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1. Introduction.

One of the grand unifying principles of representation theory is the method of coadjoint orbits. After
impressive successes in the context of nilpotent and solvable Lie groups, however, the method encountered
serious obstacles in the semisimple case. Known examples (like SL(2,R)) suggested a strong connection
between the structure of the unitary dual and the geometry of the orbits, but it proved very difficult to
formulate any precise general conjectures that were entirely consistent with these examples.

In the late 1960’s, Dixmier suggested a way to avoid some of these problems. Motivated in part by the
theory of C*-algebras, he suggested that one should temporarily set aside a direct study of unitary repre-
sentations and concentrate instead on their annihilators in the universal enveloping algebra. Classification
of the annihilators would be a kind of approximation to the classification of the unitary representations
themselves. The hope was that this approximation would be crude enough to be tractable, and yet precise
enough to provide useful insight into the unitary representations themselves. This hope has been abundantly
fulfilled: the two classification problems are now inextricably intertwined, and they continue constantly to
shed new light on each other.

To be more precise, suppose Gy is a connected real Lie group with Lie algebra gg. The set of irreducible
unitary representations of Gg is written Unit Gg . Write g for the complexification of gg , and U(g) for
its universal enveloping algebra. If (7, ) is a unitary representation of Gg , then U(g) acts on the dense
subspace H* of smooth vectors in . We define Ann(7) to be the annihilator in U(g) of #*. Then Ann(r)
1s a two-sided ideal in U(g). (Our ideals will always be two-sided unless the contrary is explicitly stated.)

An ideal I in any ring R with unit is called (left) primitive if it is the annihilator of a simple (left)
R-module. (This says exactly that I is the largest two-sided ideal contained in some maximal left ideal.) A
maximal ideal is always primitive, but a primitive ideal need not be maximal. The ideal I is called prime
if whenever J and J' are ideals with JJ' C I, then either J C T or J’ C I. A primitive ideal is necessarily
prime, but a prime ideal need not be primitive. We say that I is completely prime if the quotient ring R/
has no zero divisors. A completely prime ideal is prime, but a prime ideal need not be completely prime.
We write

Spec R = set of prime ideals in R
Prim R = set of primitive ideals in R (11)

Spec, R = set of completely prime ideals in R
Prim; R = set of completely prime primitive ideals in R .

Suppose now that (m,) is an irreducible representation of G. Because the irreducibility is topological
rather than algebraic, the space of smooth vectors H* will not be a simple module for U(g) (unless the
representation is finite-dimensional). Nevertheless, Dixmier proved

Theorem 1.2 ([7]). Suppose w is an irreducible unitary representation of a connected Lie group Gg .
Then Ann(w) is a primitive ideal in U(g).
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To explain the connection with the orbit method, suppose that Og is an orbit of Gg on gg. Let G be
a complex connected Lie group with Lie algebra g , and let O¢ = G - Og. Roughly speaking, the method
of coadjoint orbits seeks to attach to Og an irreducible unitary representation #(Og) of Gg . (Actually
one needs to restrict attention to certain orbits, called “admissible,” and one needs some additional data
beyond the orbit itself.) We will call a correspondence from orbits to representations an orbit correspondence,
and denote it KK (for Kirillov-Kostant). Under favorable circumstances (for example if Gg is an algebraic
group) it appears that almost all interesting unitary representations should appear in the image of an orbit
correspondence. The problem of constructing an orbit correspondence is therefore one of the most important
unsolved problems in representation theory. We consider next what Dixmier’s ideas can tell us about this
problem.

One of Dixmier’s insights was that one should attach to the complexified orbit a primitive ideal in U(g).
This may be formulated as

Conjecture 1.8 (Dixmier). Suppose G is a complex connected Lie group with Lie algebra g, and O¢ is
an orbit of G on g*. Then there is attached to O¢ a completely prime primitive ideal I(Oc¢) in U(g).

In fact the ideal should depend only on the Zariski closure of O¢ in g*. A correspondence of the form
in the conjecture is called a Dizmier map, and often written Dix. In its strongest original form (never
formulated by Dixmier) the “Dixmier conjecture” asks that Dix should be a bijection from Zariski closures
of orbits to completely prime primitive ideals. (Work of Borho and others has shown that this is not possible
if the Dixmier map is to have other reasonable properties.)

If one had both an orbit correspondence and a Dixmier map, there would be (roughly speaking) a
diagram

Op — 7

! | (1.4)(a)
Oc — I
of maps among the sets
05/Ge =%  Unit Gg
l | Ann (1.4)(b)

g7/G 2% Prim U(g)

A natural requirement to impose on KK and Dix is that this diagram ought to commute. Unfortunately this
1s not a reasonable condition. The Dixmier map is supposed to take values in Prim;U(g) (the completely
prime primitive ideals); but the annihilator of a unitary representation need not be completely prime. (The
simplest example is the defining representation of SU(2). The corresponding quotient U(g)/Ann(7) is
isomorphic to the algebra of 2 x 2 matrices, and therefore has zero divisors.)

Since the diagram (1.4) cannot commute, we look for slightly weaker requirements. The simplest one
consistent with examples like SU(2) is

Ann(7(Og)) C I(Oc) (1.5)

Equivalently,
7(Or) is a U(g)/I(O¢)-module. (1.5)

Properly understood, (1.5)" casts representation theory in an entirely new light. We want to interpret it as
a program for constructing an orbit correspondence. The first step is to construct a Dixmier map: more
precisely, to construct and understand the algebra U(g)/I(Oc¢). A unitary representation #(Og) attached
to Op —that is, the image of the orbit correspondence — should then be constructed and understood as a
module for this algebra.

From now on we will confine our attention almost exclusively to reductive groups. To a large extent the
point of view just described is the one adopted by Beilinson and Bernstein in their fundamental paper [1].
(It is not difficult to find similar ideas in much earlier work — for instance in the theory of C*-algebras, or in
the work of Gelfand and Kirillov on quotient rings of enveloping algebras. What is unique to Beilinson and
Bernstein is the successful application of a general structure theorem for quotients of U(g) to representation
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theory.) They showed that if I is any minimal primitive ideal in U(g), then U(g)/I is isomorphic to an
algebra of differential operators on a flag variety. Consequently any irreducible g-module may be regarded
as a module for a differential operator algebra. This perspective has proven to be tremendously illuminating
in a wide range of contexts: for the classification of representations, for the construction of intertwining
operators, for analysis on symmetric spaces, and for primitive ideal theory, for example.

Nevertheless, the Beilinson-Bernstein approach has some limitations. In the context of (1.5), it amounts
to looking for m(Og) as a module not for the natural algebra U(g)/I(Og), but rather for some much larger
algebra (of which U(g)/I(Og) is a quotient). The modules we want are certainly present in the Beilinson-
Bernstein picture, but so are many extraneous ones. Putting more precise constraints on the primitive ideal
should put more precise constraints on the modules, and so (one hopes) help to suggest the definition of the
orbit correspondence. For this reason, it is still worthwhile to pursue the program described after (1.5).

There is already a tremendous amount of information available about the construction of a Dixmier
map. Most of it is based on the notion of “parabolic induction” in one form or another. Roughly speaking,
the idea is that most coadjoint orbits for G can be constructed in a simple way from coadjoint orbits for
a Levi subgroup L. Parabolic induction also provides a way to construct primitive ideals for G from those
for L. If we already know something about a Dixmier map on L, then we can hope to specify part of a
Dixmier map for G by requiring that induction of orbits should correspond to induction of primitive ideals
under the Dixmier maps for L and G. (One can make exactly parallel remarks about representations and
orbit correspondences.) In the case of SL(n), Borho in [2] used exactly this idea to define a Dixmier map
completely.

For reductive groups not of type A, Borho discovered a fundamental obstruction to this approach. It
can happen that the same coadjoint orbit O¢ for G arises in two different ways by induction, and that
the corresponding induced primitive ideals Iy and I are different; apparently both ought to be attached
to Oc. One of the goals of the theory of “Dixmier algebras” initiated in [20] and [15] is to circumvent
this problem. Roughly speaking, the idea is this. In Conjecture 1.3, the orbit Og¢ is replaced by an “orbit
datum,” consisting of some additional algebro-geometric structure on an orbit {Definition 2.2). The primitive
quotient U(g)/I is replaced by a “Dixmier algebra” (Definition 2.1), which is an extension ring of a quotient
of U(g). Conjecture 1.3 is replaced by a conjectural map from orbit data to Dixmier algebras (Conjecture
2.3). (Such a map would automatically descend to a multi-valued Dixmier map in the sense of Conjecture
1.3))

The primary purpose of this paper is to extend to orbit data and Dixmier algebras the notions of
parabolic induction discussed above. This is accomplished in Proposition 3.15 and Corollary 4.17 respectively.
These results suggest a way to define a Dixmier map on induced orbit data (in terms of Dixmier maps on
Levi subgroups). In order to justify this definition, one would have to show that if an orbit datum is induced
in two different ways, then the corresponding induced Dixmier algebras must coincide. This we have not
been able to prove; it would follow from Conjectures 3.24 and 4.18. A more complete discussion of the status
of Conjecture 2.3 may be found in section 5.

These ideas of course focus attention on the orbit data that are not induced. (In fact the primary
motivation for this paper was not so much to say something about induced orbits (or primitive ideals, or
Dixmier algebras) as to understand by a process of elimination those that are not.) We call these non-induced
orbit data rigid, for reasons that will be clearer in section 3 (cf. Definition 3.22 and Proposition 3.23). An
interesting point is that rigidity is a property of the full orbit datum, and not just of the underlying orbit; it
may be possible to deform the orbit but not the orbit datum. In section 5 we recall from [21] a conjectural
construction of Dixmier algebras attached to rigid orbit data.

The program described after (1.5) suggests that one should turn next to the description of modules
for induced Dixmier algebras, seeking among these candidates for representations attached by the orbit
correspondence to real forms of O¢. In this direction we do only a little. Induced Dixmier algebras are
generalizations of Beilinson and Bernstein’s twisted differential operator algebras. It should therefore be
possible to analyze their modules by the kind of geometric “localization” familiar in the differential operator
case. We prove here only a few of the basic facts about such a localization theory (notably Corollary 6.16
and Theorem 7.9).

Here is a more detailed outline of the contents of this paper. Section 2 recalls from [20] and [15] the
definition of Dixmier algebras and orbit data, and a corresponding refinement of Conjecture 1.3. (One
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of McGovern’s results in [15] is that the main conjecture in [20] is false; and McGovern has since found
counterexamples for a revision circulated in an earlier version of this paper. Conjecture 2.3 appears to
be consistent with all of his work to date.) Section 3 outlines the extension to orbit data of some of the
basic structure theory for coadjoint orbits: Jordan decomposition, parabolic induction, and sheets. In the
theory of sheets we find some strong (conjectural!) geometric evidence for the correctness of the general
approach to the Dixmier conjecture in [20]: Conjecture 3.24 says that distinct sheets of “orbit data” should
be disjoint. The failure of the corresponding fact for sheets of orbits is at the heart of the non-uniqueness
problems discovered by Borho and discussed above. Section 4 presents the construction of Dixmier algebras
by parabolic induction. Section 5 outlines how these ingredients should fit together to define a Dixmier map
for G.

The rest of the paper is devoted to related technical results. In section 6 (following [5]), we relate
induction of Dixmier algebras to ordinary induction of Harish-Chandra bimodules. (Recall that Harish-
Chandra bimodules are closely related to infinite-dimensional representations of G regarded as a real Lie
group. By “ordinary induction” we mean the bimodule construction corresponding to parabolic induction
of group representations (in the sense of Mackey and Gelfand-Naimark).) Perhaps the most important
consequence is a cohomology vanishing theorem (Corollary 6.16). This generalizes the fact that the higher
cohomology of G/Q with coeflicients in the sheaf of differential operators is zero. Section 7 considers the
translation principle for induced Dixmier algebras and their modules.

A key tool in all the induction constructions (both for orbit data and for Dixmier algebras) is the notion
of equivariant bundles on homogeneous spaces (in the algebraic category). These help to formalize the idea
that G-equivariant constructions on G/H are equivalent to H-equivariant constructions at a point. A few
of the basic definitions and results are summarized in an appendix for the convenience of the reader.

2. Dixmier algebras.

Suppose for the balance of this paper that G is a connected complex reductive algebraic group with Lie
algebra g.

Definition 2.1 (cf. [15]). A Dizmier algebra for G is a pair (4, ¢) satisfying the following conditions.
i) Ais an algebra over C, equipped with a locally finite algebraic action (called Ad) of G on A by algebra
automorphisms.
ii) The map ¢ is an algebra homomorphism of U(g) into A , respecting the two adjoint actions of G. The
differential of the action Ad of G on A is the difference of the left and right actions of g defined by ¢.
ili) A is a finitely generated U(g)-module.
iv) Each irreducible G-module occurs at most finitely often in the adjoint action of G on A.

The simplest example of a Dixmier algebra is any quotient U(g)/I of U(g) by a primitive ideal.

Definition 2.2. An orbit datum for G is a pair (R, ¢) satisfying the following conditions.

i) R is an algebra over C, equipped with a locally finite algebraic action (called Ad) of G on R by algebra
automorphisms.
ii) The map ® is an algebra homomorphism of S(g) into the center of R, respecting the two adjoint actions

of G.

iii) R is a finitely generated S(g)-module.
iv) Each irreducible G-module occurs at most finitely often in the adjoint action of G on R.

The support X of the orbit datum is the algebraic variety V(ker¢) C g*. (Thus ¥ is the image of the
moment map ¢¥* : Spec R — g*.) The orbit datum is called completely prime if R is completely prime, and
commautative if R is commutative. It is called geometric if R is commutative, completely prime, and normal.
It is called pre-unipotent if G is semisimple, and ¥ is contained in the nilpotent cone. Finally, it is called
unipotent if it is pre-unipotent and geometric.

