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Introduction

The method of coadjoint orbits suggests that irreducible unitary representations of a
Lie groupG are something like quantummechanical systems, and that their classical
analogues are (roughly speaking) symplectic homogeneous spaces. (Actually one
imposes on the symplectic homogeneous space two additional structures: that of
a Hamiltonian G-space, and an admissible orbit datum. We will ignore these for
the purposes of the introduction.) The problem of quantization in mathematical
physics is to attach a quantum mechanical model to a classical physical system.
The problem of quantization in representation theory is to attach a unitary group
representation to a symplectic homogeneous space.

The miraculous aspect of the orbit method is twofold. First, the relevant sym-
plectic homogeneous spaces can easily be classified: they are the covering spaces
of the orbits of G on the dual of its own Lie algebra. (This is the source of the
terminology “coadjoint orbits.”) Second, the method works: it has successfully
suggested where to look for large families of very different unitary representations
of very different Lie groups.

Both of these claims of miraculousness require some justification. For the pos-
sibility of classifying symplectic homogeneous spaces, one can think of the super-
ficially similar problem of classifying Riemannian homogeneous spaces. Even for
as simple a group as SO(3), the answer to this problem is quite complicated (see
Exercise 1). For a group like GL(n,R), I do not know any reasonable description
of the Riemannian homogeneous spaces. Yet we will see that the symplectic homo-
geneous spaces for any semisimple Lie group can be parametrized quite precisely in
fairly elementary terms.

That the effectiveness of the method is miraculous—that is, that we should
be surprised at a close connection between irreducible unitary representations and
symplectic homogeneous spaces—requires even more justification. Mathematics
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4 D. A. VOGAN, JR., THE ORBIT METHOD

is full of bijections between sets that at first glance appear unrelated (like com-
mutative Banach algebras and compact topological spaces, for example; or vector
spaces and cardinal numbers). We learn to expect that there is a clever idea that
builds a bridge, and that once we have mastered the bridge, we can move back
and forth freely and easily. In the case of the orbit method, there seems to be no
such bridge. Relatively simple groups like SL(2,R) have irreducible unitary rep-
resentations (the complementary series) that do not correspond to any symplectic
homogeneous space. Conversely, Torasso found in [19] that the double cover of
SL(3,R) has a symplectic homogeneous space corresponding to no unitary repre-
sentation. (The space in Torasso’s counterexample actually carries the more refined
structure of Hamiltonian G-space and admissible orbit datum mentioned earlier.)

If there is no big theorem at the end of the orbit method’s rainbow, why should
we be chasing it? The point is that unitary representations remain extraordinarily
mysterious. The orbit method provides some light in a very dark room. Many large
families of coadjoint orbits do correspond in comprehensible ways to unitary rep-
resentations, and provide a clear geometric picture of these representations. Many
ideas about orbits (like the Jordan decomposition in the case of reductive groups)
suggest corresponding properties of unitary representations; and these properties
can sometimes be proved. Best of all, coadjoint orbits can tell us where to look for
unitary representations that we haven’t yet thought of.

The first goal of these notes is to describe what is known about the quantization
problem for reductive Lie groups, and the extent to which its resolution can lead to
all unitary irreducible representations. We will find that the quantization problem
comes down to a finite set of coadjoint orbits for each reductive group: the nilpotent
orbits.

The problem of quantizing nilpotent orbits has a long and colorful history.
Two themes recur: quantization of very particular classes of orbits, and incomplete
schemes for quantization of general orbits. I will mention one favorite example of
each: Torasso’s paper [20] on quantization of minimal orbits, and a joint paper [7]
with Graham suggesting how to guess at the representations attached to general
orbits.

The second goal of the notes is to describe a new method for studying the quan-
tization of nilpotent coadjoint orbits in terms of restriction to a maximal compact
subgroup. This falls into the second “recurring theme,” and therefore the results
will be very incomplete. What I intend to show is that the problem of quantizing a
particular nilpotent orbit can often be reduced to a finite amount of linear algebra;
and that there may be hope for understanding this linear algebra in general.

I am grateful to the graduate students at the 1998 PCMI for their interest and
for their critical comments on these notes. Most of all I would like to thank Monica
Nevins, who served as teaching assistant for the summer course and read the notes
with great care. Her mathematical advice is responsible for many pockets of clarity
in the exposition. (After her last corrections, I sprinkled a number of typographical
and mathematical absurdities through the text, in order to restore it to my usual
standards. For these she bears no responsibility.)



LECTURE 1
Some ideas from mathematical physics

The method of coadjoint orbits has its origins in mathematical physics. As
explained for example in [3], a classical mechanical system can often be modelled
by a symplectic manifold X , called the phase space. A point of the manifold records
something like the positions and momenta of all the particles in the system. The
evolution of the system in time defines a path γ in X . Newton’s laws for the
evolution of the system say that this path is an integral curve for a Hamiltonian
vector field ξE on X :

dγ/dt = ξE(γ(t)). (1.1)(a)

The function E on X corresponds to the energy of the mechanical system. Other
physical observables correspond to other functions f on X . Along an integral curve
γ for ξE , the observable f evolves according to the differential equation

d(f ◦ γ)/dt = {E, f} ◦ γ; (1.1)(b)

here {E, f} is the Poisson bracket of E and f . In particular, the observable f is
conserved (that is, constant in time) if and only if it Poisson commutes with the
energy.

A quantum mechanical system, on the other hand, is typically modelled by a
Hilbert space H. Each state of the system corresponds to a line in the Hilbert
space. The evolution of the system in time therefore corresponds to a path in
the projective space PH. The physical laws for the system are encoded by a one-
parameter group of unitary operators, whose orbits on PH are the possible time
histories of the system. The generator of this one-parameter group is a skew-adjoint
operator A, again corresponding to the energy of the system. (We will be careless
about questions of unbounded operators, domains, and so on; these questions seem
not to affect the philosophical ideas we want to emphasize.) If v(t) is a vector in H
representing the state of the system at time t, then the analogue of (1.1)(a) is the
Schrödinger equation

dv/dt = Av(t). (1.2)(a)

(This will look more like a classical Schrödinger equation in the setting of (1.3)(b)
below.) In general a physical observable corresponds to an operator B on H. If
the system is in a state corresponding to a line L in PH, then the outcome of the
observation corresponding to B cannot be predicted exactly. There is a probability
distribution of possible outcomes, with expectation 〈Bv, v〉; here v is any unit
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6 D. A. VOGAN, JR., THE ORBIT METHOD

vector in L. Along an orbit of our one-parameter group etA of unitary operators,
this expectation becomes

〈e−tABetAv, v〉. (1.2)(b)

Consequently B is conserved exactly when it commutes with the one-parameter
group. A more precise analogue of (1.1)(b) is the differential equation

d/dt(〈Bv, v〉) = 〈(BA−AB)v(t), v(t)〉. (1.2)(c)

Again the conserved operators are those commuting with the energy.
These two kinds of mathematical model are fundamentally different. Asking for

any close correspondence between them seems to fly in the face of all the painfully
learned lessons of physics in this century. Nevertheless, such correspondences some-
times exist. That is, certain classical mechanical systems correspond formally to
quantum mechanical ones. Because such correspondences are at the heart of the
orbit philosophy, we need to understand them in some detail.

A simple case (arising for example from the motion of point particles) is a
system attached to a smooth Riemannian manifold M of “states” (typically the
possible positions of the particles in the system). A tangent vector to M at a
state m specifies the velocities of the particles; the Riemannian metric gives kinetic
energy. The phase space X of such a mechanical system may be identified with
the cotangent bundle T ∗(M), endowed with its natural symplectic structure. The
energy function E on T ∗(M) may be the sum of a kinetic energy term (the Rie-
mannian length in the cotangent direction) and a potential energy term depending
only on M (that is, on the positions of the particles). Explicitly,

E(m, ξ) = 〈ξ, ξ〉+ V (m) (m ∈M, ξ ∈ T ∗
m(M)). (1.3)(a)

There is a simple and natural family of observables in this system. If q is any
smooth function on M , then q defines a function on the phase space T ∗(M); the
value of this function depends only on the positions of the particles in the system,
and not on their velocities. One sees easily that any two such functions on T ∗(M)
must Poisson commute with each other:

{q1, q2} = 0 (qi ∈ C∞(M)). (1.3)(b)

Such a system has a natural quantization. The Hilbert space H is the complex
Hilbert space L2(M). If v is a unit vector in this Hilbert space, then |v|2 is a
non-negative function on M of integral 1; that is, a probability density on M . One
thinks of this density as describing the probability of finding the particles of the
system in a particular position. The quantum-mechanical energy operator is the
Laplace-Beltrami operator L on M , plus the potential V . More precisely,

A = i~L+
i

~
V. (1.3)(c)

(The factor ~ is Planck’s constant divided by 2π.) There is a natural family of
quantum observables corresponding to the classical position observables. If q is any
smooth function on M , then multiplication by q defines an operator Aq on L2(M).
Any two of these operators commute with each other:

[Aq1 , Aq2 ] = 0 (qi ∈ C∞(M)). (1.3)(d)
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(A little thought shows that the identification of these observables as “positions”
is more or less equivalent to our earlier assertion that the probability density |v|2
describes the distribution across M of the quantum state.)

Physically the idea of quantization is to replace a classical mechanical model
by a quantum mechanical model of the “same” system. This idea is a little difficult
to pin down, since part of the point of quantum mechanics is that there never
was a physically real classical system in the first place. Mathematically the idea is
to pass from a symplectic manifold X and an interesting collection of real-valued
functions {fi | i ∈ I} on X (the classical observables), to a Hilbert space H and
an interesting collection of skew-adjoint operators {Ai | i ∈ I} on H (the quantum
observables). The shape of the equations (1.1)(b) and (1.2)(c) for the time evolution
of observables suggests that we might ask for quantization to carry Poisson bracket
of functions to commutator of operators. That is,

{fi, fj} = fk ⇒ [Ai, Aj ] = Ak. (1.4)

The requirement (1.4) turns out to be too stringent to impose on all observ-
ables. Roughly speaking, the reason is that functions under Poisson bracket are
more nearly commutative than operators under commutator. To understand this
statement, it is helpful to look at an example. Let us take for X the 2n-dimensional
vector space R2n, endowed with the standard symplectic structure

ω((x, λ), (y, ξ)) = 〈x, ξ〉 − 〈y, λ〉 (x, y, ξ, λ ∈ R
n). (1.5)(a)

An interesting family of observables consists of the affine functions on X . As a basis
of these, we can take the constant function 1 together with the linear functions

pi(x, λ) = xi, qj(x, λ) = λj . (1.5)(b)

The constant function Poisson commutes with all functions, and the linear functions
satisfy

{pi, pi′} = 0, {qj, qj′} = 0, {pi, qj} = δij · 1. (1.5)(c)

The quantization problem as formulated at (1.4) asks us to realize these same
relations as commutators of self-adjoint operators on a Hilbert space. There is a
very natural way to do that. We define

H = L2(Rn), (1.6)(a)

thinking of this as the Rn in the last n coordinates of X . The functions qj are then
naturally identified with the coordinate functions on Rn. Multiplication by such a
coordinate function is a self-adjoint operator on L2, so it is reasonable to define

Qj = multiplication by
√
−1qj , (1.6)(b)

a skew-adjoint operator on L2(Rn). Similarly, we put

Pi = ∂/∂qi, (1.6)(c)

a skew-adjoint operator on L2. These operators satisfy commutation relations

[Pi, Pi′ ] = 0, [Qj , Qj′ ] = 0, [Pi, Qj] = δij ·
√
−1. (1.6)(d)
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If we make the constant function 1 correspond to the scalar quantum operator
√
−1,

then the requirement of (1.4) is satisfied.
The problem with (1.4) becomes apparent when we try to quantize more func-

tions. A natural extension of the class of affine functions on X is the class of
polynomial functions. This is just the polynomial algebra with generators pi and
qj :

Poly(X) = R[p1, . . . , pn, q1, . . . , qn]. (1.7)(a)

Similarly, the span of the operators Pi, Qj , and the imaginary scalars extends
naturally to the skew-adjoint polynomial coefficient differential operators:

Diff(Rn) = {D ∈ C[∂/∂q1, . . . , ∂/∂qn, q1, . . . , qn] | D∗ = −D}. (1.7)(b)

There are many ways to arrange vector space isomorphisms between Poly(X) and
Diff(Rn), but none that respect the two kinds of commutator (see Exercise 3).

One lesson that might be drawn from the details of Exercise 3 is that finite-
dimensional Lie algebras of classical observables have a better chance to quantize
nicely. This restriction does not interfere with our particular interest in represen-
tation theory of finite-dimensional Lie groups. As a first approximation to a more
mathematical notion of quantization, we may think of a symplectic manifold X
endowed with a finite-dimensional Lie algebra g of smooth functions. A quantiza-
tion would then be a Hilbert space endowed with a finite-dimensional Lie algebra
(also isomorphic to g) of skew-adjoint operators. This is close to where we want to
be; but we need to face some of the problems about unbounded operators that we
have ignored until now. On X , the Lie algebra of functions defines a Lie algebra of
(Hamiltonian) vector fields; the question there is whether these vector fields may be
integrated to a group action on X . On the Hilbert space, the question is whether
the family of unbounded skew-adjoint operators can be integrated to a group rep-
resentation. Both questions are subtle and difficult, but to some extent irrelevant:
we are concerned finally only with cases when the integration is possible. Here is
the classical setting.

Definition 1.8. Suppose X is a symplectic manifold, and f ∈ C∞(X) is a smooth
function. The Hamiltonian vector field ξf of f is defined in terms of the Poisson
bracket by

ξf (g) = {f, g}.
Suppose G is a Lie group endowed with a smooth action on X by symplectomor-
phisms. We say that X is a Hamiltonian G-space if there is a linear map

µ̃: g → C∞(X)

with the following properties. First, µ̃ intertwines the adjoint action of G on g with
its action on C∞(X). Second, for each Y ∈ g, the vector field by which Y acts on
X is ξµ̃(Y ). Third, µ̃ is a Lie algebra homomorphism.

This definition may sound circular. In most developments of symplectic mani-
folds the Hamiltonian vector field ξf is defined first (by using the symplectic form
to identify the 1-form df with a vector field). Then the formula in Definition 1.8 is
used as the definition of the Poisson bracket. But for the theory of quantization the
Poisson bracket is more fundamental than the symplectic form, so it is not unrea-
sonable to define other ideas in terms of the Poisson bracket. One consequence is
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that Definition 1.8 can be formulated in the category of Poisson manifolds, or even
of (possibly singular) Poisson algebraic varieties. The definition is due essentially
to Kirillov and to Kostant independendently (see [12, 15.2] and [15, 5.4.1]).

The natural quantum analogue of a Hamiltonian G-space is simply a unitary
representation of G.

Definition 1.9. Suppose G is a Lie group. A unitary representation of G is a pair
(π,H) with H a Hilbert space, and

π:G→ U(H)

a homomorphism from G to the group of unitary operators on H . That is, we
require a continuous action map

G×H → H

that preserves lengths in the Hilbert space.

To make a stronger connection with the formalism of Definition 1.8, we should
introduce the Lie algebra representation dπ of g; the operators of dπ are defined on
a dense subspace H∞ of the Hilbert space, and they are formally skew-adjoint. But
making correct statements about the relationship between these operators and π is
difficult and unnecessary; so we have simply dropped them. The reader may like to
consider whether Definition 1.8 might similarly be modified to avoid any mention
of the Lie algebra.

The idea that we want from mathematical physics is that there should be a
notion of “quantization” passing from Definition 1.8 to Definition 1.9: that is, from
Hamiltonian G-spaces to unitary representations. We will sharpen this idea in
various ways as we go along.

