Unitary representations of reductive Lie groups

David Vogan

Workshop on Unitary Representations
University of Utah
July 1-5, 2013

Outline

$S L(2, \mathbb{R})$

What's a (unitary) dual look like?

Computing signatures of Hermitian forms

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X.
Step 1. Attach to X Hilbert space \mathcal{H} (e.g. $\left.L^{2}(X)\right)$. Questions about $X \rightsquigarrow$ questions about \mathcal{H}.
Step 2. Find finest G-eqvt decomp $\mathcal{H}=\oplus_{\alpha} \mathcal{H}_{\alpha}$. Questions about $\mathcal{H} \rightsquigarrow$ questions about each \mathcal{H}_{α}. Each \mathcal{H}_{α} is irreducible unitary representation of G : indecomposable action of G on a Hilbert space. Step 3. Understand $\widehat{G}_{u}=$ all irreducible unitary representations of G : unitary dual problem.
Step 4. Answers about irr reps \rightsquigarrow answers about X.
This week: Step 3 for reductive Lie group G.

Example: $S L(2, \mathbb{R})$ on the upper half plane

$S L(2, \mathbb{R})$ acts on upper half plane $\mathbb{H} ; \Delta_{\mathbb{H}}=$ Laplacian. \rightsquigarrow repn $E(\nu)$ on $\nu^{2}-1$ eigenspace of Laplacian $\Delta_{\mathbb{H}}$ $\nu \in \mathbb{C}$ parametrizes line bdle on circle where bdry values live. Most $E(\nu)$ irreducible; always unique irr subrep $J(\nu) \subset E(\nu)$.

Spectrum of self-adjt $\Delta_{\mathbb{H}}$ on $L^{2}(\mathbb{H})$ is $(-\infty,-1]$. \rightsquigarrow unitary principal series $\leadsto\{E(\nu) \mid \nu \in i \mathbb{R}\}$.
$E(\pm 1)=[$ harm fns on $\mathbb{H}] \supset$ [const fns on $\mathbb{H}]=J(\pm 1)=$ triv rep.
$J(\nu)$ is Herm. $\Leftrightarrow J(\nu) \simeq J(-\bar{\nu}) \Leftrightarrow \nu \in i \mathbb{R} \cup \mathbb{R}$.
By continuity, signature stays positive from 0 to ± 1.
complementary series reps $\nrightarrow\{E(t) \mid t \in(-1,1)\}$.

The moral[s] of the picture

Spherical unitary dual for $S L(2, \mathbb{R}) \leftrightarrow \mathbb{C} / \pm 1$

$S L(2, \mathbb{R})$	$G(\mathbb{R})$	Will deform Herm forms
$E(\nu), \nu \in \mathbb{C}$	$I(\nu), \nu \in \mathfrak{a}_{\mathbb{C}}^{*}$	unitary axis $\mathfrak{a}_{\mathbb{R}}^{*} \rightsquigarrow$
$E(\nu), \nu \in i \mathbb{R}$	$I(\nu), \nu \in i \mathfrak{a}_{\mathbb{R}}^{*}$	real axis $\mathfrak{a}_{\mathbb{R}}^{*}$.
$J(\nu) \hookrightarrow E(\nu)$	$I(\nu) \rightarrow J(\nu)$	Deformed form pos \rightsquigarrow
$[-1,1]$	polytope in $\mathfrak{a}_{\mathbb{R}}^{*}$	unitary rep.

Reps appear in families, param by ν in cplx vec space \mathfrak{a}^{*}.
Pure imag params $\leadsto m L^{2}$ harm analysis \leadsto unitary.
Each rep in family has distinguished irr piece $J(\nu)$.
Difficult unitary reps \leftrightarrow deformation in real param

Principal series for $S L(2, \mathbb{R})$

Want to understand more explicitly analysis of repns $E(\nu)$ for $S L(2, \mathbb{R})$. Use different picture

$$
I(\nu, \epsilon)=\left\{f:\left(\mathbb{R}^{2}-0\right) \rightarrow \mathbb{C}\left|f(t x)=|t|^{-\nu-1} \operatorname{sgn}(t)^{\epsilon} f(x)\right\}\right.
$$

functions homogeneous of degree $(-\nu-1, \epsilon)$.
The -1 next to $-\nu$ makes later formulas simpler.
Lie algs easier than Lie gps \rightsquigarrow write $\mathfrak{s l}(2, \mathbb{R})$ action, basis

$$
\begin{gathered}
D=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
{[D, E]=2 E, \quad[D, F]=-2 F, \quad[E, F]=D .}
\end{gathered}
$$

action on functions on \mathbb{R}^{2} is by

$$
D=-x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}, \quad E=-x_{2} \frac{\partial}{\partial x_{1}}, \quad F=-x_{1} \frac{\partial}{\partial x_{2}}
$$

Now want to restrict to homogeneous functions...

