes supported on any K-invariant closed subset
Z ⊂ Nθ are a basis of KK(Z).

In order to describe the algorithm underlying “Proposition” 1.5 (pre-
cisely, Theorem 9.2 below) we will need an entirely different kind of basis of
KK(N ∗θ ).

Definition 7.2. Suppose γ ∈ PK-L(G,K) is a K-Langlands parameter
for (G,K) = (G1 × G1, (G1)∆) (Definition 6.5); equivalently, a domi-
nant weight for G1). We attach to γ a K-equivariant coherent sheaf
on the K-nilpotent cone N ∗θ , with well-defined image [γ]θ ∈ KK(N ∗θ ),
characterized in any of the following equivalent ways. Note first that
the cotangent bundle of G1/B1 is

T ∗(G1/B1) = G1 ×B1 (g1/b1)∗
π1−→ G1/B1. (7.2a)

From the total space of the tangent bundle there is the moment map

T ∗(G1/B1)
µ1−→ g∗1, µ1(g, ξ) = Ad∗(g)(ξ)

(g ∈ G1, ξ ∈ (g1/b1)∗).
(7.2b)

Of course π1 is affine, µ1 is proper, and both maps are G1-equivariant;
the image of µ1 is the nilpotent cone N ∗1 .
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1. Fix any Langlands parameter (λL, λR) restricting to γ; that is, ele-
ments λL and λR of h∗1 such that γ = λL + λR. Fix a good filtration
on the standard module I(λL, λR), and define

[γ]θ = [gr I(λL, λR)] = [I(λL, λR)]θ (7.2c)

(see (5.1d)).

2. Extend γ to a one-dimensional (algebraic) character of B1 = H1N1,
and let L1 be the corresponding G1-equivariant (algebraic) line bundle
on G1/B1. The pullback π∗1L1 is a G1-equivariant coherent sheaf on
T ∗(G1/B1), so each higher direct image Rkµ1∗(π

∗
1L1) is (since µ1 is

proper) a G1-equivariant coherent sheaf on N ∗1 . We define

[γ]1,θ =
∑
k

(−1)k[Rkµ1∗(π
∗
1L1)] ∈ KG1(N ∗1 ). (7.2d)

Under (6.2a), [γ]1,θ corresponds to a class [γ]θ ∈ KK(N ∗θ ).

3. As an algebraic representation of K,

[γ]θ = IndKT γ =
∑

(ρ,Eρ)∈K̂

dimEρ(γ)ρ; (7.2e)

here Eρ(γ) denotes the γ weight space (with respect to the maximal
torus T ) of the K-representation Eρ.

The equivalence of (1) and (2) is a consequence of Zuckerman’s coho-
mological induction construction of I(λL, λR) using the θ-stable Borel
subgroup Bf of (6.1i). That they have the property in (3) is a standard
fact about principal series representations of complex groups. That
property (3) characterizes [γ]θ is a consequence of Corollary 7.4 below.

Theorem 7.3. Suppose (Y, E) ∈ Pg(G,K) is a geometric parameter (Defi-

nition 6.3). Then there is an extension Ẽ as in Corollary 7.1, and a formula
in KK(Nθ)

[Ẽ ] =
∑

γ∈PK-L(G,K)

mẼ(γ)[γ]θ.

Here the sum is finite, and mẼ(γ) ∈ Z.

Suppose Ẽ ′ is another extension of E to Y . Then

[Ẽ ′]− [Ẽ ] =
∑

(Z,F)∈Pg(G,K)
Z⊂∂Y

nF [F̃ ].

Only finitely many terms appear in the sum, and nF ∈ Z.
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We will give a proof in Corollary 8.4.

Corollary 7.4. In the setting of (6.1), the classes

{[γ]θ ∈ KK(N ∗θ ) | γ ∈ PK-L(G,K)}

are a Z-basis of KK(N ∗θ ). The restriction to K map

resK : KK(N ∗θ )→ K(K)

of (5.4g) is injective.

Proof. That these classes span is a consequence of Corollary 7.1 and The-
orem 7.3. That they are linearly independent is a consequence of Theo-
rem 6.6(3); the argument proves injectivity of the restriction at the same
time.

8 Geometric basis for K-theory: C case

In this section we consider how to relate the representation-theoretic basis
of Corollary 7.4 to the geometry of K-orbits on N ∗θ . We will proceed in
the aesthetically undesirable way of using the Jacobson-Morozov theorem
(and so discussing not the nilpotent elements in g∗ that we care about, but
rather the nilpotent elements in g). We begin therefore with an arbitrary
nilpotent element X1 ∈ N1 (see (2.3a)). The Jacobson-Morozov theorem
finds elements Y1 and D1 in g1 so that

[D1, X1] = 2X1, [D1, Y1] = −2Y1, [X1, Y1] = D1. (8.1a)

We use the eigenspaces of ad(D1) to define a Z-grading of g1

g1[k] =def {Z ∈ g1 | [D1, Z] = kZ}, g1[≥ k] =def

∑
j≥k

g1[j],

q1 =def g1[≥ 0], u1 =def g1[≥ 1].

(8.1b)

Then q1 is the Lie algebra of a parabolic subgroup Q1 = L1U1 of G1, with
Levi factor L1 = GD1

1 . After conjugating X by G1, we may assume that

D1 ∈ t1, T1 ⊂ L1. (8.1c)

We will be concerned with the equivariant vector bundle

R1 =def G1 ×Q1 g1[≥ 2]
π−→ G1/Q1. (8.1d)
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(The reason R1 is of interest is that Corollary 8.4 below says that it is a G1-
equivariant resolution of singularities of the nilpotent orbit closure G1 ·X1.
The R is meant to stand for resolution.) According to (4.3i) and (4.3f),

KG1(R1) ' R(Q1) ' R(L1); (8.1e)

if (σ, S) is an irreducible representation of L1 ' Q1/U1, we write

S1(σ) = G1 ×Q1 S (8.1f)

for the induced vector bundle on G1/Q1. The corresponding basis element
of the equivariant K-theory is represented by the equivariant vector bundle

S(σ) = π∗(S1(σ)) = G1 ×Q1 (g1[≥ 2]× S)→ R1. (8.1g)

We are in the setting of Theorem 2.6. As a consequence of that Theorem,
we have

Corollary 8.2. Suppose we are in the setting (8.1).

1. The natural map

µ : R1 → N1, (g, Z) 7→ Ad(g)Z

is a proper birational map onto G1 ·X1. We may therefore identify
G1 ·X1 with its preimage U :

G1/G
X1
1 ' G1 ·X1 ' U ⊂ R1.

Because G1 ·X1 is open in G1 ·X1, U = µ−1(G1 ·X1) is open in R1.

2. The classes
{[S(σ)] | σ ∈ L̂1 = Q̂1}

of (8.1g) are a basis of the equivariant K-theory KG1(R1).

3. Since µ is proper, higher direct images of coherent sheaves are always
coherent. Therefore

[µ∗(S)] =def

∑
i

(−1)i[Riµ∗S] ∈ KG1(N1)

is a well-defined virtual coherent sheaf. This defines a map in equiv-
ariant K-theory

µ∗ : KG1(R1)→ KG1(N1).

Restriction to the open set U ' G1 ·X1 commutes with µ∗.
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4. Suppose σ is a representation of L1, inducing vector bundles S1(σ) on
G1/Q1 and S(σ) on R1 as in (8.1a). As a representation of G1, (that
is, in the Grothendieck group K(G1); see (5.4a))

[µ∗(S(σ))] = IndG1

L1

(
σ ⊗

(∑
j

(−1)j
∧j

g1[1]∗
))

= IndG1

T1

(∑
φ

mσ(φ)
∑

A⊂∆(g1[1],t1)
w∈W (L1)

(−1)|A|+`(w)[φ− 2ρ(A) + (ρL1 − wρL1)]

)

= IndG1

T1

(∑
φ

mσ(φ)
∑

A⊂∆(g1[1],t1)

B⊂∆+(l1,t1)

(−1)|A|+|B|[φ− 2ρ(A) + 2ρ(B)]

)
.