The simplest example of an orbit datum is the quotient S(g)/J of S(g) by the ideal of functions vanishing
on an orbit. In this case the support ¥ is the closure of the orbit. (An example not of this kind appears as
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Example 3.21 below.) For general orbit data, condition (iv) implies that X is a finite union of orbit closures.
(To see this, consider the algebra Z = S(g)¢ of invariants in the symmetric algebra. The maximal ideals of
Z parametrize the semisimple orbits of G on g*: if m is such a maximal ideal, then the associated variety
V(m) consists of all elements of g* for which the semisimple part of the Jordan decomposition belongs to the
corresponding orbit. Consequently each V(m) is a finite union of coadjoint orbits; in fact Kostant’s theorem
on the principal nilpotent element implies that it is the closure of a single coadjoint orbit. On the other hand,
the image (Z) is contained in the G-invariants of R, which form a finite-dimensional algebra by (2.2)(iv).
It follows that the kernel of ¥ contains an ideal Z of finite codimension in Z. Consequently ¥ is contained
in the (finite) union of the various V(m), with m a maximal ideal in Z containing Z.) If the orbit datum
is completely prime, then ¥ is necessarily the closure of a single coadjoint orbit. A geometric orbit datum
(R, ) is the same thing as a normal irreducible affine algebraic variety X (namely Spec R) equipped with a
G action and an equivariant finite morphism ¥* from X to an orbit closure in g*. A unipotent orbit datum
is therefore exactly a unipotent Poisson variety in the sense of [21].

Before formulating the Dixmier conjecture, we should say a little bit about filtrations. Suppose A is an
algebra filtered by %N‘ This means that we are given an increasing family of subspaces

AgCA; CAC--

so that

UjA; = A, ApAq C Apiq.
Then the associated graded space gr A is a graded algebra. (Our basic example is the standard filtration
Un(g); in this case gr U(g) = S(g).) An increasing filtration on an A-module M is called compatible if

UjM; = M, Aqu C Mpy,.

In this case the associated graded space gr M is in a natural way a graded module for grA. A compatible
filtration of M is called good if gr M is finitely generated as a module for gr A.

Here is a version of the Dixmier conjecture for reductive groups. It is taken from [20], but modified in
accordance with the requirements of [15].

Conjecture 2.3. Suppose G is a complex connected reductive algebraic group. Then there is a natural
injection Dix from the set of geometric orbit data for G (Definition 2.2) into the set of completely prime
Dixmier algebras for G. This correspondence should have the following properties. Fix an orbit datum
(R, v), and write (4, ¢) for the corresponding Dixmier algebra.

1) The Gelfand-Kirillov dimensions of A and R are equal.
ii) A and R are isomorphic as G-modules.
iii) A and R admit filtrations indexed by %N, with the following properties.
a) The filtration of A is good (and therefore by definition compatible) for A regarded as a U(g)-module.
In particular, ¢(U,(g)) C An.
b) The filtration of R is good for R regarded as an S(g)-module. In particular, ¥(S™(g)) C R,.
¢) The associated graded algebras gr A and gr R are completely prime.
d) There is a G-equivariant isomorphism € : gr A — gr R carrying gr ¢ to gr .
In (a), Un(g) is the nth level of the standard filtration of U(g); and in (b), S(g) is the nth level of the
standard gradation. (Of course we could equally well use the standard filtration of S(g) in (b).)

Conditions (i) and (ii) are included only for expository purposes; they are consequences of (iii). That
the filtration in (iii) ought to be indexed by IN (rather than some ¢N) is suggested by [16]. The map Dix
should extend to a bijection from some larger set of completely prime orbit data onto all completely prime
Dixmier algebras. McGovern has pointed out that it cannot be defined on all completely prime orbit data,
however.

Orbit data are close enough to coadjoint orbits to admit Jordan decompositions, which we now describe.
Suppose (R, ) is a completely prime orbit datum. Fix A in g* so that ker ¢ is the ideal of functions vanishing
on O =G -A. Write

A=A+ Ay (2.4)(a)
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for the Jordan decomposition of A, and
L={geG|Ad (9 =X} (2.4)(b)

(a Levi subgroup of G). L is again a connected reductive algebraic group; we want to relate (R, %) to a
completely prime orbit datum (R, v¥r) for L. Define

AL =L (2.4)(c)

we want the support of (R, %) to be the closure £ of O = L - Ar. Let s be the unique Ad(L)-invariant
complement for [in g. We identify [* with the linear functionals on g vanishing on 5. By Proposition A.2(b),
the natural inclusion of ¥f in ¥ induces a G-equivariant morphism

G Xr EL — 2. (2.4)(d)

Every point o € Tp has semisimple part A,. By the Jordan decomposition, the stabilizer of of in G is
contained in L. By (A.3), the map (2.4)(d) is one-to-one. A slightly more careful analysis, which we omit,
shows that (2.4)(d) is actually an isomorphism of varieties. By Proposition A.5, the category of finitely
generated modules with G-action on ¥ is equivalent (by passage to geometric fibers) to the category of
finitely generated modules with L-action on Er. A little more explicitly, let J;r C S(g) be the defining ideal
for £;. Define

Ry = R/RY(J1). (2.5)(a)
Obviously Ry, is an algebra equipped with an action of L and a map
¥ : S(I) — R. (2.5)(b)

(The map comes from ¢ by restriction on the domain and passage to the quotient on the range.) The
preceding discussion implies that (R, ) is a completely prime orbit datum for L, and that

R~G XL RL (2.5)(6)

(cf. (A.4)). By (A.4)(c), this last formula says that R may be identified with the space of algebraic maps p
from G to Rp, subject to the condition

plgl) = Ad(I"")p(g) (2.5)(d)

for g in G and ! in L. The algebra structure on R is just pointwise multiplication.

Finally, one can check easily that the adjoint action of Z(L)o on Ry must be trivial. Consequently
(Rr,%¥r) gives rise to a pre-unipotent orbit datum (R, ¢.) for L/Z(L)o. The algebra R, is just Rp, and
the map ), is the restriction of ¥ to [I, (], composed with the natural isomorphism

Lie(L/Z(L)o) = [1,1]. (2.5)(e)
Conversely, one can recover ¢ from ¥, by the requirement
Yr(A)=2(4)  (Aes). (2.5)(f)
The following theorem summarizes this discussion.

Theorem 2.6 (Jordan decomposition for orbit data). There is a natural bijection between the sei
of completely prime orbit data (R,v¢) for G (Definition 2.2) and the set of G-conjugacy classes of triples
(L, As, (Ry,%y)). Here

i) L is a Levi subgroup of G.
it) As : 1 — C is a G-regular Lie algebra homomorphism.
iti) (Ry,%u) is a completely prime pre-unipotent orbit datum for L/Z(L)o.
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The correspondence is specified by (2.4)-(2.5). In this bijection, R is commutative (respectively normal or
geometric) if and only if R, is.

In (ii), the “G-regular” hypothesis is just the condition (2.4)(b) above.
In light of the classification of unipotent orbit data in [21], Theorem 5.3, we get

Corollary 2.7. The following three sets are in natural one-to-one correspondence:

i) geometric orbit data (R,v) for G;
i) G-conjugacy classes of pairs (A, S), with A in g* and S a subgroup of the “G-equivariant fundamental
group” G} |G} of G - X;
iti) G-conjugacy classes of triples (L, Ay, (Ru,¥y)), with L a Levi subgroup of G, A, a G-regular character
of [, and (Ry,y) unipotent orbit data for L/Z(L)o.

If G s simply connected, we can add

iv) fintte coverings of coadjoint orbits,

Unfortunately, no analogous theorems are known for completely prime primitive Dixmier algebras.
There is, however, a construction (by parabolic induction) of a Dixmier algebra associated to an orbit
datum, assuming that such an algebra associated to (R, %y ) is already available. It will be described in
section 4, after some geometric preliminaries in section 3.

We conclude this section with some useful formal ideas; for more background, see [17] and [8].

Definition 2.8. Suppose (A, ) is a Dixmier algebra for G. The opposite Dizmier algebra is the pair
(A°P, ¢°P) defined as follows. The algebra AP is the opposite algebra to A, with the same underlying vector
space and multiplication

(a) -op (b) = ba.

The action of G on AP is the same as on A. The map ¢°? is characterized by
pP(X)=¢(-X) (Xe€g).

A transpose antiautomorphism of (A, ¢) is an isomorphism (usually written a — ‘a) of A with its opposite
Dixmier algebra.

Definition 2.9. Suppose (R, ) is an orbit datum for G with support X. The opposite orbit datum is the
pair (R, ") defined in obvious analogy with Definition 2.8; it is an orbit datum with support —%. We
can also define a transpose antiautomorphism.

The Dixmier correspondence of Conjecture 2.3 should respect passage to opposite algebras in the sense of
these definitions. Now a geometric unipotent orbit datum is easily seen to be isomorphic to its opposite. The
corresponding Dixmier algebras should therefore admit transpose antiautomorphisms. Such automorphisms
will play a role in the theory of unipotent representations (cf. [23}, Theorem 8.7(ii)).

3. Induction, sheets, and rigid orbit data.

In this section we consider parabolic induction for orbit data. Suppose L is a Levi subgroup of G. It is
well known that there is a codimension-preserving map from coadjoint orbits for L to coadjoint orbits for G.
This map sends a G-regular semisimple orbit L - A to G - A, and sends {0} to a Richardson nilpotent orbit.
The purpose of this section is to extend this map to orbit data. Because the construction is not a very easy
one to grasp, we will begin by recalling the theory on the level of orbits.

Definition 3.1 (cf. [14]). Suppose L is a Levi factor in G, and O, is a nilpotent coadjoint orbit in [*.
We will construct from Oy, a nilpotent coadjoint orbit for G. Although this orbit turns out to depend only
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on L, its construction requires the choice of a parabolic subgroup @ with Levi factor L. Write U for the
unipotent radical of @; then L ~ Q/U. This quotient map gives rise to an injection

ig:If—gq" (3.1)(a)
identifying linear functionals on [ with linear functionals on ¢ that vanish on u. Define
Oq = ig(0r) C 4" (3.1)0)
(Thus Og is isomorphic to Of.) Next, consider the restriction map
TGiQ 8 > A . (3.1)(e)

This exhibits g* as an affine bundle over g*, with vector space (g/q)*. (That is, each fiber of 7g,q is
a principal homogeneous space for the vector space (g/q)* — a copy of the vector space with the origin

forgotten.) Define _
Ocrq = 71G9(0q) C g°, (3.1)(d)

an affine bundle over O¢. In particular, we have
dimOg,q = dim O + dimG/Q. (3.1)(e)
The action of Q on g* evidently preserves Og /@- By Proposition A.2(b), we get a G-equivariant morphism
G xqOgq—G-0g1g Cg (3-1)(f)
The induced bundle on the left has dimension equal to
dimG/Q + dim(’)g/Q =dim0Or +2-dimG/Q = dim O + dimG/L. (3.1)(g)

It follows that any G-orbit in the induced bundle — and a fortiori any G-orbit in G - @G/Q — has dimension
at most equal to dim Of, + dimG/L.
The induced orbit
O¢ = Indors (L T GYOL)

is the unique nilpotent coadjoint orbit in g* satisfying any of the following equivalent conditions.

1) The orbit Og is contained in G - @G/Q; and the dimension of Og is dim O + dim G/ L.

ii) There is a A in Og such that the restriction of A to g is trivial on u and belongs to @ on [; and the
codimension of Q¢ in g* is equal to the codimension of Of in [*.

iii) Fix a Cartan subalgebra h of I, and write Wy and W for the Weyl groups of L and G. Then the
Springer representation of W (on W-harmonic polynomials on h) for Og is generated by the Springer
representation for Op.

Several remarks are in order here. First, the equivalence of (i) and (ii) is immediate from the definitions.
In (iii), the Springer correspondence must be normalized to take the principal orbit to the trivial represen-
tation. We have included (iil) only because it shows that the induced orbit is independent of the choice of
Q. The proof of its equivalence with (i) and (ii) ([14], Theorem 3.5) would require a substantial digression,
so we omit it.

Second, there is (given @) at most one orbit Og satisfying (i) and (ii). To see this, notice that Or (as a
homogeneous space for a connected group) is an irreducible algebraic variety. As an affine bundle over Op,
the variety Og /q is irreducible as well. Since G is connected, it follows that G - Og /q 1s irreducible. We
have already observed that the dimension of this set is at most dim O + dim G/L. It can therefore contain
at most one G-orbit of the desired dimension. For the proof that one exists, we refer to [14].

Third, we should check that O¢ is nilpotent. For this it suffices to show that O /@ consists of nilpotent
elements. Now it is an elementary exercise to show that a linear functional A on a reductive Lie algebra is
nilpotent if and only if there is a Borel subalgebra b such that A |p= 0. So suppose A € Og /@- Then A [,=0,
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and A |;= AL € Op. By hypothesis A is nilpotent, so there is a Borel subalgebra by of [ on which A is
zero. Since @ is parabolic, b = by, 4 u is a Borel subalgebra of g; and clearly A |,= 0.

A nilpotent orbit is called rigid if it is not induced from a proper Levi subgroup, and induced otherwise.
It is called Richardson if it is induced from the zero orbit on a Levi subgroup. (Thus the zero orbit is called
Richardson but not induced.)

To get a little feeling for the notion of induced orbit, we consider some examples in the classical groups.
If G is GL(n) or SL(n), then every nilpotent orbit except 0 is induced. (To describe this explicitly, one
can replace 2 by 1 everywhere in the discussion of other classical groups below.) If G, is any other classical
group of n by n matrices, then any nilpotent coadjoint orbit O gives rise (via Jordan blocks) to a partition

T =(p1,.-Pr) (3.2)

of n. The sequence of non-negative integers p; is (weakly) decreasing, and the sum of the p; is n. (It is
often convenient to allow some of the p; to be zero; we identify partitions when their non-zero parts agree.)
Suppose that there is a jump of 2 in this sequence; say

Pm — 2 2 Pm1- (3'3)(a)
Then O is induced, in the following way. G has a Levi factor
L =Gp_2m x GL(m), (3.3)(b)

with the first factor a classical group of n — 2m by n — 2 matrices. There is a nilpotent orbit O’ for G, _am
corresponding to the partition
71'/ = (pl _23 me— 2ypm+17"'1pr)- (33)(6)

(In the case of SO(2k) the orbit (' may not be uniquely determined by #’; one must make an appropriate
choice of @'.) Define Of, to be the orbit (¢/,0) in L. Then

O =Indons (L T G)(O1). (3.3)(d)

There are other ways for a nilpotent orbit to be induced in the classical groups, but the preceding
special case captures most of the general flavor. The first example of a non-zero rigid orbit is the minimal
(4-dimensional) nilpotent in Sp(4); it cannot be induced because its dimension is not of the form dim Oy +
dim G/ L for any orbit in proper Levi subgroup L. The corresponding partition is (2, 1,1), which of course
has no jumps of 2. (Viewed within the locally isomorphic group SO(5), this orbit gives rise to the partition
(2,2,1), which still has no jumps.)

