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LIFTING OF CHARACTERS AND HARISH-CHANDRA'S
METHOD OF DESCENT

Suppose G is a reductive algebraic group defined over a local field F.
One of the fundamental difficulties in Langlands' program for
understanding representations of G(F) (and automorphic forms over global
fields) is L-indistinguishability: irreducible representations are most easily
understood not separately but in finite sets (L-packets). The members of a
single L-packet are said to be L-indistinguishable. The resolution of this
difficulty, which is still far from complete, is the goal of the theory of
endoscopic groups and lifting, developed for example in [LS]and [S1].
(Langlands and Shelstad prefer the term transfer to lifting.) This theory
seeks to relate representation theory on G(F) to representation theory on a
collection of smaller groups, the endoscopic groups of G. Viewed from the
perspective of an endoscopic group, the representations in an L-packet look
a little different from each other. Taking into account the differences as
seen from all possible endoscopic groups, one hopes to understand
individual representations .

There are two problems. The first is that it turns out to be very
difficult to formulate precisely the theorems that ought to be true. The
second is that, once formulated, the theorems are very difficult to prove.
The L-packets themselves have been defined completely only if F is R or C,
so one can hope for complete results only in that case. Shelstad has proved
such results in [S1]. Our purpose is to reprove her results using an entirely
different definition of lifting. We have two motivations. First, our
approach leads to cleaner formulations of the results. (We will return to

this point later in the introduction.) Second, we believe that the new
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definition of lifting sheds a great deal of light on Arthur's conjectures ([A1],
[A2]), of which we are now able to give a very precise formulation. The
proof of at least some of the conjectures (for R and C) is thereby reduced to
a difficult but (we hope) accessible representation-theoretic problem. We
hope to return to this in a later paper.

In order to understand why Shelstad’s results are at all
unsatisfactory, we need to review briefly the philosophy of endoscopy. (It
is not very important for the moment to know the definitions of the various
objects under consideration; what matters are their formal relationships.)
Details for this paragraph may be found in [Bo]. Write TT(G(F)) for the set
of equivalence classes of irreducible admissible repesentations of G(F).
Recall the definition of the dual group G (sometimes called 1G°), here
taken to be a complex reductive algebraic group. One of Langlands' basic
ideas is that representations of G(F) ought to be closely related to “G. More
precisely, write "G for the (Galois form of the) L-group of G. This is
(among other things) an extension
01 1> G- G'>r->1
with T the Galois group of F. The extension is determined by the (inner
class of the) F-form of G. If G is F-split then ~G' is just the direct product
of "G with I'. Now let W'p be the Weil-Deligne group of F. This group is
also endowed with a homomorphism
02 We-T

Write ®(G(F)) for the set of ~G -conjugacy classes of admissible
homomorphisms
0.3 W' G
(The most important part of the definition of admissible is that ¢ should

respect the maps to I' in 0.1 and 0.2).



0.4 Conjecture (Langlands-Deligne):
To any ¢ in ®(G(F)) there corresponds a finite subset T of TM(G(F)).
The various subsets T should partition T(G(F)): that is, each irreducible

representation should belong to exactly one subset.

Deligne's contribution here is in replacing the Weil group by the
Weil-Deligne group. The sets T o 2re the L-packets of the first paragraph.
If Fis R or C, the conjecture is proved in [L].

Having defined L-packets, we can now say in what sense the whole
packet is easier to understand than individual representations in it. Recall
that an irreducible admissible representation m of G(F) has a distribution
character ®_, which may be regarded as a smooth function on the (open
dense) set G(F)_,. of strongly regular semisimple elements of G(F). (Recall
that the character is actually a generalized function rather than a
distribution; no choice of Haar measure is involved in associating a function
to it.) This function is automatically constant on G(F) conjugacy classes.
Write F for the algebraic closure of F. A sum of characters of G(F) is called
stable if the corresponding function is constant on the intersection with
G(F)_, of conjugacy classes in G(F). Now conjugacy classes behave a little
more simply over algebraically closed fields, so stable sums of characters
are a little less complicated than individual characters. Stability is related

to L-packets by



0.5 Conjecture (Langlands):

Fix an L-packet T, and assume that one of the representations in T
is tempered. Then all of them are, and there are integers n_ (unique up to
a common multiple) so that

®(<P)=Z1reﬂw n, @,

is stable.

This has been proved over R and C [S3].
We turn now to the problem of parametrizing the representations in
a single L-packet. Fixa map ¢ from W', to "G (representing an

equivalence class) in ®(G(F)). Define
0.6 (a) S, = centralizer in G of the image of ¢.

The group S, is an algebraic group, often disconnected. We mention
two examples. If ¢ corresponds to a generic spherical representation of a
split group, then S is 2 maximal torus in “G. On the other hand, if Se
corresponds to an L-packet of discrete series representations over R, then
S, is the group of elements of order two in a maximal torus in ~G. Finally,

define
0.6 (b) S, =group of connected components of S .

0.7 Naive Conjecture:

There is an injective correspondence 1 = a_ from T, to-the set Sw"

of irreducible characters of § w'\. The integers n_ in Conjecture 0.5 may be



taken to be a_(1) (the dimensions of the corresponding irreducible

representations of § ).

As stated, Conjecture 0.7 may actually be true. To see why it is
naive, consider an L-packet of discrete series in SL(Z,R). This consists of
two representations differing by an outer automorphism of SL(2,R) (and
therefore difficult to distinguish intrinsically). The group § , pas two
elements, and therefore two irreducible characters, so the conjecture is
true. Unfortunately the two characters of § o look quite different, so any
bijection from T to S w“ must be to some extent unnatural.

Setting such difficulties aside, suppose that Conjecture 0.7 holds. For

any elements in S , we can then form the invariant distribution
0.8 ©O(p)s) = Z“"w a (s)o,.

Of course this will depend only on the image of s in § . Elementary
character theory for finite groups allows one to express each irreducible
character @_ as a linear combination of various ®(¢)(s). (This uses the
injectivity of the correspondence of Conjecture 0.7.) The theory of
endoscopy seeks (among other things) to describe the distributions @(¢)(s)
in terms of stable characters on smaller groups. Notice that @(¢)(1) is just
the stable character ®(¢) of Conjecture 0.5.

To define endoscopic groups, one must first introduce a class of

(closed) subgroups of G'. Let K be such a subgroup. Assume

0.9 (1) the natural projection from X to I' (coming from (0.1)) is

surjective,
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(2) its kernel is the identity component of the centralizer in V_G of a
semisimple elements of G,

(3) s centralizes all of K.

These conditions appear at first to be unwieldy and unnatural. They
arise in practice in the following way. Fix an admissible map ¢ from W'g to
“GT. 1f s is any semisimple element of S_ (cf. (0.6)(a)) define "H to be the

identity component of the centralizer of s in “G. Then the closed subgroup

0.10 K =<"H,eW'p)>

generated by “H and the image of ¢ satisfies (0.9). An endoscopic group
for G is (roughly speaking) a quasisplit group H over F of which the L-
group H' is isomorphic to a subgroup =K satisfying (0.6). We must say
"roughly” for two reasons. First, one wants to allow all the subgroups "K of
0.10, and these need not be L-groups of anything. Second, one wants to
keep track of substantially more than the isomorphism class of H to specify
an endoscopic group; most importantly the "G conjugacy class of “H, but

also something about the elements.

0.11 Najve Conjecture:

Suppose H is an endoscopic group for G. Then there is a natural map
Lift from stable linear combinations of characters on H to linear
combinations of characters on G. Suppose ¢ is an admissible map from W'
to the L-group of H. Since we are regarding this L-group as a subgroup of

“G", we may also regard ¢ as a map to the L-group of G. (It may or may



not be admissible.) Assume that the representations in T (H(F)) are
tempered. Then those in T (G(F)) are as well, and

Lift(@4(¢)) = © (9 )(s).
Here the character on the right is taken to be zero if ¢ is not admissible for

G.

This conjecture provides the desired description of the distributions
0.8 in terms of stable characters on endoscopic groups (assuming that Lift is
well understood).

In case F = R Shelstad has proved versions of Conjectures 0.5, 0.7,
and 0.11 (cf. [S1]). The most obviously unsatisfactory aspect of her results
is the large number of choices required, particularly in the correspondence
of Conjecture 0.7. For us the most compelling evidence that there was more
to be said was the following example. Suppose G(R) is U(p,q), the group of
linear transformations of €™ preserving a Hermitian form of signature
(p,q). (Here nis p+q.) An L-packet of discrete series for G has (;)
elements. The corresponding group S, has order 2™, Shelstad's
correspondence from T to Sw'\ requires the choice of one element of T
arbitrarily; it is declared to correspond to the trivial character of §,. The
rest of the correspondence is natural. To get nice formulas for irreducible
characters, Shelstad declares that the characters of S, not arising in her
correspondence are associated to the zero character on G(R). Suppose
instead that we look at all the groups U(p,q) (for fixed p+q) at once. There
are n+1 of these groups (we ignore for the moment the isomorphism
U(p,q)~U(q,p)) all having the same L-group “G". A single map ¢ of W
into 'G" parametrizes one L-packet of discrete series in each of the n+1

groups: a total of ZP (; ) or 2™ representations. It is natural to hope that
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these might be associated in some way with all 2 characters of § . One of
the main results of this paper (Theorem 5.1) provides (for real groups) at
least a partial realization of this hope. Before describing the result, we
want to restate the basic conjectures above to take this point of view into
account.

We still fix a local field F and a group G’ as in 0.1. Now, however,
we think of G as defined over the separable algebraic closure F® of F, and
consider all the F-forms of G having L-group "G, (These will be exactly the
inner forms of a single quasisplit F-form of G.) It is convenient for the
formulation of the ideas to fix representatives { G; } for the equivalence
classes of F-forms. If G has a center, one needs a more stringent notion of
equivalence than the usual one. We call this conjectural notion strong
equivalence. We do not know how to formulate it except over R (cf. §1).
The main requirement is that strongly equivalent F-forms G'and G" should
come equipped with an F-isomorphism, unique up to an inner
automorphism from G'(F). Such an isomorphism gives rise to a canonical
bijection between the representations of G'(F) and those of G"(F). A small
technical penalty of this requirement is there may be infinitely many
strong equivalence classes of F-forms (if the center of G is infinite.) Each G,
is simply G endowed with a certain action of the Galois group I on G(F®). A
super L-packet will be a collection of representations of each G,(F).

Write T(G) for the union of the various T(G,(F)). Using the bijections
discussed in the parenthetical remark above, T(G) may be regarded as
containing the representations of any one of our F-forms of G. A
homomorphism ¢ of W'y into "G' is called quasiadmissible if it is
admissible for at least one G,. (It is equivalent to require ¢ to be

admissible for the quasisplit inner form, or simply to drop the "relevancy”



9
requirement ([Bo], 8.2(ii)).) Write &(G) for the set of ~G conjugacy classes

of such quasiadmissible homomorphisms. We can now state

0.12 Super-Conjecture:

To any ¢ in (G) there corresponds a subset T of TM(G). The various
subsets T o should partition T(G): that is, each irreducible representation of

each G,(F) should belong to exactly one subset.

Modulo the problem of formulating the notion of strong equivalence,
this is not really different from Conjecture 0.4. Of course T, will be a
super L-packet.

We turn now to stability. Suppose we are given a virtual character @,
of each group G,(F). We say that the (formal symbol) Z; @, is a super
character. It is called super-stable (cf. §8)if @,(g) is equal to @,(g")
whenever both terms are defined and g and g' are G-conjugate strongly
regular elements. (Here @, is the function representing the character on the
strongly regular semisimple elements.) Thus a super-stable character
corresponds to a class function on the set of strongly regular elements of

G(F®) that belong to one of our inner forms of G. We can now formulate

0.13 Super-Conjecture:

Fix a super L-packet T, and assume that one of the representations
in T, is tempered. Then all of them are, and there are integers n (unique
up to a common multiple) so that

®*((p)=Zﬂ€"w n_ ®_ issuper-stable.
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This is substantially stronger than Conjecture 0.5, but it does little
more than incorporate into that conjecture the case s=1 of Conjecture 0.11.
(What has been added is a specification of Lift in that case.)