One sharpening is available immediately. Definitions 1.8 and 1.9 both admit
simplest cases from which more general ones might be built. In the case of Definition
1.8, these are the homogeneous Hamiltonian G-spaces; that is, those for which the
action on X is transitive. In the case of Definition 1.9, it is the slightly more
subtle notion of irreducibility: that H should admit exactly two closed subspaces
invariant under the action of G. We would like quantization to carry homogeneous
Hamiltonian G-spaces to irreducible unitary representations.





LECTURE 2
The Jordan decomposition and three kinds of quantization

As explained in the introduction, the first miraculous aspect of the orbit method
is that the homogeneous Hamiltonian G-spaces are easy to classify. The result is
due to Kirillov and to Kostant. Here is the basic construction.

Lemma 2.1 ([12], 15.2, [15], Theorem 5.4.1). Suppose G is a Lie group with Lie
algebra g, and X ⊂ g∗ is an orbit of the coadjoint action of G. For λ ∈ X, write
Gλ for the stabilizer of λ; then X ≃ G/Gλ.

1. The tangent space to X at λ is

Tλ(X) ≃ g/gλ.

2. The skew-symmetric bilinear form

ωλ(u, v) = λ([u, v]) (u, v ∈ g)

on g has radical exactly gλ, and so defines a symplectic form on Tλ(X).
3. The forms ωλ make X into a symplectic manifold.
4. For u ∈ g, define µ̃(u) ∈ C∞(X) to be the restriction to X of the linear

functional u on g∗. Then the mapping µ̃ makes X a Hamiltonian G-space
(Definition 1.8).

Lemma 2.2. Suppose that X is a Hamiltonian G-space (Definition 1.8). Sup-

pose X̃ is another smooth manifold with a G action, and that π: X̃ → X is a

G-equivariant local diffeomorphism. Then X̃ inherits from X a natural structure
of Hamiltonian G-space.

This is entirely elementary, and we leave it to the reader.

Theorem 2.3 ([12], 15.2, [15], Theorem 5.4.1). The homogeneous Hamiltonian G-
spaces for a Lie group G are the covering spaces of coadjoint orbits. More precisely,
suppose X is such a space, with moment map µ̃: g → C∞(X). Reinterpret µ̃ as a
map

µ:X → g∗, µ(x)(u) = µ̃(u)(x) (x ∈ X,u ∈ g).

Then µ is a G-equivariant local diffeomorphism onto a coadjoint orbit, and the
Hamiltonian G-space structure on X is pulled back from that on the orbit (Lemma
2.1) by the map µ (Lemma 2.2).

11
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To get a typical homogeneous Hamiltonian G-space, we must therefore begin
with an element λ ∈ g∗, and its stabilizer Gλ. A covering of the orbit is a homoge-
neous space G/Gλ1 , with

Gλ0 ⊂ Gλ1 ⊂ Gλ.

The subgroup Gλ1 is determined by the space up to conjugation in Gλ. These
observations are summarized in

Corollary 2.4. The homogeneous Hamiltonian G-spaces covering the coadjoint
orbit G · λ are in one-to-one correspondence with conjugacy classes of subgroups of
the discrete group Gλ/Gλ0 of connected components of Gλ.

In order to study quantization for a Lie group G, we must therefore first un-
derstand the orbits of G on g∗.

We are particularly interested in reductive Lie groups. Once it was traditional
to look at connected semisimple Lie groups with finite center, but now it is clear
that inductive arguments require a more flexible class: some abelian factors should
be allowed, and some disconnectedness. Exactly which groups should be allowed is a
surprisingly delicate question. The many pleasant properties of connected semisim-
ple groups disappear not all at once but one or two at a time as the hypotheses are
weakened. Harish-Chandra introduced a class of reductive groups that works well
for many purposes. On the other hand his class excludes even some disconnected
compact groups, like the orthogonal groups, that we would like to allow.

That is perhaps enough in the way of excuses and apologies to cover almost
any definition. The one we will use is suggested by [13].

Definition 2.5. Write GL(n) for the group of real or complex n×n matrices. The
Cartan involution of GL(n) is the automorphism conjugate transpose inverse:

θ(g) = tg−1.

A linear reductive group is a closed subgroup G of some GL(n), preserved by θ and

having finitely many connected components. A reductive group is a Lie group G̃

endowed with a homomorphism π: G̃ → G onto a linear reductive group, so that
the kernel of π is finite.

The group of fixed points of θ on GL(n) is the orthogonal group O(n) (in the
case of R) or the unitary group U(n) (in the case of C). The easiest examples of
linear reductive groups are the closed subgroups of O(n) or U(n). All compact
Lie groups are therefore linear reductive groups. Some additional examples are
provided by Exercise 4.

The great advantage of Definition 2.5 is that it makes the most important
structure theorem fairly easy to prove. Here it is.

Theorem 2.6 (Cartan decomposition). Suppose G is a linear reductive group.
Write

K = Gθ, s = −1 eigenspace of θ on g.

Then the map
K × s → G, (k,X) 7→ k exp(X)

is a diffeomorphism from K × s onto G. In particular K is maximal among the
compact subgroups of G.
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Suppose G̃ is a reductive group, with π: G̃ → G as in Definition 2.5. Write

K̃ = π−1(K), a compact subgroup of G̃, and use dπ to identify the Lie algebras of

G̃ and G. Then the map

K̃ × s → G̃, (k̃, X) 7→ k̃ exp(X)

is a diffeomorphism from K̃ × s onto G̃. In particular K̃ is maximal among the

compact subgroups of G̃.

Suppose G̃ is a reductive group. Define a map θ from G̃ to itself by

θ(k̃ exp(X)) = k̃ exp(−X) (k̃ ∈ K̃,X ∈ s).

Then θ is an involution of order 2, the Cartan involution of G̃. The group of fixed

points is K̃.

For the case of GL(n) this theorem is just the polar decomposition for matrices.
The version for linear reductive groups follows fairly easily. The version for general
reductive groups is a consequence.

The Lie algebra version of Theorem 2.6 is entirely trivial, but is worth stating
explicitly. Notice that the Lie algebra k of K is equal to the +1 eigenspace of the
(involutive linear) automorphism θ of g. Since θ2 = 1, the Lie algebra must be the
direct sum of the +1 and −1 eigenspaces of θ:

g = k+ s.

It is often helpful to be able to identify the Lie algebra of a reductive group
with its dual space. This we accomplish by means of the next lemma.

Proposition 2.7. Suppose G is a reductive group. Identify g with a Lie algebra of
n × n matrices in accordance with Definition 2.5. Define a real-valued symmetric
bilinear form on g by

〈X,Y 〉 = Re trXY.

1. The form is invariant under Ad(G) and the Cartan involution θ:

〈Ad(g)X,Ad(g)Y 〉 = 〈X,Y 〉 = 〈θX, θY 〉.
2. The Cartan decomposition g = k+ s is orthogonal for the form.
3. The form is positive definite on s and negative definite on k, and (as a

consequence) non-degenerate on g.
4. There is a G-equivariant linear isomorphism

g∗ ≃ g, λ 7→ Xλ

characterized by

λ(Y ) = 〈Xλ, Y 〉 (Y ∈ g).

The assertions about invariance are elementary, and the orthogonality follows
from θ-invariance. The assertions about positivity can be proved easily for GL(n)
by explicit calculation with standard bases for matrices; the general cases follow.
The last assertion is an easy formal consequence.

It follows from Proposition 2.7 that for G reductive, G orbits on g∗ may be
identified with G orbits on g. In addition, these latter orbits are related to (more
precisely, they are subsets of) conjugacy classes of matrices under GL(n). The
following definitions for matrices therefore make sense for g.
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Definition 2.8. Suppose G is a reductive Lie group, with Lie algebra g consisting
of n × n matrices (Definition 2.5). An element X ∈ g is called nilpotent if it is
nilpotent as a matrix; that is, if XN = 0 for N large enough. An equivalent
requirement is that every eigenvalue of X be equal to zero.

An element X ∈ g is called semisimple if the corresponding complex matrix is
diagonalizable. (By this we mean that X is regarded as an n× n complex matrix,
even if g consists of real matrices. For example, the real matrix

X =

(
0 1
−1 0

)

is semisimple, since over C it is conjugate to

(
i 0
0 −i

)
.)

An element X ∈ g is called hyperbolic if it is semisimple and all eigenvalues are
real. Typical examples are the self-adjoint matrices in s.

An element X ∈ g is called elliptic if it is semisimple and all eigenvalues are
purely imaginary. Typical examples are the skew-adjoint matrices in k, like the
2× 2 example above.

It is more difficult to produce examples of nilpotent elements related to the
Cartan involution and the reductive group structure. Here is one way. Suppose G
is a linear reductive group, and we have three elements H , E, and F of g, satisfying

θE = −F, θH = −H, [H,E] = 2E, [E,F ] = H. (2.9)(a)

Then necessarily E is nilpotent; for the matrix EN belongs to the 2N eigenspace
of ad(H) on gl(n), and this must be zero for large N . On the other hand, there is
a group homomorphism

φ:SL(2,R) → G, (2.9)(b)

characterized by the requirements

dφ

(
1 0
0 −1

)
= H, dφ

(
0 1
0 0

)
= E, dφ

(
0 0
1 0

)
= F. (2.9)(c)

This homomorphism respects the Cartan involutions:

φ(tg−1) = θ(φ(g)). (2.9)(d)

Exercise 6 asks you to think about why the homomorphism φ exists.
Evidently a homomorphism φ satisfying (2.9)(d) defines by (2.9)(c) elements

H , E, and F satisfying (2.9)(a). We call such elements a standard sl(2) triple.
The element E alone determines F = −θE and H = [E,F ]. Not every nilpotent
element E belongs to a standard triple, however.

Proposition 2.10 (Jordan decomposition). Suppose G is a reductive group with
Lie algebra g (Definition 2.5) and Cartan decomposition G = K · exp(s) (Theorem
2.6).

1. Any element X ∈ g has a unique decomposition

X = Xh +Xe +Xn
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characterized by the requirements that Xh is hyperbolic (Definition 2.8); Xe

is elliptic; Xn is nilpotent; and Xh, Xe, and Xn commute with each other.
2. After replacing X by a conjugate under Ad(G), we may assume that Xh ∈ s,

Xe ∈ k, and that Xn = E belongs to a standard sl(2) triple (see (2.9)(a)).
3. The Ad(G) orbits of hyperbolic elements in g are in one-to-one correspon-

dence with the Ad(K) orbits on s.
4. The Ad(G) orbits of elliptic elements in g are in one-to-one correspondence

with the Ad(K) orbits on k.
5. The Ad(G) orbits of nilpotent elements in g are in one-to-one correspon-

dence with the Ad(K) orbits of standard sl(2) triples in g.

Proposition 2.10 provides a systematic way to list the orbits of a reductive group
G acting on its Lie algebra. First, list the possible hyperbolic parts Xh. According
to the proposition, this is equivalent to listing the orbits of K on s. (By standard
structure theory, this in turn is equivalent to listing the orbits of the “small Weyl
group” of G on a Cartan subspace a; but we will not use this fact.)

Proposition 2.11. Suppose G = K · exp(s) is the Cartan decomposition of a
reductive group, and Xh ∈ s. Write GXh for the stabilizer of Xh in the adjoint
action. Then GXh is a reductive group with Cartan decomposition KXh · exp(sXh).
The orbits of G on g with hyperbolic part Xh are in one-to-one correspondence with
the orbits of GXh on gXh having hyperbolic part 0. The correspondence sends the
orbit of Xe +Xn for GXh to the orbit of Xh +Xe +Xn.

The only part of this proposition that does not follow at once from Proposition
2.10 is the fact that GXh is a reductive group. This may be reduced at once to the
case that G is linear reductive. Then the fact that GXh is closed and θ-stable is
easy; what requires proof is the finiteness of the group of connected components.
There are some hints in Exercise 7.

So now we are reduced to the problem of listing orbits with hyperbolic part 0,
in a smaller reductive group. To keep the notation simple, we will just discuss this
problem for G itself. We proceed by listing all possible elliptic parts Xe for such an
orbit. According to Proposition 2.10, this is the same as listing the orbits of K on
its own Lie algebra k. (Again standard structure theory reduces this to the orbits
of the Weyl group of K on the Lie algebra of a maximal torus, but again we do not
need this.)

Proposition 2.12. Suppose G = K · exp(s) is the Cartan decomposition of a
reductive group, and Xe ∈ k. Write GXe for the stabilizer of Xe in the adjoint
action. Then GXe is a reductive group with Cartan decomposition KXe · exp(sXe).
The orbits of G on g with hyperbolic part 0 and elliptic part Xe are in one-to-one
correspondence with the nilpotent orbits of GXe on gXe . The correspondence sends
the orbit of Xn for GXe to the orbit of Xe +Xn.

This is an easy consequence of Proposition 2.10.
Finally we are reduced to listing nilpotent orbits in a still smaller reductive

group. (It is worth remarking that the class of smaller reductive groups arising
in these reductions from a fixed G is finite.) In order to complete the picture
in Propositions 2.11 and 2.12, we restate the description of nilpotent orbits in
Proposition 2.10.
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Proposition 2.13. Suppose G is a linear reductive group. The nilpotent orbits of
G on g are in one-to-one correspondence with the K-conjugacy classes of homo-
morphisms

φ:SL(2,R) → G

respecting the Cartan involutions: φ(tg−1) = θ(φ(g)). The correspondence sends φ

to the orbit of dφ

(
0 1
0 0

)
.

For any reductive G there is the trivial homomorphism φ, corresponding to the
nilpotent orbit 0. There will be other classes if and only if the derived group of G0

is noncompact. In any case the total number of classes (the number of nilpotent
orbits in the Lie algebra) is finite. This is not particularly obvious or easy to prove;
a nice introduction to the theory is in [5].

Recall that we are really concerned with representation theory. Our interest in
orbits arises from the formal relationship suggested by mathematical physics be-
tween Definitions 1.8 and 1.9: that there should be a method of “quantization” to
pass from coadjoint orbits for G to irreducible unitary representations of G. Ac-
cording to Proposition 2.7, we can identify coadjoint orbits with adjoint orbits (for
reductive groups). The last few propositions have described the adjoint orbits in
three steps. The idea of quantization correspondingly suggests that unitary repre-
sentations of a reductive group G should be constructed in three steps; even more,
that an irreducible unitary representation ought to have a kind of “Jordan decom-
position” along the lines of Proposition 2.10. We will not consider this problem
very seriously, but here is a brief outline of what is known.

The first step in the Jordan decomposition is finding the hyperbolic part of
an orbit. For this step there is a perfect and complete analogue in unitary rep-
resentation theory, given in [13], Theorem 16.10. The second step is finding the
elliptic part of an orbit. Here the representation-theoretic analogue is known (see
[23]) but its behavior is more complicated. A partly conjectural connection with
the behavior of orbits is described in [18]; the geometric nature of the results is
emphasized in [28].

The final step in the Jordan decomposition is a nilpotent coadjoint orbit. The
representation-theoretic analogue is the theory of unipotent representations, which
is still in its infancy. Two more or less expository discussions of the theory may
be found in [24] and [25]. As indicated in the introduction, we will return to the
problem of quantizing nilpotent coadjoint orbits in the latter part of these lectures.

The title of this section suggests that the three steps for constructing a unitary
representation from a coadjoint orbit should be different from each other, even
though they share a common motivation. In a sense accepting such differences is
an admission of defeat, and contrary to the spirit of the orbit method. Nevertheless
it is of tremendous value technically. To conclude this section, we will outline the
construction of representations parallel to the hyperbolic part of a coadjoint orbit:
parabolic induction. This construction appeared in a number of special cases before
Gelfand and his collaborators began to emphasize its general importance in the early
1950s. The history of the subject from that point on is colorful and impressive, but
my scholarship is not deep enough, nor my hide thick enough, to allow a discussion
of it here.