We now extend Definition 3.1 to include induction from non-nilpotent orbits.

Definition 3.4. Suppose L is a Levi subgroup of GG, and Op C I* is a coadjoint orbit for L. The induced
orbit

OG = Indo,-b(L T G)(OL)

is defined precisely as in Definition 3.1(i) or (ii), as the unique dense orbit in G - (wa}Q(iQ (Or))). It follows

easily from the construction that the codimension of Qg in g* is equal to the codimension of Oy, in I*. (Again
the construction depends on a choice of parabolic, but the orbit constructed does not. We will not stop to
prove this independence; it follows from the special case of Definition 3.1 by Proposition 3.6.)

We have already seen one instance of this more general induction in (2.4). Here is the connection.

Lemma 3.5. Suppose A = As + Ay is the Jordan decomposition of a linear functional in g*. Write L
Jor the centralizer in G of As, a Levi subgroup of G, and Ap = (Ar)s + (AL)u for the restriction of A to L.

Set
Or=L-Ar=QA)s +L -(A)u.
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Then the orbit for G induced by Of s

Indorb(L T G)(OL) =G- A

Proof. Choose a parabolic ) = LU as in Definition 3.4. Define Og C q* and @G/Q C g* as in Definition

3.1. It is immediate from the definitions that A € Og /@ It remains only to check that G - A has the correct
dimension. But this follows from the fact (part of the Jordan decomposition) that the centralizer in G of A
is just the centralizer in L of Ay. Q.E.D.

In general, the induction operation of Definition 3.4 can be expressed in two steps: the first an induction
of nilpotent orbits in the sense of Definition 3.1, and the second the “Jordan decomposition” case considered
in Lemma 3.5. Here is a precise statement.

Proposition 3.6. Suppose L is a Levi subgroup of G, and O C I* is a coadjoint orbit for L; write
OG = Indorb(L T G)(OL)

Then the Jordan decomposition of an element of Og may be computed as follows. Fiz an element Ay of Of,

and write its Jordan decomposition as
AL =2+ (AL)u.

Let L' be the centralizer in G of As, and put M = I’ N L. Then A is zero on the natural complement of m
in I, and so may be ideniified with an element

AL = A = A+ (AM)w.
of m*. Similarly, A, may be regarded as a semisimple element of (I')* or of g*.

Write
(Om)u =M - (Apr)u

(OLl)u = Indorb(M 1 LI)((OM)u)
Fiz a representative (Aps )y € (Op)u. Then

A=A + (/\L')u
is the Jordan decomposition of an element of Og. We have

OG = Indorb(Ll T G)(As + (OL')U)'

Proof. Because L' fixes Aq, the sets
O = A5 + (Onr)u, O =2 +(Op)u
are coadjoint orbits for M and L’ respectively. By Lemma 3.5 applied to L,
Or = Indors(M 1 L)(Onr).
By an easy “induction by stages” fact, we deduce
Oc = Indors (M 1 G)(Opr).
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Now we induce in stages first from M to L', and then to G. This gives
Og = Indors (L' T G)(Op).

This is the last formula in the proposition. The description of the Jordan decomposition follows from Lemma

3.5 applied to G. Q.E.D.
We can now describe sheets of coadjoint orbits. Recall that a nilpotent coadjoint orbit is called rigid if

it is not induced.

Definition 3.7 (cf. [3], [4]). Suppose L is a Levi subgroup of G, and O, is a rigid nilpotent coadjoint
orbit for L. The sheet of coadjoint orbits attached to (L, 0,) is the collection of orbits

{Indors(L T G)(As + Ou) | As € (/[1,1])" }.

Two sheets are identified if they contain exactly the same orbits; by Proposition 3.6, this amounts to
conjugacy of the pair (L, 0,) under G. A Dizmier sheet is one attached to the zero orbit in a Levi subgroup.

Here are some of the most important facts about sheets.

Proposition 3.8 (cf. [3]). In the notation of Definition 3.7,

i) Each coadjoint orbit belongs to at least one sheet.
it) Each sheet contains exactly one nilpotent orbit (namely Ind,rp(L T G)Y(O4)).
i) All of the orbits in a sheet have the same dimension (namely dimQ, + dimG/L).

Proof. By induction by stages, every nilpotent orbit is induced from a rigid nilpotent orbit. Now (i)
follows from Proposition 3.6. Part(ii) is also clear from Proposition 3.6, which says that induction preserves
“semisimple part.” Part (iii) follows from Definition 3.4. (In fact the original definition of a sheet is as a
component of the variety of coadjoint orbits of a fixed dimension; from this point of view the description in

Definition 3.7 is something to be proved.) Q.E.D.

In the case of SL(n), distinct sheets are actually disjoint. This partition of the orbits is the key to the
definition of a Dixmier map in that case (cf. [2]). Even for the other classical groups, however, distinct
sheets can overlap: for Sp(4), the (Dixmier) sheets corresponding to (GL(2), {0}) and (GL(1) x Sp(2), {0})
share the same nilpotent orbit. As was explained in the introduction, this failure of disjointness is the main
reason that one cannot have a nice bijection between orbits and completely prime primitive ideals for the

other groups.

We turn now to the problem of inducing orbit data. Each step in the geometric construction of Definition
3.1 (or Definition 3.4) has an algebraic analogue, provided by the standard dictionary between algebraic
geometry and commutative algebra.

Definition 3.9. Fix a pair (L, (Rr, L)), where

L is a Levi subgroup of G, and
(Rr,%r) is an orbit datum for L.

(Definition 2.2). Notice that these hypotheses are much weaker than those of Theorem 2.6: the main
difference is that Ry (or rather its restriction to the commutator subgroup) is not required to be pre-
unipotent. We will construct from these data (and a parabolic subgroup) an orbit datum for G. Define

YL = Supp Ry, (3.10)(a)
the image of the morphism o7 from Spec Rr to [*. If R is completely prime, then

Y =0y, (3.10)(b)
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the closure of a single coadjoint orbit for L. If Ry is geometric, we write
Xt = Spec R, (3.10){c)

for the corresponding variety (a ramified finite cover of £1). Our orbit datum for G is going to be supported
on the closure of

O¢ = Indors (L T G)(OL). (3.10)(d)

Now fix a parabolic subgroup @ = LU of G with Levi factor L. {Recall that L is most naturally regarded

as the quotient of @ by its unipotent radical, rather than as a subgroup. The reader may observe that it is
this structure that we will actually use.) We will use the notation of Definitions 3.1 and 3.4. Define

RQ = Rp, (3'11)((1')

and let Q act on Rg by making U act trivially. Define a map 9¢ from S(g) to RQ by

woa) = {4 () (1))
The image of ¥y, is
N EQ = iQ(EL) >~ EL; (3.11)(6)

here I* is identified with (q/w)* C g*. If Ry is completely prime, then X¢ is the closure of Og C q*. If Rp
is geometric, then X¢g = Spec Rg is a ramified finite cover of Y¢ as before.
The algebraic version of (3.1)(d) is the definition

Rgiq = 5(8) @s(q) Re- (3.12)(a)

This algebra carries a natural action Ad of @ by algebraic automorphisms. It is the tensor product of the
adjoint action on S(g) with the action on Rg. There is an Ad(Q)-equivariant homomorphism

Yajq:5(8) = Rgjg, prp®L (3.12)(b)

The image of ¥ ¢ is
Yg/Q= "E;}Q(EQ)
={deg'| A[;eZq}

This exhibits £g/g as an affine bundle over g with fiber (g/q)*. If Ry is geometric, we write Xg/q =
Spec Rg/q; again this is an affine bundle over Xq. Suppose that Rr is completely prime, so that Lg
and therefore X/ are irreducible. The existence of the induced orbit Og is equivalent (by (A.3) and the
definitions) to the fact that @ has a (unique) open orbit Og/q on Xg/q-

We define a sheaf of algebras on G/Q by

(3.12)(c)

Re =G xg RG/Q. (3.13)(a)

If V is an open set in G, then the space of sections of R over V@ is the space of algebraic maps p from
VQ to Rg/q, satisfying
p99) = Ad(¢~")p(g) (3.13)(b)

(cf. (2.5)(d)). (It might be slightly more natural first to identify Rg/q with a sheaf of algebras Rg/q over

Y/, and then to define
R/G =3 XQ R(;/Q (3.13)((1)/

as a sheaf of algebras over G xq Zg/q (cf. (A.4)). Because Xg,q is affine, the two approaches are in-
terchangeable; the one we have chosen seems slightly simpler.) The group G acts on the sheaf Rg; an

12




element g defines an algebra homomorphism from the sections over V@ to the sections over (3~1)V @ by
right translation. The induced orbit datum

(Ra,%6) = Indors(Q T G)(Rir, %) (3.14)(a)

is defined by
Rg = global sections of Rg; (3.14)(b)

these are just the algebraic maps from G to Rg/q satisfying (3.13)(b) (cf. (A.4)(c)). The algebra structure
is pointwise multiplication, and the action of G is (g - p)(z) = p(g~1z). Finally,

Yo :5(8) = Re,  (¥c(p))(z) = (Ad(z"")p) ® 1 € Rg/q. (3.14)(c)

Proposition 3.15. Suppose Q = LU is a parabolic subgroup of G, and (Rp,vr) is an orbit datum for
L. Then the pair
(R, %a) = Indors(Q T G)(Rr, Y1)

(Defintion 3.9) is an orbit datum for G. Il is completely prime (respectively geometric) if (Rr, 1) is. The

support of Rg s
T¢ = Ad*(G) - (Sg/q) = Ad*(G) - (n5)o(iq(EL)))

Proof. Conditions (i) and (ii) in Definition 2.2 follow easily from the definitions. We consider (iii). By
hypothesis, Ry is a finitely generated S([)-module supported on Xp. It follows easily from the definitions
that Rg/q is a finitely generated S(g)-module supported on Xq. We may therefore identify it with a coherent
sheaf R/ on Xg/q. By Proposition A.5,

R,G =G XQ Rg/Q
is a coherent sheaf on G' x¢g Xg/q. By Proposition A.2(c), the natural map
GxqXgiq — G Zgrq (3.16)

is proper. (In fact the proof shows that the morphism is projective.) By [9], Corollary I1.5.20, the space
of global sections of R’ is a finitely generated S(g)-module supported on G - Xg/q. By the remark at
(3.13)(a)’, this space of global sections is precisely Rg.

We know that £, is a finite union of orbits of L {see the remarks after Definition 2.2). The theory of
induced orbits recalled at the beginning of this section therefore implies that G - £/ is a finite union of
orbits of G. Condition (iv) in Definition 2.2 follows.

That the support of Rg is all of G - X¢/q (rather than some proper subvariety) follows from the fact
that the map (3.16) is generically finite; this in turn is a consequence of the the theory of induced orbits (cf.
(3.1) and (A.3)).

That Rg is completely prime (or commutative) whenever Ry is follows from the definitions. Suppose
that Ry is geometric; write

X = Spec Ry, Xg1q = Spec Rgjq (3.17)(a)

as in Definition 3.9. Then the sheaf of algebras R¢ is just the structure sheaf of the bundle

over G/Q. Since X¢/q is normal, so is Xg. It follows that Rg, as the algebra of global functions on Xg, is
normal as well. Consequently X¢ = Spec Rg is normal, so the orbit datum (Rg, ¥¢g) is geometric. Q.E.D.
Just as in the case of coadjoint orbits (Proposition 3.6), induction of orbit data is closely related to the

Jordan decomposition.
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Proposition 3.18. Suppose Q = LU is a parabolic subgroup of G, and (Rr,v¥r) is a completely prime
orbit datum for L. Suppose that this orbit datum corresponds in the Jordan decomposition for L (Theorem
2.6) to (M, A, (Ry,¥y)). Let L' be the centralizer in G of A,. Then Q' = QN L' = MU’ is a parabolic
subgroup of L', and

(R;, %) = Indorp (QI T L/)(Ru: ¢u)

is a completely prime pre-unipotent orbit datum for L'/Z(L')g. The induced orbit datum
(R, ¥a) = Inders(Q T G)(Rr, %L)

has Jordan decomposition (L', A, (R, ¥.)).

The proof is parallel to that of Proposition 3.6, and we omit it. (In the statement, we have been a little
sloppy about identifying orbit data for (for example) L’ and L'/Z(L')o.)

We know that the support of an induced orbit datum does not depend on the choice of parabolic @;
and we know (Corollary 2.7, for example) that an orbit datum is nearly determined by its support. This
suggests

Conjecture 3.19. In the setting of Definition 3.9, the orbit datum Ind,;(Q T G)(Rr, ¥r) is independent
of the choice of parabolic subgroup with Levi factor L.

An interesting special case (both of the construction and of the conjecture) is when Ry is C and ¢y is
zero on [. Then Rg/q is the algebra S(g/q) of functions on the cotangent space at eQ to G/Q, and X is
just T*(G/Q). The algebra R¢ is the algebra of regular functions on T*(G/Q). If ¢’ is another parabolic
subgroup with Levi factor L, then T*(G/Q) need not be isomorphic to T*(G/Q’). The conjecture asks for an
isomorphism between the algebras of global regular functions on these (non-affine) varieties (respecting the
G actions and the maps ¥¢). Such an isomorphism does exist, but I do not know any very satisfactory proof
of the fact. (Because of normality, it suffices to show that the unique dense G-orbits in the two cotangent
bundles are isomorphic as homogeneous spaces. Fix elements

A€ (g/a)" = To(G/Q),

N € (g/d)" = Tip(G/Q")

representing these orbits. Then A and A’ are conjugate as elements of g*, so the isotropy groups G(A) and
G(X') are conjugate. The identity components of these groups are contained in @ and @’ respectively. The
desired isomorphism is equivalent to the fact that G(A) N Q is conjugate to G(X') N Q’. This can be verified
by more or less explicit computation on a case-by-case basis.) The simplest non-trivial example is for G
= GL(3) and L = GL(2) x GL(1). We can take G/Q to be the variety of lines in C3, and G/Q’ to be
the variety of planes in C3. Of course these varieties are isomorphic, but the isomorphism cannot be made
to respect the G actions. Nevertheless the algebras of regular functions on the respective tangent bundles
are isomorphic in a G-invariant way: they are both isomorphic to the algebra of regular functions on the
corresponding (sub-regular) nilpotent orbit in g*.