Principal series for $S L(2, \mathbb{R})$ (continued)

Study homog fns on $\mathbb{R}^{2}-0$ by restr to $\{(\cos \theta, \sin \theta)\}$:
$I(\nu, \epsilon) \simeq\left\{w: S^{1} \rightarrow \mathbb{C} \mid w(-s)=(-1)^{\epsilon} w(s)\right\}, f(r, \theta)=r^{-\nu-1} w(\theta)$.
Compute Lie algebra action in polar coords using

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} & =-x_{2} \frac{\partial}{\partial \theta}+x_{1} \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial x_{2}}=x_{1} \frac{\partial}{\partial \theta}+x_{2} \frac{\partial}{\partial r} \\
\frac{\partial}{\partial r} & =-\nu-1, \quad x_{1}=\cos \theta, \quad x_{2}=\sin \theta
\end{aligned}
$$

Plug into formulas on preceding slide: get

$$
\begin{aligned}
\rho^{\nu}(D) & =2 \sin \theta \cos \theta \frac{\partial}{\partial \theta}+\left(\cos ^{2} \theta-\sin ^{2} \theta\right)(\nu+1) \\
\rho^{\nu}(E) & =\sin ^{2} \theta \frac{\partial}{\partial \theta}+(\cos \theta \sin \theta)(\nu+1) \\
\rho^{\nu}(F) & =-\cos ^{2} \theta \frac{\partial}{\partial \theta}+(\cos \theta \sin \theta)(\nu+1)
\end{aligned}
$$

Hard to make sense of. Clear: family of reps analytic (actually linear) in complex parameter ν.

Big idea: see how properties change as function of ν.

A more suitable basis

Have family $\rho^{\nu, \epsilon}$ of reps of $S L(2, \mathbb{R})$ defined on functions on S^{1} of homogeneity (or parity) ϵ :

$$
\begin{aligned}
& \rho^{\nu}(D)=2 \sin \theta \cos \theta \frac{\partial}{\partial \theta}+\left(\cos ^{2} \theta-\sin ^{2} \theta\right)(\nu+1) \\
& \rho^{\nu}(E)=\sin ^{2} \theta \frac{\partial}{\partial \theta}+(\cos \theta \sin \theta)(\nu+1) \\
& \rho^{\nu}(F)=-\cos ^{2} \theta \frac{\partial}{\partial \theta}+(\cos \theta \sin \theta)(\nu+1)
\end{aligned}
$$

Problem: $\{D, E, F\}$ adapted to wt vectors for diagonal Cartan subalgebra; rep $\rho^{\nu, \epsilon}$ has no such wt vectors.
But rotation matrix $E-F$ acts simply by $\partial / \partial \theta$.
Suggests new basis of the complexified Lie algebra:

$$
H=-i(E-F), \quad X=\frac{1}{2}(D+i E+i F), \quad Y=\frac{1}{2}(D-i E-i F)
$$

Same commutation relations $[H, X]=2 X,[H, Y]=-2 Y$, $[X, Y]=H$, but cplx conj is different: $\bar{H}=-H, \bar{X}=Y$.

$$
\begin{gathered}
\rho^{\nu}(H)=\frac{1}{i} \frac{\partial}{\partial \theta} \\
\rho^{\nu}(X)=\frac{e^{2 i \theta}}{2 i}\left(\frac{\partial}{\partial \theta}+i(\nu+1)\right), \quad \rho^{\nu}(Y)=\frac{-e^{-2 i \theta}}{2 i}\left(\frac{\partial}{\partial \theta}-i(\nu+1)\right) .
\end{gathered}
$$

Matrices for principal series

Have family $\rho^{\nu, \epsilon}$ of reps of $S L(2, \mathbb{R})$ defined on functions on S^{1} of homogeneity (or parity) ϵ :

$$
\begin{gathered}
\rho^{\nu}(H)=\frac{1}{i} \frac{\partial}{\partial \theta} \\
\rho^{\nu}(X)=\frac{e^{2 i \theta}}{2 i}\left(\frac{\partial}{\partial \theta}+i(\nu+1)\right), \quad \rho^{\nu}(Y)=\frac{-e^{-2 i \theta}}{2 i}\left(\frac{\partial}{\partial \theta}-i(\nu+1)\right) .
\end{gathered}
$$

These ops act simply on basis $w_{m}(\cos \theta, \sin \theta)=e^{i m \theta}$:

$$
\begin{gathered}
\rho^{\nu}(H) w_{m}=m w_{m} \\
\rho^{\nu}(X) w_{m}=\frac{1}{2}(m+\nu+1) w_{m+2}, \quad \rho^{\nu}(Y) w_{m}=\frac{1}{2}(-m+\nu+1) w_{m-2}
\end{gathered}
$$

Suggests reasonable function space to consider:

$$
\begin{aligned}
I(\nu, \epsilon)^{K} & =\text { fns homog of } \operatorname{deg}(\nu, \epsilon), \text { finite under rotation } \\
& \simeq \text { trig polys on } S^{1} \text { of parity } \epsilon \\
& =\operatorname{span}\left(\left\{w_{m} \mid m \equiv \epsilon \quad(\bmod 2)\right\}\right)
\end{aligned}
$$

Space $I(\nu, \epsilon)^{K}$ has beautiful rep of \mathfrak{g} : irr for most ν, easy submods otherwise. Not preserved by rep of $G=S L(2, \mathbb{R})$.