Let us therefore fix a hyperbolic element

λh ∈ g∗ (2.14)(a)
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in the dual of the Lie algebra for our reductive Lie groupG. Recall from Proposition
2.7 that this means that the element Xh ∈ g defined by

λh(Y ) = 〈Xh, Y 〉 (Y ∈ g) (2.14)(b)

is hyperbolic. After replacing λh by a conjugate under G, we may therefore assume
that

Xh ∈ s. (2.14)(c)

The isotropy group for the coadjoint action at λh is

Gλh = {g ∈ G | Ad(g)(Xh) = Xh} = L, (2.14)(d)

a reductive group with Cartan involution θ|L (Proposition 2.11). Now a hyperbolic
element of the Lie algebra acts in any algebraic representation by a diagonalizable
operator with real eigenvalues. (Exercise 8 outlines a proof of this fact for the ad-
joint representation.) Consequently ad(Xh) is diagonalizable with real eigenvalues.
Explicitly,

g =
∑

r∈R

gr, (2.14)(e)

with
gr = {Y ∈ g | [Xh, Y ] = rY }. (2.14)(f)

Two immediate consequences are

[gr, gs] ⊂ gr+s, Ad(L)(gr) = gr, g0 = Lie(L). (2.14)(g)

Proposition 2.15. With notation as above, define

u =
∑

r>0

gr. (2.15)(a)

Then u is an ad-nilpotent Lie subalgebra of g, normalized by the adjoint action
of L. The exponential map is a diffeomorphism of u onto a closed subgroup U of
G, also normalized by L and meeting it trivially. The semidirect product group
Q = LU ⊂ G is a closed subgroup of G. The homogeneous space G/Q is compact;
in fact it is homeomorphic to K/L ∩K.

There is a unitary character χ(λh) of L defined by

χ(λh)(k · exp(Z)) = exp(iλh(Z)) (k ∈ L ∩K,Z ∈ l ∩ s). (2.15)(b)

Equivalently, χ(λh) may be defined as the unique character of L that is trivial on
L ∩K, and has differential iλh.

There is a character ρQ of Q taking positive real values, defined by

ρQ(q) = | det (Ad(q)|u) |1/2. (2.15)(c)

Many of the assertions in this proposition are very easy to prove, and none is
particularly deep. We will not discuss the proof, however.

The character ρQ is included because it is used in the definition of Mackey’s
unitary induction fromQ toG. Geometrically, it is the character ofQ corresponding
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to the (Q-equivariant) bundle of half-densities on G/Q. To see that, it is better to
write

ρQ(q) = | det
(
Ad∗(q)|(g/q)∗

)
|1/2.

But the equivalence of this definition with (2.15)(c) is easy to prove.
Before describing how this structure is used to construct unitary representa-

tions, we will say a little about its geometric content. We should look at the
geometry of arbitrary coadjoint orbits with hyperbolic part λh, but to simplify the
discussion we consider only the coadjoint orbit of λh itself. This is

X = Ad∗(G) · λh ≃ G/Gλh = G/L. (2.16)(a)

Because L is contained in Q, there is a natural fibration

X ≃ G/L→ G/Q; (2.16)(b)

the fiber over the identity coset is Q/L ≃ U . Using the definition of the symplectic
structure on X in Lemma 2.1, together with the structural information in (2.15),
one sees easily that Q/L is a Lagrangian submanifold of X ; that is, that Q/L has
half the dimension of X = G/L, and that the symplectic form ωλ vanishes on q/l.
We summarize this by saying that

X ≃ G/L→ G/Q is a G-equivariant Lagrangian fibration. (2.16)(c)

Definition 2.17. Suppose G is a reductive Lie group, λh is a hyperbolic element of
g∗ as in (2.14), L is the stabilizer of λh in G, and Q = LU is the semidirect product
subgroup constructed in Proposition 2.15. The functor of parabolic induction carries
unitary representations (πL,HL) of L to unitary representations (πG,HG) of G, as
follows. First extend πL to a representation πQ of Q on the same Hilbert space,
by making U act trivially. Next, define Hc

G to be the vector space of continuous
functions from G to HL satisfying

φ(gq) = ρQ(q
−1)πQ(q

−1)φ(g) (g ∈ G, q ∈ Q). (2.17)(a)

The group G acts on Hc
G by left translation:

[πcG(g)φ](x) = φ(g−1x). (2.17)(b)

We make Hc
G into a pre-Hilbert space as follows. Suppose φ and ψ belong to Hc

G.
Define a complex-valued function f〈φ,ψ〉 on G by

f〈φ,ψ〉(g) = 〈φ(g), ψ(g)〉; (2.17)(c)

the inner product on the right is in HL. From the transformation property (2.17)(a)
and the unitarity of πQ we deduce

f〈φ,ψ〉(gq) = ρ2Q(q
−1)f〈φ,ψ〉(g). (2.17)(d)

Up to a choice of measure on g/q, this means that f〈φ,ψ〉 may be regarded as a
continuous density on G/Q. Since G/Q is compact, such a density has finite total
volume; so we can define

〈φ, ψ〉 =
∫

G/Q

f〈φ,ψ〉. (2.17)(e)
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That this is a pre-Hilbert structure on Hc
G is clear. Define HG to be the completion

of Hc
G. Since the operators πcG(g) preserve the pre-Hilbert structure, they extend

to unitary operators πG(g) on HG. It is straightforward to show that

(πG,HG) = IndGQ(πL ⊗ 1) (2.17)(f)

is a (continuous) unitary representation of G.

The simplest example of Definition 2.17 has πL equal to the trivial representa-
tion of L. In that case πG is the representation ofG on the space of square-integrable
half-densities on G/Q. Accordingly to the philosophy of geometric quantization,
the corresponding Hamiltonian G-space (in the correspondence we seek between
Definitions 1.8 and 1.9) is just the cotangent bundle T ∗(G/Q). This space is not
homogeneous for G; the moment map to g∗ has its image in the cone of nilpo-
tent elements. (This means that Definition 2.17 has something to teach us about
quantizing nilpotent coadjoint orbits. We will not pursue this knowledge, however.)

The next simplest example of Definition 2.17 has πL equal to the one-dimen-
sional character χ(λh) of Proposition 2.15. In that case πG is a space of sections of
the bundle of half-densities on G/Q, twisted by a Hermitian line bundle defined by
χ(λh). It should be thought of as a quantization of the hyperbolic coadjoint orbit
X = Ad∗(G) · λh.

Parabolic induction turns out to be a nice analogue for unitary representations
of the geometric correspondence described in Proposition 2.11. There is not really
a theorem to state here, but we can make a definition.

Definition 2.18. Suppose G is a reductive Lie group, λh ∈ g∗ is a hyperbolic
element, L is the stabilizer of λh in G, and Q = LU is the group constructed in
Proposition 2.15. Recall from Proposition 2.11 that there is a bijection between
coadjoint orbits for G with hyperbolic part conjugate to λh, and coadjoint orbits
for L with hyperbolic part 0.

Let XL ⊂ l∗ be any coadjoint orbit for L with hyperbolic part 0, and suppose
πL is any unitary representation of L attached to XL. (Here “attached” refers to
some unspecified quantization scheme for L; it does not need to have any particular
mathematical meaning.) Write XG = Ad∗(G) · (λh + XL) for the corresponding
coadjoint orbit for G. Then we declare that the unitary representation of G

πG = IndGQ(πL ⊗ χ(λh))

(Definition 2.17) is attached to XG.

If we want to make the orbit method into a scheme for classifying unitary
representations, then there are theorems to be proven here: that (for appropriate
classes of πL) the representations πG are irreducible, and that they exhaust the
irreducible unitary representations of G. That is the nature of the results in [13],
Theorem 16.10 (compare also the formulation in [28], section 3). Since we are
concerned mostly with defining a method of quantization, we will be content with
Definitions 2.17 and 2.18.





LECTURE 3
Complex polarizations

Our goal in this section is to introduce briefly the replacement for parabolic
induction related to elliptic coadjoint orbits. Because these ideas will be at the
center of the lectures of Roger Zierau, we will give few details. We want only to
formulate the main ideas in such a way as to suggest a transition from the hyperbolic
case to the nilpotent case.

We begin by considering again the geometric content of parabolic induction;
specifically, how the parabolically induced representation can be described in terms
of the coadjoint orbit to which it is formally attached. To simplify, we will work
only with the hyperbolic orbit X = G · λh ≃ G/L, and not with a more general
orbit having hyperbolic part λh. We first defined a unitary character χ(λh) of L,
and thus a hermitian line bundle on G/L. Next, we twisted this line bundle by a
half-density bundle attached to a character ρQ of L. Finally, we considered sections
of the twisted line bundle on G/Q; that is, sections on G/L that are constant along
the fibers of the projection G/L → G/Q. Because these fibers are connected, the
constancy can be expressed in terms of the vanishing of certain derivatives. Here
is a slightly more precise statement.

Proposition 3.1. In the setting of Definition 2.17, the space of smooth vectors
in the representation IndGQ(χ(λh)) may be identified with smooth functions φ on G
satisfying

φ(gl) = ρQ(l
−1)χ(λh)(l

−1)φ(g) (g ∈ G, l ∈ L),

and
Z · φ = 0 (Z ∈ u).

Here in the second condition we identify g with left-invariant vector fields on G;
that is, with right derivatives.

The advantage of this formulation over Definition 2.17 is the almost complete
disappearance of the groupQ (which has no analogue in the case of elliptic coadjoint
orbits).

We begin now a discussion of quantizing elliptic coadjoint orbits that is parallel
to that for hyperbolic orbits in (2.14). We fix therefore an elliptic element

λe ∈ g∗, (3.2)(a)

and write Xe ∈ g for its image under the isomorphism of Proposition 2.7. After
conjugating λe by G, we may assume that θλe = λe, or equivalently that Xe ∈ k.
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The isotropy group for the coadjoint action at λe is

Gλe = {g ∈ G | Ad(g)(Xe) = Xe} = L, (3.2)(b)

a closed reductive subgroup of G with Cartan involution θ|L. Elements of the Lie
algebra of the compact group K must act in any finite-dimensional representation
of K by diagonalizable operators with purely imaginary eigenvalues. Consequently
i ad(Xe)C is diagonalizable with real eigenvalues. Explicitly,

gC =
∑

r∈R

gC,r, (3.2)(c)

with
gC,r = {Y ∈ gC | [iXe, Y ] = rY }. (3.2)(d)

Just as in (2.14), we have

[gC,r, gC,s] ⊂ gC,r+s, Ad(L)(gC,r) = gC,r, gC,0 = Lie(L)C. (3.2)(e)

Just as in Proposition 2.15, we can define

u =
∑

r>0

gC,r. (3.2)(f)

Then u is an ad-nilpotent Lie subalgebra of gC, normalized by the adjoint action of
L. The semidirect product Lie algebra

q = lC + u ⊂ gC (3.2)(g)

is a parabolic subalgebra of gC. What is different from the hyperbolic case is that
these are not complexifications of subalgebras of g. To see that more precisely, we
consider complex conjugation acting on gC:

U + iV = U − iV (U, V ∈ g).

Then gC,r = gC,−r. Therefore

u =
∑

r>0

gC,−r, q = lC + u. (3.2)(h)

It follows that
q+ q = gC, q ∩ q = lC, gC = u⊕ lC ⊕ u. (3.2)(i)

Proposition 3.3. Suppose X = G · λe ≃ G/L is an elliptic coadjoint orbit for the
reductive group G; use the notation above. Then there is a distinguished G-invariant
complex structure on X, characterized by the requirement that q/lC ⊂ gC/lC is the
antiholomorphic tangent space to X at the point λe (corresponding to the identity
coset eL).

There is a unitary character 2ρq of L defined by

2ρq(l) = det(Ad(l)|u). (3.3)(a)
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An equivalent definition is

2ρq(l) = det(Ad∗(l)|(g/q)∗). (3.3)(b)

The differential of 2ρq is a purely imaginary-valued one-dimensional character of
the Lie algebra l, which we still denote by 2ρq. Explicitly,

2ρq(Z) = tr ad(Z)|u (Z ∈ l). (3.3)(c)

The linear functional iλe restricted to l is a purely imaginary-valued one-
dimensional character of the Lie algebra.

We now have in hand most of the ingredients we need to formulate a definition
along the lines of Proposition 3.1 for elliptic orbits. There are two problems. First,
instead of the character ρQ of L we have available only 2ρq, which is like the square
of ρQ. We defined ρQ by taking a square root (of an absolute value, losing some plus
or minus one factors in the process). The character 2ρq is unitary, so its absolute
value is identically one (and uninteresting). If we do not take an absolute value,
the square root may or may not exist (as a unitary character of L). (Exercise 9
looks at an example.)

The second problem is that the linear functional iλe may not exponentiate to
a unitary character of L. This problem is of fundamental importance: it’s not a
bug, it’s a feature. The “elliptic unitary representations” parametrized by elliptic
coadjoint orbits come not in continuous families (as the orbits do, by Proposition
2.10(4)) but in discrete ones. For representation theory we are interested only in
the elliptic orbits to which we can attach something like a unitary character of L.
The precise requirement addresses both problems (the square root of 2ρq and the
exponential of iλe) at the same time.

Definition 3.4. Suppose G is a reductive Lie group, and λe ∈ g∗ is an elliptic
element. Use the notation of (3.2) and (3.3). An admissible datum at λe is an
irreducible unitary representation (τ, Vτ ) of L so that

dτ = (iλe + ρq) · Iτ ;

here Iτ is the identity operator on the vector space Vτ .
The representation Vτ gives rise to a G-equivariant vector bundle Vτ over G/L;

the smooth sections of Vτ may be identified with smooth functions φ from G to Vτ
satisfying

φ(gl) = τ(l−1)φ(g) (g ∈ G, l ∈ L). (3.4)(a)

This identification makes sense locally on G/L: if U is an open set in G/L and Ũ

its preimage in G, then smooth sections of Vτ over U correspond to functions on Ũ

satisfying (3.4)(a) for all g ∈ Ũ .
Recall now the holomorphic structure on G/L introduced in Proposition 3.3.

The vector bundle Vτ is naturally a G-equivariant holomorphic bundle. The holo-
morphic sections of Vτ over an open set U may be identified with smooth functions

φ from Ũ to Vτ satisfying

φ(gl) = τ(l−1)φ(g) (g ∈ Ũ , l ∈ L), (3.4)(b)
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and

Z · φ = 0 (Z ∈ u). (3.4)(c)

Here in the second condition we identify gC with left-invariant complex vector fields
on G; these are just the Cauchy-Riemann equations for the corresponding section.
The group G acts by left translation on holomorphic sections of Vτ .

This definition of admissible orbit datum does not look much like Duflo’s (see [6]
or [25], Definition 7.2). Nevertheless it is equivalent (for elliptic orbits in reductive
groups). A reformulation that is a little closer to Duflo’s definition appears at the
end of this section.

Given λe, there are just finitely many possibilities for τ (possibly none). All of
them are finite-dimensional. If G is connected, then so is L, so there is at most one
possible τ in that case.

Definition 3.4 provides us with a natural analogue of the representation at-
tached to the hyperbolic orbit, as described in Proposition 3.1. It is the space
Γ(G/L,Vτ ) of all holomorphic sections of Vτ . This is a reasonable topological vector
space, endowed with a natural continuous representation of G (by left translation).
There are problems, however. One is that G/L is usually not a Stein manifold, so
there is no reason to expect random holomorphic vector bundles to have any global
sections at all. Indeed Vτ rarely has holomorphic sections (see Exercise 10).