Before discussing the super version of conjecture 0.5, we consider an
example. Consider the case G=SL(2) and F=R. There are two real forms of
G, SU(1,1) and SU(2). In fact there are three strong real forms, which may
be thought of as SU(2,0), SU(1,1) and SU(0,2). A super L-packet of
discrete series therefore contains four elements: two discrete series for
SU(4,1) and one each for SU(2,0) and SU(0,2). The group §, has order two,
SO Sm" has just two elements. Thus we cannot hope to find an injection
m,=s,”

This problem does not arise if the center of G is trivial. This suggests
passing to the simply connected cover GS°of ~G. In fact ( for F equal to R)
we introduce a covering ~G®@™ of the dual group intermediate between G
and “GS°. The inverse image S , Of S, is a central extension
0.14 1>Z->5 >S5 > 1
of §,. Each strong real form G, of G defines a character 7, of Z. Let §w be

the component group of S .

0.15 Super-Conjecture:

There is an injective correspondence 1t > a_ from T to the set §~ of
irreducible characters of § .- 10 each of the F-forms G, there is attached a
sign €, so that the integers n_ in Super-Conjecture 0.5 may be taken to be
ea_(1). If 7 is a representation of G,, then a_ restricted to (the image of) 2

1S Ti‘
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In analogy with 0.8, Super-Conjecture 0.15 allows us to define for
any s in S a super character
0.16 @*(0)(s) = T oy €;2,(5)0,.
Here the sign €, is the one from Super-Conjecture 0.15 above. As before,
character theory for the group S , Will permit the recovery of individual
irreducible characters from a knowledge of all these super characters.

Finally, we consider lifting.

0.17 Super-Conjecture:

Suppose H is an endoscopic group for G. Then there is a2 natural map
Lift™ from stable characters on H to super-characters on G. Suppose ¢y is
in ®(H). Since we are regarding the L-group of H as a subgroup of G'
(well-defined up to ~G conjugacy) ¢y also defines an element ¢ of &(G).
(The condition of quasi-admissibility is automatically inherited by ¢.)
Assume that the representations in TT"H are tempered. Then those in
TTw(G(F)) are as well, and

Lift*(@4(¢)) = *(¢)(s) (notation (0.16).

Super-Conjecture 0.14 guarantees that a stable character on a
quasisplit inner form is more or less the same thing as a super-stable
character. We could therefore consider the domain of super-lifting to ve
super-stable characters, and regard a super-endoscopic group as a group H
over FS, endowed with an inner class of F-forms having L-group =K, where
“H is as in 0.6.

Super-Conjecture 0.17 forces on us the charactersa_ of Super-
Conjecture 0.15. The introduction of §w also resolves another problem, that

of the arbitrary choices necessary to define lifting.
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We can now state a little more precisely what we do in this paper: we
formulate and prove precise versions of the "Super-Conjectures” 0.13, 0.15,
and 0.17 for real groups. For reasons explained below it is best to work
first with regular infinitesimal character, and then pass to the singular case
via the translation principle [Z]. The main results are Theorems 5.1 and 9.7
(in the regular infinitesimal character case), and we extend them to
singular infinitesimal character in Theorems 10.19 and 10.42.

- To say what this requires, we first list four problems alluded to in the

discussion so far.

Problem 1. Suppose ~K is a subgroup of ~G' satisfying 0.9, and that H is
the unique reductive group over F* with dual group "H. Then “} need not

be isomorphic to an L-group of H.

Problem 2. Suppose G, and G, are equivalent F-forms of G; that is,
conjugation by some element of G(F®) induces an F-isomorphism beween
them. Then the isomorphisms induced by different elements of G may not
differ by inner automorphisms of G,(F). In particular, there is no canonical

bijection between representations of G, (F) and those of G, (F).

Problem 3. The set 'ITw can have more elements than there are

representations of § . Thatis, the group S,, is too small.

Problem 4. The group S, and the element s of 0.9 do not suffice to specify a

canonical lifting map.
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We can overcome these problems only when F=R, as we assume for
the rest of the paper. In that case Problem 1 was resolved rather
completely in [AV2]: the group “H is what we called an E-group of H. We
showed that maps of Wy into an E-group of H parametrize certain
representations of a covering group of H(R); more precisely, of the
preimage of H(R) in a certain (connected but not necessarily algebraic)
cover H®®R of the complex group H. The first problem therefore requires
only that we consider these projective representations as the appropriate
domain of lifting. (The history of this idea is 2 little unclear; we will say
more about it at the end of the introduction.)

The second problem is resolved by fixing as a base point a pair
consisting of a quasisplit real form G, of G and a discrete series
representation of G,(R) having a Whittaker model. The point of fixing the
pair is that any element of G(C) normalizing the pair acts by inner
automorphisms on G,(R). Other real forms G' are described relative to this
base point, in a slightly convoluted way that makes use of ideas peculiar to
the real case (notably the Cartan involution). Details appear in Section 1.

We have already discussed the third problem above, and the fourth
problem is solved almost automatically along with the third. For our
definition of super-lifting, we need to choose (in the setting of 0.9) a
preimage 3 of s in G®®®, With this choice, super-lifting is canonically
defined.

Having touted the lack of arbitrary choice in our results, we should
draw attention to the one place where some choice is still required. Given S
and $as in 0.9 and the preceding paragraph, we can get in a natural way an
endoscopic group H. We need to choose an identification of “K with an E-

group of H, however. Different choices lead to different identifications of
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maps of Wy into "} with representations of (real forms of) H. Given a map
¢ of Wy into "X, the super-character Lift*(®*(¢)) is independent of
choices; what varies is the super-character of H that we attach to ¢. Even
this cannot vary much; the situation is described precisely in Lemma 1.5

and the remarks after it.

Our methods are quite different from those of [S1], and we briefly
describe them. Our main point of view is that lifting is dual to Harish-
Chandra's method of descent. The duality in question is that of [V2],
between characters of real forms of G and characters of real forms of G.
The introduction of real forms of ~G and the resulting symmetry between G
and G is a significant departure from the usual techniques. We obtain
lifting of characters directly, without the use of orbital integrals. A
consequence is a defintion of stable and super-stable characters in terms of
duality. Both the definitions of lifting and of stability are equivalent to the
usual ones (up to a constant in the former case) (¢f. Theorems 8.3 and
9.17).

This formulation of stability is natural, in particular with respect to
the notion of super-lifting. Furthermore it is well suited to unipotent
representations, which we leave to another paper. In some sense this
definition of lifting realizes a suggestion of Duflo that the constants arising
in the definition of lifting might be related to those coming from the
method of descent (in our case, on the dual group).

The duality methods of [V2] are best suited to regular infinitesimal
character. Thus we work until section 9 entirely with this restriction, and

the passage to singular infinitesimal character is carried out in section 10.
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Here is an outline of the contents of the paper. Section 1 introduces
some structure theory, including the notion of a strong real form. Section 2
describes the translation principle in this context. Section 3 recalls and
reformulates the relationship established in [V2] between representations
of real forms of G and real forms of vG; this will be our main technical tool.
This section may be considered a realization of the idea expressed in the
mysterious Section 15 of [V2]. Section 4 extends the results of this section
to allow for covering groups and non-integral infinitesimal character.
Section 5 discusses the pairing TS w—>d:*, and some calculations needed to
identify our lifting with Shelstad’s. Section 6 introduces endoscopic groups
in a convenient form. Section 7 recalls the reformulation in [AV 1] of results
of [DHV] and [B] on Harish-Chandra's method of descent. Section 8 gives a
convenient characterization of stability and super-stability (Definition 8.1
and Theorem 8.3). Section 9 defines lifting from H to G in terms of descent
from ~G to “H (using the relationships from Sections 2-4). The new
definition is compared with Shelstad's, and an appropriate version of
Conjecture 0.11 is established. The eXtension to singular infinitesimal
character is made in Section 10. We discuss some examples in Section 11,
and we strongly recommend the reader read the paper with these
examples in mind.

We conclude this introduction with a remark about the problem of
embeddings of L-groups (Problem 1 above). When we first began to
circulate these ideas a few years ago, we believed that the idea of
introducing coverings of H to resolve it was entirely original. Now it
appears to be a minor variation on the approach in [LS], which in turn
originates in [L2]. What our formulation has to recommend it is perhaps a

minimization of arbitrary choices.
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§1
Structure Theory

In the first three sections we set up the machinery for the rest of the
paper, starting with some structure theory. Most of this is from [AV2].
Let G be a connected reductive algebraic group. Let IG% ve the
dual group for G, i.e. with datum dual to that for G [Bol. For G
defined over R let MG be the L-group of G [Bol. In order to exploit
fully the symmetry between the rotes of G and G, we use different
notation.
Wwe first introduce the category of L-groups with which we wiil be

working.
1.1 Definition:

An extended group containing G is a pair (G", D) where:
(1) G is an algebraic group containing G as a subgroup of index 2.
(2) D is a conjugacy class of pairs (§,B), where:
(a) §is an element of G" not contained in G,
(b) B is a Borel subgroup of G.
(3) Fix (§,B)eD, and let 6(g)=8gs™" (geG). Then
(a) 6 is a principal involution (cf. [AV 2], Definition 6.13),
(b) 6 normalizes B.
(4) Let T be a 6-stable maximal torus in B. Then every simple root of

T is either complex or non-compact imaginary with respect to 6.
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A Borel subgroup satisfying condition 4 is said to be large, cf. [V2] for
motivation. Conditions 3 and 4 are independent of the choice of (§,B). We
write §¢D to indicate (§,B)¢D for some B. The condition that © be a
principal involution says that it is the Cartan involution of a quasi-split
group ([AV2], Definition 6.13).

We will often drop the extra data from the notation and call G an
extended group. A morphism between extended groups (G",D) and (GT,D"
is by definition a group morphism G'>G",which takes G to G' and G'-G to
GT-G'. By 3,

1.2 §2¢2(G)®,

the 6-invariants of the center of G. (Note that conjugation by an element
xeGM-G gives an automorphism of Z(G), independent of the choice of x). It
follows that an extended group is defined up to isomorphism once a
conjugacy class of involutions {6} and an element z<Z(G )® have been chosen.
For let § be a formal element, and define G as a set by G"'=GU&SG. Define
multiplication by muitiplication in G, and the relations sgé~'=0(g) and §%=z.
This uniquely determines the isomorphism class of G'. We may pick any
Borel subgroup satisfying condition 4, and choose D=G(8,B) to complete the
definition of (G",D). Given z, any two such groups are isomorphic by an
isomorphism which is canonical up to conjugation by G.

The choice of conjugacy class D corresponds precisely to the choice of

splitting in the definition of an L-group ([L], see also ([AV 2], §9).
Given G (defined over R)let ~G be a connected reductive
algebraic group (cailed L0 in the previous notation) with root datum
dual to that for G. We obtain an extended group containing "G as
follows ([AV 2], Definition 9.3). Let ¥, denote the anti-holomorphic

involution of G defining the real form, i.e. Gv°=G(]R). Let ‘o’g denote
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the anti-holomorphic involution defining a split real form of G. Then
(‘o’o)"‘o’g is a holomorphic automorphism. Let ¥ denote the image of
(¥4)™'¥g in the outer automorphism group OUt(G)FAut(G)/Int(G) of
G; ¥ only depends on the conjugacy class of ¥,. Let “Y denote the
element of Out( G) corresponding to Y via the natural isomorphism
Out(G)%Oﬁt(vG). Then Y is independent of all choices.