Invariant forms on principal series by hand

Write $I(\nu)=I(\nu, 0)=$ even fns homog of deg $-\nu-1$
Need "signature" of invt Herm form on inf-diml space.
Basis $\left\{w_{m} \mid m \in \mathbb{Z}\right\}, w_{m} \leadsto e^{i m \theta}, H \cdot w_{m}=m w_{m}$,

$$
X \cdot w_{m}=\frac{1}{2}(\nu+m+1) w_{m+2}, \quad Y \cdot w_{m}=\frac{1}{2}(\nu-(m-1)) w_{m-2} .
$$

Requirements for invariant Hermitian form \langle,\rangle_{ν} : $\left\langle H \cdot w, w^{\prime}\right\rangle_{\nu}=\left\langle w, H \cdot w^{\prime}\right\rangle_{\nu}, \quad\left\langle X \cdot w, w^{\prime}\right\rangle_{\nu}+\left\langle w, Y \cdot w^{\prime}\right\rangle_{\nu}=0$.

Apply first requirement to $w=w_{m}, w^{\prime}=w_{m^{\prime}}$; get

$$
m\left\langle w_{m}, w_{m^{\prime}}\right\rangle_{\nu}=m^{\prime}\left\langle w_{m}, w_{m^{\prime}}\right\rangle_{\nu}
$$

and therefore $\left\langle w_{m}, w_{m^{\prime}}\right\rangle_{\nu}=0$ for $m \neq m^{\prime}$.
So only need $\left\langle w_{m}, w_{m}\right\rangle_{\nu} \quad(m \in 2 \mathbb{Z})$. Second reqt says

$$
((m+1)+\nu)\left\langle w_{m+2}, w_{m+2}\right\rangle_{\nu}=((m+1)-\bar{\nu})\left\langle w_{m}, w_{m}\right\rangle_{\nu} .
$$

Easy solution: ν imaginary, all $\left\langle w_{m}, w_{m}\right\rangle_{\nu}$ equal
THM: For $\nu \in i \mathbb{R}, L^{2}\left(S^{1} /\{ \pm 1\}\right) \rightsquigarrow I(\nu, 0)$ unitary rep of G.

Invariant forms on $I(\nu)$ by hand, continued

Recall $I(\nu)=$ even functions on \mathbb{R}^{2}, homog deg $-\nu-1$; seeking invt Herm form \langle,\rangle_{ν}, specified by values on basis

$$
\begin{gathered}
w_{m}(r, \theta)=r^{-\nu-1} e^{i m \theta} \quad(m \in 2 \mathbb{Z}) \\
((m+1)+\nu)\left\langle w_{m+2}, w_{m+2}\right\rangle_{\nu}=((m+1)-\bar{\nu})\left\langle w_{m}, w_{m}\right\rangle_{\nu}
\end{gathered}
$$

Non-imag ν : nonzero (real) solns exist iff $\nu \in \mathbb{R}$:

$$
((m+1)+\nu)\left\langle w_{m+2}, w_{m+2}\right\rangle_{\nu}=((m+1)-\nu)\left\langle w_{m}, w_{m}\right\rangle_{\nu} \quad(\nu \in \mathbb{R})
$$

Natural to normalize $\left\langle w_{0}, w_{0}\right\rangle_{\nu}=1$, calculate

$$
\begin{aligned}
\left\langle w_{ \pm 2}, w_{ \pm 2}\right\rangle_{\nu} & =\frac{(1-\nu)}{(1+\nu)}, \quad\left\langle w_{ \pm 4}, w_{ \pm 4}\right\rangle_{\nu}=\frac{(1-\nu)(3-\nu)}{(1+\nu)(3+\nu)} \\
& \vdots \\
\left\langle w_{ \pm 2 m}, w_{ \pm 2 m}\right\rangle_{\nu} & =\frac{(1-\nu)(3-\nu) \cdots(2 m-1-\nu)}{(1+\nu)(3+\nu) \cdots(2 m-1+\nu)}
\end{aligned}
$$

If $\nu \in(2 m-1,2 m+1)$, sign alternates on $w_{0}, w_{2}, \ldots w_{2 m}$. pos def for $0 \leq \nu<1$; for $\nu>1$, sign diff on w_{0}, w_{2}.
\langle,\rangle_{ν} "meromorphic" in (real) ν
One K-type-at-a-time calc too complicated to generalize.

Deforming signatures for $S L(2, \mathbb{R})$

Here's representation-theoretic picture of deforming \langle,\rangle_{ν}.
$\nu=0, I(0)$ " \subset " $L^{2}(\mathbb{H})$: unitary, signature positive.
$0<\nu<1, I(\nu)$ irr: signature remains positive.
$\nu=1$: form finite pos on quotient $J(1) \leftrightarrow S O(2)$ rep 0.
$\nu=1$: form has simple zero, pos residue on $\operatorname{ker}(I(1) \rightarrow J(1))$.
$1<\nu<3$, across zero at $\nu=1$, signature changes.
$\nu=3$: form finite -+- on quotient $J(3)$.
$\nu=3$: form has simple zero, neg residue on $\operatorname{ker}(I(3) \rightarrow J(3))$.
$3<\nu<5$, across zero at $\nu=3$, signature changes. ETC.
Conclude: $J(\nu)$ unitary, $\nu \in[0,1]$; nonunitary, $\nu \in(1, \infty)$.