In the absence of holomorphic sections, it is natural to look at higher Dolbeault
cohomology of G/L with coefficients in Vτ . In many cases this leads to nice topo-
logical representations of G, but it is always difficult (and often impossible) to find
G-invariant pre-Hilbert space structures on these representations. The problem ap-
pears even when G/L is Stein. The natural pre-Hilbert space structure is given by
integrating the Hermitian inner product on sections over G/L. This integral does
not converge for all holomorphic sections, and in some interesting cases it does not
converge except for the zero section. For the representations on higher Dolbeault
cohomology the problems are worse, and they are far from completely understood;
Zierau’s lectures will explain what is known.

For the purpose of abstract quantization—of formally attaching unitary repre-
sentations to coadjoint orbits—many of these problems can be circumvented. This
is the subject of [14], which I will not attempt to summarize here. There is in
particular a definition like Definition 2.18, saying how to attach unitary representa-
tions to “elliptic plus nilpotent” coadjoint orbits once we know how to attach them
to nilpotent orbits. An exposition appears in [26]. We will be content with the
following special case.

Proposition 3.5 (see [30]). Suppose G is a reductive Lie group, and λe ∈ g∗

is an elliptic element. Use the notation of Definition 3.4. Suppose that (τ, Vτ )
is an admissible datum at λe. Then there is attached to the G-orbit of (λe, τ) a
unitary representation (π(λe, τ),H) of G, characterized by the following properties.
Write Vτ for the holomorphic vector bundle on X = G/L associated to τ , and
s = dimC(K/L ∩K).

1. The Dolbeault cohomology groups H0,p(X,Vτ ) vanish for p 6= s.
2. The ∂ operator computing Dolbeault cohomology has closed range. Conse-

quently the cohomology space H0,s(X,Vτ ) inherits a nice complete Hausdorff
topological vector space structure, on which G acts continuously by left trans-
lation.
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3. There is a G-equivariant embedding with dense image of the Hilbert space
representation H in H0,s(X,Vτ ).

The representation π(λe, τ) is always a finite sum of irreducible representations;
but it may vanish, and it may be reducible. The second possibility in particular
sounds at first like a bug in the orbit method. For an attempt to make it a feature,
see [27], Theorem 10.12(e).

To conclude this section, we recast the definition of admissible datum (Defini-
tion 3.4). We first construct a square root of 2ρq. For that, define the metaplectic
double cover of L by

L̃ = {(l, z) ∈ L× C
× | 2ρq(l) = z2}. (3.6)(a)

Projection on the first factor is a surjective homomorphism

p: L̃→ L, p(l, z) = l. (3.6)(b)

Evidently the kernel of p is the two-element central subgroup {1, ǫ}, with ǫ =

(1,−1) ∈ L̃. Projection on the second factor defines a unitary character ρq of L̃:

ρq(l, z) = z. (3.6)(c)

The notation is chosen because the square of this character is just 2ρq: explicitly,

[ρq(x)]
2 = 2ρq(p(x)) (x ∈ L̃). (3.6)(d)

We call a representation of L̃ genuine if the central element ǫ acts by -1. A meta-
plectic admissible datum at λe is a genuine irreducible unitary representation (τ̃ , V

τ̃
)

of L̃, with the property that
dτ̃ = iλe · Iτ̃ . (3.6)(e)

Proposition 3.7. Suppose λe ∈ g∗ is an elliptic element; use the notation of
Definition 3.4 and (3.6). There is a one-to-one correspondence between admissible
data (τ, Vτ ) at λe, and metaplectic admissible data (τ̃ , V

τ̃
), characterized by

τ̃ ⊗ ρq = τ ◦ p.

This is very easy. The new definition of admissible datum still differs from

Duflo’s in that Duflo’s construction of the covering L̃ is different; but the two
constructions may be shown to be equivalent.





LECTURE 4
The Kostant-Sekiguchi correspondence

We have now seen more or less how to carry out the first two steps of the
quantization program described in section 2. What remains is to quantize nilpotent
coadjoint orbits. This we will not be able to do completely, but the effort will occupy
the rest of the notes. Our first goal is to understand more precisely the structure
and classification of these orbits.

We begin by sharpening and recasting Proposition 2.13. To begin, we introduce
some notation for SL(2,R) and its complexification SL(2,C). Write θ0 for the
inverse transpose automorphism:

θ0(g) =
tg

−1
(g ∈ SL(2,C)). (4.1)(a)

We denote its differential by the same letter:

θ0(Z) = −tZ (Z ∈ sl(2,C)). (4.1)(b)

The complex conjugation σ0 defining the real form SL(2,R) is just complex conju-
gation of matrices.

The standard basis of sl(2,R) is

H0 =

(
1 0
0 −1

)
, E0 =

(
0 1
0 0

)
, F0 =

(
0 0
1 0

)
. (4.1)(c)

These matrices satisfy

[H0, E0] = 2E0, [H0, F0] = −2F0, [E0, F0] = H0; (4.1)(d)

θ0(H0) = −H0, θ0(E0) = −F0, θ0(F0) = −E0. (4.1)(e)

All are fixed by σ0. We will also need a different basis of sl(2,C) diagonalizing the
action of θ0:

h0 =

(
0 i
−i 0

)
, x0 =

1

2

(
1 −i
−i −1

)
, y0 =

1

2

(
1 i
i −1

)
. (4.1)(f)

These matrices satisfy

[h0, x0] = 2x0, [h0, y0] = −2y0, [x0, y0] = h0; (4.1)(g)

θ0(h0) = h0, θ0(x0) = −x0, θ0(y0) = −y0; (4.1)(h)

σ0(h0) = −h0, σ0(x0) = y0, σ0(x0) = y0. (4.1)(i)

Here is the improvement of Proposition 2.13 that we want.
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Proposition 4.2. Suppose G is a real reductive group with Cartan involution θ
and corresponding maximal compact subgroup K. Write gC and KC for the com-
plexifications of g and K, and σ for the complex conjugation on gC. Then the
following sets are in natural one-to-one correspondence.

1. Orbits of G on the cone NR of nilpotent elements of g.
2. Conjugacy classes under G of Lie algebra homomorphisms φR from sl(2,C)

to gC, intertwining σ0 with σ. (Equivalently, we require that φR(sl(2,R)) ⊂
g).

3. Conjugacy classes under K of Lie algebra homomorphisms φR,θ from sl(2,C)
to gC, intertwining σ0 with σ and θ0 with θ.

4. Conjugacy classes under KC of Lie algebra homomorphisms φθ from sl(2,C)
to gC, intertwining θ0 with θ.

5. Orbits of KC on the cone Nθ of nilpotent elements in sC (the -1 eigenspace
of θ on gC).

Here the bijections from (3) to (2) and (4) are given by the obvious inclusions; that
from (2) to (1) sends φR to φR(E0) (notation (4.1)(c)); and that from (4) to (5)
sends φθ to φθ(x0).

This formulation incorporates ideas of Jacobson-Morozov, Kostant-Rallis, and
Sekiguchi (among others); there is a more detailed discussion of the proof in [25],
Theorem 6.4. The correspondence between (1) and (5) is the Kostant-Sekiguchi
correspondence between real nilpotent orbits of G and nilpotent orbits of KC on sC.
If φR,θ is a homomorphism as in (3), then the correspondence is

E = φR,θ(E0) ↔ x = φR,θ(x0)

(notation as in (4.1)(c,f)).
We now examine what Proposition 4.2 can tell us about the structure of isotropy

groups and orbits.

Proposition 4.3. Suppose φ is a Lie algebra homomorphism from sl(2,C) to a
complex reductive Lie algebra gC. Write

E = φ(E0), H = φ(H0), F = φ(F0)

(notation as in (4.1)(c)).
1. The operator ad(H) has integer eigenvalues; so if we write

gC(p) = {X ∈ gC | [H,X ] = pX},

then
gC =

∑

p∈Z

gC(p).

2. Write
l = gC(0), u =

∑

p>0

gC(p).

Then q = l+ u is a Levi decomposition of a parabolic subalgebra of gC.
3. The centralizer of E is graded by the decomposition in (1). More precisely,

gEC = lE +
∑

p>0

gC(p)
E = lE + uE .
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4. The subalgebra lE = g
H,E
C

is equal to g
φ
C

, the centralizer in gC of the image
of φ. It is a reductive subalgebra of gC. Consequently the decomposition in
(3) is a Levi decomposition of the algebraic Lie algebra gE

C
.

Parallel results hold if (E,H, F ) are replaced by

x = φ(x0), h = φ(h0), y = φ(y0)

(notation as in (4.1)(f)).

Most of the assertions in this proposition follow from the representation theory
of sl(2), applied to the representation ad ◦φ on gC. The rest are fairly easy; we omit
the arguments.

Now we want analogous facts on the group level.

Proposition 4.4. Suppose G is a real reductive Lie group, and φR is a Lie algebra
homomorphism from sl(2,C) to gC, intertwining σ0 with σ. Define E, H, and F
in g as in Proposition 4.3.

1. The elements E and F are nilpotent, and H is hyperbolic.
2. Define L = GH to be the isotropy group of the adjoint action at H, and

U = exp(u ∩ g). Then Q = LU is the parabolic subgroup of G associated to
H (Proposition 2.15).

3. The stabilizer of E in the adjoint action is contained in Q, and respects the
Levi decomposition:

GE = (LE)(UE).

4. The subgroup LE = GH,E is equal to GφR , the centralizer in G of the image
of φR. It is a reductive subgroup of G. The subgroup UE is simply connected
unipotent.

5. Suppose that φR = φR,θ also intertwines θ0 with θ. Then GφR,θ is preserved
by θ, and we may take θ as a Cartan involution on this reductive group. In
particular, GE and GφR,θ have a common maximal compact subgroup

KφR,θ = ( L ∩K)E .

This proposition provides good information about the action of G on nilpotent
elements in g. Eventually we will want the same information about the action of
KC on nilpotent elements in sC. Here it is.

Proposition 4.5. Suppose G is a real reductive Lie group with Cartan decompo-
sition G = K exp(s). Write KC for the complexification of K. Suppose that φθ is
a Lie algebra homomorphism from sl(2,C) to gC, intertwining θ0 with θ. Define x,
h, and y in g as in Proposition 4.3.

1. The elements x and y are in sC are nilpotent, h ∈ kC is hyperbolic, and
ih ∈ kC is elliptic.

2. The parabolic subalgebra q = l + u of g constructed as in Proposition 4.3
using h, is preserved by θ.

3. Define LK = (KC)
h to be the isotropy group of the adjoint action of KC at

h, and UK = exp(u ∩ kC). Then QK = LKUK is the parabolic subgroup of
KC associated to h (Proposition 2.15).

4. The stabilizer of x in the adjoint action of KC is contained in QK, and
respects the Levi decomposition:

Kx
C = (LxK)(UxK).
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5. The subgroup LxK = Kh,x
C

is equal to Kφθ

C
, the centralizer in KC of the

image of φθ. It is a reductive algebraic subgroup of KC. The subgroup UxK
is simply connected unipotent. In particular, the decomposition of (4) is a
Levi decomposition of the algebraic group Kx

C
.

6. Suppose that φθ = φR,θ also intertwines σ0 with σ. Then K
φR,θ

C
is preserved

by σ, and we may take σ as complex conjugation for a compact real form of

this reductive algebraic group. In particular, Kx
C

and K
φR,θ

C
have a common

maximal compact subgroup

KφR,θ =  LxK ∩K.

These are rather convoluted and technical statements, not easy to absorb at
first. One way to think about them is this. The Cartan decomposition says that
a reductive group G is topologically a product of a maximal compact subgroup
K and a vector space. A consequence of this decomposition is that many nice
homogeneous spaces G/H are isomorphic to vector bundles over K/K ∩H . Said a
little more abstractly: a nice homogeneous space for G is a vector bundle over

(maximal compact for G)/(maximal compact for isotropy group).

In order to understand a homogeneous space topologically, we must therefore un-
derstand maximal compact subgroups of isotropy groups.

Proposition 4.4 computes a maximal compact subgroup of an isotropy group
for a nilpotent adjoint orbit. The natural inference (which is actually true) is that
this orbit G · E is isomorphic to a vector bundle over K/KφR,θ ; the isomorphism
respects the action of K.

Proposition 4.5 analyzes KC · x ⊂ sC. Notice that KC has exactly the same
maximal compact subgroup K as G; and the Proposition says that the maximal
compact subgroups of isotropy groups also look the same. The inference (again
true) is that KC ·x is isomorphic to a vector bundle over K/KφR,θ ; the isomorphism
again respects the action of K.

It is not impossibly difficult to calculate the vector bundles appearing in these
two settings, and to see that they are isomorphic. The conclusion is that the orbits
G ·E and KC ·x are diffeomorphic as manifolds with K action (assuming that they
correspond under the Kostant-Sekiguchi correspondence). Vergne has given a more
natural and direct proof of this diffeomorphism. Here is a statement.

Theorem 4.6 ([21]). Suppose G = K · exp(s) is a Cartan decomposition of a
reductive group, and E ∈ g and x ∈ sC are nilpotent elements. Assume that the
orbits G · E and KC · x correspond under the Kostant-Sekiguchi correspondence
(Proposition 4.2). Then there is a K-equivariant diffeomorphism from G · E onto
KC · x.



LECTURE 5
Quantizing the action of K

We would like to be able to attach to a nilpotent coadjoint orbit a unitary
representation of G. The construction of parabolically induced representations (on
hyperbolic orbits) suggests that we might look for a pre-Hilbert space endowed with
a representation of G preserving the inner product. The precise construction used
for cohomological induction (in the case of elliptic orbits) produces even less: a
pre-Hilbert space endowed with a (g,K)-module structure. In the case of nilpotent
orbits, we will be able to produce only a space with a representation of K (and
even that only under an additional technical hypothesis). The action of g must be
added later (and we will usually not know how to do it).

So let us fix a nilpotent element

λn ∈ g∗, (5.1)(a)

and write E ∈ g for its image under the isomorphism of Proposition 2.7. According
to Proposition 4.2, we can find a Lie algebra homomorphism φR from sl(2,R) to g

with φR(E0) = E (notation (4.1)(c)). After replacing λn by a conjugate under G,
we may assume that

φR = φR,θ intertwines θ0 and θ. (5.1)(b)

Following the prescription of Proposition 4.2, we then define

x = φR,θ(x0) ∈ sC. (5.1)(c)

The isomorphism of Proposition 2.7 associates to x a linear functional

λθ ∈ s∗C, λθ(Y ) = 〈x, Y 〉 (Y ∈ g). (5.1)(d)

The element λθ is not uniquely determined by λn, but the orbitKC·λθ is determined
by G · λn. Vergne’s Theorem 4.6 provides a K-equivariant diffeomorphism

G · λn ≃ KC · λθ. (5.1)(e)

The discussion of elliptic orbits in section 3 showed that we should expect to
need a little more than the orbit to construct a representation. Specifically, we
should have also an “admissible orbit datum at λn” in the sense of Duflo. For the
purposes of these lectures, defining admissible orbit data would be an unnecessary
digression. What we need to understand is what becomes of admissible orbit data
on G · λn after they are transferred to KC · λθ. Here is the key definition.
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Definition 5.2. Suppose λθ ∈ s∗
C

is a nilpotent element. Write Kλθ

C
for the

isotropy group at λθ. Define 2ρ to be the algebraic character of Kλθ

C
by which

it acts on the top exterior power of the cotangent space at λθ to the orbit:

2ρ(k) = det
(
Ad∗(k)|

(kC/k
λθ
C

)∗

)
(k ∈ Kλθ

C
).

