Unitary representations

Vogan

SL(2, ℝ)

signatures

Unitary representations of reductive Lie groups

David Vogan

Workshop on Unitary Representations University of Utah July 1–5, 2013 Outline

 $SL(2,\mathbb{R})$

What's a (unitary) dual look like?

Computing signatures of Hermitian forms

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X.

Step 1. Attach to *X* Hilbert space \mathcal{H} (e.g. $L^2(X)$). Questions about $X \rightsquigarrow$ questions about \mathcal{H} . **Step 2.** Find finest *G*-eqvt decomp $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$. Questions about $\mathcal{H} \rightsquigarrow$ questions about each \mathcal{H}_{α} . Each \mathcal{H}_{α} is irreducible unitary representation of *G*: indecomposable action of *G* on a Hilbert space. **Step 3.** Understand \widehat{G}_u = all irreducible unitary representations of *G*: unitary dual problem. **Step 4.** Answers about irr reps \rightsquigarrow answers about *X*.

This week: **Step 3** for reductive Lie group *G*.

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

Example: $SL(2, \mathbb{R})$ on the upper half plane

Spectrum of self-adjt $\Delta_{\mathbb{H}}$ on $L^2(\mathbb{H})$ is $(-\infty, -1]$. \rightsquigarrow unitary principal series $\rightsquigarrow \{E(\nu) \mid \nu \in i\mathbb{R}\}$.

 $E(\pm 1) = [\text{harm fns on } \mathbb{H}] \supset [\text{const fns on } \mathbb{H}] = J(\pm 1) = \text{triv rep.}$ $J(\nu) \text{ is Herm.} \Leftrightarrow J(\nu) \simeq J(-\overline{\nu}) \Leftrightarrow \nu \in i\mathbb{R} \cup \mathbb{R}.$ By continuity, signature stays positive from 0 to ± 1 . complementary series reps $\iff \{E(t) \mid t \in (-1, 1)\}.$ Unitary representations

Vogan

SL(2, ℝ)

Picture of G

The moral[s] of the picture

Reps appear in families, param by ν in cplx vec space \mathfrak{a}^* . Pure imag params $\longleftrightarrow L^2$ harm analysis \longleftrightarrow unitary. Each rep in family has distinguished irr piece $J(\nu)$. Difficult unitary reps \leftrightarrow deformation in real param Unitary representations

Vogan

SL(2, ℝ)

Principal series for $SL(2, \mathbb{R})$

Want to understand more explicitly analysis of repns $E(\nu)$ for $SL(2, \mathbb{R})$. Use different picture

 $I(\nu, \epsilon) = \{f : (\mathbb{R}^2 - 0) \to \mathbb{C} \mid f(tx) = |t|^{-\nu - 1} \operatorname{sgn}(t)^{\epsilon} f(x)\},$ functions homogeneous of degree $(-\nu - 1, \epsilon)$.

The -1 next to $-\nu$ makes later formulas simpler.

Lie algs easier than Lie gps \rightsquigarrow write $\mathfrak{sl}(2, \mathbb{R})$ action, basis $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$ $[D, E] = 2E, \quad [D, F] = -2F, \quad [E, F] = D.$

action on functions on \mathbb{R}^2 is by

$$D = -x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}, \quad E = -x_2 \frac{\partial}{\partial x_1}, \quad F = -x_1 \frac{\partial}{\partial x_2}.$$

Now want to restrict to homogeneous functions...

Unitary representations

Vogan

SL(2, \mathbb{R}) Picture of \widehat{G} Formulas for signatures

Principal series for $SL(2, \mathbb{R})$ (continued)

Study homog fns on $\mathbb{R}^2 - 0$ by restr to {($\cos \theta$, $\sin \theta$)}:

$$l(\nu, \epsilon) \simeq \{w \colon S^1 \to \mathbb{C} \mid w(-s) = (-1)^{\epsilon} w(s)\}, f(r, \theta) = r^{-\nu-1} w(\theta).$$

Compute Lie algebra action in polar coords using

$$\frac{\partial}{\partial x_1} = -x_2 \frac{\partial}{\partial \theta} + x_1 \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial x_2} = x_1 \frac{\partial}{\partial \theta} + x_2 \frac{\partial}{\partial r},$$
$$\frac{\partial}{\partial r} = -\nu - 1, \qquad x_1 = \cos \theta, \qquad x_2 = \sin \theta.$$

Plug into formulas on preceding slide: get

$$\rho^{\nu}(D) = 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (\cos^2\theta - \sin^2\theta)(\nu+1),$$

$$\rho^{\nu}(E) = \sin^2\theta\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu+1),$$

$$\rho^{\nu}(F) = -\cos^2\theta\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu+1).$$

Hard to make sense of. Clear: family of reps analytic (actually linear) in complex parameter ν .

