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Gelfand’s abstract harmonic analysis represertations
Vogan

Topological grp G acts on X, have questions about X. s

Step 1. Attach to X Hilbert space H (e.g. L2(X)).
Questions about X ~~ questions about H.

Step 2. Find finest G-eqvt decomp H = &, Ha-
Questions about H ~~ questions about each H,,.

Each H,, is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.

Step 3. Understand G, = all irreducible unitary
representations of G: unitary dual problem.

Step 4. Answers about irr reps ~~ answers about X.

This week: Step 3 for reductive Lie group G.



Unitary

Example. SL(2, R) On the Upper half plane representations

Vogan

SL(2,R) acts on upper half plane H; Ay = Laplacian.

~ repn E(v) on v2 — 1 eigenspace of Laplacian Ay SHEH)
v € C parametrizes line bdle on circle where bdry values live.
Most E(v) irreducible; always unique irr subrep J(v) C E(v).

Spherical reps for SL(2,R) «~» C/=+1
1

-1
Spectrum of self-adjt Ay on L2(H) is (—oo0, —1]. ~
unitary principal series «~ {E(v) | v € iR}.
[harm fns on H] D [const fns on H]
J(v)isHerm. & J(v) ~ J(—7) & v e IRUR.
By continuity, signature stays positive from 0 to +1.
complementary series reps «~ {E(t) | t € (—1,1)}.



The moral[s] of the picture ropresontafons
Vogan

Spherical unitary dual for SL(2,R) «~ C/=£1

SL(2, R)

—ioo I oo
.

SL(2,R) G(R) Will deform Herm forms
E(v),reC I(v),v € at unitary axis iag -
E(w),veiR I(v),v e ia real axis ag-
Jv) = E(v) I(v) = J(v) Deformed form pos ~~
. unitary rep.
[—1,1] polytope in aj
Reps appear in families, param by v in cplx vec space a*.
Pure imag params «~ L? harm analysis «~ unitary.
Each rep in family has distinguished irr piece J(v).

Difficult unitary reps «» deformation in real param



Principal series for SL(2, R) e

Vogan

Want to understand more explicitly analysis of repns E(v) e, )
for SL(2,R). Use different picture

I(v,€) = {f: (R® —0) — C | f(tx) = |t|~" " sgn(t)*f(x)},
functions homogeneous of degree (—v — 1, ¢).
The —1 next to —v makes later formulas simpler.
Lie algs easier than Lie gps ~~ write sI(2, R) action, basis
D:(1 o) E:(o 1) F:(o o)
0o —1)° 0 0)° 1 .0)°
[D,E]l=2E, [D,Fl=-2F, [E,F]=D.

action on functions on R? is by

0 0 o0 0
D=—-Xx1— +X—, E=—-X%—\) F=—-x—.
0X4 OXp 0X4 OXp

Now want to restrict to homogeneous functions. ..



Principal series for SL(2,R) (continued) representatons
Vogan
Study homog fns on R2 — 0 by restr to {(cos @, sin)}: ’
SL(2,R)

(v,€) ~ {w: 8" = C | w(—s8) = (=1)"w(s)}, f(r,0) = r " "w(h).
Compute Lie algebra action in polar coords using

P _ 9.8 0 _, 2+X 9
oxi - o0 T ar ax  Mae T %o
) .

E:—V—L Xy = C0Ss 0, Xo = Sind.

Plug into formulas on preceding slide: get

P’ (D) = 2sm00030% (cos® 6 — sin® ) (v + 1),

p”(E) = sin® 9% + (cos@sind)(v + 1),

p"(F) = —cos® 9% + (cos@sind)(v + 1).

Hard to make sense of. Clear: family of reps analytic
(actually linear) in complex parameter v.

Big idea: see how properties change as function of v.