The differential of 2ρ is a one-dimensional representation of the Lie algebra kλθ

C
,

which we denote also by 2ρ ∈ (kλθ

C
)∗. We define ρ ∈ (kλθ

C
)∗ to be half of 2ρ.

Explicitly,

ρ(Z) =
1

2
tr(ad∗(Z)|

(kC/k
λθ
C

)∗
) (Z ∈ kλθ

C
).

An admissible KC-orbit datum at λθ is an irreducible algebraic representation
(τ, Vτ ) of Kλθ

C
whose differential is equal to ρ (times the identity on Vτ ). The

element λθ is called admissible if an admissible orbit datum exists.

Just as in the case of elliptic orbits, admissible orbit data may or may not exist.
When they do exist, there is often a one-dimensional admissible datum (τ0, Vτ0). In
that case it is easy to see that all admissible data are in one-to-one correspondence
with irreducible representations of the group of connected components of Kλθ

C
; the

correspondence arises by tensoring with τ0. If G is connected and simply connected,
then this component group is just the fundamental group of the orbit KC · λθ.
Theorem 5.3 (Schwartz; see [25], Theorem 7.14). In the setting of (5.1), there is
a natural bijection from Duflo’s admissible orbit data at λn to admissible KC-orbit
data at λθ. In particular, the orbit G · λn is admissible in Duflo’s sense if and only
if the orbit KC · λθ is admissible.

We now have in hand the ingredients necessary to imitate the construction
of a quantization made for elliptic orbits: a complex structure on the orbit, and a
holomorphic vector bundle. The difficulty is that the complex structure is preserved
only by K, and not by the whole group G; so the space of holomorphic sections of
the bundle is a representation only of K. Here is the definition. (The definition
would still make sense without the codimension condition imposed here, but it is
no longer a reasonable one.)

Definition 5.4. Suppose λn ∈ g∗ is a nilpotent element, and λθ ∈ s∗
C
corresponds

to it under the Kostant-Sekiguchi correspondence. Fix an admissible orbit datum
(τ, Vτ ) at λθ, and let

Vτ = KC ×
K

λθ
C

Vτ

be the corresponding algebraic vector bundle onKC ·λθ . Assume that the boundary
of KC · λθ (that is, the complement of the open orbit) has complex codimension at
least two. Define

XK(λn, τ) = space of algebraic sections of Vτ ,
an algebraic representation of KC. We call this the quantization of the K action
on G · λn (for the admissible orbit datum τ).

What this definition amounts to is a desideratum for the quantization of the
G action on G · λn: that is, that whatever unitary representation πG(λn, τ) we
associate to these data, we should have

K-finite part of πG(λn, τ) ≃ XK(λn, τ). (5.5)
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One might justify this requirement just by analogy with the quantization of elliptic
orbits in Proposition 3.5. One of the main points of [25] is to provide a stronger
justification: roughly speaking, to show that any representation of G satisfying
certain rather weak and natural requirements related to G · λn must come close to
satisfying (5.5). (A more precise statement is at (12.2) in [25].) There is also a
growing collection of examples that support (5.5); a recent one is in [2].

In the absence of the codimension condition in Definition 5.4, I do not know
in general how to formulate a requirement like (5.5); that is, how to quantize the
action of K. For the moment it is enough to notice that the condition is satisfied
in a great many interesting examples (see Exercise 13). When G is complex, the
coadjoint orbits are complex symplectic manifolds, and therefore of real dimension
4m. Consequently the codimension condition is automatically satisfied in this case.





LECTURE 6
Associated graded modules

In section 5 we have attached to some admissible nilpotent coadjoint orbits cer-
tain candidates for the restrictions to K of corresponding unitary representations.
In this section we will study the restrictions to K of arbitrary admissible represen-
tations, finding a description of more or less the same nature as the conjectural one
from the orbit method. Our goal is to understand this general description so well
that we can sometimes prove that it coincides with the conjectural one.

Definition 6.1. Suppose G = K exp(s) is a Cartan decomposition of a reductive
group. Write

M(g,K) = category of (g,K)-modules of finite length.

The set of equivalence classes of irreducible (g,K)-modules is denoted Ĝ. Similarly,
write

A(K) = category of admissible representations of K.

These are the locally finite representations of K (every vector belongs to a finite-
dimensional K-invariant subspace on which K acts continuously) with the property
that each irreducible representation of K occurs finitely often. One of Harish-
Chandra’s basic theorems about (g,K)-modules says that any (g,K)-module of
finite length belongs to A(K); that is, that there is a forgetful functor

M(g,K) → A(K).

Recall that the Grothendieck group of an abelian category A is the abelian
group KA generated by the objects of the category, modulo relations

[B] = [A] + [C]

whenever there is a short exact sequence

0 → A→ B → C → 0.

Here and in general we write [A] ∈ KA for the class of the object A in the Grothen-
dieck group.

Both of the module categories above are abelian, so they have Grothendieck
groups. Every object in M(g,K) has finite length; it follows easily that KM(g,K)
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is a free abelian group with generators the irreducible (g,K)-modules. Here is
another way to say the same thing: if M is any (g,K)-module of finite length, then

[M ] =
∑

π∈Ĝ

mπ(M)[Vπ].

Here mπ(M) is a non-negative integer, the number of times that π appears in a
Jordan-Hölder series for M . This sum has only finitely many non-zero terms.

The situation for A(K) is a bit more subtle, since the objects do not have
finite length. In this case the Grothendieck group is a direct product of copies of
Z, one for each irreducible representation of K. Explicitly, if N is any admissible
representation of K, then

[N ] =
∑

µ∈K̂

mµ(N)[Vµ].

Here mµ(N) is the multiplicity of µ in N , a non-negative integer; but the sum need
not be finite.

Finally, write KC for the complexification of K; this is a complex reductive
algebraic group. The locally finite representations of K may be identified with the
algebraic representations of KC. (Formally, the forgetful functor from the latter to
the former is an equivalence of categories.) We may therefore replace K by KC at
will in these definitions without changing anything.

We are going to need one more abelian category and its Grothendieck group.
We could introduce the category directly, but perhaps it is preferable to begin with
the construction that motivates it. So supposeM is a (g,K)-module of finite length.
An easy induction on the length shows that M is generated as a (g,K)-module by
some finite-dimensional subspace S; in fact we can choose S to be of dimension
at most the length of M . Next, the definition of local finiteness for the action of
K ensures that S is contained in a finite-dimensional K-invariant subspace M0 of
M . The compatibility of the K and g actions ensures that U(g)M0 is K-invariant;
since it is also g invariant, it must be a (g,K)-submodule of M . Since it contains
S, it must be all of M :

M = U(g)M0. (6.2)(a)

Now the enveloping algebra U(g) has an increasing filtration

C = U0(g) ⊂ C+ gC = U1(g) ⊂ U2(g) ⊂ · · · ; (6.2)(b)

here Un(g) is the span of products of at most n elements of g. The subspaces Un(g)
are finite-dimensional and Ad(K)-invariant. Now define

Mn = Un(g)M0. (6.2)(c)

This is a finite-dimensional K-invariant subspace of M . Because Up(g)Uq(g) ⊂
Up+q(g), we have

Up(g)Mq ⊂Mp+q. (6.2)(d)

The most important fact about the universal enveloping algebra is the Poincaré-
Birkhoff-Witt theorem. There are many equivalent formulations (often involving a
basis for U(g)) but for us the following coordinate-free version is best.
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Theorem 6.3 ([11], Theorem 17.3). If U(g) is given the structure of filtered al-
gebra described above, then the associated graded algebra is naturally isomorphic to
S(g), the symmetric algebra on the complex vector space gC. We write

σn:Un(g)/Un−1(g) → Sn(g)

for the isomorphism; here Sn denotes homogeneous polynomials of degree n.

The notation is chosen because σn behaves like a symbol map for differential
operators. (This is no accident: if U(g) is identified with left-invariant differential
operators on G, then the filtration we have is precisely the degree filtration for
operators, and σ can be identified with the symbol of the differential operator.) One
can interpret the theorem as saying that multiplication in U(g) is like multiplication
of polynomials, up to lower order terms.

Now we want to understand not U(g) itself, but the U(g)-module M . We will
see that the module structure is like that of a module for the polynomial ring S(g),
modulo lower order terms. Here is the result.

Lemma 6.4. Suppose M is a (g,K)-module of finite length. Construct a filtration
of M as in (6.2) above. Write grM for the associated graded vector space:

(grM)n =Mn/Mn−1 (n ≥ 0);

here we define M−1 = 0. Each of these spaces inherits from M a representation of
the group K; so grM is an admissible locally finite representation of K. Because
of (6.2)(d), there are well-defined maps

(grU)p ⊗ (grM)q → (grM)p+q,

(u+ Up−1)⊗ (m+Mq−1) 7→ um+Mp+q−1 (u ∈ Up(g),m ∈Mq).

In light of Theorem 6.3, these may be interpreted as maps

Sp(g)⊗ (grM)q → (grM)p+q.

These maps make grM into a finitely generated graded module for S(g), generated
by the degree 0 subspace M0. The action of S(g) and the representation of K on
grM satisfy the compatibility condition

k · (p ·m) = (Ad(k)p) · (k ·m) (k ∈ K, p ∈ S(g),m ∈ grM).

This lemma is easier to prove than it is to state; so having assumed the burden
of stating it, we may safely leave the proof to the reader.

At this point we begin to take advantage of the geometric aspects of algebraic
geometry. Recall first of all that the maximal ideals in the polynomial ring S(g)
correspond precisely to the complex-linear functionals on g. We will write a little
informally

SpecS(g) = g∗C, (6.5)(a)

having in mind the identification of prime ideals with irreducible subvarieties of g∗
C
.

If X is any subset of S(g), we write

V(X) = {λ ∈ g∗C | p(λ) = 0, all p ∈ X}, (6.5)(b)
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the associated variety of X . This is the same as the associated variety of the ideal
generated by X . If N is a finitely generated S(g)-module, we can define

V(N) = V(AnnN), (6.5)(c)

the associated variety of N . A standard argument from commutative algebra shows
that V(N) coincides with the support of N , the set of all prime ideals for which the
localization NP is non-zero. (For details we refer to [25], section 2.) Our next goal
is to say something about the associated variety of grM in the setting of Lemma
6.4. By definition, that means we need to find some elements in Ann grM .

Because K preserves Mn, the differentiated action of k also preserves Mn. By
the definition of (g,K)-module, this is just the restriction to k of the g action. By
the definition of the S(g) action in Lemma 6.4, it follows that k acts by 0 on grM .
(Elements of g are supposed to raise degree by 1 in M .) Consequently

grM is a finitely generated graded S(g/k) module. (6.6)(a)

In terms of associated varieties, this says

V(grM) ⊂ (gC/kC)
∗ ⊂ g∗C. (6.6)(b)

Write Z(g) for the center of the universal enveloping algebra U(g). This is a
polynomial algebra on rank g generators. It inherits from U(g) a filtration; the
associated graded algebra is

grZ(g) ≃ S(g)G0 , (6.6)(c)

the algebra of polynomials invariant under the adjoint action of G0. Because M
is a U(g)-module of finite length, it must be annihilated by an ideal I ⊂ Z(g) of
finite codimension. (The codimension of I may be bounded by the length of M as
a U(g)-module.) Since I ·M = 0, it follows at once that

(gr I) · (grM) = 0. (6.6)(d)

Now gr I is a graded ideal of finite codimension in S(g)G0 . By an elementary argu-
ment, gr I must contain some power of the augmentation ideal J =

∑
n>0 S

n(g)G0 :

gr I ⊃ JN , some N > 0. (6.6)(e)

In terms of associated varieties, this says

V(grM) ⊂ V(JN ) = V(J). (6.6)(f)

Now the associated variety of J is not so obvious as that of k. Fortunately Kostant
has computed it; here is his result.

Theorem 6.7 ([25], Theorem 5.7). Suppose G is a reductive Lie group, and J ⊂
S(g) is the collection of G0-invariant polynomials without constant term. Then the
associated variety of J is the cone N ∗ of nilpotent elements in g∗

C
.

Suppose in particular that M is a (g,K)-module of finite length, endowed with
a filtration as in (6.2). Then the associated variety of grM is contained in the cone
N ∗
θ of nilpotent elements in (gC/kC)

∗.

Now we can define the new abelian category mentioned after Definition 6.1.
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Definition 6.8. Let C(g,K) be the category of finitely generated S(g/k)-modules
N carrying locally finite representations of K, and subject to the following require-
ments: first, the compatibility requirement

k · (p · n) = (Ad(k)p) · (k ·m) (k ∈ K, p ∈ S(g), n ∈ N);

and second, the support requirement

V(N) ⊂ N ∗
θ

(the cone of nilpotent elements in (gC/kC)
∗). This is an abelian category. In light

of Kostant’s Theorem 6.7, the support requirement is equivalent to requiring J (the
set of G0-invariant polynomials without constant term) to act nilpotently on N .

Because of the remarks at the end of Definition 6.1, it is equivalent to consider
the corresponding category C(g,KC) of modules with an algebraic action of KC.

Proposition 6.9. Suppose N is an object in C(g,K). Then N is admissible (finite
multiplicities) as a representation of K. In particular, there is a forgetful functor

C(g,K) → A(K).

Sketch of proof. An easy argument reduces the lemma to the case G connected
and

N = S(g)/(k+ J)S(g).

This case was treated by Kostant and Rallis in [16], who showed that the rep-
resentation µ of K appears with multiplicity equal to the dimension of the space
of M -fixed vectors in µ. (Here M ⊂ K comes from the Langlands decomposition
MAN of a minimal parabolic subgroup of G.) �

We would like the operation “associated graded” to define something like a
functor from M(g,K) (Definition 6.1) to C(g,K). The difficulty is that our defi-
nition of grM required the construction of a filtration of M , and the construction
required at least one non-functorial choice (of the finite-dimensional generating
subspace S of M). Fortunately this choice does not affect grM too much.

Proposition 6.10 ([25], Proposition 2.2). Suppose M is a (g,K)-module of finite
length, and {Mn} and {M ′

n} are two filtrations constructed as in (6.2). Then the
corresponding associated graded modules grM and gr′M belong to C(g,K). They
define the same class in the Grothendieck group KC(g,K):

[grM ] = [gr′M ].

More precisely, each associated graded module has a finite filtration so that the cor-
responding subquotients (after rearrangement) are pairwise isomorphic in C(g,K).
Consequently there is a well-defined group homomorphism

[gr]:KM(g,K) → KC(g,K).

The corresponding forgetful functors to KA(K) make a commutative triangle. That
is, the K-multiplicities in M and grM coincide.

That grM belongs to C(g,K) follows from Lemma 6.4, Theorem 6.7, and
(6.6)(a). The last statement about K-multiplicities is easy. For the rest of the
proof, we refer to [25].
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A good basis for associated graded modules

Proposition 6.10 provides a very useful way of working with the Grothendieck
group of finite-length Harish-Chandra modules. Here is why.

Theorem 7.1. The homomorphism [gr] of Proposition 6.10 is a surjection from
the Grothendieck group of Harish-Chandra modules onto the Grothendieck group of
finitely generated compatible (S(g/k),K)-modules supported on the nilpotent cone.
Its kernel is precisely the group of virtual Harish-Chandra modules with K-multi-
plicities equal to zero; that is, the kernel of the forgetful functor

KM(g,K) → KA(K).

Corollary 7.2. The possible K-multiplicities for virtual Harish-Chandra modules
(that is, the image of the forgetful functor in Theorem 7.1) are precisely the K-
multiplicities in virtual (S(g/k),K)-modules supported on the nilpotent cone.