Big idea: see how properties change as function of ν .

Unitary representations

Vogan

SL(2, \mathbb{R}) Picture of \widehat{G}

A more suitable basis

Have family $\rho^{\nu,\epsilon}$ of reps of $SL(2,\mathbb{R})$ defined on functions on S^1 of homogeneity (or parity) ϵ :

$$\begin{split} \rho^{\nu}(D) &= 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (\cos^2\theta - \sin^2\theta)(\nu+1),\\ \rho^{\nu}(E) &= \sin^2\theta\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu+1),\\ \rho^{\nu}(F) &= -\cos^2\theta\frac{\partial}{\partial\theta} + (\cos\theta\sin\theta)(\nu+1). \end{split}$$

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

Formulas for signatures

Problem: $\{D, E, F\}$ adapted to wt vectors for diagonal Cartan subalgebra; rep $\rho^{\nu,\epsilon}$ has no such wt vectors.

But rotation matrix E - F acts simply by $\partial/\partial \theta$.

Suggests new basis of the complexified Lie algebra:

$$H = -i(E - F), \quad X = \frac{1}{2}(D + iE + iF), \quad Y = \frac{1}{2}(D - iE - iF).$$

Same commutation relations [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H, but cplx conj is different: $\overline{H} = -H$, $\overline{X} = Y$.

$$\rho^{\nu}(H)=\frac{1}{i}\frac{\partial}{\partial\theta},$$

$$\rho^{\nu}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu + 1) \right), \qquad \rho^{\nu}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} - i(\nu + 1) \right).$$

Matrices for principal series

Have family $\rho^{\nu,\epsilon}$ of reps of $SL(2,\mathbb{R})$ defined on functions on S^1 of homogeneity (or parity) ϵ :

$$\rho^{\nu}(H) = \frac{1}{i} \frac{\partial}{\partial \theta},$$

$$\rho^{\nu}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i(\nu + 1) \right), \quad \rho^{\nu}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} - i(\nu + 1) \right)$$

These ops act simply on basis $w_m(\cos\theta, \sin\theta) = e^{im\theta}$:

$$\rho'(X)w_m = mw_m,$$

$$\rho''(X)w_m = \frac{1}{2}(m+\nu+1)w_{m+2}, \quad \rho''(Y)w_m = \frac{1}{2}(-m+\nu+1)w_{m-2}.$$

Suggests reasonable function space to consider:

 $\nu (1)$

 $I(\nu, \epsilon)^{\kappa}$ = fns homog of deg (ν, ϵ) , finite under rotation

 \simeq trig polys on \mathcal{S}^1 of parity ϵ

= span({ $w_m \mid m \equiv \epsilon \pmod{2}$ }).

Space $I(\nu, \epsilon)^{\kappa}$ has beautiful rep of \mathfrak{g} : irr for most ν , easy submods otherwise. Not preserved by rep of $G = SL(2, \mathbb{R})$.

Unitary representations

Vogan

SL(2, ℝ) Picture of 0

Invariant forms on principal series by hand

Write $I(\nu) = I(\nu, 0)$ = even fns homog of deg $-\nu - 1$

Need "signature" of invt Herm form on inf-diml space.

Basis {
$$w_m \mid m \in 2\mathbb{Z}$$
}, $w_m \leftrightarrow e^{im\theta}$, $H \cdot w_m = mw_m$,
 $X \cdot w_m = \frac{1}{2}(\nu + m + 1)w_{m+2}$, $Y \cdot w_m = \frac{1}{2}(\nu - (m - 1))w_{m-2}$.
Requirements for invariant Hermitian form \langle, \rangle_{ν} :

$$\langle H \cdot w, w' \rangle_{\nu} = \langle w, H \cdot w' \rangle_{\nu}, \qquad \langle X \cdot w, w' \rangle_{\nu} + \langle w, Y \cdot w' \rangle_{\nu} = 0.$$

Apply first requirement to $w = w_m$, $w' = w_{m'}$; get $m \langle w_m, w_{m'} \rangle_{\nu} = m' \langle w_m, w_{m'} \rangle_{\nu}$,

and therefore $\langle w_m, w_{m'} \rangle_{\nu} = 0$ for $m \neq m'$.