Here the outer sum is over the highest weights φ of the virtual repre-
sentation σ of L1, and the integers mσ(φ) are their multiplicities. The
notation 2ρ(X) stands for the sum of a set X of roots.

5. If every weight φ − 2ρ(A) + 2ρ(B) in (4) is replaced by its unique
dominant conjugate, we get a computable formula

[µ∗(S(σ))] =
∑

γ∈PK-L(G,K)

mσ(γ)[γ]θ.

Proof. For (1), that µ is proper is immediate from the fact that G1/Q1 is
projective. That G1 ·X1 is open in the image follows from Theorem 2.6(6).
Since µ is proper and the domain is irreducible, the image must be the
closure of G1 ·X1. The fiber over X1 is evidently GX1/(GX1 ∩Q1), which is
a single point by Theorem 2.6(4). So the map is birational.

Part(2) is (4.3f) and (4.3i).
Part (3) is standard algebraic geometry.
For (4), the Leray spectral sequences for the maps µ and π say that∑
i

(−1)iH0(G1 ·X1, R
iµ∗S(σ)) =

∑
i

(−1)iHi (R1,S(σ))

=
∑
i

(−1)iHi (G1/Q1, G1 ×Q1
(σ ⊗ S•(g1[≥2 ])∗))

=
∑
i,j

(−1)i+jHi
(
G1/Q1, G1 ×Q1

σ ⊗
∧j

g1[1]∗ ⊗ S•(g1[≥1 ])∗
)

=
∑
j

(−1)j IndG1

L1

(
σ ⊗

∧j
g1[1]∗

)
.

(8.3a)
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For the first equality, we use the fact that G1 ·X1 is affine, so that higher
cohomology vanishes. For the second, we use the fact that π is affine, so
the higher direct images vanish. For the third, we use the deRham complex
identity (valid in KMf (G1)) (see (5.4a)) for any G1-representation V such
that S•(V ) decomposes into irreducibles with finite multiplicities)

[C] =
∑
j

(−1)j [S•(V )⊗
∧jV ],

applied to V = g1[1]∗. The fourth equality more or less identifies functions
(or sections of a vector bundle) on T ∗G1/Q1 with functions (or sections of
a vector bundle) on G1/L1. Now (8.3a) is the first equality in (4).

The second equality in (4) uses first of all the fact that if σ0 is an irre-
ducible of L1 of highest weight φ0, then

σ0 =
∑

w∈W (L1)

(−1)`(w) IndL1
T1

(φ0 + ρL1 − wρL1). (8.3b)

(This is a version of the Weyl character formula.) Next, it uses the fact that
if E is any representation of L1 (in this case an exterior power of g1[1]∗),
then

IndL1
T1

(ψ)⊗ E =
∑

γ∈∆(E)

IndL1
T1

(ψ + γ). (8.3c)

Here the sum runs over the weights of T1 on E.
The third equality in (4) follows for example from the Bott-Kostant fact

that (if n1(L1) corresponds to a set of positive roots for T1 in l1) the weights
of T1 on H∗(n1(L1),C) are the various ρL1−wρL1 , appearing in degree `(w).
The sum on the left side runs over the weights of cohomology (indexed by
w ∈ W (L1)), and on the right over the weights of the complex

∧• n1(L1)∗

(indexed by subsets B of positive roots for L1).

Corollary 8.4. We continue in the setting (8.1).

1. The restriction map in equivariant K-theory (see (4.3j))

R(L1) ' R(Q1) ' KG1(R1)→ KG1(U) ' R(GX1
1 ) = R(QX1

1 )

sends a (virtual) representation [σ] of Q1 to [σ|
Q
X1
1

].

2. Any virtual (algebraic) representation τ of GX1
1 = QX1

1 can be extended
to a virtual (algebraic) representation σ of Q1. That is, the restriction
map of representation rings

R(L1) ' R(Q1) � R(QX1
1 ) ' R(LX1

1 )
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is surjective.

3. Suppose [τ ] is a virtual algebraic representation of GX1
1 , corresponding

to a virtual equivariant coherent sheaf T on G1 · X1. Choose a vir-
tual algebraic representation [σ] of Q1 extending τ . Then the virtual
coherent sheaf

[µ∗(S(σ))] =def [T̃ ]

is a virtual extension (Corollary 7.1) of [T ]. We have a formula

[T̃ ] =
∑

γ∈PK-L(G,K)

mT̃ (γ)[γ]θ.

Computability of the extension σ in (3) is a problem in finite-dimensional
representation theory of reductive algebraic groups, for which we do not offer
a general solution.

Proof. For (1), that the restriction in K-theory corresponds to restriction of
representations is clear from the description of representatives for the classes
on R1 in (8.1g).

For (2), restriction to an open subset in equivariant K-theory is always
surjective; this is the right exactness of (4.3j). So (2) follows from (1).

Part (3) follows from the last assertion of Corollary 8.2(3), and Corollary
8.2(5).

The last formula in Corollary 8.4 relates the geometric basis of Theorem
4.5 to the representation-theoretic basis of Corollary 7.4. The difficulty, as
mentioned in the Corollary above, is that computing this formula requires
(for each irreducible representation τ of LX1

1 ) a computable virtual represen-
tation σ of L1 with

σ|LX1 = τ.

Finding such a σ does not seem to be an intractable problem. For GL(n),
Achar addresses it in his thesis [1]. For other classical G1, a fairly typical
example (arising for the nilpotent element in Sp(2n) corresponding to the
partition 2n of 2n) has

L1 = GL(n,C), LX1
1 = O(n,C).

But we are not going to address this branching problem. Instead, we will
calculate not individual basis vectors Ẽalg(τ), but rather a basis of the span

of all these vectors as τ varies over ĜX1
1 (always for a fixed X1).
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For our application to calculating associated varieties, the price is that
we can calculate the components of the associated variety and their multi-
plicities, but not the virtual representations of isotropy groups giving rise to
those multiplicities.

What we gain for this price is an algorithm, which we have implemented
in the atlas software (see [4]).

Algorithm 8.5 (A geometric basis for equivariant K-theory). We begin
in the setting (8.1) with a nilpotent orbit

Y = G1 ·X1 ⊂ N1 ' N ∗1 ' N ∗θ . (8.5a)

(Here we use the identifications of (6.2b) and (2.4).) The goal is to
produce a collection of explicit elements

Eorbalg
j (Y ) =

∑
γ∈PK-L(G,K)

mEorbalgj (Y )
(γ)[γ]θ ∈ KK(Y ) (8.5b)

which are a basis of KK(Y )/KK(∂Y ). (The superscript “orbalg” stands
for “orbital algorithm.” The subscript j is just an indexing parameter
for the basis vectors we compute, running over

{0, 1, . . .M − 1} or N;

it has no particular meaning. It replaces the parameter τ (correspond-
ing to the coherent sheaf E) in the basis of Theorem 4.5. The algorithm
proceeds by induction on dimY ; so we assume that such a basis is
available for every boundary orbit Y ′ ⊂ ∂Y .