We say two elements of order two in Aut(G) are inner to each
other if they have the same image in Out(G). If ¥eOut(G) is an
element of order two, we refer to the ;et C(Y) of real forms of G
‘giving rise to ¥ by the above construction as an inner class.

For T a Cartan subgroup of G, we let Q*(G,T)CX*(T)SP™(G,T) denote
the root lattice, the character lattice, and the weight lattice respectively.
We let Q (G, T)CX  (T)CP,(G,T) denote the coroot lattice, the lattice of
one-parameter subgroups, and the coweight lattice respectively. We let
R(G,T) be the roots of T in G. If x€R(G,T) then o<v€Q*(G,T) denotes the
corresponding coroot.

Choose a Cartan subgroup °T of “G and a Borel subgroup °B containing
ST. Let peP,(7G,%T) be one-half the sum of the coroots of °T in °B. Let 'z,
be its image in Z('G) under the isomorphism Z('G)~P,("G,%T)/X(°T). This

is independent of the choices.

1.3 Definjtion:

An L-group for G is an extended group ('G",”D) containing ~G where
the action of “§¢ D on ~G by conjugation is inner to ¥, and v52=Vzp.
Explicitly:

(1) "G' is an algebraic group containing G as a subgroup of index 2.

(2) 7D is the conjugacy class of pairs ('8, B), where:
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(a) 78 is an element of “G' not contained in G,
(o) 7B isa Borel subgroup of G.
(3) Let “o(g)="86g &' (gc G). Then
(a) "o is a principal involution inner to Y,
(0) "o normalizes B.
(4)"B is large with respectto © .
(5)78%="2,€2("G) .

The isomorphism class of ("G",”D) is independent of all choices, and
“G" is i\somorphic to LG ([AV 2], discussion following Definition 9.6). We will
often drop the extra data from the notation and refer to ~G" as an L-group
for G. Note that it depends only on the inner class of G (as a group defined
over R); we say G' is associated to an inner class.

The analogous situation with "G in place of G allows us to
define an extended group G" containing G as a subgroup of index two.

That is, G' is an extended group containing G associated to the inner
class defined by CG(Y). Alternatively, note that ~© is the Cartan
involution of a real forrp of 'G. Then G is an L-group for (the real
group) G .

Thus our initial data will always be the following: a reductive
algebraic group G and an inner class C(Y) of real forms of G. Associated to
this we obtain G'and “G", unique up to isomorphism. Let © be an involution
of G defined by 1.1(3a). Note that this is the Cartan involution for a
quasi-split real form of G.

The irreducible representations of real forms of G in a given inner
class C(¥) are parametrized by homomorphisms of W, the Weil group of

R, into "G'. Representations of certain covering groups of G play an
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important role. These are parametrized by homomorphisms of Wy into
other extended groups containing “G. Furthermore these extended groups
for certain subgroups (e.g. Levi subgroups) of G arise naturally as

subgroups of G,

1.4 Definition:
An E-group for G is an extended group ('G", "D) containing “G where

the action of ~§ on G by conjugation is inner to Y.

Thus we have merely dropped the assumption ~§?="z_ from

Definition 1.3. The following Lemma is immediate.

1.5 Lemma:

Ssuppose G and an inner class C(Y¥) of real forms have been given.

(1) An E-group for G is determined uniquely (up to an isomorphism
which is canonical modulo conjugation by “G) by an element contained in
2("G)™®. (Here “ocAut("G) is any involution of G mapping to ¥eOut('G).)

(2) Given “z,ez("G)®, tet ("G", "D,) be a corresponding E-group for
G. Then the possible E-group structures ('G",”D) on "G are parametrized
by

(Y2e2(7G) | 270 (Tz)=11/{ "w e(Cw ) | "wez(7G) }.

Explicitly, the structure ("G",” D) parametrized by the class of z as above
has “D={("8z,"B) | ("§,B)c D).

For example an L-group for G is an extended group determined by

In terms of the Langlands classification, changing "D (by an element

of the set in (2)) corresponds to a permutation of the admissible
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representations of a real form of G which takes 7 to e, for some fixed
one-dimensional representation 7.

We next discuss real forms of a given group. Recall that a real form
of G is by definition the group of fixed points of an anti-holomorphic
involution ¥, of G; or simply the involution itself. We write G(IR)=GX°. Two
real forms ¥, and Y', are said to be equivalent if ¥,'=int(g)e¥ cint(g )y tor
some g¢G.

Following [AV2] we prefer to parameterize equivalence classes of real
forms by conjugacy classes of holomorphic involutions. Given a real form
we obtain a holomorphic involution 6: let © be a corresponding Cartan

involution as in [AV 2] (6.7).

1.6 Lemma ([AV 2], Proposition 6.9):

Every holomorphic involution of G is the Cartan involution of some
real form of G. Two holomorphic involutions are conjugate if and only if the
corresponding real forms are equivalent. Thus there is a bijection between
the set of equivalence classes of real forms, and conjugacy classes of

holomorphic involutions.

Let K=G® Given 6 we recover G(R) as a real form of G which satisfies:
G(R)NK is a maximal compact subgroup of G(R). Then the subgroup G(R) of
G is determined up to conjugation by K.

Let GF be an extended group containing G. Let X be an element of
G"-G such that x? is contained in the center Z(G) of G, and let & denote the
coset XZ(G). Define an involution 6, of G by 6,(g)=xgx "' (g€G). This defines
a map from pairs (G©, &) to involutions of G. Say (G", %) is equivalent to

(H',®') if there is an isomorphism G'/Z(G)~H"/Z(H) taking the conjugacy
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class of ® to the conjugacy class of 8 . The next Proposition follows

immediately.

1.7 Proposition:

There is a bijection between equivalence classes of pairs (G",®) and

equivalence classes of real forms.

We need to eliminate the ambiguity due to the center of G in the
preceding Proposition. We keep track not just of the Cartan involution 0,

but of the element %G (not just the coset XZ(G)) representing it. Thus:

1.8 Definition:

A strong real form of G is a pair (G",x), for GM an extended group
containing G, and xeG"-G, x2¢Z(G). Two strong real forms (G",x) and (G",y)
are equivalent if y is conjugate to X by an element of G..

If G' is given we will refer to X as a strong real form.

We will not need a notion of equivalence of strong real forms
attached to different extension groups (we will generally have in mind a
fixed group G").

For example SL(2) has two (equivalence classes) of real forms, but 3
strong real forms corresponding to SU(2,0), SU(1,1) and SU(0,2)
respectively (cf. section 11).

Given (G',X) let & denote the Cartan involution 6(g)=xgx™ of G, and let
Kx=G°. We write 9, when we want to emphasize the dependence on x.
Write G(R) for a real form of G with Cartan involution 6 (i.e. G(R)NK, is a
maximal compact subgroup of G(R)); this is defined up to conjugation by K,.

This defines a map, not necessarily injective, from equivalence classes of
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strong real forms, to equivalence classes of real forms. We write G(R),
when we want to emphasize the dependence on X. Note that the inner class
of G is determined by G', and the equivalence class of its real form by the
coset XZ(G).

We will mostly work in the category (g .K,) of (g,K,)-modules
instead of G(R )-modules, so it is usually not necessary to choose G(R) (the
main exception is in section 7). The main results will all hold with
"admissible representation of G(R)" in place of "admissible (g,K,)-module”.

For later use we note that if 7 is a (g K,)-module and g<G, then we
obtain a (g X,.)module in the natural way, with x'=int(g yx=gxg~!. We denote
this module grt. A crucial point is that g depends only on X', and not on

the particular element g taking x to X'.

We recall some facts about Cartan subgroups of G ([AV2],§9). By
definition a Cartan subgroup of an extended group G" is a subgroup T"
meeting both components of G", such that T'NG is a Cartan subgroup of G.
Suppose (G',x) is a strong real form of G. A Cartan subgroup T is said to be
o,-stable if xeT; equivalently if T' is generated by a 6,-stable Cartan
subgroup of G and by X. As the notation indicates given TF, T will denote
T'NG; and given T 6,-stable, we let T'=TUTx.

Let T' be a 6 -stable Cartan subgroup of G'. Fix ~§¢D, and let IT" be
a “o-stable Cartan subgroup of G'. Let T be the L-group of the
underlying Cartan subgroup T=T'NG of G, equipped with the real form
associated to 8,/ Now “T comes equipped with a Cartan involution, call it
“0.. Choosing Borel subgroups B and 9B of G and G, containing T and 9T,
we obtain a map T->9T ([AV2],9.7). By changing the choice of Borel
subgroups this may be modified arbvitrarily by the Weyl group of T or dT.
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we say T is dual to 9T if this map may be chosen to take “6.,.to (70)lg; we

say dual via (B.%B) if it is necessary to specify the role of the Borel
subgroups. Given T', there exists 9T" such that T' is dual to IT" ([AV 2],
Lemma 9.13). Given x we say 9T is relevant if there exists a ©,-stable
Cartan subgroup T' such that TM and 91" are dual.

Given T" and 4T dual via (B,%B), we obtain an isomorphism TA°T as
above. This induces isomorphisms X*(T)*X,(8T), W(G,T)~#W( G,°T), etc.
We denote these isomorphism ¥, or IB'.{B if it is necessary to specify the
Borel subgroups.

Note that from the construction of “G we obtain a unique Gx G-
conjugacy class <, of isomorphisms "T~S%T for T a Cartan subgroup of G and
4T a Cartan subgroup of “G. We refer to the elements IcZO as
distinguished.

In general we will use the superscript 4 to indicate an object having
to do with G, not necessarily originating from G in any specified way; for
example °T denotes a general Cartan subgroup of G. We reserve the
notation ~ for an object on the dual side related to G by some isomorphism
as above. For example if T is a Cartan subgroup of G, then the dual torus T
is isomorphic to any Cartan subgroup 4T of "G, but this isomorphism is not
canonical. Once 3. T->°T is fixed for x¢R(G,T) we let ~x=T(x )eQ*(7G,%T)
be the corresponding root of T in “G. (This is not to be confused with
x €Q,(G,T), which is the corresponding coroot of T in G.) Similarly given
4T, tet YW =w('G,%T), and write %w for a typical element of ¢W. Given T

and (B,%B) as above, we obtain I wa%W. Then for wew we let “w=T(w).
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§2

The Translation Principle

We are going to make extensive use of the results of [V2]. Those
results deal not so much with individual representations as with
“translation families” of representations. To establish notation it is
convenient to recall the necessary ideas. We work in a rather unusual
setting, the usefulness of which will appear only later. For now we simply
mention that most of the difficulties of this chapter do not arise when the
representations in question have integral infinitesimal character.

As before we fix a complex reductive algebraic group G and a dual
group “G. Recall from section 1 that there is a distinguished
Gx G-conjugacy class Z, of isomorphisms

3T & o7
each of which identifies the dual group of 2 maximal torus T in G with some
maximal torus ¢T in “G. The following observation is just a reformulation
of Harish-Chandra's theorem on the center3(g) of the universal enveloping

algebra U(g) of g.

2.1 Proposition:

Let T and 9T be maximal tori in G and ~G respectively. The following
four sets are in natural one-to-one correspondence:

a) infinitesimal characters for G; that is, homomorphisms from¥%gqg)

to C;

b) W(G,T) orbits in T*;

¢) W(G,3T) orbits in 41; and

d) semisimple Ad( G)-orbits on ~g.
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If A is an element of T* or 41, or a semisimple element of g, We

write X, for the corresponding infinitesimal character for G.

We will be considering representations of subgroups G_and VGvc of G

and G (or rather their Lie algebras). Thus we fiX semisimple elements

22 (@) c¢ce€G

ce G.

Define

22 (pb) G_ =identity component of centralizer of ¢ in G,

“Gv_= identity component of centralizer of “¢in G.

The representations we consider will be g_-modules for the most part.