So only need $\langle w_m, w_m \rangle_{\nu}$ $(m \in 2\mathbb{Z})$. Second reqt says $((m+1) + \nu) \langle w_{m+2}, w_{m+2} \rangle_{\nu} = ((m+1) - \overline{\nu}) \langle w_m, w_m \rangle_{\nu}$. Easy solution: ν imaginary, all $\langle w_m, w_m \rangle_{\nu}$ equal

THM: For $\nu \in i\mathbb{R}$, $L^2(S^1/\{\pm 1\}) \rightsquigarrow I(\nu, 0)$ unitary rep of *G*.

Unitary representations

Vogan

SL(2, ℝ)

Invariant forms on $I(\nu)$ by hand, continued

Recall $I(\nu)$ = even functions on \mathbb{R}^2 , homog deg $-\nu - 1$; seeking invt Herm form \langle , \rangle_{ν} , specified by values on basis

$$w_m(r, heta)=r^{-
u-1}e^{im heta}\qquad(m\in 2\mathbb{Z}).$$

 $((m+1) + \nu)\langle w_{m+2}, w_{m+2} \rangle_{\nu} = ((m+1) - \overline{\nu})\langle w_m, w_m \rangle_{\nu}.$ Non-imag ν : nonzero (real) solns exist iff $\nu \in \mathbb{R}$:

$$((m+1)+\nu)\langle w_{m+2}, w_{m+2}\rangle_{\nu} = ((m+1)-\nu)\langle w_m, w_m\rangle_{\nu} \qquad (\nu \in \mathbb{R})$$

Natural to normalize $\langle w_0, w_0 \rangle_{\nu} = 1$, calculate

If $\nu \in (2m-1, 2m+1)$, sign alternates on $w_0, w_2, \ldots w_{2m}$.

pos def for $0 \le \nu < 1$; for $\nu > 1$, sign diff on w_0, w_2 .

\langle,\rangle_{ν} "meromorphic" in (real) ν

One *K*-type-at-a-time calc too complicated to generalize.

Unitary representations

Vogan

SL(2, \mathbb{R}) Picture of \widehat{G} Formulas for signatures

Deforming signatures for $SL(2, \mathbb{R})$

Here's representation-theoretic picture of deforming \langle,\rangle_{ν} .

- $\nu = 0$, I(0) " \subset " $L^{2}(\mathbb{H})$: unitary, signature positive.
- $0 < \nu < 1$, $I(\nu)$ irr: signature remains positive.
- $\nu = 1$: form finite pos on quotient $J(1) \iff SO(2)$ rep 0.
- $\nu = 1$: form has simple zero, pos residue on ker $(I(1) \rightarrow J(1))$.
- $1 < \nu < 3$, across zero at $\nu = 1$, signature changes.
- $\nu = 3$: form finite + on quotient J(3).
- ν = 3: form has simple zero, neg residue on ker($I(3) \rightarrow J(3)$).

 $3 < \nu < 5$, across zero at $\nu = 3$, signature changes. ETC.

Conclude: $J(\nu)$ unitary, $\nu \in [0, 1]$; nonunitary, $\nu \in (1, \infty)$.

	-6	-4	-2	0	+2	+4	+6		SO(2) reps
	+	+	+	+	+	+	+		u = 0
	+	+	+	+	+	+	+		0 < u < 1
• • •	+	+	+	+	+	+	+		u = 1
• • •	_	_	_	+	_	_	_	•••	1 < u < 3
• • •	-	-	_	+	_	_	_	•••	u= 3
	+	+	_	+	_	+	+		$3 < \nu < 5$

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

From $SL(2, \mathbb{R})$ to reductive G

Calculated signatures of invt Herm forms on spherical reps of $SL(2, \mathbb{R})$. Seek to do "same" for real reductive group. Need... List of irr reps = ctble union (cplx vec space)/(fin grp). reps for purely imag points " \subset " $L^2(G)$: unitary! Natural (orth) decomp of any irr (Herm) rep into fin-dim subspaces ~> define signature subspace-by-subspace. Signature at $\nu + i\tau$ by analytic cont $t\nu + i\tau$, $0 \le t \le 1$. Precisely: start w unitary (pos def) signature at t = 0; add contribs of sign changes from zeros/poles of odd order in $0 < t < 1 \rightsquigarrow$ signature at t = 1.

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

How to think about the unitary dual.

Know a lot about complex repns of Γ algebraically. Want to study <u>unitarity</u> of repns algebraically. Helpful to step back, ask what we know about the **set** of representations of Γ .

Short answer: it's a complex algebraic variety.