Given an arbitrary (say irreducible) representation σ of L1, 8.2(5)
provides an expression

[µ∗S(σ)] =
∑

γ∈PK-L(G,K)

mσ(γ)[γ]θ. (8.5c)

The “sheaf” µ∗S(σ) (actually it is a formal alternating sum of higher
direct image sheaves, but the higher terms are supported on the bound-
ary) is a vector bundle over Y , of rank

rank([µ∗S(σ)]|G1·X1) = dim(σ). (8.5d)

This dimension (of an irreducible of L1) is easy to compute.
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According to Corollary 8.4, the classes {[µ∗S(σ)] | σ ∈ L̂1}, after
restriction to KG1(Y ), are a spanning set. Furthermore the kernel of
the restriction map has as basis the (already computed) set⋃

Z⊂∂Y
{Eorbalg

k (Z)}. (8.5e)

Now extracting a subset

Eorbalg
j (Y ) =

∑
σ∈L̂1

nj(σ)[µ∗S(σ)] (8.5f)

of the span of the [µ∗S(σ)] restricting to a basis of the image of the
restriction is a linear algebra problem. Because the rank (the virtual
dimension of fibers over G1 ·X1) is additive in the Grothendieck group,
we can compute each integer

rank([Eorbalg
j ]) =

∑
σ∈L̂1

nj(σ) dim(σ). (8.5g)

In this description we have swept under the rug the issue of doing finite
calculations. We will now address this. Recall from (2.4c) the invariant
bilinear form 〈, 〉 on g, and from Proposition 2.5 the fact that this form
defines a positive definite form on any character lattice X∗(H), with H ⊂ G
a maximal torus. The same proof applies to non-maximal tori; so we get a
positive definite form on highest weights for any reductive subgroup of G.

Lemma 8.6. Suppose E ⊂ F are algebraic subgroups of G (not necessarily
connected), and that τ and σ are irreducible representations of E and F
respectively. Define

‖τ‖ = length of a highest weight of τ

and similarly for σ. If τ appears in σ|E, then necessarily

‖τ‖ ≤ ‖σ‖.

Because an irreducible algebraic representation must be trivial on the
unipotent radical, we may assume that E and F are reductive, so that the
notion of “highest weight” makes sense. The lemma reduces immediately to
the case when E and F are tori, and in that case is obvious.

If now E is a geometric parameter corresponding to an irreducible rep-
resentation τ of Gξ1, we define

‖E‖ = ‖τ‖. (8.7)
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If γ is a dominant weight thought of as a Langlands parameter, we define

‖γ‖ = length of γ as a weight. (8.8)

Proposition 8.9. Suppose we are in the setting of Corollary 8.4.

1. Any formula for an extension of (Y, E) must include a term γ for which
the restriction of the G1-representation of extremal weight γ contains
the GX1

1 representation τ defining E; and therefore

‖γ‖ ≥ ‖τ‖.

2. There is a constant C, depending only on G, so that there is a virtual
extension of τ to L1 in which every L1 highest weight γ1 appearing
satisfies

‖γ1‖ ≤ ‖τ‖+ C.

3. There is a constant C depending only on G so that, in the formula for
the virtual extension of E given in Corollary 8.4, every K-Langlands
parameter γ appearing satisfies

‖γ‖ ≤ ‖τ‖+ 2C.

Proof. The main assertion in Part (1) is elementary, and then the last in-
equality is Lemma 8.6. Part (2) is elementary but tedious; we omit the
argument. Part (3) is clear by inspection of Corollary 8.2(4); the constant
C in this case is a bound for the sizes of the various root sums appearing.

Here now is how to make Algorithm 8.5 into a finite calculation. We
fix some bound N , and at every stage consider only the (finitely many)
irreducible representations of L1 of highest weights bounded in size by N+C.
When this is done, all the linear algebra mentioned in the algorithm will take
place in the finite-rank Z module spanned by K-Langlands parameters of
size bounded by N + 2C. Instead of surjectivity for the restriction from
R(L1) to R(LX1 ), what we will know is that

the image contains all irreducible representations
of LX1 of highest weight size bounded by N .

(8.10)

The conclusion about the algorithm is that

proposed basis vectors with K-Langlands parameters of size
bounded by N are linearly independent in KK(Y )/KK(∂Y ).

(8.11)

The proposed basis vectors involving parameters of size between N and
N + 2C will indeed live in KK(Y )/KK(∂Y ), but they may not be linearly
independent.
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9 Associated varieties for complex groups

In the setting of (6.1), suppose X is a (g,K)-module for the complex group
G1 (regarded as a real group). Kazhdan-Lusztig theory allows us (if X is
specified as a sum of irreducibles in the Langlands classification) to find an
explicit formula (in the Grothendieck group of finite length Harish-Chandra
modules)

X =
∑

(λL,λR)∈PL(G,K)

mX(λL, λR)I(λL, λR). (9.1a)

Fix a K-invariant good filtration of the Harish-Chandra module X, so that
grX is a finitely generated S(g/k)-module supported on N ∗θ . The class in
equivariant K-theory

[grX] ∈ KK(N ∗θ ) (9.1b)

is independent of the choice of good filtration. Because of the characteriza-
tions in Definition 7.2 of the basis {[γ]θ} of this K-theory, we find

[grX] =
∑

γ∈PK-L(G)

 ∑
(λL,λR)∈PL(G,K)

(λL,λR)∼Kγ

mX(λL, λR)

 [γ]θ

=
∑

γ∈PK-L(G)

mX(γ)[γ]θ.

(9.1c)

Here the equivalence ∼K in the first inner sum is that of Definition 6.5. If
we think of γ as a dominant weight, then

(λL, λR) ∼K γ ⇐⇒ γ ∈W (K,T ) · (λL + λR). (9.1d)

Recall now the classes [Eorbalg
k (Z)] constructed in Achar’s Algorithm 8.5.

Comparing their known formulas with (9.1c), we can do an (upper triangu-
lar) change of basis calculation, and get an explicit formula

[grX] =
∑

Eorbalgk (Z)

nX(Eorbalg
k (Z))[Eorbalg

k (Z)], (9.1e)

with computable integers nX(Eorbalg
k (Z)).

Here is how to make this calculation finite. After using Kazhdan-Lusztig
theory to calculate the formula (9.1c), write N for the size of the largest
highest weight appearing. (If X is irreducible, then N is just the length of
the highest weight of the lowest K-type of X; no Kazhdan-Lusztig theory
arises.) Then run the algorithm as described in (8.10) and (8.11), using
always representations of L1 of highest weights bounded by N + C.
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Theorem 9.2. Suppose X is a (g,K)-module for the complex group G1

(regarded as a real group). Use the notation of (9.1).

1. The associated variety of X (Definition 5.2) is the union of the closures

of the maximal K-orbits Z ⊂ N ∗θ with some nX(Eorbalg
k (Z)) 6= 0.

2. The multiplicity of a maximal orbit Z in the associated cycle of X is∑
Eorbalgk (Z)

nX(Eorbalg
k (Z)) rank(Eorbalg

k (Z)).

Proof. Theorem 4.5(3) provides a formula in equivariant K-theory

[grX] =
∑

(Z,F)∈Pg(G,K)
Z⊂supp(grX)

mX(Z,F)[F̃alg], (9.3)

and implies that the coefficients of the terms on maximal orbits are indepen-
dent of choices. The definition (5.2g), and the definition of the basis vectors

Eorbalg
k (Z), relate the coefficients in (9.3) to the multiplicities in the associ-

ated variety. We know that the basis {F̃} can be expressed in terms of the

basis {Eorbalg
k }, and that the change of basis is weakly upper triangular with

respect to the ordering of orbits by closure. From these facts the theorem
follows.