A more suitable basis L
Have family p*:¢ of reps of SL(2,R) defined on functions Vogan
on S' of homogeneity (or garity) € IO

p"(D) =2singcost—- + (cos? 6 —sin? ) (v + 1),

o (E) = sin? 0% + (cos @sin @) (v + 1),

p”(F) = — cos? 6)% + (cos@sin ) (v + 1).
Problem: {D, E, F} adapted to wt vectors for diagonal Cartan
subalgebra; rep p”’ has no such wt vectors.
But rotation matrix E — F acts simply by 9/06.
Suggests new basis of the complexified Lie algebra:

H=—i(E-F), X= %(D—i—iE—i— iF), Y= %(D— iE — iF).
Same commutation relations [H, X] = 2X, [H, Y] = -2V,
[X, Y] = H, but cplx conj is different: H=—-H, X =Y.
o) = o

eZiG

000 = S (B vt +1). prn = =2 (& -t +1).




Matrices for principal series

4

Have family p*< of reps of SL(2,R) defined on functions
on S' of homogeneity (or parity) e:

viHy— 1 O
, g2 19 , ey
0= (55 + 10+ 1). P =5 (5 i+ 1)

These ops act simply on basis w,(cos ¢, sin§) = e™m:

P (H)Wn = mwp,
v 1 y 1
o' (X)Wm = §(m—s-z/+1)w,,,+2, " (Y)Wm = E(—m+y-|—1)w,,7,2.
Suggests reasonable function space to consider:
I(v, €) = fns homog of deg (v, €), finite under rotation
~ trig polys on S of parity ¢
=span({wm | m=e¢e (mod 2)}).

Space (v, €)¥ has beautiful rep of g: irr for most v, easy
submods otherwise. Not preserved by rep of G = SL(2, R).

Unitary
representations

Vogan

SL(2, R)



Invariant forms on principal series by hand R

Vogan
Write /(v) = I(v, 0) = even fns homog of deg —v — 1 si(2 %)
Need “signature” of invt Herm form on inf-diml space.
Basis {Wy, | m € 2Z}, Wy, «~ €™, H - Wy = MW,

X - Wy = %(u+m+1)wm+2, Y - W= %(u—(m— 1)) Wi_o.
Requirements for invariant Hermitian form (. ), :
(Hw,w"), = (w,H-w),, (X-w, W), +(w,Y-w), =0.
Apply first requirement to w = wp,, W = wyy; get

MW, Wiy )y = MW, Wry ),

and therefore (W, Wy ), = 0 for m # m'.
So only need (Wpm, wy), (m € 2Z). Second reqt says

((m+1) +v)(Wni2, Wny2), = (M+1) — D) (Wi, W)
Easy solution: v imaginary, all (wy,, wn), equal
THM: For v € iR, L2(S'/{£1}) ~ I(,0) unitary rep of G.



Unitary

|nvar|ant fOrmS On /(V) by hand, Contlnued representations

Vogan
Recall /(v) = even functions on R?, homog deg —v — 1; ’
seeking invt Herm form (,),, specified by values on basis SL(2, R)
Wm(r,0) =r—"""e™  (me2%).
((Mm+1) +v)(Wni2, Wni2)y = (M+1) — D) (W, W)
Non-imag v: nonzero (real) solns exist iff v € R:
((M+1)+v) (W2, Wini2)y = ((M+1)=v)(Wm, Wm), (v € R).
Natural to normalize (wy, wp),, = 1, calculate
_ =y _(1=1B-v)
<W:|:27 W:|:2>V _ (1 ¥ 11)7 <W:t47 W:t4>l’ - (1 ¥ I/)(3 ¥ I/)
(=)@ -v)--2Cm—1-v)
<W:i:2m7 Wj:2m>u = (1 T l/)(3 T l/) . (2m 1+ l/)

If v € (2m—1,2m + 1), sign alternates on wy, wa, ... wopm.

pos def for 0 < v < 1; for v > 1, sign diff on w, we.
(,)» “meromorphic” in (real) v

One K-type-at-a-time calc too complicated to generalize.