Then ask Felix Klein question: what natural automorphisms exist on set of representations?

Short answer: from **auts of** Γ and from **lin alg**.

Try to relate unitary structure to these natural things.

Short answer: they're related to \mathbb{R} -rational structure on complex variety of repns.

Unitary representations

Vogan

SL(2, ℝ

Picture of \widehat{G}

What's a set of irr reps look like?

Γ fin gen group, gens $S = {\sigma}$, relations $R = {\rho}$.

Relation is a noncomm word $\rho = \sigma_1^{m_1} \cdots \sigma_n^{m_n} (\sigma_i \in S, m_i \in \mathbb{Z}).$

N-dim rep $\pi \leftrightarrow N \times N$ matrices $\{\pi(\sigma) \mid \sigma \in S\}$ subject to alg rels $\pi(\rho) = I$ for $\rho \in R$: $\pi(\sigma_1)^{m_1} \pi(\sigma_2)^{m_2} \cdots \pi(\sigma_n)^{m_n} = I$.

Conclude: {*N*-dim reps of Γ } = aff alg var in $GL(N, \mathbb{C})^S$.

Reduc reps are closed $\bigcup_{0 \subseteq W \subseteq \mathbb{C}^N} \{\pi \mid \pi(\sigma)W = W \ (\sigma \in S)\}$, so irr *N*-dimls reps are open-in-affine alg variety.

Reps up to equiv: divide by $GL(N, \mathbb{C})$ conj; still more or less alg variety. (Possibly not *separated*, etc.)

Thm. Set $\widehat{\Gamma}_{fin}$ of equiv classes of fin-diml reps of fin-gen Γ is (approx) disjt union of complex alg vars.

Similar ideas apply to (\mathfrak{g}, K) -modules: reps containing fixed rep of K with mult N are N-diml modules for a fin-gen cplx algebra.

Thm. Set $G(\mathbb{R})$ of equiv classes of irr (\mathfrak{g}, K) -mods is (approx) disjt union of complex alg vars.

Langlands identifies alg vars as $\mathfrak{a}^*/W^{\delta}$.

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

Group automorphisms acting on reps

Γ fin gen group, τ ∈ Aut(Γ), (π, V) rep of Γ → (π^τ, V)new rep on same space, $π^τ(γ) =_{def} π(τ(γ))$. Gives (right) action of Aut(*G*) on Γ. Inner auts act trivially: linear isom $π(γ_0)$ intertwines πand $π^{Int(γ_0)}$ since $π^{Int(γ_0)}(γ)π(γ_0) = π(γ_0)π(γ)$. (Easy) Thm. Out(Γ) =_{def} Aut(Γ) / Int(Γ) acts by algebraic variety automorphisms on $Γ_{fin}$. (Easy) Thm. Out(*G*(ℝ)) acts by algebraic variety

automorphisms on $\widehat{G(\mathbb{R})}$.

Main technical point: each aut of $G(\mathbb{R})$ can be modified by inner aut so as to preserve K; so get action on (\mathfrak{g}, K) -modules. Unitary representations

Vogan

SL(2, ℝ

Picture of \widehat{G}

Bilinear forms and dual spaces

V cplx vec space (or (\mathfrak{g}, K) -module).

Dual of $V V^* = \{\xi : V \to \mathbb{C} \text{ additive } | \xi(zv) = z\xi(v)\}$

(*V* alg *K*-rep \rightsquigarrow require ξ *K*-finite; *V* topolog. \rightsquigarrow require ξ cont.)

 $V = \mathbb{C}^N N \times 1$ column vectors $\rightsquigarrow V^* = \mathbb{C}^N, \, \xi(v) = {}^t \xi v.$

Bilinear pairings between V and W

 $\begin{aligned} \mathsf{Bil}(V,W) &= \{\langle,\rangle \colon V \times W \to \mathbb{C}, \text{ lin in } V, \text{ lin in } W \} \\ \mathsf{Bil}(V,W) &\simeq \mathsf{Hom}(V,W^*), \quad \langle v,w \rangle_T = (Tv)(w). \end{aligned}$

Exchange vars in forms to get linear isom

 $\mathsf{Bil}(V,W)\simeq\mathsf{Bil}(W,V).$

Corr lin isom on maps is transpose:

$$\operatorname{Hom}(V, W^*) \simeq \operatorname{Hom}(W, V^*), \quad (T^t w)(v) = (Tv)(w).$$

$$(TS)^t = S^t T^t, \quad (zT)^t = z(T^t).$$

Bil form \langle , \rangle_T on $V \iff T \in \text{Hom}(V, V^*)$ orthogonal if $\langle v, v' \rangle_T = \langle v', v \rangle_T \iff T^t = T.$