\cdots	-6	-4	-2	0	+2	+4	+6	\cdots	SO(2) reps
\cdots	+	+	+	+	+	+	+	\cdots	$\nu=0$
\cdots	+	+	+	+	+	+	+	\cdots	$0<\nu<1$
\cdots	+	+	+	+	+	+	+	\cdots	$\nu=1$
\cdots	-	-	-	+	-	-	-	\cdots	$1<\nu<3$
\cdots	-	-	-	+	-	-	-	\cdots	$\nu=3$
\cdots	+	+	-	+	-	+	+	\cdots	$3<\nu<5$

From $S L(2, \mathbb{R})$ to reductive G

Calculated signatures of invt Herm forms on spherical reps of $S L(2, \mathbb{R})$.
Seek to do "same" for real reductive group. Need. . .
List of irr reps = ctble union (cplx vec space)/(fin grp). reps for purely imag points " \subset " $L^{2}(G)$: unitary!
Natural (orth) decomp of any irr (Herm) rep into fin-diml subspaces \rightsquigarrow define signature subspace-by-subspace.
Signature at $\nu+i \tau$ by analytic cont $t \nu+i \tau, 0 \leq t \leq 1$.
Precisely: start w unitary (pos def) signature at $t=0$; add contribs of sign changes from zeros/poles of odd order in $0 \leq t \leq 1 \rightsquigarrow$ signature at $t=1$.

How to think about the unitary dual.

Know a lot about complex repns of Γ algebraically. Want to study unitarity of repns algebraically. Helpful to step back, ask what we know about the set of representations of Γ.
Short answer: it's a complex algebraic variety. Then ask Felix Klein question: what natural automorphisms exist on set of representations?

Short answer: from auts of Γ and from lin alg.
Try to relate unitary structure to these natural things.
Short answer: they're related to \mathbb{R}-rational structure on complex variety of repns.

What's a set of irr reps look like?

\ulcorner fin gen group, gens $S=\{\sigma\}$, relations $R=\{\rho\}$.
Relation is a noncomm word $\rho=\sigma_{1}^{m_{1}} \cdots \sigma_{n}^{m_{n}}\left(\sigma_{i} \in S, m_{i} \in \mathbb{Z}\right)$.
N-dim rep $\pi \leadsto N \times N$ matrices $\{\pi(\sigma) \mid \sigma \in S\}$ subject to alg rels $\pi(\rho)=I$ for $\rho \in R$: $\pi\left(\sigma_{1}\right)^{m_{1}} \pi\left(\sigma_{2}\right)^{m_{2}} \cdots \pi\left(\sigma_{n}\right)^{m_{n}}=I$.
Conclude: $\{N$-dim reps of $\Gamma\}=$ aff alg var in $G L(N, \mathbb{C})^{S}$.
Reduc reps are closed $\bigcup_{0 \subseteq W \subseteq \mathbb{C}^{N}}\{\pi \mid \pi(\sigma) W=W(\sigma \in S)\}$, so irr N-dimls reps are open-in-affine alg variety.
Reps up to equiv: divide by $G L(N, \mathbb{C})$ conj; still more or less alg variety. (Possibly not separated, etc.)
Thm. Set $\widehat{\Gamma}_{\text {fin }}$ of equiv classes of fin-diml reps of fin-gen Γ is (approx) disjt union of complex alg vars.

Similar ideas apply to (\mathfrak{g}, K)-modules: reps containing fixed rep of K with mult N are N-diml modules for a fin-gen cplx algebra.

Thm. Set $\widehat{G(\mathbb{R})}$ of equiv classes of irr (\mathfrak{g}, K)-mods is (approx) disjt union of complex alg vars.
Langlands identifies alg vars as $\mathfrak{a}^{*} / W^{\delta}$.

Group automorphisms acting on reps

Γ fin gen group, $\tau \in \operatorname{Aut}(\Gamma),(\pi, V)$ rep of $\Gamma \rightsquigarrow\left(\pi^{\tau}, V\right)$ new rep on same space, $\pi^{\tau}(\gamma)=$ def $\pi(\tau(\gamma))$.
Gives (right) action of $\operatorname{Aut}(G)$ on $\hat{\Gamma}$.
Inner auts act trivially: linear isom $\pi\left(\gamma_{0}\right)$ intertwines π and $\pi^{\operatorname{lnt}\left(\gamma_{0}\right)}$ since $\pi^{\operatorname{lnt}\left(\gamma_{0}\right)}(\gamma) \pi\left(\gamma_{0}\right)=\pi\left(\gamma_{0}\right) \pi(\gamma)$.
(Easy) Thm. Out $(\Gamma)=\operatorname{def} \operatorname{Aut}(\Gamma) / \operatorname{Int}(\Gamma)$ acts by algebraic variety automorphisms on $\widehat{\Gamma}_{\text {fin }}$.
(Easy) Thm. Out $(G(\mathbb{R}))$ acts by algebraic variety automorphisms on $\widehat{G(\mathbb{R})}$.
Main technical point: each aut of $G(\mathbb{R})$ can be modified by inner aut so as to preserve K; so get action on (\mathfrak{g}, K)-modules.