Because of Proposition 3.18, a completely prime orbit datum for a semsimple group that is not pre-
unipotent must be induced from a proper parabolic subgroup. It therefore makes sense to concentrate on
pre-unipotent orbit data.

Definition 3.20. Suppose (R, ) is a completely prime pre-unipotent orbit datum for the semisimple
group G. We say that (R, ) is rigid if it is not induced (in the sense of Definition 3.9) from a completely
prime orbit datum on a proper Levi subgroup. Otherwise we say that (R, ¢) is induced.

This notion of rigidity is much broader than that for orbits (defined after Definition 3.1). That is, an
orbit datum will be rigid if its support is rigid; but it may be rigid even if its support is not. If G is GL(n),
every non-zero completely prime orbit datum is induced; but already for SL(2) this is not true.
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Ezample 3.21. Suppose G is SL(2). We define a unipotent orbit datum (R, ) for G as follows. The
algebra R is C[p, q], with the action of G induced by linear change of variables. We define ¢ from S(g) to R
on the standard basis (H, E, F') of g by

$(H)=2pq, Y(E)=p*, P(F)=-¢"

Obviously R is finitely generated as an S(g) module (by 1, p, and gq). It is easy to check that ¢ respects the
action of G. Every irreducible representation of G appears in R exactly once. The image of * is the cone
H? +4EF = 0, which is the nilpotent cone in g*. It follows that (R, #) is a unipotent orbit datum. One can
show that it is rigid for example by computing all the induced orbit data; this is not difficult since there is
only one proper Levi subgroup. In the parametrization of Corollary 2.7, R corresponds to the double cover

of the principal nilpotent orbit.

Iwan Pranata has observed that the preceding example can be modified to produce many non-geometric
completely prime commutative orbit data. To do that, fix a non-negative integer k, and define Ry to be the
subring of R generated by the image of ¢ and the polynomials of degree 2k + 1. (Pranata also found the
Dixmier algebras associated to these orbit data.) Together with (C,0), the various (R, 1) exhaust the rigid
completely prime orbit data for SL(2).

Here is the analogue of Definition 3.7.

Definition 3.22. Suppose Q = LU is a parabolic subgroup of G, and (R, %) is a rigid completely prime
pre-unipotent coadjoint orbit datum for L/Z(L)o. To every character A, of [ we can associate a completely
prime orbit datum (Rp, ¥r(},)) for L as in (2.5)(e) and (f):

Rp = Ry, Yr(4) = Yu(A+3(0) + As(4) (A€eD.
The sheet of completely prime orbit data attached to (L, (Ruy, ¥u)) is
{Indors (@ T GY R, ¥r(As)) | As € (VIL )™}

(Definition 3.9). It is called a Dizmier sheet if R, = C. Two sheets are identified if they contain exactly the
same orbit data; according to Conjecture 3.19, this amounts to conjugacy of the pair (L, (Ry, $u)) under G.
(By considering regular A, in Proposition 3.18, one sees that this conjugacy is a necessary condition for the
sheets to coincide.)

We have at once an analogue of Proposition 3.8.

Proposition 3.23. In the notation of Definitions 3.9 and 3.22,
i) Each completely prime coadjoint orbit datum belongs to at least one sheet.
i) If G is semisimple, each sheet contains ezactly one preunipotent orbit datum (corresponding to Ay = 0).
iii) The supports of the orbit data in a single sheet are contained in a single sheet of coadjoint orbits.

This follows from Proposition 3.18. In (iii), the supports may not constitute an entire sheet of coadjoint
orbits. This happens exactly when the support of the rigid orbit datum R, is not a rigid coadjoint orbit.

Suppose that G = Sp(4), L = GL(2), and L' = GL(1) x Sp(2). Fix parabolic subgroups @ and Q'
with Levi factors L and L’. As was pointed out after Proposition 3.8, the Dixmier sheets of coadjoint
orbits attached to L and L’ share the same nilpotent orbit. Let us now consider the corresponding sheets
of orbit data. The unipotent orbit data for these sheets are the rings of regular functions on T*(G/Q)
and T*(G/Q’) respectively. They are not isomorphic as Dixmier algebras: the second contains the five-
dimensional representation of G, and the first does not. It follows that these two sheets of orbit data are
disjoint. (The non-unipotent orbit data are distinguished by their supports.) Many similar examples suggest

Conjecture 8.2{. Two sheets of orbit data are disjoint or they coincide. The first possibility occurs
exactly when the pairs (L, (Ry, 1)) defining the sheets are conjugate by G.
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Conjecture 3.19 is more or less subsumed in this formulation. In the case of geometric orbit data,
Conjecture 3.24 amounts to an assertion about the behavior of fundamental groups under induction (compare
Corollary 2.7 and the example after Conjecture 3.19). It could in principle be verified by a finite calculation
for each group. For the classical groups this should not be too difficult to carry out, but I have not done so.
For non-geometric sheets (in particular when the normality hypothesis is dropped) the number of essentially
different cases becomes infinite, and some more conceptual approach is probably necessary.

4. Parabolic induction of Dixmier algebras.

The main purpose of this section is to give a construction of Dixmier algebras parallel to the construction
of orbit data described in section 3. Fix a pair (Q, (AL, ¢r)), where

Q is a parabolic subgroup of G, and (AL, ¢r) is a Dixmier algebra for L. (4.1)

We want to construct an “induced Dixmier algebra” (Ag, ¢¢) for G. Of course we will imitate and extend
the construction of induced primitive ideals (cf. [6]).

Before we embark on the rather convoluted construction of Ag, it is worth pausing to explain why the
problem is not trivial. Suppose V; is a faithful module for Ar. Let V; = U(g) ®, Vi be a parabolically
induced module for g. (We are neglecting “p-shifts” — that is, the twist by the character 6 in (4.2)(b) —
for this discussion.) The ideal I in U(g) induced by the annihilator of Vi is by definition the annihilator of
Vy; so the quotient ring U(g)/I is naturally embedded in End Vj. The Dixmier algebra Ag is supposed to
be some sort of nice ring extension of U(g)/I, so it is natural to look for this extension in End V,. Now it
is an important theme of Joseph’s work that the algebra of G-finite endomorphisms of V; is a natural and
well-behaved ring; so it is an obvious candidate for Ag. To see that it is not the right one, consider the case
L = G. In that case we had better have A = Ag (if our notion of induction is to be related to induction
of orbit data). Our “obvious candidate” for Ag will have this property only if the Dixmier algebra Ay is
already the full algebra of L-finite endomorphisms of V. So this approach from the outset runs into a rather
difficult technical problem: is every Dixmier algebra for L the full algebra of L-finite endomorphisms of some
(-module? (The answer in this generality is “no;” if Ay is required to be reasonable (say prime, for example)
the answer may be “yes,” but I have no idea how to prove it.)

What we actually do is this. We show that a large class of endomorphisms of V; (including all the
G-finite ones) can be described essentially as matrices with entries in the endomorphism algebra of V{ (cf.
Definition 4.6 and (4.9)). We can then define Ag to consist of those G-finite endomorphisms of V; whose
“Inatrix entries” belong to Ar (Definition 4.7). This definition is not so difficult. What is slightly less easy
is proving that Ag satisfies the finiteness requirements in the definition of Dixmier algebras, and relating
the definition to induction of orbit data. To do that, we have to give a rather different description of Ag
(Corollary 4.16). (We cannot easily use Corollary 4.16 as the definition of Ag, because it is difficult to see
the algebra structure from this point of view.)

Especially for the material on the symbol calculus, the reader should keep in mind the case Ay = C; in
that case Ag is the algebra of (holomorphic linear) differential operators on G/Q. (Recall that we are still
neglecting p shifts!) That case has been thoroughly analyzed in [Borho-Brylinski], and most of the serious
ideas we use may be found there.

Suppose then that

Vi is a faithful module for Af. (4.2)(a)

(By Proposition 6.0 of [15], any prime Dixmier algebra is primitive; if Ay is prime, we could therefore even
choose Vi to be simple as an Az-module. This makes no difference in the construction, however.) Let 24
denote the character of L on the top exterior power of g/q. Then § is a well-defined character of {. Twisting
the map ¢, by & we get a new Dixmier algebra (A7, ¢7): the algebra A7 is equal to AL, and

PL(X) = o(X) +6(X) (X €D (4.2)(b)

This algebra has a faithful module
V=V ®C;s. (4.2)(e)
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Make @ act on A} by making U act trivially; to emphasize this structure, we call the algebra Ag, and write
Ad:Q — Aut(Aq). (4.2)(d)

Extend ¢ to
¢q : U(q) — Aq (4.2)(e)

by sending u to 0. When we regard V{ as a module for Ag, we call it V;. Write u~ for the nil radical of the
parabolic subalgebra of g opposite to (). Now define

Ve =U(9) ®q Ve 2 U(u7) @c Vi (4.2)(F)

We are going to construct Ag as an algebra of endomorphisms of V. We begin by constructing a
larger algebra. To motivate the definition of this algebra, we will study the adjoint action of 3() on the
endomorphisms of V. Our immediate goal is Lemma 4.5 below.

Because Af is a Dixmier algebra, the kernel of 1 must contain an ideal of finite codimension in U (3(1)).
To simplify the notation, we assume that this ideal is maximal (as it must be if Af, is prime); the reader can
easily modify the constructions that follow to cover the general case. Then 3(I) acts by a character A on V;.
If o is any character of 3([), write U(u™ ), for the (finite-dimensional) subspace of U(u~) on which 3({) acts
by a. Then V, is the direct sum of its weight spaces

(Va)s = U )p-r © Vi (4.3)

Next, recall that the algebra End Vj is a bimodule for U(g). The left action of an element u on an

endomorphism T is on the range of T', and the right action is on the domain. Write ad for the corresponding
diagonal action of g: if T' is an endomorphism, X is in g, and v is in Vj, then

(ad(X)T)(v) = X - (T'v) — T(X - v). (4.4)

An endomorphism 7" has weight v for ad(3(1)) if and only if it carries (V3)p to (Vg)p4~ for every §. Using
(4.3), one deduces immediately

Lemma 4.5. Suppose T is an ad(3(1))-finite endomorphism of Vy. Then for every u in U(u™) there are
finitely many elements uy, ..., u, in U(u™), and endomorphisms Ey, ..., E, of V;, so that for each v in Vy,

T(u®v) = Zui ® F;v.

Here is a first approximation to the induced Dixmier algebra.
Definition 4.6. Suppose we are in the setting (4.2). An endomorphism T' of V} is said to be of type AL

if and only if for every u in U(u~) there are finitely many elements uy, ..., %, in U(u™), and endomorphisms
Ei,...,E, in Ag, so that for each v in Vi,

T(u®v) =Y u;® Euv. (4.6)(a)

Using the defining relations for V,, one checks that it is equivalent to require this condition for every u in
U(g), or to require only that u; belong to U(g). Write

Ay ={T €End(Vy) | T is of type AL }
It is easy to check that Ay is an algebra.
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If w is in U(g), define ¢4(w) to be the endomorphism of V; defined by the action of w. This is always

of type AL, so we get
¢y : U(g) — A, (4.6)(b)

a homomorphism of algebras.

In (4.9) below we will give another description of A, from which one can see that it depends only on
the data (4.1) (and not on the choice of V).

Because of (4.4) and the existence of the map ¢, we see that the algebra A, is ad(g)-stable. The reason
A, is not a Dixmier algebra is that this Lie algebra adjoint action does not exponentiate to an algebraic
action of G. We remedy this in the simplest possible way.

Definition 4.7. In the setting of Definition 4.6, define

Ag = Ad(G)-finite subalgebra of A,

4.7

= Ad(G)-finite endomorphisms of Vj of type AL (4.7)(@)
To understand this definition, recall that an element T of A4 is called Ad(G)-finite if it belongs to a finite-
dimensional ad(g)-invariant subspace F' of A,, on which there exists an algebraic action Adp of G with
differential ad. The elements in the image of ¢, certainly have this property: one can take for F' the image
of some level Uy, (g) of the standard filtration of U(g). Restricting the range of ¢, therefore defines

éc :U(g) — Ag, (4.7)(b)

a homomorphism of algebras. It is easy to check that Ag is a subalgebra of A, containing the identity
element. Since G is connected, the actions Adp are uniquely determined, and can be assembled into an
algebraic action

Ad: G — Aut(4g). (4.71(¢)

The action is by algebra automorphisms since ad(g) acts by derivations. We define the induced Dizmier

algebra to be
(Ag,¢¢) = Indpiz(Q T G)(AL,éL)- (4.7)(c)

To show that A is a Dixmier algebra, we only need to check the finiteness conditions (iii) and (iv) of
Definition 2.1. To do that, and to get a clearer picture of the structure of Ag, we need first to study A,

much more carefully.

Lemma 4.8. The set A, is an algebra of endomorphisms of V. If Ap consisis of all L-finite endomor-
phisms of Vi, then A, contains all the L-finite endomorphisms of V.

This is straightforward.

Here is another description of A;. Fix characters 8 and 7 of 3(1). Define (End V;)sy to consist of those
endomorphisms transforming by the character 3 by the left action of 3(I), and by v under the right action.
These are precisely the endomorphisms vanishing on all the weight spaces of V; except the one for v, and
whose image is contained in the 8 weight space:

(End V4)gy = Hom((Vg)y, (Vg)s)
~ Hom(U(u™ )y-x ® Vo, U(u™)p-21 ® Vo) (4.9)(a)
~ Hom(U(u' )7_)‘, U(u”)ﬁ_.)\) ® End V-

The corresponding double weight space for Ay is
(Ag)py = Bom(U (™ )yen, U™ )g_2) ® Ag. (4.9)(b)
The algebra Aj is built from these pieces in a slightly subtle way:
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Ay~ H (Z(An)ﬁ'r) . (4.9)(c)
¥ B

The reason we insist on a direct product outside is to ensure that the identity operator belongs to A;. The
direct sum inside ensures that the resulting algebra acts on Vj.

In the description (4.9) of Ay, the algebra structure is the obvious one (induced by the algebra structure
on Ag and the “composition maps”

Hom(U (u™), U(u™)p) x Hom(U(u™)s, U(u™)y) — Hom(U(u™)s, U(u™)p)-
The structure that is subtle in this picture is the homomorphism ¢, of (4.7)(b). At any rate, (4.9) shows

that A; depends only on Az (and @), not on the choice of module V.
We need two more descriptions of A;. For each of them, it is convenient to introduce an auxiliary space.