Deforming signatures for SL(2, R) e o
Here’s representation-theoretic picture of deforming (,),. Vogan
v =0, I(0) “C” L3(H): unitary, signature positive. SLE2.R)
0 < v < 1, I(v) irr: signature remains positive.
v = 1: form finite pos on quotient J(1) «~ SO(2) rep 0.
v = 1: form has simple zero, pos residue on ker(/(1) — J(1)).
1 < v < 3, across zero at v = 1, signature changes.
v = 3: form finite — + — on quotient J(3).
v = 3: form has simple zero, neg residue on ker(/(3) — J(3)).
3 < v < 5, across zero at v = 3, signature changes. ETC.
Conclude: J(v) unitary, v € [0, 1]; nonunitary, v € (1, c0).

-6 -4 -2 0 42 44 +6 --- SO(2)reps
+ 4+ + + + 4+ 4+ v=0
+ 4+ + + + + + 0<v<i
+ 4+ + 4+ + + 4+ v=1
- - - 4+ - - = - 1<v<838
_ _ _ + — — — v=23
+ -+ - + + 3<v<



From SL(2,R) to reductive G e
Vogan
SL(2,R)
Calculated signatures of invt Herm forms on
spherical reps of SL(2,R).
Seek to do “same” for real reductive group. Need...
List of irr reps = ctble union (cplx vec space)/(fin grp).
reps for purely imag points “c” L2(G): unitary!
Natural (orth) decomp of any irr (Herm) rep into fin-diml
subspaces ~~ define signature subspace-by-subspace.
Signature at v + iT by analytic cont fv + ir, 0 <t < 1.

Precisely: start w unitary (pos def) signature at t = 0; add
contribs of sign changes from zeros/poles of odd order in
0<t<1~ signatureatt=1.



How to think about the unitary dual. represantatons

Vogan

Know a lot about complex repns of I algebraically. o
Want to study unitarity of repns algebraically.
Helpful to step back, ask what we know about the
set of representations of I'.
Short answer: it's a complex algebraic variety.

Then ask Felix Klein question: what natural
automorphisms exist on set of representations?

Short answer: from auts of I and from lin alg.
Try to relate unitary structure to these natural things.

Short answer: they’re related to R-rational
structure on complex variety of repns.



What'’s a set of irr reps look like? R
I fin gen group, gens S = {o}, relations R = {p}. Vogan

Relation is a noncomm word p = o{" - -- (0, € S, m; € 7).

Picture of G

N-dim rep m «~ N x N matrices {n(c) | o € S} subject to
alg rels w(p) = I'for p € R: w(o1)™n(02)™ - - 7w(on)™ = I.

Conclude: {N-dim reps of '} = aff alg var in GL(N, C)S.
Reduc reps are closed UOg WQCN{ﬂ' | r(c)W =W (o € S)}, so
irr N-dimls reps are open-in-affine alg variety.

Reps up to equiv: divide by GL(N, C) conj; still more or less alg
variety. (Possibly not separated, etc.)

Thm. Set Fﬁn of equiv classes of fin-diml reps of fin-gen I’
is (approx) disjt union of complex alg vars.

Similar ideas apply to (g, K)-modules: reps containing fixed rep
of K with mult N are N-diml modules for a fin-gen cplx algebra.

—

Thm. Set G(RR) of equiv classes of irr (g, K)-mods is
(approx) disjt union of complex alg vars.

Langlands identifies alg vars as a*/W°.



Unitary

Group automorphisms acting on reps i
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I fin gen group, 7 € Aut(l), (w, V) rep of I ~ (7, V)
new rep on same space, 7’ (v) =gef 7(7(7))-

Gives (right) action of Aut(G) on T.

Inner auts act trivially: linear isom 7(~p) intertwines =
and 7'"00) since 7"0)(7)7(10) = 7(70)7 (7).