Bilinear forms and dual spaces

V cplx vec space (or (\mathfrak{g}, K)-module).
Dual of $V V^{*}=\{\xi: V \rightarrow \mathbb{C}$ additive $\mid \xi(z v)=z \xi(v)\}$
(V alg K-rep \rightsquigarrow require ξK-finite; V topolog. \rightsquigarrow require ξ cont.)
$V=\mathbb{C}^{N} N \times 1$ column vectors $\rightsquigarrow V^{*}=\mathbb{C}^{N}, \xi(v)={ }^{t} \xi v$.
Bilinear pairings between V and W

$$
\begin{aligned}
& \operatorname{Bil}(V, W)=\{\langle,\rangle: V \times W \rightarrow \mathbb{C}, \text { lin in } V, \operatorname{lin} \text { in } W\} \\
& \operatorname{Bil}(V, W) \simeq \operatorname{Hom}\left(V, W^{*}\right), \quad\langle v, w\rangle_{T}=(T v)(w) .
\end{aligned}
$$

Exchange vars in forms to get linear isom

$$
\operatorname{Bil}(V, W) \simeq \operatorname{Bil}(W, V)
$$

Corr lin isom on maps is transpose:

$$
\begin{gathered}
\operatorname{Hom}\left(V, W^{*}\right) \simeq \operatorname{Hom}\left(W, V^{*}\right), \quad\left(T^{t} w\right)(v)=(T v)(w) . \\
(T S)^{t}=S^{t} T^{t}, \quad(z T)^{t}=z\left(T^{t}\right) .
\end{gathered}
$$

Bil form \langle,\rangle_{T} on $V\left(\underset{\text { a }}{ } \rightarrow T \in \operatorname{Hom}\left(V, V^{*}\right)\right.$) orthogonal if

$$
\left\langle v, v^{\prime}\right\rangle_{T}=\left\langle v^{\prime}, v\right\rangle_{T} \Longleftrightarrow T^{t}=T .
$$

Bil form \langle,\rangle_{T} on $V\left(\leadsto \rightarrow T \in \operatorname{Hom}\left(V, V^{*}\right)\right)$ symplectic if

$$
\left\langle v, v^{\prime}\right\rangle_{S}=-\left\langle v^{\prime}, v\right\rangle_{S} \Longleftrightarrow S^{t}=-S .
$$

Defining contragredient repn

$(\pi, V)(\mathfrak{g}, K)$-module; had (K-finite) dual space V^{*} of V.
Want to construct functor

$$
\text { cplx linear rep }(\pi, V) \rightsquigarrow \text { cplx linear rep }\left(\pi^{*}, V^{*}\right)
$$

using transpose map of operators.
Because transpose is antiaut REQUIRES twisting by antiaut of (\mathfrak{g}, K).
$X \mapsto-X$ is Lie alg antiaut, and $k \mapsto k^{-1}$ group antiaut Define contragredient (\mathfrak{g}, K)-module π^{*} on V^{*},

$$
\begin{array}{cc}
\pi^{*}(Z) \cdot \xi=\operatorname{def}[\pi(-Z)]^{t} \cdot \xi & \left(Z \in \mathfrak{g}, \xi \in V^{*}\right), \\
\pi^{*}(k) \cdot \xi=\operatorname{def}\left[\pi\left(k^{-1}\right)\right]^{t} \cdot \xi & \left(k \in K, \xi \in V^{*}\right) .
\end{array}
$$

Thm. If Γ is a fin gen group, passage to contragredient is an involutive automorphism of the algebraic variety $\hat{\Gamma}$.
Thm. If $G(\mathbb{R})$ real reductive, passage to contragredient is an involutive automorphism of the algebraic variety $\widehat{G(\mathbb{R})}$.

Invariant bilinear forms

$V=(\mathfrak{g}, K)$-module, τ involutive aut of (\mathfrak{g}, K).
An invt bilinear form on V is bilinear pairing \langle,$\rangle such that$

$$
\langle Z \cdot v, w\rangle=\langle v,-Z \cdot w\rangle, \quad\langle k \cdot v, w\rangle=\left\langle v, k^{-1} \cdot w\right\rangle
$$

Proposition

$$
(Z \in \mathfrak{g} ; k \in K ; v, w \in V)
$$

Invt bilinear form on $V \leftrightarrow(\mathfrak{g}, K)$-map $T: V \rightarrow V^{*}$:

$$
\langle v, w\rangle_{T}=(T v)(w) .
$$

Form is orthogonal $\Longleftrightarrow T^{t}=T$.
Form is symplectic $\Longleftrightarrow T^{t}=-T$.
Assume from now on V is irreducible.
$V \simeq V^{*} \Longleftrightarrow \exists$ invt bilinear form on V
Invt bil form on V unique up to real scalar mult.; non-deg whenever nonzero.
Invt bil form must be either orthogonal or symplectic.
$T \rightarrow T^{*}$ ג
Existence of invt bil form $\leadsto \rightsquigarrow$ compute $V \mapsto V^{*}$ on $\widehat{G(\mathbb{R})}$.
Deciding orth/symp usually somewhat harder.