Definition 4.10. In the setting of (4.2), define
Ag/q = U(g) ®q Ag- (4.10)(a)

This space is clearly analogous to the algebra Rg/q of (3.12), but I do not know any very simple motivation
for its introduction. Clearly Ag/q carries a left action of U(g) and a commuting right action of U(q). There
is also an algebraic action

Ad : Q = End(Ag/q), (4.10)(b)

which is the tensor product of the adjoint actions on U(g) and Ag. The differential of Ad is the difference
of the left and right actions of q.

The first of our final descriptions of A is
Lemma 4.11. In the setting of Definttion 4.10, define
Ay = Homg(righe righty (U(8), Ac/q)- ()
(Here q acts on the first U(g) and on Ag;q on the right to define the Hom,.) Then there is an isomorphism
al Ay — Aé. (%)

In this isomorphism, the left action of U(g) on Ay corresponds to the left action on Agjq; and the right
action of U(g) on Ay corresponds o the left action on the domain U(g) in the Hom. Ezxplicitly,

ol (2Ty)(u) = z (@' (T)(yu)) (z,y,ueUl(g), T € 4;. (#ic)
For z € U(g), the element ¢4(z) of (4.6)(b) satisfies
o' (fy(2)) () = zu® 1. (i)

We use the cumbersome subscript in (i) to distinguish this realization from that of Lemma 4.14 below.
Proof. Fix T € Ay; we must define o' (T') as a map from U(g) to Ag/q = U(g) ® Ag- So fix v in U(g),

and write
T(u®v) = Zui ® Ev (4.12)(a)

(with u; € U(g) and E; € Aqg) as in Definition 4.6. Then put
o (T)(v) = ui @ Ei. (4.12)(b)
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We leave to the reader the straightforward verification that a!(7) is a well-defined element of A}, and that
o! is an isomorphism. The assertion (iii) follows from (4.12). For (iv), one can use (iii) and the fact that
¢g(2) = x - 14, (the left action of = on the identity element of A;). Q.E.D.

Using (4.12), we can compute the algebra structure on Aé induced by the isomorphism a!. Suppose S’
and S are in Aé‘ To evaluate S’S at an element u of U(g), first write

S(w) =) w® k. (4.13)(a)
Next, write
S’(u,’) = Z Ui; @ E,’j. (413)(1))
J
Then
(8'S)(u) = Z u;; @ Eij By (4.13)(e)
&4

We leave the straightforward verification of this to the reader.
The last description of Ay is the least transparent of all, but it will be crucial to the symbol calculus.

Lemma 4.14. In the setting of Lemma 4.11, define
A} = Homg(ie11,00)(U(8), Ac/q) (i)
to be the space of maps & from U(g) to Agyq with the property that
E(Xu) = ad(X)E(u) (X € q,u e U(g)). (i)

Then there is an isomorphism
a’: Ay — A (444)

Under the isomorphism o?, the adjoint action of U(g) on Ay corresponds to the right action on the domain
U(g) term in A2:

o?(ad(2)T)(u) = *(T)(uz). (iv)
The map ¢4 is computed in this picture by
o?(6(2))(u) = ad(W)z ® 1. (v)

Before proving this lemma, we deduce the consequences we want.
Definition 4.15. The complete symbol sheaf (for Ap and Q) is the quasicoherent sheaf
Ac =G xq Ag/q
on G/Q. Here we use the action Ad of Q on Ag/q.
It should be fairly easy to make A¢ into a sheaf of algebras on G/@, but I have not done this.
Corollary 4.16. The algebra Ay may be identified with the space of formal power series sections of Ag

at the identity coset eQ). The subalgebra Ag then corresponds to the global sections of Ag; the left action of
G on sections corresponds to the adjoint action on Ag. In particular,

Ag =~ Indalg(Q T G)(AG/Q)
= Inday(Q 1 G)(U(g) ®4 Aq)-
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Here we use induction of algebraic representations (cf. (A.8)); Q acis on the inducing representation by
Ad® Ad.

Sketch of proof. This is a consequence of Lemma 4.14 and general facts about homogeneous vector
bundles. A formal power series section X of the “vector bundle” G xg Ag/q is specified by a map from U(g)
to Ag/q, sending u to the value at eQ of the derivative 0,(X). Since ¥ must transform (infinitesimally)
under @ in a certain way, this map must respect the action of g; that is, it must belong to the space Aﬁ of
Lemma 4.14. This gives the first assertion. For the rest, one needs to know that a G-finite formal power
series section must come from a globally defined section; this is easy. Q.E.D.

Corollary 4.17. In the setling of Definition 4.7, the pair

(Ag,¢¢) = Indpir(Q 1 G)(AL, éL)
is a Dizmier algebra. The kernel of ¢g in U{g) is the ideal induced (via q) from the kernel of o1 in U(D).

Proof. Since Ar, is a Dixmier algebra for L, the kernel of ¢1 contains an ideal of finite codimension
in the center of U(l). Since Ag is an algebra of endomorphisms of Vi, it follows from the theory of the
Harish-Chandra homomorphism that the kernel of ¢ contains an ideal of finite codimension in the center
of U(g). By the theory of Harish-Chandra modules for G, condition (iii) in the definition of Dixmier algebra
(Definition 2.1) is a consequence of condition (iv). But condition (iv) is an elementary consequence of the
description of Ag as an induced module in Corollary 4.16; we leave the calculation to the reader.

For the statement about induced ideals, notice first that the annihilator of V| in U([) is the kernel of
¢1, (since V] is assumed to be faithful for Ay). By definition the induced ideal is therefore the annihilator in
U(g) of V,. Since Ag is an algebra of endomorphisms of Vj, the claim follows. Q.E.D.

Conjecture 4.18. In the setting of Definition 4.7, the induced Dixmier algebra is independent of the
choice of Q.

Of course this conjecture is analogous to Conjecture 3.19. The corresponding assertion for induced
ideals is true (cf. [8]). Beyond this, there is very little evidence. It may be that one has to impose some
extra condition on Ay, such as complete primality.

Proof of Lemma 4.14. Rather than passing directly from Aj to Aﬁ, we will construct an isomorphism

al?: Aé

- A2, (4.19)(a)
In light of Lemma 4.11, it will suffice to show that a2 has nice properties; then the isomorphism
o' =at?oal (4.19)(b)
will satisfy the requirements of Lemma 4.14. So fix S € Aé, and define
a'2(S)(u) = (ad(u)S)(1). (4.19)(c)
That the map o'2(S) satisfies condition (ii) in Lemma 4.14, and that
a2(S)(uv) = a**(ad()S)(w) (4.19)(d)

(which implies (4.14)(iv)) are easy calculations. The formula (4.14)(v) follows from (4.11)(iv) and the fact
that the map ¢ is ad-equivariant.

The main point is therefore to show that the map o!? is a linear isomorphism. To see that, we will
write an explicit inverse. Write u — *u for the transpose antiautomorphism of U(g); we have 'X = —X for
X in g. Write

h:U(g) — U(g) ® U(g)
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for the Hopf map; this is the algebra homomorphism sending X in gto X ® 1 +1® X. If M is a bimodule
for U(g), then the adjoint action of U(g) may be computed as follows. Fix u in U(g), and write

h(u) =D i @ ;. (4.20)(a)
Then
ad(u)m = Z(ui)m(’vi). (4.20)(d)

We have described the left and right actions of U(g) in Aé explicitly; we deduce that for S € Aé,

(ad(u)S)(z) = > ui[S(viz)]. (4.20)(c)
Consequently
o 2(S)(u) = D ui(S(wi)). (4.20)(d)

Now suppose that ¥ is an element of A2. Define a map o?*(Z) from U(g) to Ag;q by
YD) (w) = Y uwi(S('vi). (4.21)(a)

One way to see that a?! is well-defined is to regard A2 as a subspace of Home(U(g), Ag/q). This larger
space carries commuting left and right U(g) actions, from the left actions on Ag;q and U(g) respectively.
Consequently there is an adjoint action ad; and

o (B)(u) = (ad(u)S)(1). (4.21)(b)
To check that o?'(E) belongs to A}, fix  in U(g) and X in g; we must show that

o*(Z)(uX) = (o®(T)(u)X.
Now h(uX) = Y (uiX ® v; + u; @ v; X), so
o (2)(uX) =D (uiX(E('v)) + ui(B(=X"v:))).
By (4.14)(ii), the second terms can be rewritten to give
o (E)(uX) = Y (0 X (S( ) — uiad(X)Z('vi)))
= (wX(E(n)) - wi(Xs(*v;) — B(*vi)X)).
The first two terms in each summand cancel, leaving
* (D) (uX) = Y (wis(*vi)X)
= (@*(Z)(w)X,

as we wished to show.
Finally, we must show that the correspondences defined by (4.20) and (4.21) are mutual inverses. Fix

S in A}; we will show that

a®(a'?(S)) = S. (*)
(The proof that a'?(a?!(X)) = ¥ is identical.) To do this, fix X1,..., X, in U(g); we will compute the left
side of (%) at u = X1 ...Xn. If Ais any subset of {1,...,n}, write X4 for the corresponding product (with
the indices arranged in increasing order). The complement of A is written A°. Then the Hopf map is given
by

hwy= > Xa®Xae.
AcC{i,...n}
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Therefore
o (a'2(S))(u) = ) Xa(a*(S)(* X 4c))

=Y X4 ( > ’XBS(XAC,B))

BCA®
= Y Xa'XBS(Xa-_B)
A
BCA®

This last expression may be regarded as a sum over partitions of {1,...,n} into three disjoint subsets A, B,
C; it is

> Xa'XpS(Xc)

A,B,C

=Y (ad(Xce) - 1)S(Xe).
c
Of course ad(X¢-) acts by zero on 1 unless C° is empty. The only non-zero term is therefore

(ad(1) - 1)S(Xq1,...n3),

which is S(u) as we wished to show. Q.E.D.
We conclude this section with a symbol calculus for the induced Dixmier algebra.

Definition 4.22. Suppose we are in the setting of Definition 4.10. The standard filtration of U(g) induces
an Ad(Q)-stable filtration
Agjon = image of U,(9) ® Ag (4.22)(a)

of Ag/q. The left action of U(g) is compatible with this filtration in the usual sense (see the discussion
preceding Conjecture 2.3). Define Sg/q to be the associated graded object:

SGjq =5"(8/9) @ Aq- (4.22)(b)

This is a graded algebra with a graded algebraic action (still called Ad) of @ by automorphisms. (In fact it
is the pushforward to a point of a constant sheaf of (O-algebras on (g/q)*.) The principal symbol sheafis the
graded sheaf of algebras on G/Q

S =G xq Sg/Q (4.22)(0)

(cf. (3.13)). (This is the pushforward to G/Q of a sheaf of O-algebras on T*(G/Q).) The space of global
sections of S¢g is a graded algebra Sg that we call the principal symbol algebra; explicitly,

Indarg (@ 1 G)(S(8/9) © AQ)
functions on G with values in S(g/q) ® Ag, (4.22)(d)

transforming by Ad under Q.

Sg

I

An immediate consequence is that if Ag (or, equivalently, Ar) is completely prime, then Sg is as well. We
write Ad for the action of G on Sg by left translation of sections.

Now define the weak filtration on Ay by
Appwr = 1S € Ay | S(Un(9)) C (Ac/Q)ptn}- (4.23)(a)

(Here and below we will use the isomorphisms a! and o? to transfer filtrations among A,, A}J, and Aﬁ.)
This makes A} a filtered algebra (as one checks using (4.13(c)), but not every element of Aé belongs to some
A} ,- Tt follows from (4.11)(iv) that

¢5(Un(8)) C (Ag)n wh- (4.23)(b)
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Using (4.20) and (4.21), one can describe the weak filtration directly on A2 as well: it is

Afpwr = {Z € A7 | Z(Un(9)) C (Ac/Q)p+n}- (4.23)(c)

The difficulty with the weak filtration is that it is not ad(g)-invariant. Given any filtered algebra A and
a family D of derivations of A, we can define a smaller filtration of A by

Apnsm={a€A|Di...Di(a) € A, all {D;} CD}.
This gives A a new structure of filtered algebra, this one preserved by D. In our case, we set
Agp ={T € Ay | ad(u)T € Agpwik, all ue U(g) }. (4.24)(a)

This is not very easy to understand directly; but Lemma 4.14(iv) and (4.23)(c) show immediately that the
corresponding filtration of Ag is

Ayp = {S € A7 | S(Un(8)U(8)) C (AG/Q)p+n, alln}. (4.24)(a)

Clearly this is
A2 ={Z | Z(U(s)) C (Ag/q)p }- (4.24)(b)

Using Corollary 4.16, we deduce a description of the restriction of this filtration to Ag:

Agp = Inday(Q T G)(Ag/o.,). (4.24)(c)

Regarded as an algebraic map from G to Ag/q, every element of Ag has its image contained in some
finite-dimensional subspace. Consequently

UA4e, = 46 (4.24)(d)
p

On the level of sheaves, Definition 4.22 gives rise to an exact sequence
0— Agp-1—Agp — SL — 0. (4.25)(a)

(Here we have used and extended slightly the notation of Definition 4.15 and (4.22)(c).) Taking global

sections gives an exact sequence
0— AG,p—l — AG,p — Sg (4.25)(1))

The last map in this sequence is called a principal symbol map, and is denoted m,. Because of (4.24)(c),
these maps can be assembled to a graded injection

7:gr Ag — Sg. (4.25)(c)
Clearly 7 respects the action Ad of G. What is less obvious is
Proposition 4.26. The principal symbol map m of (4.25) is an algebra homomorphism. In particular,
if AL is completely prime, then the induced Dizmier algebra Ag is as well

If HY(G/Q,Sg) = 0, then m is an isomorphism of graded algebras.

Proof. Suppose S € Aé,p. Write ¥ = o!?(S) for the corresponding element of Aﬁ,p. If u belongs to
Un(g), then (4.21) shows that

S(u) = uX(l) (mod Ag/q@ntp-1)-

By the definition of «'2, this is the same as
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S(u) = uS(1) (mod Ag/Qn4p-1)- (4.27)(a)
Write
S =) wokE, (4.27)(b)

with u; in Up(g). It is immediate from the definition that the value at the identity of the principal symbol
is given by

m(S)(e) = Zpi ® By (4.27)(¢c)

here p; is the image of u; in SP(g/q).
Suppose S’ belongs to A, ;. Write

S'(1) = Z v; ® B}, (4.27)(d)

with v; in U,(g). If ¢; is the image of v; in S7(g/q), then

7o(S')e) =) _ ;@ E}. (4.27)(e)
By (4.23) applied to ',

') =3 wv; ® F  (mod Ag/qprg-1)- (4.27)(f)

By Lemma 4.11(iv), J
(8'9)(1) = Z uiv; @ EjE;  (mod Ag/Qptq-1)- (4.27)(9)

Consequently w

Toua(S'S)) = Yomas © B,

= &N @2

The proposition follows from (4.27)(h) and the Ad(G)-equivariance of ». Q.E.D.