Bil form \langle, \rangle_T on $V \iff T \in \text{Hom}(V, V^*)$ symplectic if $\langle v, v' \rangle_S = -\langle v', v \rangle_S \iff S^t = -S.$

Unitary representations

Vogan

SL(2, ℝ

Picture of \widehat{G}

Defining contragredient repn

 (π, V) (g, K)-module; had (K-finite) dual space V^{*} of V. Want to construct functor

cplx linear rep $(\pi, V) \rightsquigarrow$ cplx linear rep (π^*, V^*)

using transpose map of operators.

Because transpose is antiaut REQUIRES twisting by antiaut of (g, K).

 $X \mapsto -X$ is Lie alg antiaut, and $k \mapsto k^{-1}$ group antiaut

Define contragredient (g, K)-module π^* on V^* ,

 $\pi^*(Z) \cdot \xi =_{\mathsf{def}} [\pi(-Z)]^t \cdot \xi \quad (Z \in \mathfrak{g}, \ \xi \in V^*),$

 $\pi^*(k) \cdot \xi =_{\mathsf{def}} [\pi(k^{-1})]^t \cdot \xi \quad (k \in K, \ \xi \in V^*).$

Thm. If Γ is a fin gen group, passage to contragredient is an involutive automorphism of the algebraic variety $\widehat{\Gamma}$.

Thm. If $G(\mathbb{R})$ real reductive, passage to contragredient is an involutive automorphism of the algebraic variety $\widehat{G(\mathbb{R})}$. Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

Invariant bilinear forms

 $V = (\mathfrak{g}, K)$ -module, τ involutive aut of (\mathfrak{g}, K) .

An invt bilinear form on V is bilinear pairing \langle , \rangle such that

$$\langle Z \cdot v, w \rangle = \langle v, -Z \cdot w \rangle, \quad \langle k \cdot v, w \rangle = \langle v, k^{-1} \cdot w \rangle$$

$$\langle Z \in \mathfrak{g}; k \in K; v, w \in V \rangle.$$

Proposition

Invt bilinear form on $V \leftrightarrow (\mathfrak{g}, K)$ -map $T \colon V \to V^*$: $\langle v, w \rangle_T = (Tv)(w).$

Form is orthogonal $\iff T^t = T$. Form is symplectic $\iff T^t = -T$.

Assume from now on V is irreducible. $V \simeq V^* \iff \exists$ invt bilinear form on V Invt bil form on V unique up to real scalar mult.; non-deg whenever nonzero. Invt bil form must be either orthogonal or symplectic.

 $T \to T^* \iff$ involution of cplx line $\operatorname{Hom}_{\mathfrak{g},\mathcal{K}}(V,V^*)$.

Existence of invt bil form \iff compute $V \mapsto V^*$ on $\widehat{G(\mathbb{R})}$.

Deciding orth/symp usually somewhat harder.

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

Hermitian forms and dual spaces

V cplx vec space (or (\mathfrak{g}, K) -module).

Herm dual of $V V^h = \{\xi : V \to \mathbb{C} \text{ additive } | \xi(zv) = \overline{z}\xi(v)\}$

(*V* alg *K*-rep \rightsquigarrow require ξ *K*-finite; *V* topolog. \rightsquigarrow require ξ cont.)

 $V = \mathbb{C}^N N \times 1$ column vectors $\rightsquigarrow V^h = \mathbb{C}^N, \xi(v) = {}^t \overline{\xi} v.$ Sesquilinear pairings between V and W

 $\mathsf{Sesq}(V,W) = \{\langle,\rangle \colon V \times W \to \mathbb{C}, \text{lin in } V, \text{ conj-lin in } W\}$

Sesq(V, W) \simeq Hom(V, W^h), $\langle v, w \rangle_T = (Tv)(w)$. Cplx conj of forms is (conj linear) isom

 $\text{Sesq}(V, W) \simeq \text{Sesq}(W, V).$

Corr (conj lin) isom on maps is Hermitian transpose:

 $\operatorname{Hom}(V, W^h) \simeq \operatorname{Hom}(W, V^h), \quad (T^h w)(v) = \overline{(Tv)(w)}.$

 $(TS)^{h} = S^{h}T^{h}, \qquad (zT)^{h} = \overline{z}(T^{h}).$ Sesq form \langle, \rangle_{T} on $V \iff T \in \text{Hom}(V, V^{h})$) Hermitian if $\langle v, v' \rangle_{T} = \overline{\langle v', v \rangle}_{T} \iff T^{h} = T.$ Could define "skew Hermitian" by analogy with orth/symp bil forms. Exercise: why is this boring?