We need a way to identify duals of tori in G with tori in vac. of
course some of the isomorphisms in Z, do exactly that; but'there are too
many of these isomorphisms. We therefore fix a chvac—conjugacy class <

of isomorphisms
2.3 37T - OT;

here for each ¥, T is a2 maximal torus in G (with dual torus "T), and T isa
maximal torus in VGvc. We assume that 2 is contained in Z, (of course if
G_=G and 'G_= G this says Z=2,). If T and %T are fixed maximal tori in G
and “Gv_then the set of isomorphisms in Z from T to °T is a single orbit of

WG TIXW (G °T).
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Fix 3 ¢ Z mapping T to ®T. Then T identifies coroots of T in G with

roots of 8T in “G. We can therefore define

24 R (3)={x €R(G,T)IT(x)c)=1}
The corresponding set of roots of 8T in “Gv_is written °R ~.(Y). The

definition is symmetric in G and G, as is clear if we rewrite (2.4) as

24" R (3)={x ¢R@G,T) | x(c)=1and I(x ) c)=1}.

Here is a fairly standard formulation of the Jantzen-Zuckerman

translation principle. Most of the proof is in [Z] and [SV].

2.5 Theorem:
With notation as above, suppose T is a maximal torus of G_. Fixa

weight A € t*, and a weight v € X™*(T) of a finite-dimensional

representation of G. Assume that

i) for every coroot x of T in G_such that M) is a positive integer

(respectively zero), (A+v)(x ) is a non-negative integer (respectively zero).

Then there is a translation functor \I/=\I/;\w from the category

TM(g,, X4 ) (of g -modules with infinitesimal character %y ) to Mg . Xy 4, )-

The functor V¥ is exact, and takes any irreducible Harish-Chandra module to
an irreducible module or zero. Any irreducible Harish-Chandra module in

TM(g. X4y, ) Ras a unique irreducible preimage under V. Suppose in

addition that
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ii) for every coroot «~ of T in G such that A ") is a positive integer,

(N+v)(x ) is a positive integer. Then V¥ is an equivalence of categories,

e A
with inverse V¥, ..

We are being deliberately vague about what kind of Harish-Chandra

modules are permitted, partly to allow for possible future applications in

very general settings. The main requirement is that the group K (with

respect to which Harish-Chandra modules are defined) should come
equipped with an appropriate map to the complex group G_. In this paper
K will always be a covering of a subgroup of G, so there is no difficulty.
Translation families of representations will be collections of
representations differing by translation functors. The next definition

provides a first kind of parameter set for such a family.

2.6 Definition:
Suppose A, and T are as in Theorem 2.5. Define
R o) = {x €RG,T)lx (A\g) €Z),
the set of integral roots for A,. Fixa set P of positive roots for R.(Ag)

making A, dominant. Define
@ =CMNP)={Ac¢ T* | A=Xy€X™(T), and A is P-dominant }.

A translation family based on @ is a map 7 from @ to g_-modules,
with the following properties.

a) For all A € @, w(A\) has infinitesimal character A.
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b) Suppose A and A+v belong to @, and the translation functor

\I/=‘I/§+v is defined. Then ¥n(\) is isomorphic to T(A+v).

We say that the family 7 is irreducible if w(A) is irreducible for regular A.

Two irreducible modules are called translation equivalent if they occur in

the same irreducible translation family.

The set we will actually use to parametrize a translation family of
representations will be a variant of this one (cf. Definition 2.9); we include
this because it corresponds more closely to the usual notion.

It is not quite a formal consequence of Theorem 2.5 that many
translation families exist, but this follows from [Z] and [SV]. Here is a

precise statement.

2.7 Proposition:

In the setting of Definition 2.6, suppose 7, is an irreducible
Harish-Chandra module for g_of infinitesimal character corresponding to
some element of ®. Fix Ae@ so that 7 has infinitesimal character X,. Then
there is a unique translation family 7 of irreducible Harish-Chandra

modules based on @, such that w(A,) = 7.

A technical complication here is that A may fail to be uniquely
determined by 7,; two different choices will give rise to two different
translation families. This can only happen if A is not'integral. The simplest
example is for G=SL(2), and A =ix, for x a root. The problem is that there
are non-isomorphic principal series with this infinitesimal character, but

they differ by a translation functor.
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2.8 Definition:

In the setting of (2.2), we say that an infinitesimal character X for G
is associated to _¢ under the following condition: there are an isomorphism
T ¢ 7 and an element A in 1*, such that

a) X =7%,,and

b) exp(2miT(A)) = Tc.

In (b), we are regarding S as an isomorphism from 1* to %,

Now ¥ maps 2miX*(T) to the kernel of the exponential map on 4T; s0
condition (b) is unaffected if A is replaced by A+v, with veX™(T). The
infinitesimal characters of the representations in a translation family 7 are
therefore all associated to vc, or none of them are. In the former case we
say T is associated to c.

Definition 2.8 becomes particularly simple when ¢ is central in G (as it
will be in most of our applications) and "¢ is central in ~G (which

corresponds to integral infinitesimal character for G). Then

2.8" the infinitesimal character X, is associated to "¢ if and only if

exp(27iN) = <.

Here we identify a weight A in the dual of a maximal torus in g with an
element of g using any of the distinguished isomorphisms J.

We also parametrize a transiation family by data for ’G.

2.9 Definition:
In the setting of (2.4), note that
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¢R v (3) = {x € R(Gv, *T) | SN M) = 1 }

Choose a set %P of positive roots for %R v _(¥). Define
¢ =¢(c,%P)
= { A e ¥t |exp(2miN) = "¢, and A is *P-dominant }.

A translation family based on (®,Y) is a map 7 from @ to

g -modules, with the following properties. (To keep the notation
manageable, we will use ¥ implicitly to identify %t with t*.)

a) For all A € @, w(\) has infinitesimal character X, (cf. Proposition
2.3).

b) Suppose A and A+y belong to @, and the translation functor

\I/=\I/;\+v is defined. Then ¥ (\) is isomorphic to W(A+v).

A translation family is a triple (@,3,%) for @,% and 7 as above. We
say two translation families (®,3,7) and (@', 3',1t") are equivalent if there
exists geG_and ge Gv, such that:

1) int(g)T = T'and int("g)°T=4T",

2) int(g)eS = Teint("g),

3) int(g)P = P' (equivalently, int("g)éP=°pP"),

4) g(m(\)) = w'(int(g) " A).

If (P,Y)is given we will write 7 for a translation family.

In the setting of Definition 2.9 fix an element A ¢ 4T such that
exp(2miAg) = “c. Let P be a set of positive roots making Ao dominant.
Then
2.10 @ = { A € ¥ A-A, € X,(T) and A is °P-dominant ).

By inspection of (2.4) and Definition 2.6, we have
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Rovo(3) = R (37MN)y),

and the corresponding set of coroots is identified by T with dRcva(‘S). of
course T identifies ®(A,,P) with @(exp(ZTriI(ko),dP), sO we have
immediately the analogue of Proposition 2.7.

In the applications either ¢ or "¢ will be central, in which case we

have the following result.

2.11 Lemma.
suppose ¢cZ(G) or ceZ('G). Let (®,3) and (¢',3') be as in 2.9. Then
there is a unique isomorphism 8:9T->9T' satisfying the following properties.
(1) ®isinner for Gv_
(2) g(ép)=°p’
(3) there exists geG _such that g-I=T"int(g).
Thus there is a canonical bijection §:@=>®'. Consequently there is

associated to ¢ and ¢ a canonical parameter set @.

We omit the elementary proof.
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§3

Character Duality Revisited

Our goal in this section is to recast the results of [V2] in a form
convenient for our present purposes. Let G and GM be L-groups for G and
"G as in §1. We begin by describing (quasi-admissible - see [AV 2],
Definition 9.8) maps of the Weil group into "G in terms of "roots and

weights” (Proposition 3.4). Recall first that W is generated by C*and a

distinguished element j. These are subject to the relations

31 2=-1¢C*

jzi™!

= Z.
We consider triples (y,%TF,\) satisfying
32 (1) y € 6" - G, and y? is semisimple;
(2) 91T is a Cartan subgroup of “G' containing y;

(3) A et~ X,(%T)eC (where ¢t = Lie(%T); and

(4) exp(2WiA) = y2.

Define a quasi-admissible homomorphism ¢ = ¢(y,%T",\) from W to G' by

33 (1) o2) =2224%Y) (where zh=exp(Nlog(z)), for z € €* € W)

(2) () =exp(-wiN)Yy .

We must check that 3.3(1) is well defined, and that the relations 3.1
are preserved. First note that 3.2(4) implies

y(exp(2miN))y™! = exp(27iN),
which in turn implies that A - Ad(y)A € X,(®T). Thus 3.3(1) provides a



34

well-defined homomorphism from €* to "G'. From 3.3(2) and 3.2(4) we
have ¢(j)? = exp(i(A-Ad(y)N)). By 3.3(1), the right side is equal to ¢(-1),
so ¢(j)2 = ¢(-1). Similarly one calculates that ¢(j)¢@)¢(j)'=¢(2). This

shows that ¢ preserves the relations defining W.

3.4 Proposition:
For any quasi-admissible homomorphism ¢ from W, to "G, there

exists a triple (y,T",\) satisfying 3.2 such that ¢=¢(y,%TF,\). The
elements y and A are uniquely determined; if A is regular, then the triple is
unique. Furthermore there exists ~§¢” D such that °T' is ~©-stable (where

Yo = int("§), conjugation by ).

Proof:

By [AV2], Lemma 9.15, the image of ¢ is contained in some Cartan
subgroup ®T" of “G". Then we can write ¢(z) =z*2”, for some A and v in °T.
Set y = exp(TiA)e(j); then 3.3(2) holds. The relation ¢(j)e(z)e() '=¢(2)
implies that ¥ = Ad(y)\, so 3.3(1) holds. Similarly ¢(j)? = ¢(-1) leads to
3.2(4). The other conditions in 3.2 are immediate.

We have identified A as the image of the holomorphic part of the
differential of ¢, and given a formula for y in terms of A; so A and y are
unique. The Cartan subgroup %T' can be the group generated by y and any
maximal torus °T containing A. If A is regular, then 4T is unique. The final

statement follows from [AV 2], Lemma 9.16, proving the proposition.

If (y,%T" A, ) satisfies (3.2), then (y,%T",A) does as well if and only if

35 A€+ X (°T).
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In the context of Definition 2.9 (cf. 2.10), this suggests that the family of
maps ¢ obtained by varying A in this way should parametrize something
like a translation family of representations. This is nearly true, although a
variety of complications can arise for singular A. Here is a precise

statement, essentially proved in [SV].

3.6 Theorem:

suppose (y,%T" \,) satisfies (3.2). Then any representation associated
to ¢(y,%T",A,) by the Langlands classification has infinitesimal character A,
(Proposition 2.1); in particular, its infinitesimal character is associated to y?
(Definition 2.8).

Supposé in addition that A, is regular. Write 4P for the set of positive
roots of 4T in vaz making A, dominant, and define ®=0(y%,%P) as in
Definition 2.9. Fix a strong real form x of G (Definition 1.8).

(a) Suppose I(A,) is a standard (g K,)-module attached to
o(y,%T" ,A\,) by the Langlands classification; write I for the corresponding
translation family parametrized by @. Then for any A € @, I[(A) is a direct
summand of some standard (g,K,)-module attached to ¢(y,%T",\). If A is
regular, I(\) is itself standard.