There is a variant of this symbol calculus that is of interest for the Dixmier conjecture. (Because we
will never need both at the same time, we will not use a different notation for the filtrations in the variant.)
Suppose that A is endowed with a good filtration indexed by 1/2N. Recall from the discussion before
Conjecture 2.3 that this amounts to the following requirements:

ArpAr,g C ALptgs
Ar p is Ad(L)-invariant;

ALy = AL; (4.28)
p

éL(Un(1)) C (AL)n;
(Rr,v¥r) = (gr AL, gr ¢1) is a graded orbit datum.

We want to construct a good filtration of the induced Dixmier algebra (Ag, ¢g).
To begin, filter Ag,q by

Ag/gp = Un(8) ® Agp-n. (4.29)(a)

(Of course the underlying algebra of Ag is just A, so Ag inherits the filtration of Ay.) This filtration is
Ad(Q)-stable, and
Un(@) - Ac/qp C Ac/Qun+p- (4:20)(b)
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The associated graded object therefore carries an action Ad of @@ and a graded S(g)-module structure. A
little thought shows that it is the graded tensor product

gr Ag/Q = S(g) ®5(q) gr AQ. (429)(6)

This is exactly the algebra Rg,q attached to Rp in the construction of induced orbit data (cf. (3.12)). We
call

Re =G xqg Rgjq (4.29)(d)

a good symbol sheaf. The space of global sections is a graded algebra Rg that we call a good symbol algebra.
By (3.13) and (3.14),
Rg = Ind,rs(@ T G)(RL). (4.29)(e)

Of course R is an orbit datum for G by Proposition 3.15.
Now we can filter Ag by

Al ={Z e A2|Z(U(9)) C Ag/qyp }- (4.30)(a)

Exactly as in (4.23) and (4.24), one shows that this defines a filtered algebra structure on A2. The induced
filtration on Ag is

Agp =Indag(Q 1 G)(Ag/q ) (4.30)(b)
and
UA4e» =46 (4.30)(¢)
)4

Again we get an exact sequence of sheaves on G/Q
0— Agp_1 — Agp — REL — 0. (4.31)(a)
This gives rise to an exact sequence
0— Agp-1,9a = Ac,p,ga — (Ra)P. (4.31)(b)

The last map in this sequence is called a good symbol map, and is denoted v,. We therefore have a graded
G-equivariant injection
v:gr Ag — Rg. (4.31)(¢)

Exactly as in Proposition 4.26, one shows that v is a homomorphism of algebras. We have proved

Proposition 4.32. Suppose the Dizmier algebra (AL, ¢r) is endowed with a good filiration indezed
by 1/2N (cf. (4.28) with associated graded orbit datum (Rp,¢¥r). Write (Rg,¥g) for the induced orbil
datum for G. Then the induced Dizmier algebra (Ag, ¢G) has a natural good filtration, and the associated
graded orbit datum injects into (Rg,¥g). If the cohomology HY(G/Q,Rg) vanishes, then this injection is
an isomorphism.

Evidently this result has some relationship to Conjecture 2.3. We will discuss this in detail in section 5.
5. Sheets of Dixmier algebras.

We can now say something about what a “sheet of Dixmier algebras” ought to look like. Of course such
a sheet ought to consist of the Dixmier algebras corresponding via Conjecture 2.3 to a sheet of geometric
orbit data. Our goal, however, is to make a little progress toward proving that conjecture. We fix therefore a
sheet of geometric orbit data attached to a Levi subgroup L of G and a rigid unipotent orbit datum (Ry, %y)

for L/Z(L)o (Definition 3.20). Thus
X, = Spec R, is a unipotent Poisson variety for L/Z(L)g (5.1)(a)
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(cf. [21]). One consequence is that the action of C* on the support ¥, must lift to X, at least after
passing to a finite cover of C*. This means that Ry, is graded by k=N for some positive integer k. As was
already mentioned in section 2, Moeglin has observed that k is at most 2. (This is a consequence of the
Jacobson-Morozov theorem.) Consequently

R, is graded by 1/2N; (5.1)(d)

this gradation is compatible with the standard one on S(g) and the map ,,.
The first serious step is to attach to (Ry, ) a Dixmier algebra for L/Z (L)o. There is a conjecture for
how to do this in section 5 of [21]; we reproduce a strengthened version here.

Definition/Congecture 5.2. Suppose G is a semisimple group, and (R, ) is a rigid geometric (and
therefore unipotent) orbit datum (Definition 2.2 and Definition 3.20). Recall the natural grading of R by
1/2N, and the natural Poisson structure {,} on R. A (rigid) unipotent Dizmier algebra associated to (R, 1)
is a Dixmier algebra (A4, #) (Definition 2.1) having an Ad(G)-invariant filtration by 1/2N, subject to the

following conditions.
i) ¢(Un(9)) C An.
ii) The pair (gr 4, gr @) is isomorphic as an algebra with G-action to (R, %).
These two properties conjecturally determine exactly one Dixmier algebra. An immediate consequence is
iii) A is completely prime.
As a conjectural consequence of (i) and (ii), one should have four additional properties.
iv) The infinitesimal character of A corresponds to a weight in the rational span of the roots.
v) The kernel of ¢ is a weakly unipotent primitive ideal in U(g).
vi) Suppose a and b in A, and A; have images » and s in RP and R?. Then the Poisson bracket {r,s} is
the image of ab — ba.
vii) A admits a transpose antiautomorphism (a — *a) of order 1, 2, or 4 (Definition 2.8). This preserves the
filtration, and the associated graded antiautomorphism acts by exp(ipr) on RP.

(The notion of weakly unipoteni primitive ideal may be found in [19], section 8. The condition is that
the infinitesimal character cannot be made shorter by tensoring with a finite-dimensional representation.
The prototypical example is the augmentation ideal.)

This conjecture is very easy if R = C (corresponding to the zero nilpotent orbit). If R corresponds to
a minimal non-zero nilpotent orbit (which is rigid except in type A) then the conjecture is true because of
Joseph’s work on the Joseph ideal (as supplemented by Garfinkle). The complete conjecture is known only
in a handful of other cases, although there is some evidence for it in many other infinite families of examples.
Some of the most powerful results in the direction of (ii) are those in [16].

Now assume that we are in the setting (5.1), and that we have a unipotent Dixmier algebra

(Au, du) (5.3)(a)

for L/Z(L)o attached to (Ry,¢u) in the sense of Conjecture 5.2. To every character A of 3([) we can attach
an orbit datum

(RL(A), ¥ (X)) (5:3)(6)

for L; here Rr(A) is isomorphic to Ry, and 91 () is given as in (2.5)(e) and (f). Similarly, we can construct
a Dixmier algebra

(AL(A), 8r(})) (5:3)(¢)
for L. Here Ar(X) is just A, as an algebra with L action, and

L(A(X) = A(X) (X e3(D),
SrNY) =¢u(Y) (Y e[L1).
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Definition 5.4. Suppose we are in the setting (5.1), and that the Dixmier algebra (Ay, ¢,) for L/Z(L)o
exists. Fix a parabolic subgroup @ = LU with Levi factor L. Form a sheet of orbit data

(Ra(A), ¥a () = Indops(Q T GY)(RL(A), ¥r(N)) (5.4)(a)

(Definition 3.22). (Recall that, according to Conjecture 3.19, this sheet is independent of the choice of Q.)
The sheet of Dizmier algebras for G attached to (Q, (Ay, ¢u)) is

(Ag(A),¢6(A)) = Indpir(Q T G)(AL(N), 6(N))
(Definition 4.7). According to Conjecture 4.18, these algebras do not depend on the choice of Q.

By Proposition 4.32 (and hypothesis (ii) in Definition/Conjecture 5.2) each Ag(A) carries a natural
good filtration indexed by 1/2N. These filtrations have the property that there is natural injection of graded
orbit data

(gr Ac(A), gr ¢6 () = (Ra(0), %6 (0)). (5.5)(a)

An elementary argument also provides natural good filtrations of the orbit data in the sheet, with the
property that

(gr Ra(A), gr ¥6(A)) = (R (0), $a(0)). (5.5)(6)

Both of these injections ought to be isomorphisms. Because of Proposition 4.32 (and an easier analogue for
orbit data) this would be a consequence of

Conjecture 5.6. In the setting of Definition 5.4, form the sheaf Rg(0) on G/Q as in (3.13). Then the
higher cohomology of G/Q with coefficients in R(0) vanishes.

If Ry = C, then the sheaf R (0) is the sheaf of functions on the cotangent bundle of G/@Q. In that case
Conjecture 5.6 is true, by a well-known result of Elkik.

The correspondence taking (Rg(A), ¥g(X)) to (Ag(X), G(A)) is our candidate for a Dixmier correspon-
dence on geometric orbit data (cf. Conjecture 2.3). To define it, we need to know the existence of unipotent
Dixmier algebras attached to rigid orbit data (Conjecture 5.2). For it to be well-defined on a single sheet, we
need both Rg()) and Ag(A) to be independent of @ (Conjectures 3.19 and 4.18). For it to be well-defined
on all geometric orbit data, we need the geometric sheets to be disjoint (Conjecture 3.24). For it to satisfy
Conjecture 2.3, we need a cohomology vanishing result (Conjecture 5.6).

6. Relation with bimodule induction.

In this section we will resume our study of induced Dixmier algebras, focusing on special conditions on
the inducing algebra that permit a further analysis of their structure. The main tool is the idea of induction
of Harish-Chandra bimodules, which we now recall.

Definition 6.1. Suppose @ = LU is a parabolic subgroup of G, and By, is a Harish-Chandra bimodule
for L. Write Q7 = LU°? for the opposite parabolic subgroup. Define a new bimodule B} by subtracting
from the left and right actions of [ the character é defined after (4.2)(a). Make B/ into a left g-module by
making u act by zero, and into a right g°’-module by making u°? act by zero; we denote this object By 4or.
Consider

Bg,bi = Bg = Homq,qop(U(g) & U(g), Bq,qop),

Here q acts on the left on the first U(g) factor and q°” on the right on the second to define the Hom. B,
has the structure of a g-bimodule: the left action of g comes from the right action on the first U(g), and the
right action from the left action of g on the second U(g). Put

Bg 3 = Bg = Ad(G)-finite part of By;
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this is the Harish-Chandra bimodule for G induced by Br. We write

BG = Indbi(Q T G)(BL)

Induction of Harish-Chandra bimodules is a very simple and well-understood process. It is an exact
functor, and (as algebraic representations under Ad) we have

BG ~ Indazy(L T G)(BL) (6.2)

(notation (A.8)). Because this is induction from a reductive subgroup, it is much better behaved than the
induction appearing in (say) Corollary 4.16. The reader may wonder why we did not use it in section 4 to
construct induced Dixmier algebras. The reason is that bimodule induction does not in general take algebras
to algebras.

Nevertheless, there is much to be gained (computability, for example) whenever we can relate induction
of Dixmier algebras (which are, among other things, Harish-Chandra bimodules) to Indy;. Examples for
SL(2) show that the relationship cannot be quite trivial. To understand it, we will first interpret bimodule
induction in terms of endomorphisms between modules (Corollary 6.5). Once that is done, it is convenient
to extend the induction construction of Definition 4.7 from Dixmier algebras to arbitrary Harish-Chandra
bimodules (Definition 6.7). Once the two kinds of induction are described in parallel, it becomes clear that
they are related by something like the Shapovalov form on a Verma module (Definition 6.11). Establishing
an isomorphism between them therefore comes down to proving some irreducibility results for (appropri-
ately generalized) Verma modules (Theorem 6.12). The idea of this argument comes from [5]; much more
sophisticated incarnations of it appear in Joseph’s work relating primitive ideals to highest weight modules
(cf. [11] and [12], section 1.3).

Suppose Vi and W; are modules for {. Assume that

B C Hom(V;, W)) (6.3)(a)

is a Harish-Chandra bimodule of maps. Here the left action of [ comes from the action on Wy, etc. (It is easy
to see that any Harish-Chandra bimodule arises in this way; we do not require V; and W, to be particularly
nice.) Write V[ for V{ with the action of [ twisted by —8, and then Vjo» for the extension to q°? on which
u’? acts by zero. Similarly define W;. Then

quqop C Hom(%oﬁ, Wq) (63)(1))

Define
Vaind = U(@) ®qor Voor = U() @c Voor (6.3)(c)
Wypro = Homg(U(g), W,) ~ Home (U (u?, W,). (6.3)(d)

Lemma 6.4. In the setting (6.3), there is a natural identification of U(g)-bimodules

Homg (Vy,ina, Wy pro) 2 Homg (U (g) ® U(g), Hom(Vger, Wy))
=~ Home (U (u?) ® U(u), Hom(Vyer, Wy)).

We will not give the (easy and well-known) formal proof, but it is helpful to recall the form of the
isomorphism. If ¢ on the left corresponds to ® on the right, then for u and «' in U(g) and v in V{7,

[¢(v @ V)] (') = (B(u’ ® u))v.

Here u®v is an element of Vg ;n4. The term in square brackets on the left is therefore an element of W 50;
that is, it is a map from U(g) to W,. We specify it by specifying its value at u’.
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Definition 6.5. Suppose we are in the setting of (6.3). A map
¢ : Vy,ind = Wypro
is said to be of type By if the corresponding map
®:U(g) ©U(g) — Hom(Vgep, Wy))
(Lemma 6.4) takes values in By qor. By Definition 6.1,

Bg,bi ~ {QS : Vg,ind — Wg,pro ' ¢ is of type B }

Definitions 6.1 and 6.5 combine (like all good definitions) to give a result.

Proposition 6.6. Suppose we are in the setting (6.3). Then the induced Harish-Chandra bimodule
Bg = Indyi(Q T G)(BL) consists precisely of the Ad(G)-finite maps from Vy;ng to Wy pro that are of type
Br.

We now outline the extension to bimodules of the construction of section 4.