(Easy) Thm. Out(I") =get Aut()/ Int(I") acts by
algebraic variety automorphisms on [,

(Easy) Thm. Out(G(RR)) acts by algebraic variety
automorphisms on G/(ﬁ)

Main technical point: each aut of G(R) can be
modified by inner aut so as to preserve K; so get
action on (g, K)-modules.

Picture of G



Bilinear forms and dual spaces represertations
V cplx vec space (or (g, K)-module). Vogan
Dual of V V* = {¢: V — C additive | £(zv) = z£(v)}

(V alg K-rep ~~ require £ K-finite; V topolog. ~~ require & cont.)
V =CN N x 1 column vectors ~ V* = CN, ¢(v) = ¢v.

Bilinear pairings between V and W

Bil(V,W)={(,): Vx W —=C,linin V,linin W}
Bil(V, W) ~ Hom(V, W*), (v,w)r = (Tv)(w).

Exchange vars in forms to get linear isom
Bil(V, W) ~ Bil(W, V).
Corr lin isom on maps is transpose:
Hom(V, W*) ~ Hom(W, V*), (T'w)(v) = (Tv)(w).
(TS)! =8'T",  (2T)' =z(TY.
Bil form (,)r on V («~ T € Hom(V, V*)) orthogonal if
v Vir=( VW5 < T'=T.

Picture of G

Bil form (,)r on V («~ T € Hom(V, V*)) symplectic if
(v,V)s = —(V/,v)s —= S'=-8.



Unitary

Defining contragredient repn reprssertafions
Vogan

(m, V) (g, K)-module; had (K-finite) dual space V* of V.
Want to construct functor Picture of &
cplx linear rep (m, V) ~ cplx linear rep (*, V*)
using transpose map of operators.
Because transpose is antiaut REQUIRES twisting by
antiaut of (g, K).
X + —X is Lie alg antiaut, and k — k~' group antiaut
Define contragredient (g, K)-module 7* on V*,
m(Z) - b=aet [1(=2)]'- € (Z g E€ V),
7 (K) - E=qet [w(k‘1)]f-§ (keK, e V).
Thm. If ["is a fin gen group, passage to contragredignt is
an involutive automorphism of the algebraic variety T.

Thm. If G(R) real reductive, passage to contragredient is

—

an involutive automorphism of the algebraic variety G(R).



Invariant bilinear forms S -
V = (g, K)-module, 7 involutive aut of (g, K). Vogan

An invt bilinear form on V is bilinear pairing (, ) such that
(Z-v,w)=(v,-Z-w), (k-v,w)=(v,k " w) e
(ZegkeK;v,we V).
Proposition
Invt bilinear formon V « (g,K)-map T: V — V*:
(v.w)r = (Tv)(w).
Form is orthogonal — T'=T.
Form is symplectic <= T!'=—T.
Assume from now on V is irreducible.
V ~ V* <= 3Finvt bilinear form on V
Invt bil form on V unique up to real scalar mult.;
non-deg whenever nonzero.
Invt bil form must be either orthogonal or symplectic.

T — T* «~ involution of cplx line Homg x(V, V*).

—

Existence of invt bil form «~ compute V — V* on G(R).

Deciding orth/symp usually somewhat harder.



Hermitian forms and dual spaces represertations
V cplx vec space (or (g, K)-module). Yosan
Herm dual of V V" = {¢: V — C additive | £(zv) = Z&(v)}
Picture of G

(V alg K-rep ~~ require £ K-finite; V topolog. ~~ require & cont.)