We are not going to give a detailed proof of Theorem 7.1. For the moment we
are concerned mostly with Corollary 7.2. In order to extract interesting information
about Harish-Chandra modules from this Corollary, we need to understand better
the Grothendieck group KC(g,K). This is a subtle matter, because the objects of
C(g,K) (unless they are finite-dimensional) do not have finite length. (The Noe-
therian property guarantees that ascending chains of submodules must be finite,
but infinite descending chains are easy to construct.) We cannot hope to use irre-
ducible objects as a basis for the Grothendieck group. Instead we will begin with
a theorem of Kostant and Rallis.

Theorem 7.3 (Kostant-Rallis; see [25], Corollary 5.22). Suppose G is a real reduc-
tive Lie group with maximal compact subgroup K, and KC is the complexification
of K. Write N ∗

θ for the cone of nilpotent elements in (gC/kC)
∗. Then KC acts on

N ∗
θ with finitely many orbits.

Choose representatives λ1, . . . , λr for these orbits, and define

Hi = Kλi

C
(7.4)(a)

to be the isotropy group at λi. We would like to disassemble the category C(g,K)
using these orbits. If the orbits were closed, there would be no difficulty: the
category would be a direct sum of subcategories consisting of modules supported
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on a single orbit. Each of these categories in turn would be equivalent to the
category of finite-dimensional representations of an isotropy group Hi.

However, the orbits are not closed, and no such direct sum decomposition is
possible. What we can do instead is filter the category C(g,K) using supports of
modules. If an orbit KC · λj appears in the support of a module, and λi is in the
closure of KC · λj , then λi must also appear in the support. The support of any
non-zero module N in C(g,K) may therefore be written uniquely as a union of orbit
closures KC · λi, where λi is not in the closure of any other orbit in the support.
These orbit closures are the components of V(N) as an algebraic variety.

This discussion is intended to motivate the following definition. For each i,
define a subcategory of C(g,K) as follows.

C(g,K)i = {N ∈ C(g,K) | λi ∈
(
KC · λj −KC · λj

)
⇒ λj /∈ V(N)}. (7.4)(b)

These are the modules for which KC · λi is a component of V(N), possibly with
multiplicity zero. Next

C(g,K)0i = {N ∈ C(g,K) | λi /∈ V(N)}. (7.4)(c)

These are the modules (automatically in C(g,K)i) for which KC · λi does not meet
the associated variety.

Now any finitely generated module (say for a finitely generated commutative
algebra over an algebraically closed field) is something like a vector bundle over
a dense open set in its support. We should therefore expect modules in C(g,K)i
to look like KC-equivariant vector bundles on KC · λi ≃ KC/Hi. Such a vector
bundle is the same thing as an algebraic representation of Hi. The conclusion is
that modules in C(g,K)i should correspond to representations of Hi, with modules
in C(g,K)0i corresponding to the zero representation. Making these ideas precise
requires some passage to associated graded objects. (For example, a module is not
necessarily annihilated by the ideal of its support, but only by some power of that
ideal. We need a finite filtration of the module so that the subquotients are actually
annihilated by the ideal of the support.) As a result, we get not a representation of
Hi but a rather a class in some Grothendieck group. Here is some formalism useful
for making this precise.

Lemma 7.5. Suppose H is a complex algebraic group, with Levi decomposition
H = LU . (Here U is the unipotent radical of H, a connected normal subgroup,
and L is reductive.) Write F(H) for the category of finite-dimensional algebraic

representations of H, and Ĥ for the set of equivalence classes of irreducible algebraic
representations of H.

1. Every irreducible representation of H is trivial on U ; so restriction to L

defines a bijection Ĥ ≃ L̂.
2. The irreducible representations of H constitute a basis for the Grothendieck

group KF(H). In particular, the functor of restriction to L defines an
isomorphism KF(H) ≃ KF(L).

The class in KF(H) of a representation of H is called a genuine virtual repre-
sentation. According to the lemma, this is the same thing as a formal finite sum of
irreducible representations.
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Proposition 7.6 ([25], Theorem 2.13). In the setting of (7.4), attached to any
module N ∈ C(g,K)i there is a genuine virtual representation χ(λi, N) ∈ KF(Hi).
This correspondence descends to an isomorphism of Grothendieck groups

KC(g,K)i/KC(g,K)0i ≃ KF(Hi).

There are various ways to build this into a statement about the full Grothen-
dieck group KC(g,K). One simple one is to define

C(g,K)[m] = {N ∈ C(g,K) | dimV(N) ≤ m}. (7.7)

This is a finite increasing family of subcategories of C(g,K); if we define the empty
set to have dimension -1, then C(g,K)[−1] is zero. These subcategories induce
a finite increasing filtration of the Grothendieck group, and we can describe the
subquotients.

Corollary 7.8. If dimKC · λi = m, then C(g,K)[m] ⊂ C(g,K)i. The maps of
Proposition 7.6 induce isomorphisms of Grothendieck groups

KC(g,K)[m]/KC(g,K)[m−1] ≃
∑

i
dimKC·λi=m

KF(Hi).

The Grothendieck groups KF(Hi) all have natural bases, parametrized by
irreducible representations of Hi. We would like to lift these back to a basis for
the Grothendieck groupKC(g,K)i/KC(g,K)0i . The following proposition says that
this is always possible, and sometimes can be done canonically.

Proposition 7.9. In the setting of (7.4), suppose that (τ, Vτ ) is an irreducible
representation of the stabilizer Hi of λi. Then there is an object N(λi, τ) ∈
C(g,K) with the following properties. First, V(N(λi, τ)) = KC · λi. In particular,
N(λi, τ) belongs to C(g,K)i. Second, the map of Proposition 7.6 sends N(λi, τ) to
χ(λi, N(λi, τ)) = [τ ].

If we choose such an object N(λi, τ) for every irreducible representation of
every Hi, then the classes [N(λi, τ)] constitute a basis for the Grothendieck group
KC(g,K).

Suppose that the boundary of KC · λi (that is, the complement of the orbit in its
closure) has codimension at least two. Then there is a canonical choice for N(λi, τ).
As representations of KC, we have

N(λi, τ) ≃ IndKC

Hi
(τ)

in this case.

Proof. We begin with the algebraic vector bundle

Vτ = KC ×Hi
Vτ (7.10)(a)

over the orbit KC · λi ≃ KC/Hi. Define

M(λi, τ) = space of algebraic sections of Vτ . (7.10)(b)
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This space carries an algebraic representation of KC; equivalently, a locally finite
representation of K. At the same time, it is a module for S(g/k): a polynomial
p acts by multiplication by the restriction of p to the orbit. (This statement is
supposed to be elementary and clear, and from a geometric point of view it should
be; but for a more group-oriented person there is a possibility of confusion. Such a
person may prefer to identify a section m of Vτ with an algebraic function

µ:KC → Vτ , µ(kh) = τ(h−1)µ(k) (k ∈ KC, h ∈ Kλi

C
). (7.10)(c)

How does p act on such a function? To see that, we define from p a complex-valued
function

π:KC → C, π(k) = p(k · λi). (7.10)(d)

The function π is right-invariant under Kλi

C
. Consequently πµ is a function from

KC to Vτ satisfying the same transformation law as µ; that is, πµ may be regarded
as a section of Vτ . This is the section p ·m.)

The compatibility condition of Definition 6.8 is very easy to check. Because
the orbit is quasiaffine (open in an affine algebraic variety) the bundle has many
sections. In particular, the sections span the fiber at each point:

{m(λi) | m ∈M(λi, τ)} = Vτ . (7.10)(e)

(In the more group-theoretic description (7.10)(c) of sections of Vτ , the left side
here is

{µ(e) | µ:KC → Vτ as in (7.10)(c)}.
This description does not make it clear that we get all of Vτ from algebraic functions
µ; for that the algebraic geometry point of view is essential.)

The only thing wrong with M(λi, τ) is that it need not be finitely generated as
a module for S(g/k). To get around this, we choose a finite-dimensionalK-invariant
subspace M0 of M(λi, τ) with the property that

{m(λi) | m ∈M0} = Vτ . (7.10)(f)

Such a subspace exists by (7.10)(e). Define

N(λi, τ) = S(g/k) ·M0, (7.10)(g)

a finitely generated K-invariant submodule of M(λi, τ). It is not difficult to show
that N(λi, τ) satisfies the requirements of the proposition. If we identify N(λi, τ)
with a coherent sheaf of modules over KC · λi, thenM(λi, τ) may be identified with
the sections over the open set KC · λi:

M(λi, τ) ≃ N(λi, τ)(KC · λi). (7.10)(h)

This description and some commutative algebra (see [9], Proposition 5.11.1) im-

ply that M(λi, τ) is finitely generated if and only if the boundary of KC · λi has
codimension at least 2. When that condition is satisfied, we may therefore take
N(λi, τ) = M(λi, τ). This choice is in a certain sense maximal, if we require also
that N(λi, τ) have no embedded associated primes; that is, no submodules with
much larger annihilators. �

Exercise 14 looks at the simplest example of this construction.



LECTURE 8
Proving unitarity

In section 7, we saw how to use the geometry of the nilpotent cone N ∗
θ to

control the possibleK-types of Harish-Chandra modules. In fact the work of Harish-
Chandra and Langlands already provided a large and powerful array of tools for
controlling the possible K-types of Harish-Chandra modules. In this section we will
describe some of that classical theory, and see how comparing the two approaches
can lead to constructions of unitary representations.

To begin, we need the notion of representations with real infinitesimal character.
A precise definition appears in Definition 8.5 below. For most purposes it is enough
to understand some properties of real infinitesimal character. First, discrete series
representations have real infinitesimal character. Second, suppose that P =MAN
is a parabolic subgroup of G, δ is a representation of M with real infinitesimal
character, and ν is a character of A. Then IndGP (δ ⊗ ν ⊗ 1) has real infinitesimal
character if and only if ν is real-valued.

Theorem 8.1. Suppose G is a reductive Lie group, and M is an irreducible tem-
pered Harish-Chandra module with real infinitesimal character. Then M has a
unique lowest K-type µ(M), which occurs with multiplicity one. This defines a bi-
jection from the set of equivalence classes of irreducible tempered Harish-Chandra

modules with real infinitesimal character onto K̂. We may write M(µ) for the

representation corresponding to µ ∈ K̂.

For linear groups in Harish-Chandra’s class, this theorem is essentially proved in
[22]. The extension to general reductive groups is straightforward; what is perhaps
surprising for experts is that nothing goes wrong.

Theorem 8.2. The classes of irreducible tempered representations with real infin-
itesimal character form a basis for the quotient group

KM(g,K)/(kernel of restriction to K).

By Theorem 7.1, the images

{[grM ] |M tempered irreducible with real infinitesimal character}

form a basis of KC(g,K).

Even in the simplest cases, the bases provided by Proposition 7.9 and Theorem
8.2 are completely different. Exercise 15 looks at an example.
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We want to use properties of the change-of-basis matrix from the basis of Propo-
sition 7.9 to the one of Theorem 8.2 (for the Grothendieck groupKC(g,K)) in order
to make deductions about unitary representations. (Of course it is not yet clear
how we can hope to do that.) Because one basis is parametrized by irreducible
representations of K, it is convenient to make use of highest weight theory for K.
We therefore fix a Cartan subalgebra

t ⊂ k, (8.3)(a)

and define
T = {t ∈ K | Ad(t)|t = 1}, (8.3)(b)

T ′ = {n ∈ K | Ad(n)(t) = t} = NK(T ), (8.3)(c)

W (K,T ) = T ′/T. (8.3)(d)

We may regard this Weyl group as a group of automorphisms of t or of T . The
identity component of T is a compact torus, but T may be non-abelian. We can
also construct from t a fundamental Cartan subalgebra and subgroup of G:

hf = {Z ∈ g | [Z, t] = 0}, Hf = {h ∈ G | Ad(h)|hf = 1}. (8.3)(e)

Proposition 8.4. Suppose µ ∈ K̂. The restriction of µ to T (cf. (8.3)) contains

a unique W (K,T ) orbit of extremal representations. If µ0 ∈ T̂ is such an extremal
representation, write µ1 ∈ it∗ for its differential. These weights form a single
W (K,T ) orbit in it∗. The corresponding set of weights λ(µ1) ∈ it∗ constructed
in [22] is therefore a single W (K,T ) orbit. The infinitesimal character of M(µ)
is represented by the weights in this orbit, extended to be θ-fixed complex linear
functionals on hf .

We will not recall here the construction of λ(µ1) in [22]. One case is very
simple, however: if G is a complex reductive group, then λ(µ1) = µ1.

We will be comparing “lengths” of infinitesimal characters, using the corre-
sponding weights in (hf )∗. A minor technical difficulty is that the bilinear form of
Proposition 2.7 is not (after complexification) positive definite on (hf )∗. The form
is positive definite on the real span of the roots; so it is convenient to use something
like that restriction to measure length. Here is the relevant definition, taken from
[22], Definition 5.4.11.

Definition 8.5. Suppose hf is a fundamental Cartan subalgebra as in (8.3). Write

t = hf ∩ k, af = hf ∩ s

for its decomposition into the +1 and −1 eigenspaces of the Cartan involution θ.

The canonical real part of hf
C
is the subspace

RE h
f
C
= it+ af .

(Notice that the roots of hf
C
take real values on this subspace, and that the form of

Proposition 2.7 is real-valued and positive definite there.) The canonical real part

of ξ ∈ (hf
C
)∗ is the element RE ξ characterized by the requirement that RE ξ takes

real values on RE h
f
C
, and ξ − RE ξ takes purely imaginary values there.

An infinitesimal character is called real if it is represented by a weight ξ equal

to its canonical real part; that is, if ξ takes real values on RE h
f
C
.



LECTURE 8. PROVING UNITARITY 47

Definition 8.6. Suppose that [N ] ∈ KC(g,K). Rewrite [N ] in the basis of Theo-
rem 8.2 as

[N ] =
∑

µ∈K̂

mµ(N)[M(µ)].

Attach to [N ] a finite collection of W (K,T ) orbits in it∗ by

Λ([N ]) = {λ(µ) | µ ∈ K̂,mµ(N) 6= 0}.
(Recall that λ(µ) represents the infinitesimal character of M(µ).) This collection
is non-empty if and only if [N ] 6= 0. If [N ] 6= 0, we can therefore define

‖ [N ] ‖ = max
λ∈Λ([N ])

‖λ‖,

the infinitesimal character size of [N ].

The definition is interesting (and the terminology is justified) because of the
following result.

Proposition 8.7. Suppose [M ] ∈ KM(g,K) is a virtual Harish-Chandra module
such that [grM ] = [N ] is a non-zero element of KC(g,K). Write

[M ] =
∑

π∈Ĝ

mπ(M)[Vπ].

Then there is an irreducible π ∈ Ĝ with mπ(M) 6= 0 and the following additional

property. Pick a representative ξ ∈ (hf
C
)∗ for the infinitesimal character of π. Then

the canonical real part of ξ (Definition 8.5) is at least as large as ‖ [N ] ‖:

‖RE ξ‖ ≥ ‖ [N ] ‖.
The kind of property that we want to prove is this: if the support of N is small,

then ‖ [N ] ‖ must be large. Here is the formal setting.

Definition 8.8. Suppose B is a closed KC-invariant subset of N ∗
θ . (The notation

is chosen because we will most often want B to be the boundary S − S of a single
orbit S.) Consider the subcategory of C(g,K) consisting of modules supported on
B:

C(g,K)(B) = {M ∈ C(g,K) | V(M) ⊂ B}.
The Grothendieck group of this category is the subgroup of KC(g,K) spanned by
the various [N(λi, τ)] (Proposition 7.9) with λi ∈ B.