Definition 6.7. In the setting of (6.3), extend W/ to a module Wyo» for q°7 by making u°® act by zero.
Define
Wg,ind = U(g) Rqer quv. (6.7)((1)

In analogy with (4.2), identify Br with a U(q°?)-bimodule
BQoP C Hom(qup, qup). (67)(b)

As in Definition 4.6, we say that a map T from V ;na to Wy nq is of type By if for every uin U(g) there are
elements u; in U(g) and E; in Bgos such that for every v in Vg op,

Tu®v) = Z u; @ E;v. (6.7)(c)
The collection of all such maps is a U(g)-bimodule
By piz C Hom(V} ina, Wy ina). (6.7)(d)

Define
Bg,piz = Ad(G)-finite maps from Vj jnq to Wy ina of type By. (6.7)(e)

The proof of Corollary 4.17 shows that Bg pir is a Harish-Chandra bimodule for G depending only on Q
and By, (and not on the choices of Vi and W(). We call it the Dizmier induced Harish-Chandra bimodule,

and write
Bg,piz = Indpi-(Q° 1 G)(BL). (6.71)(f)

As in Corollary 4.16, one gets an isomorphism of G-modules for Ad
BG,Dia; ~ Indalg(QOP 1 G)(U(g) &gqor BQop). (67)(9)

Here q°7 acts on Bger on the left to define the tensor product, and @ acts by Ad ® Ad on the inducing
representation.

Recall that what we want is to compare Bg 3 and Bg pie. We will do this by comparing the larger
bimodules Byp; and By pir. To do that, we determine their bimodule structure under the center 3(I) of [.
As in section 4, it is harmless and convenient to assume that 3([) acts by characters A and p on W/ and V/
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respectively. We assume also that the Harish-Chandra bimodule By, has finite length. Fix characters 3 and
7 of 3([). Then the subspace of By pi, transforming on the left by 8 and on the right by 7 is (cf. (4.9))

(Bg,piz)py =~ Hom(U(u)y—p, U(w)p-2) @ Bges. (6.8)(a)

The whole bimodule is assembled from these pieces by the prescription

Bypiz ~ ]| (Z(Be,Diw)ﬂv) : (6.8)(b)
v B

Similarly, Lemma 6.4 gives
(Bpbi)py = Hom(U(u)_p4x @ U(u)y—p, By qor (6.8)(c)

Now the indicated weight spaces (for ad(3(f) in U(u) and U(u°?) are finite-dimensional. As an [-bimodule,
Bg,qor 18 equal to Bger. We may therefore rewrite this last equation as

(Bg,bi)gy = Hom(U (u)y—p, (U(u™)-p12)") ® Bgos- (6.8)(d)

By Definition 6.5,
Bysi =~ [ [(J[(Bysi)sy)- (6-8)(e)
T B8

Lemma 6.9. Suppose B is a Harish-Chandre bimodule of finite length for L. Then as algebraic
representations of Ad(L), the bimodule weight spaces (Bypi)gy and (Bgpiz)sy for 3() contain the same
representations with the same (finite) multiplicities.

Proof. This follows from (6.8)(a) and (d), using the isomorphism of L-modules u =~ (u°%)" provided by

the Killing form. Q.E.D.
Our next task is the construction of a bimodule map from B p;, to By pi. We need a little more notation

in the setting of (6.3). We have
U(g) = U(q) ® U(g)u”; (6.10)(a)

write

7:U(g) — U(a) (6.10)(b)

for the corresponding projection on the first factor. Write
Iq’qOP : WqOP — Wq (610)(6)
for the ”identity map” of the underlying [-modules.

Definition 6.11. Suppose q = [4+u and ¢°? = [+ u°? are opposite parabolic subalgebras of g. Suppose V
and Wy are [-modules; we use other notation as in (6.3) and (6.10). Define a homomorphism of q°7 modules

Jaor : Waor — Wy pro, (Jgor(w))(2) = w(x) - (I qerw). (6.11)(a)

Here z is in U(g) and w is in Wyes. It is easy to check that joer(w) really belongs to Wy o, and that the
map is a q°’-module injection. By the universality property of induction, jio» induces a g-module map

3 Waind = Wypro,  (j(u@w))(z) = 7(2u) - (I grw). (6.11)(b)

We call j the canonical intertwining operator; it is closely connected to the Shapovalov form on a Verma

module (see [6] or [10]).
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Composition with j induces a g-bimodule map
J: Homc(Vg,ind, Wg,ind) — Homc(Vg,ind, Wg,pro)' (6.11)(6)

We claim that this composition sends maps of type B to maps of type By (Definitions 6.5 and 6.7) and

therefore restricts to
J: Bg,Dia: ad Bn,bi- (6.11)(d)

(This will be proved in a moment.) As a bimodule map, J respects the action ad, and so restricts to
J: IndDix(Qap T G)(BL) — Indbi(Q T G)(BL), (6.11)(6)
this map we call the canonical bimodule intertwining operator.

To prove that J preserves type, suppose that T' € Home(V},ind, Wy ina) is of type Br; we want to prove
that J(T) = joT is as well. Write 7 for the map from U(g) ® U(g) corresponding to J(T') (Lemma 6.4), and
fix w and o’ in U(g). Then 7(v’' ® u) is a map from Vger to W,; we have to show that it belongs to By gor.
To compute it, fix v in Vgor. Now (6.6)(c) provides elements u; in U(g) and E; in Bgor (depending only on
u) so that

T{(u®v) = Z u; @ Ev.
Tracing through the definitions, we find
(r(v @ uw))v = (J(T)(u ® v))(u') (by Lemma 6.4)
= (O ui ® E))(w')
=Y w(u'n) - (IyeerEv)  (by (6.11)(b)).

Now composition with Iy qer clearly defines an isomorphism from Byer to By gor. Write F; for the image of
E; under this map. The action of #(u’u;) on F;v just corresponds to the left action of U(g) on By qor; s0 we
get

T(u®wv) = [Z w(u'ui)Fi] .

Now the term in square brackets belongs to By 4e», as we wished to show.

Theorem 6.12. Suppose Q = LU is a parabolic subgroup of G, and By is a Harish-Chandra bimodule
of finite length for L; say
By C HOH’I(V{, W[)

Define Wy ing and Wy pro as in (6.3) and Definition 6.7, and the canonical intertwining operator j between
them as in Definition 6.11. If j is one-to-one, then the canonical bimodule intertwining operator

J 1 Indpie (@ 1 G)(Br) — Indp(Q T G)(Br)
is an isomorphism.
Proof. Because j is one-to-one, the map
J 1 By piz ~ By i

is obviously one-to-one. By Lemma 6.9, the restriction of J to each 3(f)-bimodule weight space (Bg pic)gy is
an isomorphism. The map J respects the decompositions (6.8)(b) and (e) in the obvious way. (This is easy,
but it is not a formal consequence of linearity, since infinite direct products are involved. One has to recall
how the decompositions on the level of endomorphisms arise from decompositions of modules. These latter
decompositions are respected by the module intertwining operator 7.) It follows at once that J is injective.
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More precisely, J carries the ad(3([))-finite part of the domain isomorphically onto the corresponding part
of the range. A fortiori the restriction of J to the Ad(G)-finite part is an isomorphism. Q.E.D.

It is worth recording the slightly stronger statement that we actually proved: under the same hypotheses
as in Theorem 6.12,

(By,Diz)ad(3(1))-finite = (Bobi)ad(3(1))-finite" (6.13)

One can find in section 8 of {19] various sufficient conditions for the map j of Theorem 6.12 to be an
isomorphism. Here is one of them.

Proposition 6.14 ([19], Proposition 8.17). Suppose q = |+ u is a parabolic subalgebra of g, and W,
ts an [-module. Define Wy ing and Wy pro as in (6.3) and (6.6), and the canonical intertwining operator
between them as in (6.11). Assume that

i) The annihilator in U([1,1]) of Wi is a weakly unipotent primitive ideal.
i) The center 3(I) of [ acts by a character A on W,.
i1) If a is a weight of 3(I) in u, then
Re < a,A>>0.

Then j is injective.
We can combine this with Theorem 6.12 to get

Corollary 6.15. Suppose @ = LU 1ts a parabolic subgroup of G, and By, is a Harish-Chandra bimodule
of finite length for L. Assume that
i) The annihilator in U([I, 1)) of the left action on Br is a weakly unipotent primitive ideal.
i1) The center 3([) of [ acts on the left on B by a character A.
i) If a is a weight of 3(1) in u, then
Re < a,A>> 0.

Then the canonical bimodule intertwining operator
J :Indpi-(Q°F T G)(Br) — Indsi(Q T G)(BL)

18 an isomorphism.

Corollary 6.16. Suppose Q = LU is a parabolic subgroup of G, and (AL, ¢r) is a Dizmier algebra for
L. Assume that

i) The kernel of ¢, in U([1,1]) is @ weakly unipotent primitive ideal.
it) The center 3(I) of [ acts on Ap by a character A.
ii) If o is a weight of 3(1) in u, then
Re <a,A>>0.

Then the induced Dizmier algebra (Ag, ) is isomorphic as a bimodule to Indy(Q 1 G)(AL). In
particular, the induced algebra is isomorphic to Indaiy(L 1 G)(AL) as an algebraic representation under Ad.
The higher cohomology groups of G/Q°P with coefficients in the complete symbol sheaf Ag (Definition 4.15)
are zero.

The point of the cohomology vanishing result is primarily that if it were not true, then our definition
of induced Dixmier algebras would be flawed: the higher cohomology groups would have to be taken into
account somehow. One expects that in interesting cases Ag has a filtration with associated graded sheaf
of the form Rg(0) (cf. (5.5)). The present vanishing theorem would in such cases be a consequence of
Conjecture 5.6; so we may regard it a as a kind of evidence for that conjecture.

Proof. Only the last assertion requires comment. Write I' for Zuckerman’s functor from (g, L)-modules
to G-modules (passage to the G-finite part). Write I'* for its derived functors ([18], Chapter 6). If Z is any
algebraic representation of Q°F, write

Z2=G X Qeor A
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for the corresponding sheaf on G/Q°F. We have already observed (in the proof of Corollary 4.16) that
HY(G/Q, Z) ~ T (Homger (U(8), Z)L— finite)-

It is easy to extend this fact to higher cohomology:
H(G/Q”, Z) ~ I*(Homger(U(9), Z)L— finite)-

(One reason for this is that the same u°?-cohomology spaces can be used to compute either side.) To compute
the higher cohomology with coeflicients in Ag, we must therefore apply I to

Hoqup(U(g), U(g) ®q0p AQ"")L—finite-

(We are considering only the ad action of g.) This is just the L-finite part of 4, piy. By (6.13), it is
isomorphic to the L-finite part of Ay ;;. By Definition 6.1, this is

Hqu’qap(U(g) ® U(G)a Aq,q"l’)L—finite'

Again we are interested only in the adjoint action of g. As a module for this action, A, is isomorphic
to Hom((U(g), AL); here [ acts on U(g) on the left and on Ay by ad. (This elementary fact is the basis of
(6.2).) Therefore ' A

HZ(G/QOP, Ag) g I"(Homf(U(g), AL))L—finite- (617)

The module to which I'! is applied is a standard injective (g, L)-module, so the right side is zero for positive

i. Q.E.D.
Geometrically, the proof shows that the sheaf Ag is the pushforward of a sheaf on G/L. Since G/L is
affine, the cohomology vanishing follows.

7. The translation principle for Dixmier algebras.

As mentioned in the introduction, there ought to be a theory of modules for induced Dixmier algebras
entirely analogous to the Beilinson-Bernstein localization theory. I have not developed such a theory, but
this section describes one of its basic results (Corollary 7.14). It is included mostly as evidence that the
definition of induced Dixmier algebras is reasonable and interesting. The experts will find no surprises here;
but such readers may wish to examine carefully the hypotheses in Theorem 7.9, which are substantially
weaker than in some formulations of the translation principle.

We begin by recalling from section 3 of [22] the notion of translation functors for Dixmier algebras.
Write 3(g) for the center of U(g). Suppose « is a character of 3(g) and I, is the associated maximal ideal.
If M is a 3(g)-finite (left) g-module, write

oM ={me M| forsomen, (I,)" -m=0}. (7.1)(a)
This is an exact functor on the category of 3(g)-finite g-modules, and

M= uM, (7.1)(0)

the sum running over all characters of 3(g). We use analogous notation for right modules.
Suppose (A, @) is a Dixmier algebra. Then A is a 3(g)-finite bimodule, so there is a finite direct sum

decomposition of A
A=Y "oAp (7.2)(a)
a,f

This decomposition is preserved by the U(g)-bimodule structure and (as a consequence) by Ad(G). The
multiplication satisfies

0 ifg#y
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In particular, each 4 A, is a subalgebra. More generally, if M is an A-module,

e {5 1027 (72)()

As a formal consequence of these facts, we get

Lemma 7.3. Suppose A is a Dizmier algebra and M is a simple A-module. With the notation (7.1)
and (7.2), each non-zero o M is an irreducible o Ay-module.
Conversely, suppose N is an irreducible o Ay-module. Define

M/:A®°,Aa, N

Then oM' >~ N. Consequently M’ has a unique mazimal proper submodule S. The quotient M = M'/S is
a simple A-module, and 4M =~ N.

These constructions establish a bijection between the set of simple A-modules M with oM non-zero,
and the set of simple ,A,-modules.

Next, suppose (7, F') is a finite-dimensional representation of g. If M is a 3(g)-finite g-module, then so
is F @ M (cf. [13]). To make the corresponding construction for Dixmier algebras, fix a Dixmier algebra
(A, ¢4) and form the algebra

B =End(F)® A. (7.4)(a)

We can define an algebra homomorphism ¢p of U(g) into B by
(X)) =m(X) Q@1+ 1® ¢da(X). (7.4)(d)

To make a Dixmier algebra, we need an action Ad of G. This will exist whenever the adjoint action of g on
End(F') exponentiates to G (as it always does if F' is irreducible, for example). In that case we can define

Ad(g) - (T®a) = (Ad(g) - T) ® (Ad(g) - a). (7.4)(c)
These definitions make B into a Dixmier algebra.

Lemma 7.5. Suppose A is a Dizmier algebra and F' is a finite-dimensional representation of g. Assume
that
the adjoint action of g on End(F) exponentiates to G. (%)

Form the Dizmier algebra B = End(F) ® A as in (7.4). Then the map M — F ® M is an equivalence of

categories from A-modules to B-modules. The inverse functor is N — Homgnq(r)(F, N).