Hermitian forms and dual spaces

V cplx vec space (or (\mathfrak{g}, K)-module).
Herm dual of $V V^{h}=\{\xi: V \rightarrow \mathbb{C}$ additive $\mid \xi(z v)=\bar{z} \xi(v)\}$
(V alg K-rep \rightsquigarrow require ξK-finite; V topolog. \rightsquigarrow require ξ cont.)
$V=\mathbb{C}^{N} N \times 1$ column vectors $\rightsquigarrow V^{h}=\mathbb{C}^{N}, \xi(V)={ }^{t} \bar{\xi} v$.
Sesquilinear pairings between V and W
$\operatorname{Sesq}(V, W)=\{\langle\rangle:, V \times W \rightarrow \mathbb{C}$, lin in V, conj-lin in $W\}$

$$
\operatorname{Sesq}(V, W) \simeq \operatorname{Hom}\left(V, W^{h}\right), \quad\langle v, w\rangle_{T}=(T v)(w)
$$

Cplx conj of forms is (conj linear) isom

$$
\operatorname{Sesq}(V, W) \simeq \operatorname{Sesq}(W, V)
$$

Corr (conj lin) isom on maps is Hermitian transpose:

$$
\begin{gathered}
\operatorname{Hom}\left(V, W^{h}\right) \simeq \operatorname{Hom}\left(W, V^{h}\right), \quad\left(T^{h} w\right)(v)=\overline{(T v)(w)} \\
(T S)^{h}=S^{h} T^{h}, \quad(z T)^{h}=\bar{z}\left(T^{h}\right)
\end{gathered}
$$

Sesq form \langle,\rangle_{T} on $V\left(\underset{V}{ } \rightarrow \operatorname{Hom}\left(V, V^{h}\right)\right)$ Hermitian if

$$
\left\langle v, v^{\prime}\right\rangle_{T}=\overline{\left\langle v^{\prime}, v\right\rangle_{T}} \Longleftrightarrow T^{h}=T
$$

Could define "skew Hermitian" by analogy with orth/symp bil forms. Exercise: why is this boring?

Defining Herm dual repn(s)

$(\pi, V)(\mathfrak{g}, K)$-module; Recall Herm dual V^{h} of V.

Want to construct functor

$$
\text { cplx linear rep }(\pi, V) \rightsquigarrow \text { cplx linear rep }\left(\pi^{h}, V^{h}\right)
$$

using Hermitian transpose map of operators.
Definition REQUIRES twisting by conj lin antiaut of \mathfrak{g}, gp antiaut of K.

Since \mathfrak{g} equipped with a real form \mathfrak{g}_{0}, have natural conj-lin aut $\sigma_{0}(X+i Y)=X-i Y\left(X, Y \in \mathfrak{g}_{0}\right)$. Also $X \mapsto-X$ is Lie alg antiaut, and $k \mapsto k^{-1} \mathrm{gp}$ antiaut.
Define Hermitian dual (\mathfrak{g}, K)-module π^{h} on V^{h},

$$
\begin{array}{ll}
\pi^{h}(Z) \cdot \xi=\operatorname{def}\left[\pi\left(-\sigma_{0}(Z)\right)\right]^{h} \cdot \xi & \left(Z \in \mathfrak{g}, \xi \in V^{h}\right), \\
\pi^{h}(k) \cdot \xi=\operatorname{def}\left[\pi\left(k^{-1}\right)\right]^{h} \cdot \xi & \left(k \in K, \xi \in V^{h}\right) .
\end{array}
$$

Need also a variant: suppose τ inv aut of $G(\mathbb{R})$ preserving K. Define τ-herm dual (\mathfrak{g}, K)-module $\pi^{h, \tau}$ on V^{h},

$$
\begin{aligned}
\pi^{h, \tau}(X) \cdot \xi & =\left[\pi\left(-\tau\left(\sigma_{0}(Z)\right)\right]^{h} \cdot \xi\right. & & \left(Z \in \mathfrak{g}, \xi \in V^{h}\right), \\
\pi^{h, \tau}(k) \cdot \xi & =\left[\pi\left(\tau(k)^{-1}\right)\right]^{h} \cdot \xi & & \left(k \in K, \xi \in V^{h}\right) .
\end{aligned}
$$

Invariant Hermitian forms

For τ an inv aut of $(G(\mathbb{R}), K)$, defined τ-herm dual

$$
\begin{array}{rlrl}
\pi^{h, \tau}(X) \cdot \xi & =\left[\pi\left(-\tau\left(\sigma_{0}(Z)\right)\right]^{h} \cdot \xi\right. & \left(Z \in \mathfrak{g}, \xi \in V^{h}\right), \\
\pi^{h, \tau}(k) \cdot \xi & =\left[\pi\left(\tau(k)^{-1}\right)\right]^{h} \cdot \xi & & \left(k \in K, \xi \in V^{h}\right) .
\end{array}
$$