Unitary representations

Vogan

SL(2, ℝ

Picture of \widehat{G}

Defining Herm dual repn(s)

 (π, V) (g, K)-module; Recall Herm dual V^h of V. Want to construct functor

cplx linear rep $(\pi, V) \rightsquigarrow$ cplx linear rep (π^h, V^h)

using Hermitian transpose map of operators.

Definition **REQUIRES** twisting by conj lin antiaut of g, gp antiaut of *K*.

Since g equipped with a real form \mathfrak{g}_0 , have natural conj-lin aut $\sigma_0(X + iY) = X - iY$ ($X, Y \in \mathfrak{g}_0$). Also $X \mapsto -X$ is Lie alg antiaut, and $k \mapsto k^{-1}$ gp antiaut.

Define Hermitian dual (\mathfrak{g}, K) -module π^h on V^h ,

 $\begin{aligned} \pi^{h}(Z) \cdot \xi &=_{\mathsf{def}} \left[\pi(-\sigma_{0}(Z)) \right]^{h} \cdot \xi \quad (Z \in \mathfrak{g}, \ \xi \in V^{h}), \\ \pi^{h}(k) \cdot \xi &=_{\mathsf{def}} \left[\pi(k^{-1}) \right]^{h} \cdot \xi \qquad (k \in K, \ \xi \in V^{h}). \end{aligned}$

Need also a variant: suppose τ inv aut of $G(\mathbb{R})$ preserving K. Define τ -herm dual (\mathfrak{g}, K) -module $\pi^{h,\tau}$ on V^h ,

$$\pi^{h, au}(X)\cdot\xi = [\pi(- au(\sigma_0(Z)))]^h\cdot\xi \quad (Z\in\mathfrak{g},\ \xi\in V^h), \ \pi^{h, au}(k)\cdot\xi = [\pi(au(k)^{-1})]^h\cdot\xi \qquad (k\in K,\ \xi\in V^h).$$

Unitary representations

Vogan

SL(2, ℝ

Picture of \widehat{G}

Invariant Hermitian forms

For τ an inv aut of $(G(\mathbb{R}), K)$, defined τ -herm dual

$$\begin{aligned} \pi^{h,\tau}(X)\cdot\xi &= [\pi(-\tau(\sigma_0(Z)))]^h\cdot\xi \quad (Z\in\mathfrak{g},\ \xi\in V^h),\\ \pi^{h,\tau}(k)\cdot\xi &= [\pi(\tau(k)^{-1})]^h\cdot\xi \qquad (k\in K,\ \xi\in V^h). \end{aligned}$$

Thm. τ -herm dual is Galois for \mathbb{R} -struc on alg var $\widehat{G}(\mathbb{R})$. Reason: conj transpose is real Galois action on $GL(N, \mathbb{C})$.

A τ -invt sesq form on $(\mathfrak{g}, \mathcal{K})$ -module \mathcal{V} is pairing \langle, \rangle^{τ} with

$$\langle Z \cdot v, w \rangle = \langle v, -\tau(\sigma_0(Z)) \cdot w \rangle, \quad \langle k \cdot v, w \rangle = \langle v, \tau(k^{-1}) \cdot w \rangle (Z \in \mathfrak{g}; k \in K; v, w \in V).$$

Prop. τ -invt sesq form on $V \iff (\mathfrak{g}, K)$ -map $T \colon V \to V^{h,\tau}$:

$$\langle \mathbf{v}, \mathbf{w} \rangle_T = (T\mathbf{v})(\mathbf{w}).$$

Form is Hermitian $\iff T^h = T$.

Assume from now on V is irreducible.

 $V \simeq V^{h,\tau} \iff \exists \tau \text{-invt sesq} \iff \exists \tau \text{-invt Herm} \\ \tau \text{-invt Herm form on } V \text{ unique up to real scalar mult.}$

 $T \to T^h \iff \text{real form of cplx line Hom}_{\mathfrak{g},\mathcal{K}}(V,V^{h,\tau}).$

Deciding existence of τ -invt Hermitian form amounts to computing the involution $V \mapsto V^{h,\tau}$ on $\widehat{G(\mathbb{R})}$; easy.

Unitary representations

Vogan

SL(2, ℝ

Picture of \widehat{G}

Hermitian forms and unitary reps

 $G(\mathbb{R})$ real reductive, τ inv aut preserving K...