10 Representation basis for K-theory: R case

Everything has been said so as to carry over to real (linear algebraic) groups
with minimal changes. We return therefore to the general setting of (2.1).
Just as in the complex case, Theorem 4.5 in the present setting gives

Corollary 10.1. Write {Y1, . . . , Yr} for the orbits of K on N ∗θ ( (2.3c)).
For each irreducible K-equivariant vector bundle E on some Yi, fix a K-
equivariant (virtual) coherent sheaf Ẽ supported on the closure of Yi, and
restricting to E on Yi. Then the classes [Ẽ ] are a basis of KK(N ∗θ ). A
little more precisely, the classes supported on any K-invariant closed subset
Z ⊂ Nθ are a basis of KK(Z).

As stated at the beginning of Section 6, the distinguishing complication
in the general real case is the formulation of the Langlands classification.

53



We now begin to explain the details we need. The main point is that Harish-
Chandra parametrized the discrete series of G(R) using characters of a com-
pact maximal torus; but this “family” of representations changes drastically
as the character moves from one Weyl chamber to another. The discrete se-
ries characters constitute a nice family only if we restrict the Harish-Chandra
parameter to vary just over characters within a single Weyl chamber.

Once that is done, we have the problem that each nice family of repre-
sentations is inconveniently small: it is indexed not by all characters of a
maximal torus, but only by appropriately dominant characters. We address
this (following a fundamental idea of Hecht and Schmid from the 1970s)
by enlarging the family to depend on arbitrary (not necessarily dominant)
characters.

The resulting families of (virtual) representations are convenient for our
calculations, but too large to index irreducible representations. The positiv-
ity notion of weak in Definition 10.2 singles out those representations that
have some chance to be part of the classification.

There remain two smaller issues. First, when the character is dominant
but singular, it may happen that the corresponding representation of G(R)
is zero. This possibility is ruled out by the condition nonzero in Definition
10.2. Second (again for singular characters) it may happen that the same
representation is attached to characters on two nonconjugate maximal tori.
In this case it turns out that (among these various realizations) there is
a unique one on a most compact torus; this is the one identified by the
condition final.

Definition 10.2. (See for example [3, Section 6] for details.) A con-
tinued Langlands parameter for (G,K) is a triple Γ = (H, γ,Ψ) such
that

1. H is a θ-stable maximal torus in G;

2. γ is a one-dimensional (h, [Hθ]ρabs)-module in which the kernel of the
two to one covering map [Hθ]ρabs → Hθ acts nontrivially; and

3. Ψ is a system of positive imaginary (that is, θ-fixed) roots for H in G.

Two continued Langlands parameters are equivalent if they are con-
jugate by K. A continued Langlands parameter is called weak if in
addition

4. dγ ∈ h∗ is weakly dominant with respect to Ψ.

The weak Langlands parameter is called nonzero if in addition
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5. whenever α ∈ Ψ is simple and compact, 〈dγ, α∨〉 6= 0.

Here dγ ∈ h∗ means the weight by which the Lie algebra h acts in γ.
The nonzero weak Langlands parameter is called final if in addition

6. whenever β is a real root of H such that 〈dγ, β∨〉 = 0, then γq(mβ) = 1.

(Here γq is a ρ-shift of γ defined in [3, (9.3g)].)
We write

PL(G,K) = {equivalence classes of final Langlands parameters}.

The Langlands classification attaches to the equivalence class of a
continued parameter Γ a continued standard representation [I(Γ)] (more
precisely, a virtual (g,K)-module in the Grothendieck group K(g,K)
defined in (5.1)), with the following properties.

1. The infinitesimal character of [I(Γ)] is the W (G,H) orbit of dγ.

2. The restriction of [I(Γ)] to K depends only on

ΓK = (H, γ|Hθ ,Ψ).

More precisely,

3. the class in equivariant K-theory

[gr I(Γ)] =def [Γ]θ ∈ KK(N ∗θ )

is independent of γ|h−θ .

4. If Γ is weak, then [I(Γ)] is represented by a (g,K)-module I(Γ), a weak
standard representation.

5. The weak standard representation I(Γ) is nonzero if and only if the
parameter Γ is nonzero (as defined above).

6. If Γ is weak and nonzero, then I(Γ) = ⊕ri=1I(Γi); here {Γi} is a com-
putable finite set of final parameters attached to a single (more com-
pact) θ-stable maximal torus H ′.

7. If Γ is final, there is a unique irreducible quotient J(Γ) of I(Γ).

8. Any irreducible (g,K)-module is equivalent to some J(Γ) with Γ final.
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9. Two final standard representations are isomorphic (equivalently, their
Langlands quotients are isomorphic) if and only if their parameters
are conjugate by K.

Missing from these properties is an explicit description of the equiv-
ariant K-theory class [Γ]θ like Definition 6.4(5) in the complex case.
We will return to this point in Section 11.

Just as for complex groups, the final standard representation I(Γ)
is tempered if and only if the character γ of H(R)ρabs is unitary; equiv-
alently, if and only if dγ|h−θ ∈ ih∗. In this case I(Γ) = J(Γ).

In the general (possibly nontempered) case, the real part of dγ|h−θ
controls the growth of matrix coefficients of J(Γ). When Re dγ|h−θ is
larger, the matrix coefficients grow faster.

Partly because of the notion of tempered, it is useful to define the
K-norm of a continued parameter Γ:

‖Γ‖2K =def 〈dγ|hθ , dγ|hθ〉.

In the setting of property (6) above, ‖Γ‖K = ‖Γi‖K .
The K-norm is evidently bounded by the canonical real part of the

infinitesimal character:

‖Γ‖2K = 〈Re dγ,Re dγ〉 − 〈Re dγ|h−θ ,Re dγ|h−θ〉 ≤ 〈Re dγ,Re dγ〉,

with equality if and only if γ is unitary.

We pause here to mention the real groups formulation of the Langlands
classification, to which we alluded in the introduction. As usual we use the
notation of (2.1). There are natural bijections

{θ-stable maximal tori H1 ⊂ G} /K-conjugacy

←→ {θ-stable real maximal tori H2 ⊂ G} /K(R)-conjugacy

←→ {real maximal tori H3 ⊂ G} /G(R)-conjugacy

(10.3a)

A θ-stable torus Hi contains an algebraic subgroup

Hθ
i (i = 1, 2). (10.3b)

A real torus Hj has a real form

Hj(R) (j = 2, 3) (10.3c)
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which in turn has a natural maximal split subtorus

Hj(R) ⊃ Aj(R) ' (R×)d (j = 2, 3) (10.3d)

It is the (topological) identity component

Aj =def Aj(R)0 ' (R×+)d (j = 2, 3) (10.3e)

that typically appears in discussions of structure theory for real reductive
groups. Just as for a general reductive group, the (unique) maximal com-
pact subgroup of Hj(R) is the group of real points of a (unique) algebraic
subgroup Tj ⊂ Hj :

Hj(R) ⊃ Tj(R) = maximal compact subgroup. (10.3f)

The Cartan decomposition is the direct product decomposition

Hj(R) = Tj(R)×Aj (j = 2, 3). (10.3g)

Consequently the continuous characters of Hj(R) may be described as

Ĥj(R) ' T̂j(R)× Âj
' T̂j × a∗j ;

(10.3h)

the last equality is because Tj(R) is a compact form of the algebraic group
Tj , and Aj is an abelian vector group.

Since H2 is both real and θ-stable, we find

T2 = Hθ
2 , T̂2(R) ' Ĥθ

2 . (10.3i)

Definition 10.4. (See for example [3, Section 6] for details.) A con-
tinued Langlands parameter for G(R) is a triple Γ = (H(R), γ,Ψ) such
that

1. H(R) is a maximal torus in G(R);

2. γ is a level one character of the ρabs double cover of H(R), and

3. Ψ is a system of positive imaginary (that is, σR(α) = −α) roots for H
in G.