(b) Suppose J(A,) is an irreducible (g,K,)-module attached to
w(y,dTr,ko) by the Langlands classification; write ] for the corresponding
translation family parametrized by @. Then for any A¢@, J(A) is either
zero, or it is an irreducible (g,X,)-module attached to ¢(y,3T",\). If A is

regular, the latter is always the case.
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We now wish to extend the data (v,%T",\) in such a way as to specify

a unique representation within an L-packet. To motivate Definition 3.8, we
need to recall a little about Langlands' construction of representations as
described in [AV2]. Suppose (y,°T",\) are as in (3.2). Fix a strong real
form x of G (Definition 1.8) and assume that ¢T7 is relevant with respect to
x ([AV 2], Definition 9.11). (If this hypothesis is not satisfied, then the
Langlands classification attaches no (g,K,)-modules to ¢(y,°T" \).) Write
6=int(x) for the corresponding Cartan involution. Then we can find a
o-stable Cartan subgroup T" of G dual to ¢TF ([AV 2], Definition 9.11). By
the definition of dual, we can choose a distinguished isomorphism ¥ from
“T to OT taking '@ to (int y)lay This I is not unique; varying it will
produce the various representations in the L-packet. Fixa set ¥ of positive
real roots of T in G; ¥ corresponds by ¥ to a set 4y of positive imaginary
coroots of 4T in ~G. As in Definition 9.22 of [AV2], we can find an element
“$in 9T" N 7D making ¢V into a special set of positive imaginary roots for
¥§ (IAV 2], Definition 6.29). The element ~§ is unique up to conjugation-by
the centralizer of y (or, equivalently, of “§)in T. Write p for half the sum
of some set of positive roots of T in G, and vzp for the corresponding
element of "T. Sending 8 to a distinguished element now gives an
isomorphism

v=u(3,¥): 41 - YT,
where T is an E-group for T determined by Vzp ([AV 2], Definition 5.9).
Composing with 1, we get a map g from W to "T'. By the Langlands
classification for tori ([AV 2], §5), this map defines a one-dimensional
genuine (1,(TNK,),)-module

A= A(T,¥).
Here (TNK,), is the two-fold cover determined by p (cf. [AV1], §2).
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(Writing T(R) for the real form of T with Cartan involution 6, we may also
regard A as a genuine character of T(R) .) Note that dA=A.

Finally, we want to use cohomological induction from A to define a
standard limit (g X,)-module. When X is regular, there is no difficulty in
doing this; but for singular A we must also specify a set of positive
imaginary roots for T in G ([AV2],Definition 8.18 and Proposition 8.20).
Through the isomorphism ¥ this amounts to picking a set of positive real
roots for 8T in 'G. The next lemma shows that this is subsumed in the
choice of positive roots needed in Theorem 3.6 to discuss translation

families.

3.7 Lemma:

Suppose y and %TF are as in (3.2). Then every real root x of °Tin G
satisfies x(y2) = 1, and so is a rootin ~G 2

Proof:
Necessarily v is of the form t”§, for some tin °T. Since the square of

7§ is the central element Z, y2 must be t(vet)zp ,and x(y2) = x(t)(T8x)(t).

Since « is real, O« = -«; $0 x(y?) = 1, as we wished to show.

We turn now to the main definition of this section; these are the sets

that will parametrize translation families of representations.

3.8 Definition:
subject to the following conditions.

a) T' is a Cartan subgroup of G, and x is an element of T'-T.



38
) 817 is a Cartan subgroup of G',and y is an element of 3T'-%T.
¢) T is a distinguished isomorphism from T to ¢T making T" dual to
41T (that is, carrying the inverse transpose of int(x) to int(y)).
d) P is a set of positive roots for the root system szyz(‘S) defined in
(2.4).
e) 9P is the image under ¥ of the coroots corresponding to P; this is a
set of positive roots for the system dezyz(‘S) defined after (2.4).
f) %% € 2(G).
We say that S is integral if y2 € 2('G). The set § is said to be
equivalent to S'if S is conjugate to S' under the obvious action of GXG'.

Because of condition (e), P contains all the imaginary roots of T in G.
It is not hard to deduce that conditions (c)-(d) therefore determine I up to
conjugation by an element of G. Up to equivalence, we could therefore omit
I from the definition. It will be needed in the generalization considered in
§4, however, so we retain it now for symmetry.

Note that %P corresponds to a choice of Borel subgroup dBCVGVZ, 0
we write 9B in place of 4P on occasion. Furthermore is S is integral, then P
corresponds to a Borel subgroup BCG, and a similar convention holds.

Fix S as in Definition 3.8, and write
3.9 (@) ®(S) = @(y%%p)
(Definition 2.9). Suppose A belongs to ®(S). Choose a set ¥ of positive real

roots for T in G, and define A = A(T,¥) as in the discussion before Lemma

3.7. Write P, __ for the set of imaginary roots of T in P. Define

3.9 (b)) I(S,AN)=1(¥,P._,A(T,¥)),

im’
a standard limit representation ([AV 2], Definition 8.27). If A is regular, we

define
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3.9 (c) J(S,\) = Langlands subquotient of I(S,\).

We extend the definition of ] to all A in ®(S) by requiring J(S) to be a
translation family. This is possible by Theorem 3.6.
The omission of ¥ from the notation on the left of 3.9 (b) and (¢) is

justified by

3.10 Lemma:
In the setting of 3.9, any two choices of ¥ lead to isomorphic

representations I(S,\).

roof:

This assertion was verified in the course of the proof of the Langlands
classification in [AV2]. The argument is given (in a slightly disguised form)
in Lemmas 8.24 and 9.28 of [AV2]. We leave the remaining details to the

reader.

Here is a sharper version of Theorem 3.6. It combines the Langlands

classification with Theorem 8.2.1 of [V 1].

3.11 Theorem:

suppose S is a set of strong L-data. Then I(S,*) and J(S5,*) are
translation families based on (®(S),T) (Definition 2.9). The map from S to
(x,]) defines a bijection between equivalence classes of strong L-data, and
equivalence classes of pairs (x,11), with X a strong real form of Gand 7 a

translation family of irreducible (g, K,)-modules.
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The theorem says that two non-zero irreducible modules J(S,\) and
J(S',\") are isomorphic if and only if (S,\) is conjugate to (S, A"). A small
but important subtlety is that two non-zero standard limit representations
I(S,\)and I(S',A\") may be isomorphic even if the corresponding Cartan
subgroups TM and (T')\ are not conjugate. This can happen only if A is
singular.

We can now conveniently define "super” L-packets. Given a

quasi-admissible homomorphism ¢:Wy = ~G', and a strong real form X of
G, we a obtain a (possibly empty) L-packet T of (g K,)-modules. We

write T to indicate the dependence on X.

3.12 Definition:
The super L-packet T " associated to ¢ is the union of the sets T 0, x 38
X varies over a set of representatives of equivalence classes of strong real

forms of G.
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Suppose now that ¢ = ¢(y,%T",\), and that A is regular. Write ¢P for
the corresponding set of positive roots of 4T in VGyz. Choose a Cartan
subgroup T" of G" that is dual to ®T' via an isomorphism I from T to °T.
Write P for the positive integral roots of T in G corresponding to P by I,
Let S'=(x'(T')F P.y.%T",%P,T") be a set of strong L-data such that J(S',A)
belongs to T . After conjugating S by G, we may assume that (T')" =17, ¥
=T and P' =P. The entire set S is therefore determined by X;and xin
turn is determined by S up to conjugation by T. The following lemma is an

immediate consequence.

3.13 Lemma:
In the setting just described,
(1) T, is in bijection with {x € T" | ¥* € Z(G) } / (conjugation by T).
(2) Fix & in T'-T with 8% ¢ Z(G); for example, take § in DNT'. Write
o=int(é). Then T is in bijection with

{teT|teteZ(G)}/ {s6(sNIseT)

Notice that the second parameter set is a group.

Wwe want next to understand blocks of (g,Kx)—modules.
Write U(g,K,) for the Grothendieck group of finite length (g K,)-modules,
or virtual modules. This is a free Z-module having as basis the set of
irreducible (g K,)-modules. A less obvious but equally important basis is
provided by the set of indecomposable standard modules. These are the
standard limit representations admitting a unique Langlands
subrepresentation; passage to this subrepresentation defines a bijection
from the indecomposable standard modules to the irreducible modules. For

regular infinitesimal character, the indecomposable standard modules are
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just the standard modules.

3.14 Definition:

Suppose X is a strong real form of G'. Block equivalence is the

smallest equivalence relation on irreducible (g,K,)-modules with the
following property: if X and Y are irreducible (g,K,)-modules, F is a finite
dimensional representation of G,and Yis a subquotient of X®F, then X is

block equivalent to Y.

3.15 Definjtion:

(1) A block ®B of (g, K,)-modules is the Z-module spanned by a block
equivalence class of irreducible (g,K,)-modules. We say a representation
is contained in ® if this holds in the Grothendieck group (i.e. all the
irreducible constituents of 7 are contained in ).

Fix a block ®.

(2) We let B¥T pe the set of irreducible representations contained in
B. If I is a standard limit representation, all of the irreducible factors of I
are contained in the same block. Thus we let B5*d denote the set of
standard limit representations contained in ®.

Note that BT is a basis of (.

(3) Define translation families of virtual modules in the ocbvious way.
Block equivalence is weaker than translation equivalence. Thus it makes
sense to say that a translation family = is contained in @ (i.e. W(A)e® for all
(equivalently any) Ae®). We let B, denote the translation families

, : , ' td ..
contained in B. We define OB;IFr and (B;rfi similarly.
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Note that B is a Z-module of finite length, with bases By and Bjy.

(4) Given Ae@®, we let
BA) = { t(\) | XHeB g}

= { 0<@B | 0 has infinitesimal character X, }.

It is possible that B(X\)=B(\") for \,\'e® for X\ # X'. This can happen
only if A is conjugate to A' via W('G, T). Since A and \'are P-dominant,
this cannot happen if they are integral. In fact it can only arise if vac is
not connected, and is rare in general.

We will see that any L-packet is contained in a single block.

3.16 Theorem:
suppose S=(x,T",P,v,%T",%P,Y) and S'=(x,(T")" P"y",(3T")" P, T") are
two sets of strong L-data for the strong real form X of G". Then J(S) is block

equivalent to J(S') if and only if y is conjugate to y".

This is easily deduced from the results of [V2], and we will omit most
of the proof. Some of the ideas will be needed in §6 to compare our results

with Shelstad's; we will therefore outline those ideas.

3.17 Definition:
Fix a maximal torus T® of G and a regular weight A% in (t12)*. Set
W) ={weW(@G,T*) [ WwA® -A® ¢Q*(G,T*) ),
the integral Wevyl group for A®. Suppose now that T is any other maximal
torus in G, and that Ael™ is a weight conjugate to A®. Because A\® is

regular, there is a unique isomorphism
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E=EAN*A):T®>T
that takes A% to A and is given by the restriction of Ad(g) for some g in G.
We use this isomorphism to identify W(A® ) with W(X).

Suppose now that ¥ is a strong real form of G", T' is a Cartan subgroup
of G containing X, ¥ is a set of positive real roots for T in G, and A is a
genuine character of T(R) . Write X\ for the differential of A, and assume
that A is conjugate to A% . Fix win W(A), and write Q for the holomorphic
character of T with differential wA - A; this is a sum of roots. We can
regard Q as a character of T(R), so

WX A=A®Q
is a genuine character of T(R), (cf. [V 1], Definition 8.3.1).

Because A is regular, the standard module I = I(V¥,A) is defined. The
cross action of W(A®) on standard representations with infinitesimal
character A® is defined by

wexI=I1(¥¢w'xA)
([V2], Definition 4.1). Here w® is an element of W(A® ), and
w = E(A® ,\)(w? ) is the corresponding element of W(A). The definition in
[V1]is somewhat more complicated than this one, because a less natural
parametrization of representations is used there.

Here are two results on the relevance of the ¢ross action.

3.18 Lemma:
In the setting of Definition 3.17, write W, for the Weyl group of the

imaginary roots of T in G. Then W, is contained in W(A). If A is regular,

the L-packet containing J(¥,A) is the set of representations
(Y, wx A) | wew,  }
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This follows from Proposition 9.23 of [AV2].

3.19 Lemma ([V 1], Theorem 9.2.11):
In the setting of Definition 3.17, the Langlands subquotients of I and

we x I are block equivalent.