V = C" N x 1 column vectors ~ V" =CN, ¢(v) = év.
Sesquilinear pairings between V and W
Sesq(V,W)={(,): Vx W — C,linin V, conj-linin W}
Sesq(V, W) ~ Hom(V, W"), (v, w)r = (Tv)(w).
Cplx conj of forms is (conj linear) isom
Sesq(V, W) ~ Sesq(W, V).
Corr (conj lin) isom on maps is Hermitian transpose:
Hom(V, W") ~ Hom(W, V"), (T"w)(v) = (Tv)(w).
(18)"=8"1",  (2T)" =Z(T").
Sesq form (,)7 on V (- T € Hom(V, V")) Hermitian if
(v, V=V V), <= T'=T.
Could define “skew Hermitian” by analogy with orth/symp bil
forms. Exercise: why is this boring?




Defining Herm dual repn(s) ot
(7, V) (g, K)-module; Recall Herm dual V" of V. Vogan
Want to construct functor

cplx linear rep (m, V) ~ cplx linear rep (=", V") Picture of G

using Hermitian transpose map of operators.
Definition REQUIRES twisting by conj lin antiaut of g, gp
antiaut of K.

Since g equipped with a real form go, have natural conj-lin aut

oo(X +iY)=X—iY (X,Y € go). Also X — —X is Lie alg

antiaut, and k — k~' gp antiaut.

Define Hermitian dual (g, K)-module 7" on V7,
©(2) - é=aet [T(—00(2)]"- € (Z €9, £V,
7"(K) - €=ger [r(k™)]" - € (keK,ce V).

Need also a variant: suppose 7 inv aut of G(R) preserving
K. Define 7-herm dual (g, K)-module 7™ on V",

w(X) £ = [r(~T(00(2)]"- € (Zeg, £V,
(k) E=[n(r(k) "€ (ke K, £€ V).



Invariant Hermitian forms L
For 7 an inv aut of (G(R), K), defined 7-herm dual Vogan
T (X)- € = [r(~T(00o(2)]"- € (Ze€g £V,
(k) -E=[n(r(k) "€ (keK, £e V). Picture of G

—

Thm. 7-herm dual is Galois for R-struc on alg var G(R).
Reason: conj transpose is real Galois action on GL(N, C).

A 7-invt sesq form on (g, K)-module V is pairing (,)” with

<Z Vv, W> = <Vv 77—(00(2)) ! W>7 <k Vv, W> = <V5T(k71) : W>

(Zeg keK;v,we V).
Prop. 7-invt sesq form on V «v (g,K)-map T: V — V/7:
(v,w)r = (Tv)(w).
Form is Hermitian «— T"=T.
Assume from now on V is irreducible.
V ~ VM —— 3Jr-invt sesq <= 3Ir-invt Herm
7-invt Herm form on V unique up to real scalar mult.

T — T" e real form of cplx line Homg x(V, V7).

Deciding existence of r-invt Hermitian form amounts to
computing the involution V +— V7 on G(R); easy.



Unitary

Hermitian forms and unitary reps repraestatons

Vogan
G(R) real reductive, 7 inv aut preserving K... -

7 rep of G(R) on complete loc cvx V., V/ Hermitian dual
space. Hermitian dual reps are
w(g)=n(g ). *"7(g)=n(r(g”
Def. A r-invariant form is continuous Hermitian pairing
()i Ve x Va5 €, (m(g)v, W) = (v,m(r(g"))w) .
Equivalently: T € Homgg)(V,, V™), T = T"

Picture of G

1)h

@ Because infl equiv easier than topol equiv, Vi ~ V7 =&
existence of a continuous map V, — V. So invt forms may not
exist on topological reps even if they exist on (g, K)-modules.

Thm. (Harish-Chandra) Passage to K-finite vectors

defines bijection from the unitary dual (?(ﬁ)u onto
equivalence classes of irreducible (g, K) modules
admitting a pos def invt Hermitian form.

—

Despite warning, get perfect alg param of G(R),,.