 π rep of $G(\mathbb{R})$ on complete loc cvx V_{π} , V_{π}^{h} Hermitian dual space. Hermitian dual reps are

 $\pi^h(g) = \pi(g^{-1})^h, \qquad \pi^{h,\tau}(g) = \pi(\tau(g^{-1})^h)$

Def. A τ -invariant form is continuous Hermitian pairing $\langle,\rangle_{\pi}^{\tau} \colon V_{\pi} \times V_{\pi} \to \mathbb{C}, \quad \langle \pi(g)v, w \rangle_{\pi}^{\tau} = \langle v, \pi(\tau(g^{-1}))w \rangle_{\pi}^{\tau}.$ Equivalently: $T \in \operatorname{Hom}_{G(\mathbb{R})}(V_{\pi}, V_{\pi}^{h,\tau}), \ T = T^{h}.$

Because infl equiv easier than topol equiv, $V_{\pi} \simeq V_{\pi}^{h,\tau} \implies$ existence of a continuous map $V_{\pi} \rightarrow V_{\pi}^{h}$. So invt forms may not exist on topological reps even if they exist on (\mathfrak{g}, K)-modules.

Thm. (Harish-Chandra) Passage to *K*-finite vectors defines bijection from the unitary dual $\widehat{G(\mathbb{R})}_u$ onto equivalence classes of irreducible (\mathfrak{g}, K) modules admitting a pos def invt Hermitian form.

Despite warning, get perfect alg param of $\widehat{G}(\mathbb{R})_u$.

Unitary representations

Vogan

SL(2, ℝ)

Picture of \widehat{G}

What are we planning to do?

Know: irr (\mathfrak{g}, K) -module π unitary \iff (a) π admits invt herm form, and (b) form is positive definite.

Know: π has invt herm form $\iff \pi \simeq \pi^h$: fixed by herm dual involution of $\widehat{G(\mathbb{R})}$. Easy to list these π .

If $\pi \simeq \pi^h$, want to know: is corr form \langle, \rangle_{π} pos def?

Method: compute the signature of \langle , \rangle_{π} . Meaning?

SIGNATURE: (π, V_{π}) (\mathfrak{g}, K) -module with form \langle, \rangle_{π} .

$$egin{aligned} & V_\pi = \sum_{(\delta, E_\delta) \in \widehat{\mathcal{K}}} E_\delta \otimes V^\delta_\pi, \qquad V^\delta_\pi =_{\mathsf{def}} \mathsf{Hom}_\mathcal{K}(E_\delta, V_\pi) \ & \langle,
angle_\pi = \sum_\delta \langle,
angle_\delta \otimes \langle,
angle^\delta_\pi \end{aligned}$$

Def. Signature of \langle , \rangle_{π} at δ is sig $(p_{\pi}(\delta), q_{\pi}(\delta), z_{\pi}(\delta))$ of $\langle , \rangle_{\pi}^{\delta}$ on mult space V_{π}^{δ} . Signature of \langle , \rangle_{π} is $(p_{\pi}, q_{\pi}, z_{\pi})$, three functions $\widehat{K} \to \mathbb{N}$.

Note $p_{\pi} + q_{\pi} + z_{\pi} = m_{\pi}$, mult fn for reps of *K* in π .

Unitary representations

Vogan

 $SL(2, \mathbb{R})$ Picture of \widehat{G}

What are we planning to do (continued)?

Invt form \langle , \rangle_{π} on $V_{\pi} \rightsquigarrow$ signature: $(p_{\pi}, q_{\pi}, z_{\pi})$: $\widehat{K} \rightarrow \mathbb{N}^3$.

Form semidefinite \iff one of p_{π} , q_{π} is zero.

What's it mean to compute p_{π} ? Domain \widehat{K} is infinite, so tabulating won't work.

Answer: write p_{π} as finite linear combination

$$p_{\pi} = \sum_{i \in I} a_{\pi}^{i} m_{i} \qquad (a_{i} \in \mathbb{Z}, m_{i} \colon \widehat{K} \to \mathbb{Z})$$

with $\{m_i \mid i \in I\}$ lin ind set of "standard" functions.

COMPUTE means compute the finitely many integers a_{π}^{i} .

Checking $p_{\pi} = 0$ means checking finitely many ints are all zero.