Because of these lemmas, it is important to understand the cross

action on the level of L-data.

3.20 Lemma:

suppose S = (x,T7,P,y,%T",%P,Y) is a set of strong L-data as in
Definition 3.8, and A® is as in Definition 3.17. Fix A in @®(S) regular, and
assume that A and A% define the same infinitesimal character for G. Use ¥
to identify A with an element of 1*. The group W(A® ) is identified by &
with W(\), then by I with a subgroup of W( G,%T). For z* in W(\), write
z and z for the corresponding elements of these latter groups. For z%¢W(A®
), define z%xS = (x,T',z7'P,y,%T,("z71)%p,Y).
Then

2% x [(S,\) = 1(z* x S,("z)A).
The proof, which is an exercise in the definitions, is left to the reader.
This lemma suggests studying other ways in which L-data may be
modified using the Weyl groups of G and ~G. Thus we compute the action

of W®and "W @ on S via the action on P and %P. The resulting lemma is

useful in computing examples.
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In the setting of Lemma 3.20, write W°® for the subgroup of W(G,T)

consisting of elements commuting with 6. This clearly contains the
subgroup W (X,,T) of elements having a representative in K,. (This latter
group is well-defined even though K, need not contain T.) If w € Ww¢, then
w acts naturally on T(R) and T(IR)P, and so on the genuine characters of
T(IR)p. If A is such a character, we write WA for the action. Since w
commutes with ©, wV¥ is another set of positive real roots for T in G.

Similar coments apply to W('G,%T).

3.21 Lemma:

Suppose we are in the setting of Lemma 3.20.

(1) For wew?, let wS = (x,T",wP,y,%T" 9P, we3).
Then [(WY,WwA) = I(WS,WA).

Furthermore if weW (K,,T) then I(W¥ , WA )RI(Y¥,A).

(2) For “wew (G, 9T), let “wS = (x,T7,P,y,9T","wepP, T w).
Let w=3""("w).

Then I(¥,wl(wxA)) = I(CWS, wh).
Again we leave this as an exercise for the reader.

Combining these results with the one in ([AV2], Lemma 8.24) on
changing V¥ leads to a complete description of the effects of modifying the
various positive root systems involved in L-data. In particular, one sees
that changing P and P does not change the block of J(S); this is part of
Theorem 3.16. As indicated earlier, we are omitting the rest of the proof of

that Theorem.
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Theorem 3.16 can be reformulated to sharpen the analogy with

Theorem 3.11.

3.22 Definition:

Suppose X € G'-G,and y € 'G'-"G. We say that the pair (x,y) is
(strongly ) admissible if it can be extended to a set of (strong) L-data. Itis
equivalent to require that %2 be central in G, and that there exist dual
Cartan subgroups T' and ¢T" of G" and "G containing x and y respectively.
Two pairs are said to be equivalent if they are conjugate by Gx G. The pair
(x,y) is called integral if x?€Z(G) and y%¢z( G).

3.23 Corollary:

There is a natural bijection from equivalence classes of strongly
admissible pairs (x,y) onto equivalence classes of pairs (%,8), with Xxa

strong real form of G and ® a block of (g,K,)-modules.

We write

13.24 B(x,y) = block corresponding to the pair (x,y).

For the remainder of this section we restrict attention to the case of
representations of integral infinitesimal character; that is, to integral
L-data (Definition 3.8). Notice that the definition of integral L-data is

entirely symmetric in G and ~G.

3.25 Definition:
suppose S = (x,T7,P,y,%T",%P,Y) is a set of integral L-data. The set of
dual L-data is
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Ys = (y, T",%P x,T7 P,

If ] = J(S) (respectively I = I(S)) is the corresponding translation family of
irreducible (respectively standard) (g K,)-modules, we define the dual
translation family to be the translation family ~J=]("S) (respectively "I =
1("s)) of ("g X )-modules. If we fix regular elements X in ®(S) and “Ain
®(”s), then we may speak of J('S, A) as the dual module to J(S,\).
Suppose (X,y) is an integral admissible pair (Definition 3.22), corresponding
to a block B for G (Corollary 3.23). The dual block B for G is the one

corresponding to the (integral admissible) pair (y,x). Similary we

obtainVOSTF, the block of translation families dual to (BTF.

In accordance with the discussion at the end of §1, we will write ¢x
(respectively ¢I) for a typical irreducible (respectively standard) module in
'B.

Fix a block B, and fix a constant ¢, (depending on B). Suppose
S=(x,T",P,y,%T",9P,T) is a set of L-data for a translation family I of
standard modules in B. Let A be the split part of T. The length of I (or §)

is defined to be
3.26 B(I)=i|{o<€P|eo<¢P}l+idimA—c0.

We may choose ¢, in such way that 2(I) is an integer for all I € B. For the
time being we allow any such normalization. If Jis the translation family
of irreducible modules attached to S, we define 2(J) = 2(1).

For every pair (m,I) of an irreducible and an indecomposable

standard module in B, we define integers M(I,n) and m(mw,I) so that
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327 1= T, mm,I) T

= Zig M(I,70) L
The matrix m is the multiplicity matrix, and M is its inverse; since standard
modules have relatively simple characters, the entries of M can be
interpreted as coefficients in character formulas for irreducibles. We
define m(¢7,%1) and M(%1,%%) on the dual block ~® similarly.

We are now able to define m(m,I) and M(I, 1) for translation families

contained in a block .

3.28 Definition:

Fix an integral admissible pair (%,y) with the corresponding pair of
dual blocks B and ®. Let (®,3,7)and (¢',3',1) denote translation families
of irreducible and standard modules respectively in @. Choose a regular
element A\ of @ and-let A also denote the corresponding element of @' via
the canonical bijection ®->C' of Lemma 2.11. We define:

(1) m(s,I) =m(s(N),I(N))

(2) M(I,7) = M(I(N\),7t(N\)).

This definition is independent of the choice of (regular) A.

The next theorem, Kazhdan-Lusztig duality for Harish-Chandra
modules, relates these matrices for 8 and “®. Itis the main result

(Theorem 13.13) of [V2].

3.29 Theorem:

Fix an integral admisible pair (%,y) with the corresponding pair of

dual blocks B and “®. Let Bppand Bpp be the corresponding dual blocks
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of translation families (Definition 3.15). Suppose (@,3,1) (respectively

(®',3'1)) is a translation families of irreducible (resp. standard) standard
modules contained in By Let @, 21 ") and (@', 371,71) be the dual
translation families (Definition 3.25).

Then:

(1) M%) = (~1)¥D=8Om ("5 1)

(2)  m(m,1) = (-1)¥D-M (7T, ).

The statement is evidently independent of the constant ¢, used to

normalize the length function.

3.30 Definition:

In the setting of Theorem 3.29, define a perfect bilinear pairing
(‘BTFXV(BTF - Z by defining it on the basis of irreducible translation families
as follows. Suppose ﬂc(Bi.r; is an irreducible translation family with dual
VTrevtBli.?. Let 40 be any irreducible transiation family in V(B;.rFr and set

<7, o> { = (-1)%m (3o is equivalent to “m)

=0 (%0 is not equivalent to ¢x).



51

Now the following Corollary to Theorem 3.29 is immediate (and is in

fact is easily seen to be equivalent to the theorem).

3.31 Corollary:
In the setting of Definition 3.28, suppose I is a standard translation

family in tB.?.th, with dual translation family I in v(B.srtlfi. Suppose °I'is any
other standard transiation family in v(B;t;. Then

<I,%1'> {= (-1)¥D (%1' is equivalent to 1)

=0 (41' is not equivalent to "I).

We restate 3.29, 3.30 and 3.31 in terms of virtual modules instead of
translation families. By specializing translation families to particular

infinitesimal characters, we obtain the following Corollary.

3.32 Corollary:

In the setting of Theorem 3.29, fiX regular elements Ae® and *he@.
Let 7t (resp. I) be an irreducible (resp. standard) module in B(X). Similarly
choose “7, I and %I in “B(%A).

(1) Theorem 3.29 holds for t,I , "7, 1.

(2) Define a perfect pairing <, >: B(A\)x ®B(®A) = Z as in Definition

3.30. Then Corollary 3.31 holds for w,I, "7, 'I,and °I.
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§4
Covering Groups and
Non-Integral Infinitesimal Character

Theorem 3.29 is based on Definition 3.25, which appears to
make sense only in the case of integral infinitesimal character: if we
wish to interchange the roles of x and y, then y ought to define an
involution of G, and this amounts to requiring y? to be central in ~G.
To extend the result, we therefore have to drop the assumption that
%% {s central in G. Then x will define an involution only on the
centralizer G_; of %% in G. This immediately suggests the setting of
§2, with x% and y? playing the roles of the elements ¢ and ¢ in that
section. We will consider representations not of G and "G put of the
centralizers of X2 and y2. In the applications x? will always be
central; or rather (because of the duality we want to exploit) either
%2 or y2 will be central; but at first there is no particular advantage
in retaining that assumption.

While we make these generalizations, it is convenient at the
same time to replace our pair of L-groups by E-groups {(cf. §1). We
therefore fix an inner class of real forms of G, and dual E-groups G

and "G associated to given elements
4.1 z€2(G), “zez("G)™

(cf. Lemma 1.5). Here 6 represents the action on Z(G) of any

element of GM'-G; this is well-defined. As explained in [AV2], maps of
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the Weil group into an E-group for G are related to representations

of a certain covering of G.

Throughout this section, we will be considering a triple
42 (a) (¢, ¢, 2)

as in (2.2). In particular, we consider the identity components G
and vGvc of the centralizers of ¢ and “¢. After Definition 4.9 we will

also assume:
472 (b) either ceZ(G)or cez('G).
Here is the main definition.

4.3 Definjtion:
A set of L-data for Gl and “G is a 7-tuple
S = (x,T7,P,y,%TM,%P,T) satisfying conditions (a)-(e) of Definition 3.8.
Explicitly, it is subject to the following conditions.
a) T is a Cartan subgroup of G', and x is an element of T'-T.
b) ¢TF is a Cartan subgroup of G',and y is an element of
apr_dT.
c)Tisa distinguished isomorphism from “T to T making T"
dual to ¢TT.
d) P is a set of positive roots for the root system szyz(f)-
e) %P is the image under ¥ of the coroots corresponding to P.
We say that S is of type (¢, ¢,2)if %2 =¢,y%2 = "¢c,and T ¢ 2.
The set S is said to be equivalent to S'if S is conjugate to S' under the



obvious action of ze vayz. (In particular, this forces S' to be of the

same type as S.) As in Definition 3.22, the pair (x,y) is called

admissible if it can be extended to a set of L-data.

In order to discuss representations attached to L-data, we

must recall some covering groups. Let 1, (G_) be the fundamental

group of G_. When no confusion can arise, we will call it simply 7.

FiX X as above, and write 6 = int(x) for the corresponding Cartan

involution of G_. In analogy with the notation after (1.8), write

44 K, = (Gc)e, the centralizer of Xin G .

(Since the centralizer of ¢ may fail to be connected, K, may be
slightly smaller than the centralizer of xin all of G.) Pick a 6-stable
Cartan subgroup T of G ; 7, is identified with X (T)/Q.(G_T). The

involution © acts on 7, by its action on this quotient. Following

(1AV2], 7.11(2)) let
45 7, (G )(R) =n,/(1+6)7,.

When there is no ambiguity we write this simply as 7t,(R). It
depends only on ¢ and (G ) (and not on x or T).

Let Gzan be the covering of G_ with group 1, (R)

([AV2],7.11(b)). Write Ky~ for the inverse image of K, in G, . There

are exact sequences

46 1 7, (R)> G G > 1
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1 71, (R) > Ky 2K~ 1.