Thm. τ-herm dual is Galois for \mathbb{R}-struc on alg var $\widehat{G(\mathbb{R})}$.
Reason: conj transpose is real Galois action on $G L(N, \mathbb{C})$.
A τ-invt sesq form on (\mathfrak{g}, K)-module V is pairing \langle,\rangle^{τ} with
$\langle Z \cdot v, w\rangle=\left\langle v,-\tau\left(\sigma_{0}(Z)\right) \cdot w\right\rangle, \quad\langle k \cdot v, w\rangle=\left\langle v, \tau\left(k^{-1}\right) \cdot w\right\rangle$ $(Z \in \mathfrak{g} ; k \in K ; v, w \in V)$.
Prop. τ-invt sesq form on V m (\mathfrak{g}, K)-map $T: V \rightarrow V^{h, \tau}$:

$$
\langle v, w\rangle_{T}=(T v)(w) .
$$

Form is Hermitian $\Longleftrightarrow T^{h}=T$.
Assume from now on V is irreducible.
$V \simeq V^{h, \tau} \Longleftrightarrow \exists \tau$-invt sesq $\Longleftrightarrow \exists \tau$-invt Herm τ-invt Herm form on V unique up to real scalar mult.
$T \rightarrow T^{h}$ un real form of cplx line $\operatorname{Hom}_{\mathfrak{g}, K}\left(V, V^{h, \tau}\right)$.
Deciding existence of τ-invt Hermitian form amounts to computing the involution $V \mapsto V^{h, \tau}$ on $\widehat{G(\mathbb{R})}$; easy.

Hermitian forms and unitary reps

$G(\mathbb{R})$ real reductive, τ inv aut preserving $K \ldots$
π rep of $\mathcal{G}(\mathbb{R})$ on complete loc cvx V_{π}, V_{π}^{h} Hermitian dual space. Hermitian dual reps are

$$
\pi^{h}(g)=\pi\left(g^{-1}\right)^{h}, \quad \pi^{h, \tau}(g)=\pi\left(\tau\left(g^{-1}\right)^{h}\right.
$$

Def. A τ-invariant form is continuous Hermitian pairing

$$
\langle,\rangle_{\pi}^{\tau}: V_{\pi} \times V_{\pi} \rightarrow \mathbb{C}, \quad\langle\pi(g) v, w\rangle_{\pi}^{\tau}=\left\langle v, \pi\left(\tau\left(g^{-1}\right)\right) w\right\rangle_{\pi}^{\tau} .
$$

Equivalently: $T \in \operatorname{Hom}_{G(\mathbb{R})}\left(V_{\pi}, V_{\pi}^{h, \tau}\right), T=T^{h}$.

(3)
Because infl equiv easier than topol equiv, $V_{\pi} \simeq V_{\pi}^{n, \tau} \nRightarrow$ existence of a continuous map $V_{\pi} \rightarrow V_{\pi}^{h}$. So invt forms may not exist on topological reps even if they exist on (\mathfrak{g}, K)-modules.
Thm. (Harish-Chandra) Passage to K-finite vectors defines bijection from the unitary dual $\widehat{G(\mathbb{R})_{u}}$ onto equivalence classes of irreducible (\mathfrak{g}, K) modules admitting a pos def invt Hermitian form.
Despite warning, get perfect alg param of $\widehat{G(\mathbb{R})_{u}}$.

What are we planning to do?

Know: irr (\mathfrak{g}, K)-module π unitary \Longleftrightarrow (a) π admits invt herm form, and (b) form is positive definite.
Know: π has invt herm form $\Longleftrightarrow \pi \simeq \pi^{h}$: fixed by herm dual involution of $\widehat{G(\mathbb{R})}$. Easy to list these π.
If $\pi \simeq \pi^{h}$, want to know: is corr form \langle,\rangle_{π} pos def?
Method: compute the signature of \langle,\rangle_{π}. Meaning?
SIGNATURE: $\left(\pi, V_{\pi}\right)(\mathfrak{g}, K)$-module with form \langle,\rangle_{π}.

$$
\begin{aligned}
& V_{\pi}=\sum_{\left(\delta, E_{\delta}\right) \in \widehat{K}} E_{\delta} \otimes V_{\pi}^{\delta}, \quad V_{\pi}^{\delta}={ }_{d e f} \operatorname{Hom}_{K}\left(E_{\delta}, V_{\pi}\right) \\
& \langle,\rangle_{\pi}=\sum_{\delta}\langle,\rangle_{\delta} \otimes\langle,\rangle_{\pi}^{\delta}
\end{aligned}
$$

Def. Signature of \langle,\rangle_{π} at δ is $\operatorname{sig}\left(p_{\pi}(\delta), q_{\pi}(\delta), z_{\pi}(\delta)\right)$ of $\langle,\rangle_{\pi}^{\delta}$ on mult space V_{π}^{δ}. Signature of \langle,\rangle_{π} is $\left(p_{\pi}, q_{\pi}, z_{\pi}\right)$, three functions $\widehat{K} \rightarrow \mathbb{N}$.

Note $p_{\pi}+q_{\pi}+z_{\pi}=m_{\pi}$, mult fn for reps of K in π.

What are we planning to do (continued)?