This well-known result is an elementary exercise. (The Dixmier algebra structure is purely decorative; B is
really just the ring of n x n matrices with entries in the ring A.)

Fix now a character a of 3(g) and a finite-dimensional representation F of g. The elementary translation
functor for modules attached to o and F' is the functor

TM = o(F ® M) (7.6)(a)

on 3(g)-finite g-modules. Assume in addition that F' satisfies condition (i) of Lemma 7.5. The elementary
translation functor for Dizmier algebras attached to o and F' is

TA=o(End(F)® A)q. (7.6)(d)
Proposition 7.7 (Translation Principle for Dixmier algebras). In the setting of (7.6), suppose A is a

Dizmier algebra. Then the translation functor T takes modules for A to modules for TA. This functor has
the following additional properties.
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a) T is ezact.
b) If M is an irreducible A-module, then TM is irreducible or zero as a T A-module.
¢) If N is an irreducible T A-module, then there is a unique irreducible A-module M such that N = TM.

This proposition is an immediate consequence of Lemmas 7.3 and 7.5.

The expert reader may be wondering what has been hidden, since results of this form about the trans-
lation principle usually require more hypotheses and more proof. The difficulty arises if we want to speak
about modules for U(g) instead of for some Dixmier algebra. If A = U(g)/I, then an A-module is just a
U{g)-module annihilated by I. There will always be a natural inclusion

é:U(g)/J — TA. (7.8)

If ¢ is surjective, then a 7 A-module is just a U(g)-module annihilated by J, and Proposition 7.7 becomes a
result about g-modules. It is exactly such surjectivity results that require additional hypotheses and more
difficult proofs.

Since we have cast off the shackles of g-modules, we take a slightly different view of what is required
to make Proposition 7.7 interesting. We will begin with a known Dixmier algebra A, and try to understand
the translated algebra 7 A. Here is such a result.

Theorem 7.9. Suppose Q = LU is a parabolic subgroup of G, and (Ay, ¢u) is a Dizmier algebra for
L/Z(L)o. For each character £ of 3(I) define a Dizmier algebra (AL(€), ¢L(€)) by (5.8)(d). Define

(A6 (€),¢6(8)) = Indpix(Q T G)(AL(E), 6L(€)).

Fiz a one-dimensional character y of [, and assume that p occurs in the restriction to [ of a finite-dimensional
representation of g. Let F' be the unique irreducible finite-dimensional representation of g containing u as
an extremal weight. (This means that F has a q'-invariant line of weight p, for some parabolic subalgebra o
having Levi factor [.) We sometimes identify p with its restriction to 3(I).

Fiz a character X of 3(I). Assume that

i) ker(¢u) is a weakly unipotent primitive ideal in U([1,1]).
i) If B is any weight of 3(1) in g/l and (B, ) > 0, then

Re (8, 4) > 0.

In particular, (i) implies that Ag()) has an infinitesimal character, which we denote by o. Let T be the
elementary translation functor associated to o and F*. Then

T(Ac(A+ ) = Ac(X).

Proof. We argue as in [19], section 8. Fix a faithful module V,, for A,. For every character ¢ of 3(1), V,,
becomes a faithful module Vi(§) for the Dixmier algebra Af(£). (The point is that the underlying algebra
of AL(€) is just Ay; only the map ¢ (£) is changing.) Just as in (4.3) we can construct V;(€) and

Va(€) = U(g) ®q V4(§)- (7.10)
By Lemma 7.5, F* ® V(A + p) is a faithful module for End(F*) ® Ag(X + p). Consequently
Ty + 1) = alF" @ Vo(h + ) (7.11)(a)
is a faithful module for T(Ag(A + p)). We will show that
T\ + 1) = Vy(V). (7.11)(0)
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This will show that 7(Ag(A + ¢)) and Ag(A) are both represented as endomorphism algebras of V()). It
is then very easy to check from the definitions that they are exactly the same endomorphisms; we leave this

to the reader.
It therefore remains to check (7.11)(b). By (7.11)(a) and the algebraic version of Mackey’s tensor
product theorem, the right side of (7.11)(b) is

o [U(g) ®q ((F" ) ® Va(A + )] (7.11)(e)

Now F™* has a g-stable filtration whose subquotients are irreducible representations of I. We get a filtration
of (7.11)(c) whose subquotients are

«[U(g) ®q (B" @ Vo(A + )], (7.11)(d)

where E can be any irreducible constituent of F' |.

If E is the u weight space of F, then (7.11)(d) is V3()). We must therefore show that the other terms
are all zero. Explicitly, this means the following. Suppose F is a representation of [ occurring in F, other
than the weight p. Then we must show that the infinitesimal character a does not occur in

U(g) ®q (B @ Ve(A+p)). (7.12)(a)

To prove this, fix a Cartan subalgebra t of [, []. Then § = t+ 3(I) is a Cartan subalgebra of g. Fix a weight
ag € t* corresponding to the infinitesimal character of A, in the Harish-Chandra correspondence. Then «

corresponds to
(ap,A) € t* +3(0) = p*. (7.12)(d)

Let p1 be the weight of 3(f) on E, and «; an infinitesimal character for [[,{] in E* ® V,,. Then a typical

infinitesimal character in (7.12)(a) is
(a1, A+ p— ). (7.12)(c)

What we are trying to show is that this cannot be equal to «; that is, that the weights (7.12)(b) and (7.12)(c)
are not conjugate under the Weyl group. To do that, it is obviously sufficient to show that

Re (a0, A), (a0, A)) < Re ((a1, A+ p— p1), (@1, A+ p — p1)). (7.13)(a)

To prove (7.13)(a), we first use the hypothesis (i) of the Theorem. This implies that the infinitesimal
characters occurring in E* ® V,, are all longer than «ay:

((1/0,010) S (0!1,(11). (713)(b)

Next, any weight of 3(I) in F must be of the form

pm=p—y ngp.

Here the sum is over weights 3 of 3(f) on g/I having positive inner product with z, and ng is a non-negative
integer. If y; is different from u, then the sum is non-empty. By hypothesis (ii),

Re (D npB,A) > 0.

Consequently

Re(A+p—p,A+p—p)=Re(A+ > ngf A+ ngf) .
=Re(\,A) +2-Re (3 npB A+ (O npB > npf) (7.13)(c)
> Re (A, A).
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Adding (7.13)(b) and (7.13)(c) gives (7.13)(a) and completes the proof. Q.E.D.
It is very easy to refine the argument so that the positivity hypothesis (ii) is needed only for those
weights 3 that are restrictions of roots integral on the infinitesimal character.

Corollary 7.14. Under the hypotheses of Theorem 7.9, every irreducible module N for Ag(A) is of
the form TM, with M a unigue irreducible module for Ag(A + p). Conversely, if M is an irreducible
Ag (X + p)-module, then TM is an irreducible Ag()\)-module or zero.

The point of this corollary is that it allows one to study problems of irreducibility at “very regular”
parameters, where they are typically much easier.

Appendix. Induced bundles.

We assemble here some basic definitions used throughout the paper. Suppose throughout this appendix
that G is an (affine) algebraic group, and H is a closed (and therefore affine algebraic) subgroup. Recall that
the homogeneous space G/H is a quasiprojective algebraic variety. As a point set, G/H is just the coset
space. Its topology is the quotient topology from G: a subset U of G/H is open if and only if its preimage V
in G is open. A regular function on such an open set U is by definition a (right) H-invariant regular function
on V. The main point in the construction of G/H is that for small enough V there are many such functions.

Suppose now that Zg is any algebraic variety on which H acts. The induced bundle G xg Zg is a
bundle over G/H whose fiber at the identity coset eH is Zg:

G xy Zy — G/H (A.1)(a)

This bundle is constructed from the product G x Zg in the same way that G/H is constructed from G.
That is, we define an equivalence relation ~ on (closed points of) G x Zgy by

(z,2) ~ (zh™ ' k. 2) (x€G,2€ Zy,h € H). (A.1)(d)

As a point set, G xg Zp is the set of equivalence classes for this relation. That is, it is the set of orbits of
an action of H on G x Zy (called the right action) defined by

h-r(z,2) = (zh™ k- 2) (A.1)(e)
The subscript R is included to distinguish this action from the (left) action of G defined by
g-(z,z) = (gz,2) (ze€ G,z€ Zy,g € G). (A.1)(d)

This action of G commutes with the right action of H, so it is inherited by G xy Zg.

A subset U of G xg Zp is defined to be open if and only if its preimage V in G x Zg is open. The
regular functions on U are defined to be the regular functions on V' that are invariant under the right action
of H:

OW)={feO(V)|f(h-rv)=f(v) (veV,heH)} (A.1)(e)
This makes sense because the preimage in G x Zg of any subset of G xgy Zg is by definition a union of

orbits of the right action of H. That it makes G X g Zg into an algebraic variety with a G action is proved

Jjust as for the case of G/H itself.
Here are some properties of the induced bundle construction; all follow fairly easily from the definitions.

Proposition A.2. Suppose G is an algebraic group, H is a closed subgroup, and Zy is an algebraic
variety on which H acts.
a) The induced bundle G xy Zy is an algebraic fiber bundle over G/H. The fiber over eH is naturally
tdentified with Zg, and the isotropy action of H on the fiber is the original action of H on Zy.
b) Suppose Y is an algebraic variely on which G acts, and f : Zyg — Y is a morphism respecting the
actions of H. Then there is a natural morphism F = G xg f from G xyg Zg toY, respecting the
actions of G. On the level of equivalence classes,

F(x,z) = - f(2).
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¢) In the setling of (b), suppose in addition that f is proper, and that G/H is a projective variety. Then
the map F 1s proper.
d) Suppose Zy ~ H/K is a homogeneous space for H. Then

GXH ZHZG/I{.

In the setting of (b) in the proposition, one can easily describe the fibers (over closed points) of the
map F. Of course the image of F' is G - f(Zg), so the fibers outside that set are empty. By G-invariance, it
suffices to understand the fiber over a point y € f(Zg). Write K C G for the isotropy group of the G-action
at y. Then

F~Yy) ~ K xunr 71 (). (A.3)

In particular, F is injective if and only if the following two conditions are satisfied: f is injective; and the
stabilizer of every point in f(Zy) is contained in H.

Suppose now that My is a quasicoherent sheaf on Zy with an action of H (compatible with the action
on Zg). We can define the induced sheaf Mg = G xg My on Zg = G xg Zg as follows. Consider first
the quasicoherent sheaf

N =0z Mg (A.4)(a)

on G x Zg. (This can be thought of informally as “functions on G with values in Myg;” that description is
accurate on any open set that is a product of an open set in G with one in Zy.) The sheaf A carries a right
action of H compatible with the right action of H on G x Zy, and a commuting (left) action of G. With
notation as in (A.1)(e), we define

Mg(U)={meNV)|h-rm=m (heH). (A.4)(b)

The space Mg of global sections of Mg has a simple description. Write My for the space of global sections
of My . This is a vector space (generally infinite-dimensional) carrying an algebraic action of H. We may
speak of the algebraic functions on G with values in Mjr; such a function is required to take values in a
finite-dimensional subspace, and to be algebraic (in the obvious sense) as a map to that subspace. That is,
it should belong to (Og(G)) ® My. Now it is clear from the definitions that

Mg ={f:G— Mg | fis algebraic, and f(zh) = h='f(z)}. (A.4)(c)

Proposition A.5. Suppose G is an algebraic group, H is a closed subgroup, and Zg is an algebraic va-
riety with G-action. Write Zg = Gxg Zg. Then the calegory of quasicoherent sheaves on Zgx with H-action
s equivalent to the category of quasicoherent sheaves on Zg with G-action, by the induction construction
Mu— G xg Mg of (A.4). This equivalence identifies the subcategories of coherent sheaves.

We omit the proof. It is worthwhile to describe the inverse functor, however. Let Zy be the sheaf of
ideals defining the subvariety Zg of Zg = G x g Zg. Then Oz, may be identified as a sheaf of Oz,-modules
with Oz, /Ix. If Mg is any quasicoherent sheaf on Zg, then the “geometric fiber”

Muy =0z, ®oZG Mg 2~ Mg/IgMeg (A.6)

is a quasicoherent sheaf on Zg. If Mg carries an action of G, then this fiber inherits an action of H (the
largest subgroup of G preserving the ideal Zg). As the notation indicates, the geometric fiber provides a
natural inverse for the induced sheaf construction of (A.4). Again we omit the proof.

We conclude by considering the relationship between the induced sheaf construction of (A.4) and the
notion of induced representation for algebraic groups. Recall first of all that an algebraic representation of
G is a pair (7, V) with V a vector space and

7:G— GL(V) (A.T)(a)
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a homomorphism. We require in addition that 7 be algebraic, in the following sense. For every v € V, there
should be a finite-dimensional subspace E C V, containing v, with the property that

=(G)E C E, (AT)(b)

and the resulting homomorphism

7g 1 G — GL(E) (A.T)(e)

is a morphism of algebraic groups.
Suppose now that (7, Vir) is an algebraic representation of H. The algebraically induced representation
of G is the algebraic representation

Tndai, (H 1 G)(r, Vir) = (v6, Va) (4.8)(a)

defined by
Va={f:G— Vg| fis algebraic, and f(zh) = 7z (k")) f(z) (z € G,h € H)} (A.8)(b)
(ma(9)f)(z) = flg™ ). (A.8)(c)

(We will drop the maps 7 from the notation when no confusion can result.) The analogy with (A.4) is clear,
and in fact the connection is very close.

Proposition A.9. Suppose G is an algebraic group, H is a closed subgroup, and (7w, Vi) is an algebraic
representation of H.
a) The induced representation Vg = Indgy(H T G)(Vy) is an algebraic representation of G.
b) Identify Vi with a quasicoherent sheaf Mg with an H-action on a point. Then Vg may be identified
with the space of global sections of G xg My (cf. (A.4)).
¢) Suppose that Vi is the space of global sections of a quasicoherent sheaf My on some Zy as in (A.4).
Then Vg may be identified with the space of global sections of the induced sheaf G xg My on Gxg Zg.
d) (Frobenius reciprocity.) Suppose W is any algebraic representation of G. Then there is a natural
isomorphism
Homg(VV, Vc;) >~ HOI’HH(W |H, VH)

e) Suppose dimVy < 0o, so that G Xy Vi (defined as in (A.1)) is a vector bundle over G/H. Then Vg
may be identified with the space of sections of this vector bundle.

This is very well-known, and we omit the straightforward proof.
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