What are we planning to do? R

Vogan
Know: irr (g, K)-module 7 unitary <= (a) = admits invt
herm form, and (b) form is positive definite.
Know: 7 has invt herm form <= 7 ~ =" fixed by herm Formulas for
dual involution of G(R). Easy to list these 7. signatures

If 7 ~ 7, want to know: is corr form (, ), pos def?
Method: compute the signature of (, ). Meaning?
SIGNATURE: (m, V;) (g, K)-module with form (, ).

Vo= Y E®V, V2 =der Homy(Es, Vr)
(8,E5)€K

<’>ﬂ' = Z<7>5 X <7>fr

5
Def. Signature of {,). até is sig (P~ (), g-(9), Z-(5)) of
(,)2 on mult space V?. Signature of {, ) is (Pr, Gx; Zr ),
three functions K — N.

Note p. + g + z, = m,, mult fn for reps of K in 7.



What are we planning to do (continued)?

Invt form (,), on V, ~- signature: (px, 9, Zx): K — N
Form semidefinite < one of p,, g, is zero.

What'’s it mean to compute p,? Domain K is infinite, so
tabulating won’t work.

Answer: write p, as finite linear combination
pW:Zaﬁrm,' (ai€Z,mi: K — Z)
iel
with {m; | i € I} lin ind set of “standard” functions.
COMPUTE means compute the finitely many integers a’..

Checking p. = 0 means checking finitely many ints are all
zero.

If g =Y, b.m;, then realex writes signature as
> (&, + sbl)m.

i . .
Definite means either all a. = 0 or all b, = 0.

Unitary
representations

Vogan

Formulas for
signatures



The “standard multiplicity functions.” represertations
Need basis {m;} of mult fns m;: K — Z.  (a=4) vogan
. . . w=
Obvious choice: delta functions ms(p) = .
) {o (1 #6)
Difficulty: need inf many ms to write mult for inf-diml . il

Pretty obvious choice: multiplicity functions for standard
representations. Case of SL(2,R):

Mo (j) = 1 j=e (mod2)
V0 j£e (mod 2).
Mayos.. (/) = {0 otherwise

Difficulty: not linearly independent: my., ) — My, ) =0,
Mips, 0) + MLps_ ) — Miv,0dd) = 0.

Right choice: mult fns for / = {irr temp, real inf char}.

Thm. The mult fns {m; | i € I} are basis for signature and
mult fns of finite-length (g, K)-mods. 7; has unique lowest
K-type o; with mult=1; gives bijection / + K.



Character formulas
Can decompose Verma module into irreducibles

V(A => mual(p)  (mua €N)

n<A
or write a formal character for an irreducible
L) => MuaV(p)  (Mux €Z)

u<A
Can decompose standard HC module into irreducibles
I(x) =Y myxJ(y) (myx€eN)

y<x
or write a formal character for an irreducible

JX) =D Myul(y)  (Myx€Z)

y<x

Matrices m and M upper triang, ones on diag, mutual
inverses. Entries are KL polynomials eval at 1:

myx = Qx(1), Myx==xP,x(1) (Q.x Pyx€N[q]).

Unitary
representations

Vogan

Formulas for
signatures



Character formulas for SL(2,R)

Unitary
representations
Vogan
Rewrite formulas from Jeff’s talk in general G notation. ..
Had /(v,¢) — J(v,¢); and disc ser [+ (n) = DSy (n) (n > 1)
l.(n)|soey=n+1,n+3, n+5--- ;‘;'n”;;ﬂj:sf"'
I-(M|so@y=—-—n—-1, -n—-3, —n—-5--.

Discrete series reps are irr: [.(n) = Jy.(n)
Decompose principal series (m pos int)

I(m, (—1)™1) = J(m, (~1)™1) + Jy (m) + J_(m).
Character formula

J(m, (=1)™T) = I(m, (=1)™T) — L. (m) — I_(m).

+Pyy I(m, (=1)™")  1,(m)

- (m)
J(m, (—=1)™") 1 —1 —1
Ji(m) 0 1 0
J_(m) 0

0 1
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