Set
‖B‖ = min

06=[N ]∈KC(g,K)(B)
‖ [N ] ‖,

the infinitesimal character size of B.
Corollary 8.9. Suppose M is an irreducible Harish-Chandra module for G, and

ξ ∈ (hf
C
)∗ represents the infinitesimal character of M . Then the canonical real part

of ξ is at least as large as the infinitesimal character size of V(grM).

Notice that the infinitesimal character size of B is defined in terms of the change
of basis matrix from Proposition 7.9 to Theorem 8.2: it is really a commutative
algebra object. The Corollary gets interesting representation-theoretic information
about M (a lower bound on its infinitesimal character) from this commutative
algebra calculation.

In order to say something about unitarity, we need some ideas from [23].
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Definition 8.10. Suppose M ∈ M(g,K) has an invariant Hermitian form 〈, 〉M .

Write mµ(M) for the multiplicity in M of µ ∈ K̂ (Definition 6.1). As is explained
in [23], the signature of the form gives rise to three non-negative integers

pµ(M), qµ(M), zµ(M), pµ(M) + qµ(M) + zµ(M) = mµ(M).

The form is non-degenerate if and only if z(M) = 0, positive semidefinite if and only
if q(M) = 0, and so on. We can therefore define genuine virtual representations

[M ]+, [M ]−, [M ]0 ∈ KA(K),

by

[M ]+ =
∑

µ∈K̂

pµ(M)[Vµ], [M ]− =
∑

µ∈K̂

qµ(M)[Vµ],

and so on.

Theorem 8.11 ([23]). Suppose M ∈ M(g,K) has an invariant Hermitian form;
use the notation of Definition 8.10. The virtual K representations [M ]± and [M ]0

are (restrictions to K of) virtual tempered representations of G of real infinitesimal
character. According to Theorem 8.2, we may therefore regard them as well-defined
virtual equivariant modules on the nilpotent cone:

[M ]+, [M ]−, [M ]0 ∈ KC(g,K).

Each infinitesimal character for a tempered representation appearing in [M ]± or
[M ]0 is bounded above by the canonical real part of the infinitesimal character of
an irreducible constituent of M . In particular, if M has infinitesimal character ξ,
then

‖RE ξ ‖ ≥ ‖ [M ]±‖.
Notice that the virtual modules [M ]± and [M ]0 all have non-negative K-

multiplicities, and their sum is the genuine virtual module [grM ]. It is therefore
natural to expect that [M ]± and [M ]0 are themselves genuine virtual modules. It
is very likely that this follows from the proof of Theorem 8.11, but I have not yet
checked carefully. I will therefore be conservative and label it as a conjecture.

Conjecture 8.12. In the setting of Theorem 8.11, the virtual modules [M ]± and
[M ]0 are represented by actual modules N± and N0 in C(g,K).

At last we can use these ideas to say something about unitary representations.

Theorem 8.13. Suppose M is a (g,K) module of finite length and infinitesimal
character ξ, carrying a non-degenerate invariant Hermitian form 〈, 〉M . Assume
that

1. The associated variety V(grM) is the closure of single orbit S = KC · λ.
Write

B = S − S

for the boundary of this orbit.
2. The genuine virtual representation τ = χ(λ, grM) defined by Proposition

7.6 is irreducible.
3. The canonical real part of the infinitesimal character of M is strictly smaller

than the infinitesimal character size of B (Definition 8.8):

‖RE ξ‖ < ‖B‖.
4. Conjecture 8.12 holds for M .
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Then M is irreducible and the Hermitian form on M is definite, so M is the
Harish-Chandra module of an irreducible unitary representation of G.

Suppose in addition that the module N(λ, τ) of Proposition 7.9 has infinitesimal
character size less than ‖B‖:

‖ [N(λ, τ)] ‖ < ‖B‖.

Then [grM ] = [N(λ, τ)]. In particular, if τ is an admissible orbit datum at λ
(Definition 5.2), then M satisfies the desideratum at (5.5) to be a quantization of
the corresponding real nilpotent coadjoint orbit.

Proof. Fix modules N± as in Conjecture 8.12. (Since the form is non-degenerate,
the radical is zero, so N0 = 0.) Because these sum to grM in the Grothendieck
group, it follows that V(N±) ⊂ V(grM). We therefore have well-defined genuine
virtual representations χ(λ,N±), and

χ(λ, grM) = χ(λ,N+) + χ(λ,N−).

On the other hand, assumption (2) in the theorem says that the left side is irre-
ducible. It follows that one of the terms on the right is zero. Possibly after replacing
〈, 〉M by its negative (which interchanges N+ and N−), we conclude that

χ(λ,N+) = χ(λ, grM), χ(λ,N−) = 0.

By Proposition 7.6, it follows that V(N−) ⊂ B.
We are trying to prove that 〈, 〉M is positive definite. Suppose not; that is, that

N− 6= 0. By Definition 8.8 and what we have just seen about the support of N−,

‖ [N−] ‖ ≥ ‖B‖.

According to Theorem 8.11,

‖RE ξ ‖ ≥ ‖ [N−] ‖.

These two inequalites together contradict the assumption in (3) of the theorem.
The contradiction proves the positivity of the Hermitian form. A similar argument
proves that M must be irreducible.

Finally, we consider the claim that [grM ] = [N(λ, τ)]. According to Propo-
sitions 7.6 and 7.9, the difference [grM ] − [N(λ, τ)] must be in the Grothendieck
group of modules supported on B. Suppose it is non-zero. Assumption (3) in the
theorem and the assumption about the infinitesimal character size of N(λ, τ) imply
that

‖[grM ]− [N(λ, τ)]‖ < ‖B‖,

contradicting Definition 8.8. The virtual module must therefore be zero, as we
wished to show. �

Theorem 8.13 produces irreducible unitary representations attached to a nilpo-
tent coadjoint orbit; so we should consider how to go about verifying its hypotheses.
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Arranging condition (1) is relatively straightforward; here is a very brief sketch. Be-
gin with the corresponding complex group orbit

SC = Ad(gC) · λ ⊂ g∗C; (8.14)(a)

here Ad(gC) is the identity component of the automorphism group of gC. Choose an
infinitesimal character ξ (cleverly!) in such a way that the maximal primitive ideal
Jmaxξ of infinitesimal character ξ has associated variety SC. (Methods for choosing

such a ξ may be found in [4].) Finally let M be any irreducible Harish-Chandra
module with annihilator Jmaxξ . (Methods for constructing such modules in the case

of complex groups may also be found in [4]; similar ideas apply to real groups.)
Then V(grM) will be the closure of the union of some of the nilpotent KC orbits
in SC ∩ (g/k)∗. This is close to (1).

The irreducibility condition in (2) of Theorem 8.13 is a subtle point, and I will
not try to say more about it here; but the methods described below for studying
(3) are helpful.

For condition (3), we already know ξ explicitly from arranging (1); so the
whole problem is to find an explicit lower bound ‖B‖ ≥ C (Definition 8.8). This
problem has two parts. The modules involved in the definition of ‖B‖ are integer
combinations of various N(λ′, τ ′) (Proposition 7.9) with λ′ ∈ B. The first part of
the problem is to find more or less explicit formulas

[N(λ′, τ ′)] =
∑

µ∈K̂

mµ(λ
′, τ ′)[M(µ)]. (8.14)(b)

This is an algebraic geometry problem; it can be approached by the technique
McGovern introduced for studying functions on nilpotent orbits. One introduction
to this technique is in [2]. In particular, one hopes to find in each of these formulas
a term M(µ) with mµ(λ

′, τ ′) 6= 0 and

‖λ(µ)‖ ≥ C.

The second part of the problem is to check that some of these large termsM(µ)
do not cancel when we form integer combinations

∑

λ′∈B, τ ′∈K̂λ′

nλ′,τ ′ [N(λ′, τ ′)]. (8.14)(c)

Once we know the formulas in (8.14)(b), this is a question of linear algebra.
Finally, I hope that verification of (4) is just a matter of examining [23].
To conclude, here is the simplest example of a computation of ‖B‖. This result

controls the infinitesimal character of a virtual Harish-Chandra module with finite
K-multiplicities. The most obvious way to produce such a virtual module is as
an integer combination of finite-dimensional Harish-Chandra modules. There is an
obvious lower bound for the infinitesimal character of such a module. The theo-
rem says that more exotic methods of producing the modules cannot give smaller
infinitesimal character.
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Theorem 8.15. Suppose B = {0} ⊂ (g/k)∗. Then the infinitesimal character size
of B (Definition 8.7) is equal to the length of ρ, half the sum of a set of positive
roots.

The trivial representation M of G has infinitesimal character ρ and associated
variety {0}, so the inequality B ≤ ‖ρ‖ follows from Corollary 8.9. We consider
therefore the opposite inequality.

Proof for G complex connected. The objects [N ] appearing in Definition 8.8
are integer combinations of N(0, τ), with τ an irreducible representation of the
isotropy group KC of 0. By inspection of Proposition 7.9, N(0, τ) is just the irre-
ducible representation (τ, Vτ ) of K, equipped with the module structure in which
a polynomial p ∈ S(g/k) acts by its value at 0. We need to express N(0, τ) (as
a representation of K) as an integer combination of the tempered representations
M(µ).

In Theorem 8.1 those representations are parametrized by irreducible repre-
sentations µ of K; but now it will be more convenient to parametrize them by

(W (K,T ) group orbits of) elements of T̂ (Proposition 8.4). Write Hf = TA for
the corresponding Cartan in G, and B = TAN for a Borel subgroup. Then the

tempered representation corresponding to γ ∈ T̂ is

M(γ) = IndGB(γ ⊗ 1⊗ 1); M(γ)|K = IndKT (γ). (8.16)(a)

Write
∆+(kC, tC) ⊂ T̂ (8.16)(b)

for a set of positive roots of T in kC, and

2ρc =
∑

α∈∆+(kC,tC)

α. (8.16)(c)

Then the differential of 2ρc is equal to ρ (for a certain choice of positive roots of

h
f
C
); so the inequality we are trying to prove may be written as

‖B‖ ≥ ‖2ρc‖. (8.16)(d)

Write γτ ∈ T̂ for the highest weight of τ . A version of the Weyl character
formula is

τ =
∑

S⊂∆+(kC,tC)

(−1)|S| IndKT (γτ + 2ρ(S)). (8.16)(e)

Here 2ρ(S) is the sum of the roots in S. Combining this with (8.16)(a) gives

[N(0, τ)] =
∑

S⊂∆+(kC,tC)

(−1)|S|M(γτ + 2ρ(S)). (8.16)(f)

Recall from the remark after Proposition 8.4 that λ(γ) is just the differential of γ.
It is a standard and elementary fact about compact group representations that the
longest of the weights appearing in (8.16)(f) is γτ + 2ρc:

[N(0, τ)] = ±M(γτ + 2ρc) + terms M(γ′) with λ(γ′) strictly shorter. (8.16)(g)

Suppose now that N =
∑

τ mτ [N(0, τ)] is a non-zero finite integer combination
as in Definition 8.8. Choose τ0 so that ‖γτ0 + 2ρc‖ is maximal subject to mτ 6= 0.
It follows from (8.16)(g) that

‖ [N ] ‖ = ‖γτ0 + 2ρc‖ ≥ ‖2ρc‖. (8.16)(h)

This proves (8.16)(d), which is what we wished to show. �





EXERCISES

Exercise 1. Find all the Riemannian homogeneous spaces for SO(3). (Decide first
of all what it should mean for two such spaces to be isomorphic.)

Exercise 2. Show that every symplectic homogeneous space for SO(3) is either a
point, or a two-dimensional sphere of radius r > 0. Consequently these spaces are
parametrized by the non-negative real numbers.

Exercise 3. This exercise concerns the non-existence of a nice simultaneous quan-
tization of a large family of classical observables. The results come more or less
from [8], with a more mathematical account in [10]. Perhaps the best place to read
about it is in [1], Theorem 5.4.9. We take as symplectic manifold X = R2, with
coordinate functions p and q. The Poisson bracket on smooth functions on X is

{f, g} =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
. E3(a)

For the quantization, we use the Hilbert space H = L2(R); the coordinate on R is
called q. We begin the quantization as in (1.6), defining two skew-adjoint operators

A(q) = multiplication by
√
−1q, A(p) = ∂/∂q. E3(b)

Recall that the quantum interpretation of position suggests defining

A(f) = multiplication by
√
−1f, f ∈ R[q]. E3(c)

As in (1.7), we try to quantize other polynomial functions on R2 using polynomial
coefficient differential operators on R. The requirement (1.4) is

[A(f), A(g)] = A({f, g}) (f, g ∈ R[p, q]). E3(d)

It is easy to check that this is satisfied for those functions where A has so far been
defined: polynomials in q, and linear functions of p. On quadratic polynomials, it
is natural to define

A(p2) =
√
−1

∂2

∂q2
, A(pq) = −1

2
(q
∂

∂q
+

∂

∂q
q), A(q2) =

√
−1q2. E3(e)
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(We have already explained A(q2). The requirement (E3)(d) means that A(p2)
should commute with A(p) = ∂/∂q, so it should be a constant coefficient differen-
tial operator. This particular choice seems reasonable, and is consistent with the
standard construction of the quantum harmonic oscillator. Finally the choice of
A(pq) is forced by (E3)(d), since {p2, q2} = 4pq.)

Here at last is the exercise. Show first that the span of p2, q2, and pq is a
Lie algebra g under Poisson bracket, isomorphic to SL(2,R). Next, show that
the Poisson bracket defines a representation of g on the space Sn of homogeneous
polynomials of degree n in p and q; and that this is the irreducible n+1-dimensional
representation of g.

Now write Tn for the space of skew-symmetric polynomial coefficient differential
operators on R, of total degree at most n. (The total degree is the sum of the
differential operator degree and the polynomial coefficient degree.) Show that Tn
is invariant under operator bracket by A(g) (the operators of (E3)(e)), and that
this defines a representation of g on Tn. Show further that Tn is the sum of the
irreducible representations of g of dimensions 1, 2, . . . , n+1. Show that A(qn) may
be regarded as a highest weight vector for the representation of dimension n+ 1.

Conclude that there is a unique linear “quantization map” A carrying R[p, q]
to skew-symmetric polynomial coefficient differential operators on R, subject to the
requirements (E3)(e); A(qn) =

√
−1qn; and

A({f, g}) = [A(f), A(g)] (f homogeneous of degree 2). E3(f)

What remains is to show that A fails to satisfy (E3)(d) in general. To do that,
show that {p2, {p2, q4}} is proportional to {p3, q3}, but that [A(p2), [A(p2), A(q4)]]
is not proportional to [A(p3), A(q3)].

Exercise 4. Suppose φ is a non-degenerate bilinear form on Rn, either symmetric
or skew-symmetric. There is a unique invertible matrix J so that

φ(u, v) = 〈Ju, v〉 (u, v ∈ R
n).

Assume that J2 = ±I. Show that the group of the form

G(φ) = {g ∈ GL(n,R) | φ(gu, gv) = φ(u, v) (u, v ∈ R
n)}

is a linear reductive group. Check that this condition allows the indefinite or-
thogonal groups O(p, q) (p + q = n) and the symplectic group Sp(2n,R) as linear
reductive groups.

Exercise 5. Find a closed subgroup of GL(1,R) that is stable under θ but is not
a reductive group. (Hint: it follows from Theorem 2.6 that a reductive group has a
finite number of connected components.) Can you find more interesting examples
in GL(2,R)?