Invt form \langle,\rangle_{π} on $V_{\pi} \rightsquigarrow$ signature: $\left(p_{\pi}, q_{\pi}, z_{\pi}\right): \widehat{K} \rightarrow \mathbb{N}^{3}$.
Form semidefinite \Longleftrightarrow one of p_{π}, q_{π} is zero.
What's it mean to compute p_{π} ? Domain \widehat{K} is infinite, so tabulating won't work.

Answer: write p_{π} as finite linear combination

$$
p_{\pi}=\sum_{i \in I} a_{\pi}^{i} m_{i} \quad\left(a_{i} \in \mathbb{Z}, m_{i}: \widehat{K} \rightarrow \mathbb{Z}\right)
$$

with $\left\{m_{i} \mid i \in I\right\}$ lin ind set of "standard" functions.
COMPUTE means compute the finitely many integers a_{π}^{i}.
Checking $p_{\pi}=0$ means checking finitely many ints are all zero.

If $q_{\pi}=\sum_{i} b_{\pi}^{i} m_{i}$, then realex writes signature as

$$
\sum_{i}\left(a_{\pi}^{i}+s b_{\pi}^{i}\right) m_{i} .
$$

Definite means either all $a_{\pi}^{i}=0$ or all $b_{\pi}^{i}=0$.

The "standard multiplicity functions."

representations
Need basis $\left\{m_{i}\right\}$ of mult fns $m_{i}: \widehat{K} \rightarrow \mathbb{Z}$.
Obvious choice: delta functions $m_{\delta}(\mu)=\left\{\begin{array}{ll}1 & (\mu=\delta) \\ 0 & (\mu \neq \delta)\end{array}\right.$.
Difficulty: need inf many m_{δ} to write mult for inf-diml π.
Pretty obvious choice: multiplicity functions for standard representations. Case of $S L(2, \mathbb{R})$:

$$
\begin{aligned}
m_{l(\nu, \epsilon)}(j) & =\left\{\begin{array}{lll}
1 & j \equiv \epsilon & (\bmod 2) \\
0 & j \not \equiv \epsilon & (\bmod 2) .
\end{array}\right. \\
m_{(L) D S_{ \pm}(n)}(j) & = \begin{cases}1 & j= \pm(n+1), \pm(n+3), \cdots \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Difficulty: not linearly independent: $m_{l(\nu, \epsilon)}-m_{l\left(\nu^{\prime}, \epsilon\right)}=0$, $m_{L D S_{+}(0)}+m_{L D S_{-}(0)}-m_{l(\nu, \text { odd })}=0$.

Right choice: mult fns for $I=\{$ irr temp, real inf char $\}$.
Thm. The mult fns $\left\{m_{i} \mid i \in I\right\}$ are basis for signature and mult fns of finite-length (\mathfrak{g}, K)-mods. π_{i} has unique lowest K-type δ_{i} with mult= 1 ; gives bijection $I \leftrightarrow \widehat{K}$.

Character formulas

Can decompose Verma module into irreducibles

$$
V(\lambda)=\sum_{\mu \leq \lambda} m_{\mu, \lambda} L(\mu) \quad\left(m_{\mu, \lambda} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
L(\lambda)=\sum_{\mu \leq \lambda} M_{\mu, \lambda} V(\mu) \quad\left(M_{\mu, \lambda} \in \mathbb{Z}\right)
$$

Can decompose standard HC module into irreducibles

$$
I(x)=\sum_{y \leq x} m_{y, x} J(y) \quad\left(m_{y, x} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
J(x)=\sum_{y \leq x} M_{y, x} l(y) \quad\left(M_{y, x} \in \mathbb{Z}\right)
$$

Matrices m and M upper triang, ones on diag, mutual inverses. Entries are KL polynomials eval at 1:

$$
m_{y, x}=Q_{y, x}(1), \quad M_{y, x}= \pm P_{y, x}(1) \quad\left(Q_{y, x}, P_{y, x} \in \mathbb{N}[q]\right)
$$

Character formulas for $S L(2, \mathbb{R})$

Rewrite formulas from Jeff's talk in general G notation. . . Had $I(\nu, \epsilon) \rightarrow J(\nu, \epsilon)$; and disc ser $I_{ \pm}(n)=D S_{ \pm}(n)(n \geq 1)$

$$
\begin{aligned}
& I_{+}(n) \mid s o_{(2)}=n+1, n+3, n+5 \cdots \\
& I_{-}(n) \mid s o(2)=-n-1,-n-3,-n-5 \cdots
\end{aligned}
$$

Discrete series reps are irr: $I_{ \pm}(n)=J_{ \pm}(n)$
Decompose principal series (m pos int)

$$
I\left(m,(-1)^{m+1}\right)=J\left(m,(-1)^{m+1}\right)+J_{+}(m)+J_{-}(m) .
$$

Character formula

$$
\begin{array}{cccc}
J\left(m,(-1)^{m+1}\right)=I\left(m,(-1)^{m+1}\right)-I_{+}(m)-I_{-}(m) . \\
\pm P_{x, y} & I\left(m,(-1)^{m+1}\right) & I_{+}(m) & I_{-}(m) \\
J\left(m,(-1)^{m+1}\right) & 1 & -1 & -1 \\
J_{+}(m) & 0 & 1 & 0 \\
J_{-}(m) & 0 & 0 & 1
\end{array}
$$