Two continued Langlands parameters are equivalent if they are conju-
gate by G(R).

57



This definition can be continued in a way precisely parallel to Definition
10.2, defining in the end the set of Langlands parameters

PL(G(R)) ' PL(G,K). (10.5)

The bijection with Langlands parameters for (G,K) is an easy consequence
of (10.3). This entire digression is just another instance of Harish-Chandra’s
idea that analytic questions about representations of G(R) can often be
phrased precisely as algebraic questions about (g,K)-modules.

We now return to that algebraic setting.

Definition 10.6. A K-Langlands continued parameter for (G,K) is a
triple ΓK = (H, γK ,Ψ) such that

1. H is a θ-stable maximal torus in G;

2. γK is a level one character of the ρabs double cover of Hθ; and

3. Ψ is a system of positive imaginary (that is, θ-fixed) roots for H in G.

Two continued K-Langlands parameters are equivalent if they are con-
jugate by K. A continued K-Langlands parameter is called weak if in
addition

4. dγK ∈ (hθ)∗ is weakly dominant with respect to Ψ.

The weak K-Langlands parameter is called nonzero if in addition

5. whenever α ∈ Ψ is simple and compact, 〈dγK , α∨〉 6= 0.

The nonzero K-Langlands parameter is called final if in addition

6. for any real root β, γK,q(mβ) = 1.

The set of equivalence classes of finalK-Langlands parameters is written
PK-L(G,K).

In the complex case, we get a K-Langlands parameter from a Lang-
lands parameter just by discarding a bit of information (the restric-
tion to h−θ). In the general real case, matters are more subtle. The
difference between final K-Langlands parameters and final Langlands
parameters is first, that there is no character on (the split torus) h−θ

(or, equivalently, that dγK is assumed to be zero there); and second,
that the finality condition is assumed for all the real roots, rather than
just those on which dγ vanishes.
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We will make use of the K-norm of a K-Langlands parameter, de-
fined exactly as for Langlands parameters by

‖ΓK‖2K =def 〈dγK , dγK〉;

the weight whose length we are taking belongs to (hθ)∗.

Theorem 10.7 ([27, Theorem 11.9]). The set PK-L(G,K) of equivalence
classes of final K-Langlands parameters (Definition 10.6) is in one-to-one
correspondence with

1. (final Langlands parameters for) tempered representations of real in-
finitesimal character (extending ΓK by zero on h−θ); or

2. irreducible representations of K (by taking lowest K-type).

Once we have in hand the K-Langlands parameters, there is an obvious
extension of Lusztig’s conjecture (what is proven by Bezrukavnikov in [7])
to real groups. But this extension is not true for SL(2,R) (see Example
10.10 below).

We can now begin to extend to real groups the ideas in Section 7.

Theorem 10.8. Suppose (Y, E) ∈ Pg(G,K) is a geometric parameter (Defi-

nition 2.13); fix an extension Ẽ as in Corollary 10.1. Then there is a formula
in KK(Nθ)

[Ẽ ] =
∑

ΓK∈PK-L(G,K)

mẼ(ΓK)[ΓK ]θ.

Here mẼ(ΓK) ∈ Z, and the sum is finite.

Suppose Ẽ ′ is another extension of E to Y . Then

[Ẽ ′]− [Ẽ ] =
∑

(Z,F)∈Pg(G,K)
Z⊂∂Y

nF [F̃ ].

Here nF ∈ Z, and the sum is finite.

We will prove this in Corollary 12.3 below.
In the complex case, Bezrukavnikov’s proof of the Lusztig-Bezrukavnikov

conjecture guarantees the existence of an extension Ẽ with a single leading
term, and in this way finds a bijection between geometric parameters and K-
Langlands parameters. In the real case there will sometimes be no reasonable
way to arrange a single leading term, and accordingly no such bijection.
Fortunately computers are better able than humans to do linear algebra
with matrices that are not upper triangular.
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Corollary 10.9. In the setting of (2.1), the classes{
[ΛK ]θ ∈ KK(N ∗θ ) | ΛK ∈ PK-L(G,K)

}
are a Z-basis of KK(N ∗θ ). The restriction to K map

resK : KK(N ∗θ )→ K(K)

of (5.4g) is injective.

Proof. That these classes span is a consequence of Theorem 4.5 and Theorem
10.8. That they are linearly independent is a consequence of Theorem 10.7;
the argument proves injectivity of the restriction at the same time.

Example 10.10. Let us take G = SL(2,C),

D =

(
1 0
0 −1

)
θ(g) = DgD−1,

so that K = Hc is the diagonal torus, and G is the complexification of
SU(1, 1). We have naturally

K ' C×, K̂ ' Z; (10.10a)

we will write an irreducible representation of K just as an unadorned
integer. The K-nilpotent cone is

N ∗θ '
{(

0 a
b 0

)
| ab = 0

}
.

There are two nonzero orbits of K on N ∗θ :

Y + =

{(
0 a
0 0

)
| a 6= 0

}
, Y − =

{(
0 0
b 0

)
| b 6= 0

}
,

each isomorphic to K/{±I}; and the zero orbit Y 0 ' K/K. The geo-
metric parameters are therefore

Pg(G,K) = {(Y ±, E±triv), (Y ±, E±sgn), (Y 0, E0
n) | n ∈ Z}. (10.10b)

(In each case the superscript 0 or ± on the vector bundle identifies the
underlying orbit.)

On the θ-stable maximal torus Hc, the Cartan involution θ acts triv-
ially. Consequently every root is imaginary, and there are two systems
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of positive imaginary roots: Ψ+ (corresponding to upper triangular ma-
trices), and Ψ−. Attached to each non-negative integer n there are two
final K-Langlands parameters Γ+

K(n) (corresponding to Ψ+, with the
differential of the character identified with n) and Γ−K(n). These are
discrete series and limits of discrete series:

[Γ+
K(n)]|K = n+ 1, n+ 3, n+ 5, . . .

[Γ−K(n)]|K = −n− 1, −n− 3, −n− 5, . . . .
(10.10c)

A representative of the other K-conjugacy class of θ-stable maximal
tori is

Hs =

{
±
(

cosh z sinh z
sinh z cosh z

)}
,

with Lie algebra

hs =

{(
0 z
z 0

)
| z ∈ C

}
.

Here θ acts by inversion, so there are no imaginary roots. There is ex-
actly one final K-Langlands parameter Γ0

K , corresponding to the spher-
ical principal series:

[Γ0
K ]|K = 0,±2,±4, . . . (10.10d)

and so on. A reasonable partial order on these parameters is

Γ0
K ≺ Γ+

K(1) ≺ Γ+
K(3) ≺ Γ+

K(5) ≺ · · ·
Γ0
K ≺ Γ−K(1) ≺ Γ−K(3) ≺ Γ−K(5) ≺ · · ·

Γ+
K(0) ≺ Γ+

K(2) ≺ Γ+
K(4) ≺ Γ+

K(6) ≺ · · ·
Γ−K(0) ≺ Γ−K(2) ≺ Γ−K(4) ≺ Γ−K(6) ≺ · · ·

(10.10e)

Here are some reasonable choices of extensions:

Ẽ0
n = [Γ

sgn(n)
K (|n| − 1)]θ − [Γ

sgn(n)
K (|n|+ 1)]θ (n 6= 0), (10.10f)

Ẽ0
0 = [Γ0

K ]θ − [Γ+
K(1)]θ − [Γ−K(1)]θ, (10.10g)

Ẽ±sgn = [Γ±K(0)]θ; (10.10h)

and
Ẽ±triv = [Γ±K(1)]θ. (10.10i)
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But in the last case, there is another reasonable choice of extension:

Ẽ±triv
′
= [Γ0

K ]θ − [Γ∓K(1)]θ. (10.10j)

(Here we make the natural choice of extending the structure sheaf
on the open orbit Y ± to the structure sheaf on its closure.) So here is
what we have in the direction of a Lusztig-Bezrukavnikov bijection for
SL(2,R):

E0
n ←→ Γ

sgn(n)
K (|n|+ 1) (n 6= 0)

E±sgn ←→ Γ±K(0)

E0
0 , E+

triv, E
−
triv ←→ Γ+

K(1), Γ−K(1);

(10.10k)

the map from left to right is taking some kind of “leading terms” of
some natural extension. One might like to include on the right in the
last case the K-Langlands parameter Γ0

K ; it is not a leading term, but
the result is that there is something like an “almost bijection,” with the
last three “smallest” geometric parameters corresponding (as a set) to
the three “smallest” K-Langlands parameters.