Recall that the group of characters of 7, (R) may be identified
with Z(V(Gc))ve. Let 7(7z,c) denote the character of 7,(R)
corresponding to the element “zeZ(7(G_)) °. Identifying Z('(G_)) ®in
terms of root data, we see that it contains a subgroup naturally

isomorphic to Z('G) ®. The element "z of (4.1) may therefore be

regarded as an element of Z(V(Gc))ve. Write 'z o for the element

p(
corresponding to half the sum of the positive roots in G_. Finally, let

p(c)'c)
be the character of 7, (R) associated to "z z . (Similarly we can

can

define "t for G.) A (g..Ky )-module is said to be of type T if its

47 v=71(2'z

restriction to 7, (R) C Ky = is a multiple of T.

In terms of real groups the situation is as follows. Fixa real

form G _(R) of G corresponding to X as in Lemma 1.6, and let

G (R)°®™ be the preimage of G (R)in G, . Then (g Ky )-modules

correspond to representations of G _(R)°*™. There is an exact
sequence

1- 1, (R)>G (R)">G (R)-> 1.
We say a representation of G _(R)®*™is of type T if its restriction to
7, (R) is a multiple of 7. The property "of type 7" is preserved by
the correspondence between representations of G (R)°*" and

(gc,K;an)-modules.

Here is the basic construction of representations.
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4.8 Theorem (cf. [V2], Proposition 15.7):
Suppose S is a set of L-data of type (¢, ¢,Z) (Definition 4.3).
write ®(S) for the set ®( ¢,°P) of Definition 2.9. Then there are

translation famities I1(S,*) and J(S,*) of (gc,K;an)-modules of type T

(cf. (4.7)) based on ®(S). Here each I(S,\) is a standard limit
representation; if A is regular, J(S,A) is its Langlands quotient.

This correspondence is a bijection from the set of equivalence
classes of L-data of type (¢, ¢,Z) containing X, to the set of
equivalence classes of t_ranslation families of pairs (x,71) where 7 is

an irreducible (g_Ky )-module of type T, with infinitesimal

character associated to ¢.
If (x,y) is admissible (Definition 4.3; that is, if there are any
sets of L-data of this type) then the set of classes of L-data

containing X and y corresponds to a single block of (g <=,I<I::m)—modules

(Definition 3.14).

Sketch of proof:
Fix a set S of L-data of type (c,vc,Z). We will imitate the

construction of [AV 2], as recalled after Theorem 3.6. Fix a set ¥ of

positive real roots for T in G_. By Lemma 3.7 (with the roles of G and
"G reversed) V¥ is a full set of positive real roots of Tin G. Via I, ¥
corresponds to a set ¥ of positive imaginary roots of ¢T in " G.
Choose ~§in ¢T'N"D making %V a special set of positive imaginary

roots. (Notice that this uses only the E-group structure on G', not



one (which we do not have) related to VGvc.) Sending “§to a

distinguished element now defines an isomorphism

1= 1(3,¥): ¢1M > 71T,
where T is the E-group for T determined by the central element z
of (4.1). For each A in ®(S), Proposition 3.4 shows that (y,*T",\)
defines a quasi-admissible homomorphism ¢ = w(y,dTr,A) from Wp
into 9T". We can now proceed exactly as in the construction given
after Theorem 3.6 to get a character A for an appropriate cover of

can

T(R), and then (by induction) a (g_K; )-module I(¥,P, ,A); thisis
I(S,N\). We omit the verification that it is independent of the choices
of ¥ and ~&. The claims in the first paragraph of the proposition are

immediate.

Next, suppose [ is a translation family of standard limit
(g.Ky )-modules of type T, based on ®(7¢,®P). Specifying this

parameter set implicitly specifies a maximal torus ¢Tin 'G. The

Langlands classification for G _ (Theorem 3.11, or rather its analogue

for covering groups) guarantees the existence of an int(x)-stable
maximal torus T in G_ to which I is attached. (We let T' be the group
generated by T and X.) This means the following. Fix a set ¥ of
positive real roots for T in G. Then there is an isomorphism ¥ in Z
from T to 9T so that to each A in ® we can associate a character A of
an appropriate covering of T(R), having the properties thatdA
corresponds to A by T; and
I(N) = I(¥,A).
Now T and V¥ together determine an involution %6 on T, and a

set ¥ of positive imaginary roots for 4T in “G. Choose “§in D
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normalizing %T and acting there by %6, making ®¥ special; this is
possible as in the proof of the Langlands classification. We let 4T pe
the group generated by 9T and ~§. The %T-conjugacy class of §
defines an E-group structure on ®T". Since I was assumed to be of
type 1(7z,c), and (7§)? = "z, the character A corresponds to a map ¢
of Wy into dar By Proposition 3.4, ¢ determines an element y of
417 We have now constructed from I all the elements of a set S of
L-data; we omit the verification that I(S,A)=I(\), and that the
equivalence class of S is well-defined.

It remains to discuss the claim about blocks. Here we already
omitted proofs even in the setting of section 3, and we will not
supply them now. The main point is that moving among the various
translation families in a block (by the cross action, Cayley

transforms, and so on) involves only roots on which the parameter A
is integral. For G_and infinitesimal character associated to "¢, the

integral roots are those in the set R v _of Definition 2.9. All of these
roots are roots of °T in Gv.; so the necessary operations can be
carried out on L-data in the sense of Definition 4.3. This completes
the sketch of the proof.

With Theorem 4.8 in hand, it is an easy matter to extend the

results at the end of section 3.

4.9 Definition:
Suppose S = (x,T",P,y,%T",%P,T) is a set of L-data. The set of

dual L-data is
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Vs = (y, %17 %p,x, TN P, 3°1).
Using VS, define dual translation families, dual modules, and dual
plocks (for G_and "Gv_) as in Definition 3.25.

Using Lemma 2.11 we may now, as in Definition 3.28, define
m(7,1) and M(I, ), where 1t (respectively I) denotes a transiation
family of irreducible (respectively standard) modules. Furthermore
Theorem 3.29 and Corollaries 3.31 and 3.32 hold as stated (with the

restriction of integrality omitted).

We conclude this section with some elementary remarks about
another description of some of the projective representations
appearing. For simplicity we speak about G itself, although these
ideas will generally be applied to groups such as G_. So fiX
2cP*(G,T), and assume that the corresponding element b in Z('G)

satisfies

4,10 “o(b) =", (b))% = 1.
The second condition amounts to 28 € X*(G,T), so there is a

two-fold cover G = G ([AV2], 7.9(b)). If X is a strong real form of G,
write (K,)” for the preimage of K, in G. By ([AV2], Proposition 7.12),

there is a natural bijection between genuine (g,(X,) )-modules and
can

(g, Ky )-modules of type v("b,1). Using this bijection, one can

reformulate Theorem 4.8 (in the case when ((z)2 = 1) in terms of

genuine representations of a certain two-fold cover of G,. The role of

the element b above is played by 2z Z 500y
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§5

Parametrization of L-packets

We discuss the coefficents which arise in the lifting of a stable
distribution from an endoscopic group. Given an admissible map ¢ of the
Weil group into "GN we will obtain a perfect pairing Tx§, - €*, where T is
the super L-packet defined by ¢, and S , 1s a certain component group on
the dual side. A Weyl group acts on T, and the terms "x" of [S1] are
obtained from this pairing. This will permit us, in §9, to compare our
results with those of [S1].

Suppose we are given G and an inner class of real forms of G, and
L-groups ~G" and G" as usual. Let o=¢(y,%T" A\ )W = G  be a
quasi-admissible homomorphism, with A regular. Let S denote the
centralizer of ¢ in ~G. Therefore S =(°T )8, where “©=int(y). Recall the
covering group G°°™ of "G (cf. §4). Let §w be the inverse image of S in
“Goan, tet § =5,/(5,)°, and tet (§,)” denote the group of characters of §,.
Let T be the super L-packet (Definition 3.12) defined by ¢, which we

consider here as a set of standard modules.

5.1 Theorem:

There is a canonical bijection T & (§)".

The extension of this Theorem to include L-packets with singular
infinitesimal character is carried out in section 10 (c¢f. Theorem 10.19).
proof:

We use Lemma 3.13, so choose 4P, T', and P and T as in that lemma.

Thus the standard modules in T are parametrized by
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& = {xeT'-T | x%€Z(G)}/conjugation by T.

Choose §<T'ND so that the imaginary roots of P are distinguished with
respect to §. Then the map t,6->t, induces a bijection between & and

F={teT | t6(t)€Z(G) }/(s6(s™") | s€T )

(where 6=int(8)). This bijection is independent of the choice of § (subject
to the condition on it). Note that J is a group.

We compute J, the group of (holomorphic) characters of F. Any
character of {tlt6(t)eZ(G)} is the restriction of a holomorphic character of T.
Thus J is the set of holomorphic characters of T, trivial on {se(s™},
modulo characters trivial on {t | te(t)eZ(G)}. It follows that

F ¥ eX*(T) | Y-0(¥)=0)7{u+ou | ueQ™(T) }.
Via the isomorphism ¥, this becomes

F (Y eX,(3T) | ¥+ 0(¥)=0}/{u-"0p | peQ,(°T)} =L,/L,.
Given ¥ in L., let S=exp(¥)e¢?T°*™ We obtain a map L, - §_; composing
with projection gives a map L, = §w. The kernel is L, (by a straightforward
calculation), so we have an isomorphism § #§ . By Pontryagin duality we
have F~(§,)" ; define T->(§)” by the sequence of maps: TSIF~(§)".

These two bijections depend on the choice of (TF,3,P), but it is easy to
see that the bijection T (S,)” does not. Explicitly, write I for the
(g.K,5)-module in T corresponding to te€J using the isomorphism ¥ and the
choice of § made earlier. Tracing through the definitions, we find that the
corresponding character X of S , 1S given by

X (exp(3¥)) = TT(¥)(1).
Now suppose (I7,T P) is replaced by a G-conjugate (gT",g¥,gP). Then I
defines the same element of T as the (g,Kg(ts))—module gl. The character X'

of §w defined using the new choices is therefore
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X'(exp(4Y)) =-(g3) (¥ )(gt)
= T(¥)(t) = X(exp(Y)).

Thus the bijection T = (§w)" is canonical, proving the Theorem.

Write <, > for the pairing Tx§ > C* given by the Theorem. Note
that each super L-packet T contains a distinguished standard module I,
corresponding to the trivial character of §w . For example if T is a super
L-packet of discrete series representations, then I is the distinguished large
discrete series of the quasisplit form. For this element I, <I,§>=1 for all

s€§w.

Choose A%, T®, etc. as in Definition 3.17 so that A% is conjugate to A.
Write Wi, for the subgroup of W(\®) corresponding to W, (Lemma 3.17).

Recall W?m acts on T via the cross action, denoted X.

5.2 Definition:

For 1T, 3€§,, let &) o(W)=<wX[5>/<L3> (WeWy).

For seS let s' be an inverse image of s in §w, and let S denote the
image of this element in § . Then we define

5.3 &y (W)= &) £(W).

I,s
This is independent of the choice of s' (by Lemma 5.6 below).

If I and s are fixed we let §( )=6; _( ), which is a map from W?m to
C*. It is immediate that § satisfies the cocycle condition:

5.4 & (Xy)=8; (V)o, 1 (X).
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We will see below that §; () takes values in {+1}.

Fix S=(x,T",P,y,9T7,9P,Y) as above so I is the standard module
corresponding to S. FixX a regular weight ¢Ac(®t*), dominant for P, so that
%2 = exp(I71(8N)). Let ¢A be the character of the two-fold cover of $T(R)
defined by ~p constructed in the proof of Theorem 4.8 (or Theorem 3.6 if

the infinitesimal character of I is integral) applied to “G. We consider this

can n

as a character of the inverse image $T(R)°*" of ¢T(R) in "G°*". From the

definition of 4A ([AV 2], Theorem 5.11) it is straightforward to conclude:

9.5 Lemma:
A
<] 3> = 3
I,3 —'—(ed)\ 3) .

Notice that x2¢Z(G)®. This implies $AeP*(%T, G) and ~6°A-%A<X*(¢T),
d.
so e *isa well-defined character of chan. Also note that dA/ed" has zero

differential.