If $q_{\pi} = \sum_{i} b_{\pi}^{i} m_{i}$, then realex writes signature as $\sum_{i} (a_{\pi}^{i} + sb_{\pi}^{i})m_{i}.$ Definite means either all $a_{\pi}^{i} = 0$ or all $b_{\pi}^{i} = 0$. Unitary representations

Vogan

 $SL(2, \mathbb{R})$ Picture of \widehat{G}

The "standard multiplicity functions."

Need basis $\{m_i\}$ of mult fns $m_i : \widehat{K} \to \mathbb{Z}$. Obvious choice: delta functions $m_{\delta}(\mu) = \begin{cases} 1 & (\mu = \delta) \\ 0 & (\mu \neq \delta) \end{cases}$.

Difficulty: need inf many m_{δ} to write mult for inf-diml π .

Pretty obvious choice: multiplicity functions for standard representations. Case of $SL(2, \mathbb{R})$:

$$m_{l(\nu,\epsilon)}(j) = \begin{cases} 1 & j \equiv \epsilon \pmod{2} \\ 0 & j \not\equiv \epsilon \pmod{2}. \end{cases}$$
$$m_{(L)DS_{\pm}(n)}(j) = \begin{cases} 1 & j \equiv \pm(n+1), \pm(n+3), \cdots \\ 0 & \text{otherwise} \end{cases}$$

Difficulty: not linearly independent: $m_{l(\nu,\epsilon)} - m_{l(\nu',\epsilon)} = 0$, $m_{LDS_+(0)} + m_{LDS_-(0)} - m_{l(\nu,odd)} = 0$.

Right choice: mult fns for $I = \{$ irr temp, real inf char $\}$.

Thm. The mult fns $\{m_i \mid i \in I\}$ are basis for signature and mult fns of finite-length (\mathfrak{g}, K) -mods. π_i has unique lowest K-type δ_i with mult=1; gives bijection $I \leftrightarrow \widehat{K}$.

Unitary representations

Vogan

 $SL(2, \mathbb{R})$ Picture of \widehat{G}

Character formulas

Can decompose Verma module into irreducibles

$$V(\lambda) = \sum_{\mu \leq \lambda} m_{\mu,\lambda} L(\mu) \qquad (m_{\mu,\lambda} \in \mathbb{N})$$

or write a formal character for an irreducible

$$L(\lambda) = \sum_{\mu \leq \lambda} M_{\mu,\lambda} V(\mu) \qquad (M_{\mu,\lambda} \in \mathbb{Z})$$

Can decompose standard HC module into irreducibles

$$I(x) = \sum_{y \leq x} m_{y,x} J(y) \qquad (m_{y,x} \in \mathbb{N})$$

or write a formal character for an irreducible

$$J(x) = \sum_{y \le x} M_{y,x} I(y) \qquad (M_{y,x} \in \mathbb{Z})$$

Matrices *m* and *M* upper triang, ones on diag, mutual inverses. Entries are KL polynomials eval at 1:

$$m_{y,x} = Q_{y,x}(1), \quad M_{y,x} = \pm P_{y,x}(1) \quad (Q_{y,x}, P_{y,x} \in \mathbb{N}[q]).$$

Unitary representations

Vogan

 $SL(2, \mathbb{R})$ Picture of \widehat{G}

Character formulas for $SL(2, \mathbb{R})$

Rewrite formulas from Jeff's talk in general *G* notation... Had $I(\nu, \epsilon) \rightarrow J(\nu, \epsilon)$; and disc ser $I_{\pm}(n) = DS_{\pm}(n)$ $(n \ge 1)$

> $I_{+}(n)|_{SO(2)} = n + 1, n + 3, n + 5 \cdots$ $I_{-}(n)|_{SO(2)} = -n - 1, -n - 3, -n - 5 \cdots$

Discrete series reps are irr: $I_{\pm}(n) = J_{\pm}(n)$ Decompose principal series (*m* pos int)

 $I(m, (-1)^{m+1}) = J(m, (-1)^{m+1}) + J_{+}(m) + J_{-}(m).$

Character formula

 $J(m, (-1)^{m+1}) = I(m, (-1)^{m+1}) - I_{+}(m) - I_{-}(m).$ $\pm P_{x,y} \qquad I(m, (-1)^{m+1}) \quad I_{+}(m) \quad I_{-}(m)$ $J(m, (-1)^{m+1}) \qquad 1 \qquad -1 \qquad -1$ $J_{+}(m) \qquad 0 \qquad 1 \qquad 0$ $J_{-}(m) \qquad 0 \qquad 0 \qquad 1$

Unitary representations

Vogan

 $SL(2, \mathbb{R})$ Picture of \widehat{G}