We conclude this section by recording the (known) information we will
need about continued standard parameters.

Theorem 10.11. Use the notation of Definitions 10.2 and 10.6.

1. The equivalence classes (that is, orbits of K)

{[I(Γ) | Γ ∈ PL}

of final Langlands parameters are a Z-basis of the Grothendieck group
Mf (g,K) of finite length Harish-Chandra modules.

2. For any final parameter Γ, Kazhdan-Lusztig theory computes

[J(Γ)] =
∑

Λ∈PL

mΓ(Λ)[I(Λ)];

here mΓ(Λ) ∈ Z, and the sum is finite. We have mΓ(Γ) = 1, and the
other nonzero terms all satisfy

‖Λ‖K > ‖Γ‖K .
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3. For any continued parameter Γ′, the unique formula

[I(Γ′)] =
∑

Λ∈PL

pΓ′(Λ)[I(Λ]

can be computed using classical results of Hecht and Schmid.

4. The equivalence classes (that is, orbits of K)

{[I(ΓK)] | ΓK ∈ PK-L}

are a Z-basis of the Grothendieck group of finite-length Harish-Chandra
modules restricted to K.

5. For any final parameter Γ ∈ PL, there is an elementary computation
of the unique formula

[I(Γ)|K ] =
∑

ΛK∈PK-L

mΓ(ΛK)I(ΛK).

All the parameters ΛK appearing live on the same (more compact)
maximal torus, satisfy

‖ΛK‖K = ‖Γ‖K ,

and have mΓI(ΛK) = 1; they correspond to the lowest K-types of I(Γ)
or J(Γ).

6. For any continued parameter Γ′, the unique formula

[I(Γ′)|K ] =
∑

ΛK∈PK-L

qΓ′(ΛK)[I(ΛK)]

can be computed explicitly.

7. For any final parameter Γ ∈ PL, there is computable formula

J(Γ)|K =
∑

ΛK∈PK-L

nJ(Γ)I(ΛK)|K ,

or equivalently

[gr J(Γ)] =
∑

ΛK∈PK-L

nJ(Γ)[ΛK ]θ ∈ KK(N ∗θ ).

This theorem corresponds to the preparations made in (9.1) in the com-
plex case.
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11 Standard representations restricted to K

In this section we will recall how to compute the restrictions to K of the
(continued) standard (g,K)-modules described in Definition 10.2. This will
be critical for the description in Section 12 of how explicitly to write the
formulas of Theorem 10.8.

Always we work in the setting (2.1). Suppose to begin that we have also
a θ-stable parabolic subgroup with θ-stable Levi decomposition

Q = LU, θQ = Q, θL = L. (11.1a)

It is not difficult to show that

K/(Q ∩K) ↪→ G/Q (11.1b)

is a closed embedding, so that K/(Q∩K) is projective, and therefore Q∩K
is parabolic in K. (Since K may be disconnected, there is a question about
the meaning of “parabolic subgroup.” We will say that P ⊂ K is parabolic
if K/P is projective; equivalently, if P ∩K0 = P0 is parabolic in K0, or if
P contains a (connected) Borel subgroup of K0.) We may in particular fix
a torus

T ⊂ L ∩K (11.1c)

that is a maximal torus in K0.
In the next proposition the disconnectedness of K complicates matters

slightly, and is the reason we need not get irreducible representations of K
from irreducibles of L ∩K.

Theorem 11.2 (Bott-Borel-Weil). In the setting (11.1), suppose (σ, S) is
an algebraic representation of L ∩K (or even of Q ∩K). Then we get an
equivariant algebraic vector bundle

S = K ×Q∩K S → K/(Q ∩K).

1. Each cohomology space H i(K/(Q ∩K),S) is a finite-dimensional al-
gebraic representation of K.

2. The virtual representation∑
i

(−1)i[H i(K/(Q ∩K),S)] ∈ R(K)

depends only on the class [(σ, S)] ∈ R(L ∩K).
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3. Suppose (σ, S) is irreducible, and that its infinitesimal character is
represented by

ξL∩K ∈ X∗(T )− ρL∩K ⊂ t∗.

Write
ξK = ξL∩K − ρ(u ∩ k) ∈ X∗(T )− ρK .

Then either
H i(K/(Q ∩K),S) = 0, (all i)

(if ξK vanishes on some coroot of T in K); or

H i(K/(Q ∩K),S) =


nonzero representation of
infinitesimal character ξK

(i = i(ξK))

0 (i 6= i(ξK)).

Our first tool for computing cohomological induction is the operation

IndKQ∩K : R(L ∩K)→ R(K),

[(σ, S)] 7→
∑
i

(−1)i[H i(K/(Q ∩K),S)] ∈ R(K). (11.3)

(Recall that R(K) is the representation ring of virtual representations of K.
In the language of K-theory,

IndKQ∩K : KL∩K(point)→ KK(point). (11.4)

One should think of the case when (σ, S) is a K-dominant irreducible rep-
resentation of L ∩ K; then IndKQ∩K(σ) lives only in the highest degree
dimK/(Q∩K), and there is essentially an irreducible representation of K of
highest weight σ− 2ρ(u∩ k). (For disconnected K it may happen that there
are several irreducible representations of K of highest weight σ − 2ρ(u ∩ k);
this is how reducible representations of K arise in Theorem 11.2.)

Proposition 11.5 (Zuckerman). In the setting (11.1), there are cohomo-
logical induction functors

Ri : Mf (l, L ∩K)→Mf (g,K) (0 ≤ i ≤ dim u ∩ k)

(notation (5.1a)) with the following properties.

1. The class
[R(Z)] =def

∑
i

(−1)i[Ri(Z)] ∈ K(g,K)

is well-defined, depending only on [Z] ∈ K(l, L ∩K).
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2. The class

[grR(Z)] =def

∑
i

(−1)i[grRi(Z)] ∈ KK(N ∗θ )

is well-defined, depending only on [grZ] ∈ KL∩K(N ∗L,θ).

3. Suppose H ⊂ L is a θ-stable maximal torus, and ΓL = (H, γL,ΨL) is
a continued Langlands parameter for (L,L ∩K). Define

γG = γL ⊗ ρ(u)∗

ΨG = ΨL ∪ {imaginary roots of H in u},

so that ΓG = (H, γG,ΨG) is a continued Langlands parameter for
(G,K). Then

[RI(ΓL))] = [I(ΓG)].