Exercise 6. Suppose G is a linear reductive Lie group (Definition 2.5), and we are
given elements H , E, and F of the Lie algebra as in (2.9)(a). Why does the group
homomorphism φ of (2.9)(b–c) exist? (Hint: the group SL(2,R) is not simply
connected, so the problem is not completely trivial.) What can you say if G is only
assumed to be reductive?
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Exercise 7. Write GL(n,C) = K · exp(s) for the polar decomposition of n × n
complex matrices; here K = U(n) and s is the space of self-adjoint matrices. Fix
X ∈ k. Show that the set of fixed points of the one-parameter group Ad(exp(tX))
on s is precisely sX . Conclude that the stabilizer of X in the adjoint action of
GL(n,C) is KX · exp(sX).

Suppose that Z ∈ s. Show that the stabilizer of Z in the adjoint action is
KZ · exp(sZ). (Hint: look at iZ.)

Suppose G = K · exp(s) is the Cartan decomposition of a reductive group, and
X ∈ s. Show that GX = KX · exp(sX), and conclude that GX is a reductive group.

Exercise 8. Suppose G is a reductive group with Cartan involution θ.
1. Show that the bilinear form Q on g defined by

Q(X,Y ) = −〈X, θY 〉

(notation as in Proposition 2.7) is positive definite.
2. If X ∈ s, show that the operator ad(X) on g is self-adjoint with respect to

Q. Conclude that ad(X) is diagonalizable with real eigenvalues.
3. If Y ∈ k, show that the operator ad(Y ) on g is skew-adjoint with respect to

Q. Conclude that ad(Y )C is diagonalizable with purely imaginary eigenval-
ues.

4. If k ∈ K, show that the operator Ad(k) on g is orthogonal with respect
to Q. Conclude that Ad(k)C is diagonalizable with eigenvalues in the unit
circle.

Exercise 9. The point of this exercise is to understand the constructions of (3.2)
in some examples, and in particular the character 2ρq of Proposition 3.3. You can
pick your own favorite examples; certainly even compact groups are interesting in
this context. If you would like to test your grasp of general structure theory, you
can try to prove that if G is a complex reductive group (and λe is elliptic, and so
on) then the character 2ρq always has a distinguished square root.

If you don’t have a favorite example to try, here is one. Begin with the complex
vector space Cn. Using a standard identification C ≃ R2, we get Cn ≃ R2n. Let
G = GL(2n,R), so that g consists of all R-linear transformations of R2n. Define

J = multiplication by i on C
n ≃ R

2n.

This is an R-linear transformation, and so an element of g; it is elliptic. (Why?)
Write λe ∈ g∗ for the corresponding linear functional:

λe(Z) = trJZ.

Use the notation of (3.2). In particular L consists of invertible real-linear transfor-
mations of Cn that commute with multiplication by i; so

L = GL(n,C).

Having come this far, you should try to identify the coadjoint orbit G · λe with the
space of all complex structures on the vector space R2n.
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Now we want to investigate the eigenspaces of i ad(J). Let B (for “bar”) be the
complex-conjugation linear transformation of Cn. Then JB = −BJ . Show that
B + iJB is in the +2 eigenspace of i ad(J), and in fact that

u = {T (B + iJB) | T a complex-linear transformation of Cn}.

Deduce that the adjoint action of L on u is equivalent to the action of GL(n,C) on
n× n complex matrices, by

g · T = gTg−1 (g ∈ GL(n,C), T ∈ gl(n,C)).

Finally conclude that

2ρq(g) = (det(g)/det(g))n (g ∈ GL(n,C)).

Does this unitary character of GL(n,C) have a square root?

Exercise 10. One of the pleasant properties of a Stein manifold X is that a com-
pact complex submanifold of X must be finite. In the setting of (3.2), show that
K/L ∩ K is a compact complex submanifold of X . Deduce that X can be Stein
only if the Lie algebra element Xe belongs to the center of k. (In that case it turns
out that X actually is Stein.)

If you know something about the Bott-Borel-Weil theorem, show that the holo-
morphic vector bundle Vτ has non-zero holomorphic sections over K/L ∩K if and
only if K/L ∩K is finite. Deduce that Vτ has non-zero holomorphic sections over
X only if K/L ∩K is finite. (This statement is also if and only if.)

Exercise 11. Use the notation of Definition 5.2. Find a definition of a metaplectic

double cover of Kλθ

C
analogous to (3.6), and a character ρ of K̃λθ

C
. Show that ad-

missible orbit data at λθ are in one-to-one correspondence with irreducible genuine
representations (τ̃ , V

τ̃
) of this metaplectic cover that are trivial on the identity com-

ponent (that is, having differential 0). To complete the analogy with Proposition

3.7, show that the restriction of λθ to kλθ

C
is zero.

Exercise 12. Suppose G = Sp(2n,R) is the standard real symplectic group. We
want to look at some examples of nilpotent admissible orbit data. The facts stated
in this first paragraph can just be assumed, although verifying them makes a rea-
sonable exercise in structure theory. The maximal compact subgroup of G is iso-
morphic to U(n), so its complexification KC is isomorphic to GL(n,C). There are
two representations of KC on the space S of symmetric n×n complex matrices: we
write them as (π+, S+) and (π−, S−). Explicitly,

π+(g)U = gU tg (g ∈ GL(n,C), U ∈ S)

and

π−(g)V = tg−1V g−1 (g ∈ GL(n,C), V ∈ S)

Then there is a KC-equivariant isomorphism

s∗C ≃ S+ ⊕ S−.
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The nilpotent elements of s∗
C
are the pairs (U, V ) so that UV and V U are both

nilpotent. (A complete classification of theKC orbits of such pairs is an entertaining
linear algebra problem, which the reader might also like to consider.) We will
confine our attention to certain relatively small orbits: specifically, to the case
UV = V U = 0. There are two obvious invariants to attach to such an orbit: the
rank p of U and the rank q of V . The vanishing of UV forces p + q ≤ n. It turns
out that the pair (p, q) determines the KC orbit of (U, V ).

So let us fix (p, q) with p+ q ≤ n. Define

U =

(
Ip 0
0 0n−p

)
, V =

(
0n−q 0
0 Iq

)
, λθ = (U, V ).

Then λθ is a nilpotent element of s∗
C
in the orbit parametrized by (p, q). We want

to compute the admissible orbit data. Show first of all that the stabilizer of λθ in
KC is

Kλθ

C
=



A ∗ ∗
0 B ∗
0 0 C


 (A ∈ O(p,C), B ∈ GL(n− p− q,C), C ∈ O(q,C)).

Next, show that the character 2ρ of Definition 5.2 is

2ρ(A,B,C) = (detA)n−1(detB)q−p(detC)n−1.

(Here we write (A,B,C) as shorthand for the matrix from the preceding display.)
Conclude that admissible orbit data exist if and only if either q − p is even, or
p+ q = n. If one of these conditions is satisfied, then the possible admissible orbit
data are

τ(A,B,C) = (detA)ǫ(detB)(q−p)/2(detB)δ.

Here ǫ and δ both belong to Z/2Z; the factor with ǫ (respectively δ) actually appears
only if p (respectively q) is non-zero. Therefore (still assuming that q − p is even,
or that p+ q = n) there are four admissible orbit data if p and q are both non-zero;
two if exactly one of p and q is zero; and one if p = q = 0.

Exercise 13. This is a continuation of Exercise 12. First show that the orbit with
parameters (p, q) has complex dimension (p+q)(p+q+1)/2+(p+q)(n−p−q). The
orbits in the boundary are those with parameters (p′, q′), with p′ ≤ p, q′ ≤ q, and
p′+q′ < p+q. Conclude that the boundary has complex codimension n−(p+q)+1
(if p+ q > 0; the boundary is empty if p+ q = 0). Therefore Definition 5.4 applies
if and only if p+ q < n. If you know a little about the representations of U(n), you
might try to calculate XK(λn, τ) in this case. It turns out that the representations
of U(n) appear with multiplicity one; those appearing are the ones of highest weight

µ = (µ1, . . . , µq, (q − p)/2, . . . , (q − p)/2, µn−p+1, . . . , µn),

µi ≡ δ (mod 2) (1 ≤ i ≤ q), µj ≡ ǫ (mod 2) (n− p+ 1 ≤ j ≤ n).

Of course µ must also be a highest weight: that is, the coordinates of µ must be
weakly decreasing integers. (Hint: the most difficult part is to understand induction
fromO(p) to U(p). This is a compact symmetric space, so the induction is computed
by a theorem of Helgason. It is the sum of all representations of U(p) whose highest
weights have all coordinates even. Given this fact and its twist by the determinant
character, you just need the Borel-Weil theorem to finish the calculation.)
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Exercise 14. This exercise looks at the construction of Proposition 7.9 in the case
of G = U(1, 1). Then K = U(1)× U(1), and KC = C× × C×. We have

(gC/kC)
∗ ≃

{(
0 u
v 0

)
| u, v ∈ C

}
≃ C

2;

the action of KC is

(z, w) · (u, v) = (zw−1u, z−1wv).

The nilpotent cone is

N ∗
θ = {(u, v) | uv = 0}.

There are three orbits of KC, represented by

λ1 = (1, 0), λ2 = (0, 1), λ3 = (0, 0).

The first two isotropy subgroups are

H1 = H2 = C
×
∆ ⊂ C

× × C
×.

The third is H3 = KC.
Fix an integer m, and let τm be the character

τm(z) = zm

of H1. Then M(λ1, τm) may be identified with the space of functions on KC trans-
forming according to the character τm of H1. As a basis forM(λ1, τm), we can take
the functions

fp(z, w) = zpwm−p.

The function fp transforms under K according to the character (p,m − p) (in the

standard identification of K̂ with Z2).
NowM(λ1, τm) is also a module for S(g/k) ≃ C[u, v]. Show that in this module

structure, v acts by zero, and u ·fp = fp+1. Conclude thatM(λ1, τm) is not finitely
generated. Show that the module N(λ1, τm) constructed in the proof of Proposition
7.9 must be

N(λ1, τm) = span of {fp | p ≥ p0}

for some integer p0. Conclude that

K-types of IndKC

H1
(τm) = {(r, s) | r + s = m}

K-types of N(λ1, τm) = {(r, s) | r + s = m, r − s ≥ 2p0 −m}.

If you are feeling very ambitious, much of this exericise can be generalized to
the setting of Exercise 12, with λ1 one of the elements with p+ q = n.
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Exercise 15. This exercise looks at the bases provided by Theorem 8.2 and Propo-
sition 7.9 in case G = SL(2,C) (viewed as a real group). The maximal compact
subgroup is K = SU(2). Let T be the standard maximal torus in K (consisting

of diagonal matrices); T is isomorphic to U(1), so T̂ ≃ Z; we write δm for the
character corresponding to m. The representations of K are parametrized (by their
highest weights) by non-negative integers; we write µm for the (m+1-dimensional)
representation of K of highest weight δm.

Let A be the group of diagonal matrices in G with positive real entries, and N
the group of upper triangular matrices with ones on the diagonal. Then B = TAN

is a Borel subgroup of G. If δ ∈ T̂ and ν ∈ Â, then we can construct a principal
series representation

I(δ ⊗ ν) = IndGB(δ ⊗ ν ⊗ 1).

This representation is tempered exactly when ν is unitary, and has real infinitesimal

character exactly when ν is real-valued. We will often think of Â as identified with
a∗
C
, and so write −ν for the inverse of the character ν. The principal series I(δ⊗ ν)

and I(δ−1⊗−ν) have the same irreducible composition factors, so for many purposes
we can confine our attention to characters δ = δm of T with m ≥ 0.

Because of the Iwasawa decomposition G = KAN , we find

I(δ ⊗ ν)|K ≃ IndKT (δ),

and this in turn is the sum of all the irreducible representations of K containing
the weight δ. For m ≥ 0, this is

I(δm ⊗ ν)|K ≃
∑

k≥0

µm+2k.

The tempered irreducible representations of real infinitesimal character are the
various principal series

πm = I(δm ⊗ 0) (m ≥ 0).

Their restrictions to K are what we just computed:

πm|K ≃
∑

k≥0

µm+2k.

These representations are the basis of Theorem 8.2 for (restrictions to K of) virtual
Harish-Chandra modules. That is, any finite length Harish-Chandra module for G
has the same restriction to K as a unique integer combination of the various πm.
The first part of the exercise is essentially to verify this assertion. There are just
two kinds of irreducible Harish-Chandra modules for G: the irreducible principal
series, and the finite-dimensional representations. For the principal series, we have

I(δm ⊗ ν)|K ≃ π|m||K .

Show that if F is any irreducible finite-dimensional representation of G, then

F |K ≃ µp + µp+2 + · · ·+ µp+2q,
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for some non-negative integers p and q. Conclude that

F |K ≃ (πp − πp+2q+2)|K .
Now we examine the basis of Proposition 7.9. The complexification of K is

G, and the action of KC on (gC/kC)
∗ is equivalent to the action of G on g. In

particular there are exactly two nilpotent orbits, through λ1 = 0 and λ2 =

(
0 1
0 0

)
.

The isotropy groups are H1 = G and H2 = Z(G)N . The orbit dimensions are 0
and 2, so the codimension condition in Proposition 7.9 is always satisfied. The
irreducible (algebraic) representations of G may be identified with the irreducible
representations µm of K. The irreducible representations of H2 are the irreducible
characters of Z(G) ≃ Z/2Z; there is the trivial character τe and the non-trivial
character τo. The restrictions to K of the various standard modules are computed
by Proposition 7.9; check that they are

N(λ1, µm)|K ≃ µm,

N(λ2, τe)|K ≃
∑

k≥0

µ2k,

N(λ2, τo)|K ≃
∑

k≥0

µ2k+1.

Proposition 7.9 says that any Harish-Chandra module for G has the same re-
striction to K as a unique integer combination of the various N(λ, τ). The next
part of the exercise is to verify that assertion. By the first part, it is enough to
consider the various πm. Show that if m is even and non-negative,

πm|K ≃ (N(λ2, τe)−N(λ1, µ0)−N(λ1, µ2)− · · · −N(λ1, µm−2))|K ;

and similarly for m odd.
The point of section 8 is that the other change of basis is more interesting.

Show that
N(λ1, µm)|K = (πm − πm+2)|K ,

N(λ2, τe)|K = π0|K , N(λ2, τo)|K = π1|K .

Exercise 16. This exercise concerns the notion of “infinitesimal character size” in
Definition 8.8, for the group SL(2,C). In Exercise 15 we identified the characters
of the compact torus T with Z. This identification extends to it∗ ≃ R. Let us
also normalize the invariant bilinear form on g so that (after restriction, complex-
ification, and dualization to it∗) it agrees with the standard inner product on R.
Thus the representation µm of K has highest weight δm, which (according to the
remark after Proposition 8.4) is mapped by the algorithm of [22] to the weight
m ∈ R ≃ it∗, which has norm m. Using these facts, and the calculation in Exercise
15, prove that

‖KC · λ1‖ = ‖2‖ = 2, ‖KC · λ2‖ = ‖0‖ = 0.

Next, show that 2 ∈ it∗ is equal to ρ, half the sum of a certain system of
positive roots for the fundamental Cartan. This is the infinitesimal character of the
trivial representation of G. The conclusion (by Proposition 8.7) is that any virtual
Harish-Chandra module [M ] with [grM ] finite-dimensional and non-zero must have
an irreducible constituent of infinitesimal character at least as big as ρ.
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ton-Basel-Stuttgart, 1981.

[23] D. Vogan, Unitarizability of certain series of representations, Ann. of Math.
120 (1984), 141–187.

[24] D. Vogan, Unitary Representations of Reductive Lie Groups, Annals of Math-
ematics Studies, Princeton University Press, Princeton, New Jersey, 1987.

[25] D. Vogan, Associated varieties and unipotent representations, Harmonic Anal-
ysis on Reductive Groups (W. Barker and P. Sally, eds.), Birkhäuser, Boston-
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