This proposition describes (or at least says that it is possible to describe)
how to construct standard modules using the geometry of (11.1). We are
interested in computing gr (an image in the equivariant K-theory of the
nilpotent cone) of standard modules; so we need to relate that geometry
to (11.1). Often the best way to think of G/Q is as a variety of parabolic
subgroups:

G/Q ' Q =def variety of parabolic subalgebras conjugate to q. (11.6a)

To think about nilpotent elements in g∗, it may be helpful to recall that in
any identification g ' g∗ from an invariant bilinear form, we have

q ' (g/u)∗.

The natural projection q→ l corresponds to restriction of linear functionals

πq : (g/u)∗ → (q/u)∗. (11.6b)

An element of q is nilpotent if and only if its image in l is nilpotent. We
therefore write

N ∗l = nilpotent cone in l∗,

N ∗q = π−1
q (N ∗l );

(11.6c)

this is an “affine space bundle” over the nilpotent cone for L (roughly, a
vector bundle without chosen zero section) corresponding to the vector space
(g/q)∗ ' u. If we use the identification g∗ ' g,

N ∗q ' Nl + u.
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For the K-nilpotent cone,

πq,θ : (g/(u + k))∗ → (q/(u + (q ∩ k)))∗ ' (l/(l ∩ k))∗. (11.6d)

N ∗l,θ = (L ∩K)-nilpotent cone in l∗

= N ∗l ∩ (l/(l ∩ k))∗

N ∗q,θ = π−1
q,θ (N ∗l,θ)

N ∗q,θ ' Nl,θ + (u ∩ s).

(11.6e)

The basic Grothendieck-Springer method to study nilpotent elements is
to consider

N ∗Q =def {(ξ′, q′) | q′ ∈ Q, ξ′ ∈ N ∗q′}
' G×Q N ∗q .

(11.6f)

Points here are nilpotent linear functionals ξ′ on g with the extra information
of a chosen parabolic q′ (conjugate to q) so that ξ′ vanishes on the nil radical
u′ of q′. Such parabolics exist for any ξ′, so the moment map

µQ : N ∗Q → N ∗, (ξ′, q′) 7→ ξ′ (11.6g)

is (projective and) surjective. In the same way, the projection

πQ : N ∗Q → Q, (ξ′, q′) 7→ q′ (11.6h)

is an affine morphism (even a bundle) with fiber N ∗q .
The subvariety K/(Q ∩K) is

K/(Q ∩K) ' QK =def variety of θ-stable parabolic

subalgebras conjugate by K to q,
(11.6i)

a single closed orbit of K on Q. Over this orbit we are interested in a
subbundle of N ∗Q

N ∗Q,θ =def {(ξ′, q′) | q′ ∈ QK , ξ′ ∈ N ∗q′,θ}
' K ×Q∩K N ∗q,θ.

(11.6j)

Points here are nilpotent linear functionals ξ′ on g/k with the extra infor-
mation of a chosen θ-stable parabolic q′ (conjugate by K to q) so that ξ′

vanishes on the nil radical u′ of q′. Such parabolics may not exist for some
ξ′, so the moment map

µQ,θ : N ∗Q,θ → N ∗θ , (ξ′, q′) 7→ ξ′ (11.6k)
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is projective but not necessarily surjective. In the same way, the projection

πQ,θ : N ∗Q,θ → QK , (ξ′, q′) 7→ q′ (11.6l)

is an affine morphism (even a bundle) with fiber N ∗q,θ.
Suppose now that

EL ∈ CohL∩K(N ∗l,θ); (11.6m)

that is, that EL is a finitely generated module for S(l), with l∩ k and the L-
invariants of positive degree acting by zero, and endowed with a compatible
action of L ∩K. The pullback

EQ =def π
∗
q,θ(EL) ∈ CohQ∩K(N ∗q,θ) (11.6n)

is obtained by first regarding EL as an S(q) module (in which u acts by zero),
and then tensoring over S(q) with S(g) to extend scalars. We can define

EG =def K ×Q∩K EQ ∈ CohK(N ∗Q,θ) (11.6o)

as in (4.3i). Because πq,θ is proper, the higher direct images

Riµ∗(EG) ∈ CohK(N ∗θ ) (11.6p)

are all coherent sheaves on the nilpotent cone.

Proposition 11.7 (Zuckerman’s Blattner formula). In the setting (11.1),
suppose Z ∈Mf (l, L ∩K), with

[grZ] ∈ KL∩K(N ∗l,θ)

the corresponding class in equivariant K-theory. Define

R[grZ] =
∑
i

(−1)i[Riµ∗([grZ]L)] ∈ KK(N ∗θ )

(notation as in (11.6)). Then

[grR(Z)] = R[grZ].

This is Zuckerman’s proof of the Blattner formula; the representations
of K appearing on the right are computable from the L∩K-types of Z (by
Theorem 11.2). Those on the left are the K-types of R(Z).
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12 Geometric basis for K-theory: R case

In this section we will explain how to compute one extension of a geometric
parameter (Theorem 10.8). As in the complex case, we will proceed in the
aesthetically distasteful way of using the Jacobson-Morozov theorem (and
so discussing not the nilpotent elements in g∗ that we care about, but rather
the nilpotent elements in g).

We begin therefore with an arbitrary K-nilpotent element Eθ ∈ Nθ (see
(2.4e)). The Kostant-Rallis result Theorem 2.8 finds elements Fθ ∈ Nθ and
Dθ in k so that

[Dθ, Eθ] = 2Eθ, [Dθ, Fθ] = −2Fθ, [Eθ, Fθ] = Dθ. (12.1a)

We use the eigenspaces of ad(Dθ) to define a θ-stable parabolic subgroup
Q = LU of G, with Levi factor L = GDθ . We will be concerned with the
equivariant vector bundle

Rθ =def K ×Q∩K s[≥ 2]
π−→ K/Q ∩K. (12.1b)

(The reason Rθ is of interest is that Corollary 12.2 below says that it is a K-
equivariant resolution of singularities of the nilpotent orbit closure K · Eθ.
The R is meant to stand for resolution.) According to (4.3i) and (4.3f),

KK(Rθ) ' R(Q ∩K) ' R(L ∩K); (12.1c)

If (σ, S) is an irreducible representation of L∩K ' Q∩K/U ∩K, we write

S0(σ) = K ×Q∩K S (12.1d)

for the induced vector bundle on K/Q∩K. The corresponding basis element
of the equivariant K-theory is represented by the equivariant vector bundle

S(σ) = π∗(S0(σ)) = K ×Q∩K (s[≥ 2]× S)→ Rθ. (12.1e)

We are in the setting of Proposition 2.8. As a consequence of that
Proposition, we have

Corollary 12.2. Suppose we are in the setting of (12.1).

1. The natural map

µ : Rθ → Nθ, (k, Z) 7→ Ad(k)Z

is a proper birational map onto K · Eθ. We may therefore identify
K · Eθ with its preimage U :

K/KEθ ' K · Eθ ' U ⊂ Rθ.

Because K · Eθ is open in K · Eθ, U = µ−1(K · Eθ) is open in Rθ.
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2. The classes
{[S(σ)] | σ ∈ L̂ ∩K = Q̂ ∩K}

of (12.1e) are a basis of the equivariant K-theory KK(Rθ).

3. Since µ is proper, higher direct images of coherent sheaves are always
coherent. Therefore

[µ∗(S(σ)] =def

∑
i

(−1)i[Riµ∗S(σ)] ∈ KK(Nθ)

is a well-defined virtual coherent sheaf. This gives a map in equivariant
K-theory

µ∗ : KK(Rθ)→ KK(Nθ).

Restriction to the open set U ' K · Eθ commutes with µ∗.

Suppose σ is a (virtual) algebraic representation of L ∩K. Write

[σ] =
∑
i

mi(σ)[I(ΓiL∩K)]θ ∈ KL∩K(N ∗l,θ)

(computably, as explained in [27]); here the H i are θ-stable maximal tori in
L, and

ΓiL∩K = (H i, γiL∩K ,Ψ
i
L) ∈ PL∩K-L(L,L ∩K).

The left side [σ] is a finite-dimensional virtual representation of L ∩K, re-
garded as a class in the equivariant K-theory of the nilpotent cone supported
at {0}.

4. As a representation of K,

[µ∗(S(σ))] =
∑
j

(−1)jR
(

[
∧js[1]∗ ⊗ σ]

)

=
∑
j

(−1)jR

(∑
i

mi[I(ΓiL∩K)]⊗
∧js[1]∗

)
=
∑
i

mi

∑
A⊂∆(s[1],Hi∩K)

(−1)|A|R[gr I(ΓiL∩K − 2ρ(A))]

=
∑
i

mi

∑
A⊂∆(s[1],Hi∩K))

(−1)|A|[gr I(ΓiK − 2ρ(A))].

Here ∆(s[1], H i ∩K)) is the set of weights of H i ∩K on s[1].
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5. If every continued standard representation [I(ΓiK − 2ρ(A)]|K in (6) is
replaced by an integer linear combination of K-Langlands parameters
in accordance with Theorem 10.11, we get a computable formula

[µ∗(S(σ))] =
∑

ΛK∈PK-L(G,K)

mσ(ΛK)[ΛK ]θ.

Corollary 12.3. We continue in the setting (12.1).

1. The restriction map in equivariant K-theory

R(Q ∩K) ' KK(Rθ)→ KK(U) ' R(KEθ) = R((Q ∩K)Eθ)

sends a (virtual) representation [σ] of Q ∩K to [σ|(Q∩K)Eθ ].

2. Any virtual (algebraic) representation τ of KEθ = (Q ∩K)Eθ can be
extended to a virtual (algebraic) representation σ of Q ∩K. That is,
the restriction map of representation rings

R(L ∩K) ' R(Q ∩K) � R((Q ∩K)Eθ) ' R((L ∩K)Eθ)

is surjective.

3. Suppose [τ ] is a virtual algebraic representation of KEθ , corresponding
to a virtual coherent sheaf T on K · Eθ. Choose a virtual algebraic
representation σ of Q ∩ K extending τ . Then the virtual coherent
sheaf

[µ∗(S(σ))] =def [T̃ ]

is a virtual extension of T . We have a formula

[T̃ ] =
∑

ΛK∈PK-L(G,K)

mT̃ (ΛK)[Λ]θ.

Computability of σ in (3) is a problem in finite-dimensional representation
theory of reductive algebraic groups, for which we do not offer a general
solution. Except for this issue, the formula in (3) is computable.

The last formula in Corollary 12.3 relates the geometric basis of Theorem
4.5 to the representation-theoretic basis of Corollary 10.9.
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Algorithm 12.4 (A geometric basis for equivariant K-theory). We
begin in the setting (12.1) with a nilpotent orbit

Y = K · Eθ ⊂ Nθ ' N ∗θ . (12.4a)

The goal is to produce a collection of explicit elements

Eorbalg
j (Y ) =

∑
ΛK∈PK-L(G,K)

mEorbalgj (Y )
(ΛK)[ΛK ]θ ∈ KK(Y ) (12.4b)

which are a basis of KK(Y )/KK(∂Y ). (The superscript “orbalg” stands
for “orbital algorithm.” The subscript j is just an indexing parameter
for the basis vectors, running over either {0, 1, . . . ,M − 1} or N.) The
algorithm proceeds by induction on dimY ; so we assume that such a
basis is available for every boundary orbit Y ′ ⊂ ∂Y .

Given an arbitrary (say irreducible) representation σ of L∩K, Corol-
lary 12.2(5) provides a formula

[µ∗S(σ)] =
∑

ΛK∈PK-L(G,K)

mσ(ΛK)[ΛK ]θ. (12.4c)

The “sheaf” µ∗S(σ) (actually it is a formal alternating sum of higher
direct image sheaves, but the higher terms are supported on the bound-
ary) restricts to a vector bundle over Y , of rank

rank([µ∗S(σ)]|K·Eθ) = dim(σ), (12.4d)

This dimension (of an irreducible of L ∩K) is easy to compute.

According to Corollary 12.2, the classes {[µ∗S(σ)] | σ ∈ L̂1}, after
restriction to KK(Y ), are a spanning set. Furthermore the kernel of
the restriction map has as basis the (already computed) set⋃

Z⊂∂Y
{Eorbalg

k (Z)}. (12.4e)

Now extracting a subset

Eorbalg
j (Y ) =

∑
σ∈L̂1

nj(σ)[µ∗S(σ)] (12.4f)

of the span of the [µ∗S(σ)] restricting to a basis of the image of the
restriction is a linear algebra problem. Because the rank (the virtual
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dimension of fibers over K · Eθ = Y ) is additive in the Grothendieck
group, we can compute each integer

rank([Eorbalg
j ] =

∑
σ∈L̂1

nj(σ) dim(σ). (12.4g)

Just as in the complex case, we have swept under the rug the issue of
doing finite calculations. It can be addressed along the same lines as in the
complex case; we omit the details.

13 Associated varieties for real groups

In the setting of Section 10, suppose that X is a finite length (g,K)-module.
Kazhdan-Lusztig theory allows us (ifX is specified as a sum of irreducibles in
the Langlands classification) to find an explicit formula (in the Grothendieck
group of finite length Harish-Chandra modules)

X =
∑

Λ∈PL(G,K)

mX(Λ)I(Λ). (13.5a)

Fix a K-invariant good filtration of the Harish-Chandra module X, so that
grX is a finitely generated S(g/k)-module supported on N ∗θ . The class in
equivariant K-theory

[grX] ∈ KK(N ∗θ ) (13.5b)

is independent of the choice of good filtration. If we rewrite each I(Λ)|K
in terms of K-Langlands parameters using Theorem 10.11(6), we find a
computable formula

[grX] =
∑

ΛK∈PK-L(G,K)

mX(ΛK)[ΛK ]θ. (13.5c)

Recall now the classes [Eorbalg
k (Z)] constructed in Achar’s Algorithm 12.4.

Comparing their known formulas with (13.5c), we can do a change of basis
calculation, and get an explicit formula

[grX] =
∑

Eorbalgk (Z)

nX(Eorbalg
k (Z))[Eorbalg

k (Z)], (13.5d)

with computable integers nX(Eorbalg
k (Z)).

Theorem 13.6. Suppose X is a (g,K)-module. Use the notation of (13.5).
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1. The associated variety of X (Definition 5.2 is the union of the closures

of the maximal K-orbits Z ⊂ N ∗θ with some nX(Eorbalg
k (Z)) 6= 0.

2. The multiplicity of a maximal orbit Z in the associated cycle of X is∑
Eorbalgk (Z)

nX(Eorbalg
k (Z)) rank(Eorbalg

k (Z)).

The proof is identical to that of Theorem 9.2 above.
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vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388.

[26] , The method of coadjoint orbits for real reductive groups, Rep-
resentation theory of Lie groups (Park City, UT, 1998), IAS/Park City
Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 179–238.

[27] , Branching to a maximal compact subgroup, Harmonic Analysis,
Group Representations, Automorphic Forms, and Invariant Theory: In
Honour of Roger E. Howe, 2007.

[28] , The size of infinite-dimensional representations, Jpn. J. Math.
12 (2017), no. 2, 175–210.

[29] Nolan R. Wallach, Real reductive groups. II, Pure and Applied Mathe-
matics, vol. 132, Academic Press, Inc., Boston, MA, 1992.

76