For later use we note the following lemma, which follows

immediately from 5.5.

5.6 Lemma:

For x a strong real form of G, let T denote the character of
7, (CG)R)CZ('G ™) corresponding to the element zv x"2€Z(G) (cf. §4). If 1
is a standard module for the strong real form X, then <I,28>=7,(2)<I,5> for

all Zew, ("G )(R), 3§,
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For wew?m define “w as in Lemma 3.19. It follows immediately from

Lemma 5.5, and Lemma 3.19 that

“w(wxA)
T A (s)

5.7 &y [(w)=

Note that the numerator and denominator of the right hand side are
genuine characters of dT(IR)vp with the same differential. It follows that the
quotient is a character of ¢T(R), trivial on the identity component, so it

takes values in {+1}.

5.8 Lemma:
a
(1) For u,vew. él’s(uv)=61's(v)6

im’

(u) .

vxl,s

(2) For x root of T®corresponding to a simple imaginary
root of T, let “x=3(x )eQ*("G,%T). Then
§1 (8, ={1 if « is compact

sgn( x(s)) if x is non-compact .

We prove this in a moment. One may use this Lemma to calculate
§(w) explicitly. These conditions are the same as ([S3], Propositions 2.1 and
3.1) and we use them in Lemma 5.14 to show §(w)=x(w™), for x as in [S3].

We need a few preliminaries. Given a standard module I(¥,A) and 2

real root x,let m_€T be asin (IV 1], Definition 8.3.8).

5.0 Definition:

The real root « satisfies the parity condition if
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=3 dA - \I’
(AQQP)(m ) = ..(...j ) «( +p=-p(¥)) )

To see that this agrees with Definition 8.3.11 of [V 1], notice first that
it is independent of the positive system used to define p. We may therefore
choose this system to be maximally ©-stable and compatible with V. In that
case I(V,P,_,

p-p(¥) is orthogonal to all real roots. We can therefore reduce to the case

A) can be constructed by induction by stages as in [V 1], and

when all roots are real, in which case this definition is nearly identical to
the one in [V 1], and proving their equivalence is easy.

As is shown in [V 2], duality has the property that:
5.10 « satisfies the parity condition & "« is non-compact.

proof of Lemma 35.8:

We have already mentioned (1). For (2), by 5.10 and the remark
after Lemma 5.6 we need to show:

s. (5. X®A)/CA (s) =

1 x does not satisfy the parity condition
{ sgn( «x(s)) ~« does satisfy the parity condition .

The proof is now a transcription of ([V1], Lemma 8.3.17), but since it
is of interest we sketch the argument. To conserve notation we drop the
dual notation and prove the corresponding statement for G.

Recall ([AV1], §2) T, is the set of pairs (s,z) such that €2#(s)=2z% (s¢T,
z€C*); and the genuine character e of T, is given by e?(s,z)=z. For x a root,
define «T, = € by x(s,2)=«(s), and define «: C* > T, by

o« (2)=(x"(2),2p(x")). Then if t=(s,2)eT(R),, s (t)=t(x (x(s™)). From the
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definition of the cross action we have (SNXA)(t)=A(t)o<(S'1)n, where
n=« (dA).

Let v=1 (resp. 0) if « satisfies (resp. does not satisfy) the parity
condition. We need to show s_(s, xA)(t)=sgn(x(t))” A(t). Write the
left-hand side as

(5 XA, (£))  =(5, XA))s XA (x(sT))
=AM A(x (x(s))x(s)™,
Thus we need to show:
5.11 Al (x(s™))x(s)P=sgn(x(s))?.

This is irflmediate if s is in the identity component of T(R), so it is
enough to show this for t an element of order 2. If x(s)=1 the resultis
immediate. Suppose x(s)=-1; we need to show:

Al (-1)) = (-1)*(-1)™
It is immediate that
Alx"(-1)) = (-1)¥ ) (a0e?)(m,)
= —(-1)n+< (¥
where the second equality is by the definition of the parity condition. But «
is simple among real roots, so « (p(¥))=1. Thus A(x"(-1))=(-1)"*>,

proving the Lemma.

We recall the construction of x [S1]. Let strong real forms xand y be
fixed, with 6=int(x) and ~6=int(y). Suppose we are given:
5.12 (1) Cartan subgroups T' and ¢T"

(2) sedT, “os=s

(3) an isomorphism T: X, (T)~X*(%T) taking 6 to - 8

(4) wew . .
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(For (3), note that the choice of such an isomorphism is exactly
equivalent to the choice of ¥ in a set of L-data.)
Let 1(w) be the image of win
{Y €Qu(G,T)|6(Y)-¥=0}/Q. (G T)N{p+ou | HeX,(G,T)}
under Tate-Nakayama duality ([S3], §2). We define xy (W)=T(u(w))(s).
Note that
TwW))()2 = T(Uw))(s 8(s))
= (1 (w)+ 8(L(w))(s)
=1,

o) )‘x,s(w)di 1}.

By [S3], Propositions 2.1 and 3.1) we have:
5.13 Lemma:

(1) xy [(uv) = Ky S(V)Xgeq-1 W) (V€ W)

(2) xy [(s,) = i 1 x is compact

T )(s) x is non-compact .

5.14 Corollary:
Given the data of 5.12, fix P and dp o that the L-data

S=(x,T",P,y,%T",%P,Y) is a set of L-data. With [ any representation given by
the L-data §, we have
$

rool:

I,s(w) - X!’S(W).
Observe that a representation associated to the L-data
(x,T7,wP,y,4T",9P, Tew™) is w™'xI. The Corollary follows from Lemmas 5.7

and 5.13.
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It is interesting to compare these results with those of [S1]and [S3].
For fixed %, [S1] duality provides an embedding T =(S /S °2")". This
embedding is non-canonical, depending on a choice of <T (going to the
trivial character). Furthermore the images of T as the real form varies are
not disjoint; in particular the trivial character is in the image of T for all
real forms. On the other hand, in our situation we have a canonical
bijection M=UT &(§,)" (disjoint union).

In térms of Weyl groups this may be described as follows. Note that
‘w’?m acts on &, and the stabilizer of a point X is wKx' This is canonical; and
choosing a point in each orbit we have identified & with the union of
wf‘m/w K, where the union runs over equivalence classes of strong real
forms. Under the bijection TS E this corresponds to the decomposition of T
under the cross action of W?m.

Fix x¢&, and let ©=0,. Then §EJF as in the proof of Theorem 3.1 . The
resulting action of W, on J is twisted: if g<G represents w, then g takes
te¥ to gto(g™). We obtain an embedding W /Wy < ¥ via g->gel=go(g™.
This gives a map Wim—>H’(T) and the cocyle condition follows as in ([S3], §2

and Proposition 3.1).



§6

Endoscopic Groups

We now define endoscopic groups in this context, and discuss
their structural aspects.

As usual we are given G and an inner class of real forms, with
L-groups for G and ~G. Thus we have specified ('G",”D) and (G",D)
(cf. §1). If (§,B)eD we write 6¢D as usual.

6.1 Definjtion:
An element s in an algebraic group is said to be elliptic if it is
semisimple and for any algebraic representation 7t the eigenvalues of

n(s) have absolute value 1.

The next lemma is well known; the only point requiring care is

that we do not assume that K is connected.

6.2 Lemma:

Let K be a reductive algebraic group endowed with a compact
real form (so K(R) is 2 maximal compact subgroup of K). Let s be an
elliptic element of K.

(1) There exists k¢K such that ksk™'eK(R)

(2) Suppose s,teK(R), and t=ksk™' for some keK. Then there

exists 2<K(R) such that t=2s0"",
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Recall (cf. §4) the canonical cover G°®R of ~G defined in

(IAV2], 7.11(b)). Let 1t denote the covering map G°** = "G .

6.3 Definition:

A set of endoscopic data for G is a triple (3, H, "Dy), where:

(1) 3€°G°*™ and s=m(3) is elliptic. Let “H denote the identity
component of the centralizer of sin G.

(2) “Hf is a subgroup of G satisfying:
(i) “H' has two connected components,
(ii) “H is the identity component of HF,
(iii) “H' meets both components of “G',

(3) sez("HMN).

(4) ("HT, "Dy) is an extended group determined by z,
(Definition 1.1).

A set of weak endoscopic data for G is a pair (3, H') satisfying
(1)-(2).

The appropriate notion of equivalence of endoscopic data is a

little subtle, and it is best stated in two parts. The equivalence

relation we want is the smallest one containing the two kinds of

equivalence in the next definition.

6.4 Definition:

(1) We say (3, H',"D) and (3,"HT,"D';) are equivalent if
there exists g€ G°*™ such that int(g)3=%", int(n(g)) H'="HT,
and int(n(g))( Dy) = D'y



(2) We say (3, H,”D},) is equivalent to (¢35, 'H',"D'y) for
contained in the identity component of the inverse image of
ZCHDNH.

Similarly we define equivalence of weak endoscopic data.

We write S for an equivalence class of endoscopic data, and let

S denote the set of equivalence classes. We write 5 for the

weak
equivalence classes of weak data. These sets depend only on the
inner class of G, not on the particular real form. In Theorem 6.14 we

will show there is a surjective map from S to equivalence

weak
classes of endoscopic data as defined in ([S1], §2).
Note that given conditions 6.3 (1) and (2), (3) says: int(y)s=s

for all (equivalently any) ye H'-"H.

6.5 Lemma:
Suppose (3,"H") is a set of weak endoscopic data for G. Then
there is an extended group structure ~Dy determined by z,on H',

in fact we may arrange that ~§,¢ D whenever ~§ € Dy

roof:
Choose ye H' so that int(y) is a principal involution of "H.
(This is possible since every element of out( H) of order 2 is
represented by a principal involution.) Choose a Cartan subgroup °T
of “H maximally split with respect to int(y). By ([AV2], Lemma 9.14)
we may extend int(y ), to a principal involution ¥ of “G. Therefore
¥=int("§) for some ~§¢D. Consequently ~§=ty for some te TC H, so

“s¢ HF. Since T was maximally split for the principal involution
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int(y) of “H, and int(”§)lvp=int(y)lvy, int("$) must be principal for “H
(IAV 2], Proposition 6.24). Let ®B,; be any large Borel subgroup of H
with respect to int("8), and define

Dy = “H-conjugacy class of (78,°By).

Clearly this satisfies the conditions of the theorem.

6.6 Corollary (cf lLemma 1.5):

Suppose (3, HT) is a set of weak endoscopic data for G. Then
the set of possible extended group structures VSDH making
(3,"H","D,;) endoscopic data for G is a principal homogeneous space
for

zez("H) 12704(z) = 1)/{w 8w | wez("H) }.

(Here the automorphism ~ 8 of Z("H) is defined by the action of any

element of "HM - "H).

This is an immediate consequence of Lemmas 1.5 and 6.5.
Notice that the set in question is finite. Recall that changing the
choice of v5DH has the effect of altering the Langlands
parametrization of representations (by maps of Wy into "H') by
tensoring with a one-dimensional character.

Because of Lemma 6.5, it is often enough to study weak

endoscopic data. Here are two alternative descriptions of such data.

6.7 Lemma:
The set of weak endoscopic data is in bijection with the set of
equivalence classes of pairs (3,78) where:

(1) 3¢ G, s=n(3) is elliptic,
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(2) 78¢"D commutes with s.
Let “H denote the identity component of the centralizer of s in
"G, and tet "HM=<"H,”§>.
(1) (3,78)and (3',78') are equivalent if there exists g¢ G°%™ such
that int(g)3=%" and int(n(g)) H'="HT, and

(2) (3,78)is equivalent to (£3,”§8) for Z as in 6.4(2).

roof:

Given (3,°8), let "H'=<"H,”§>. It is immediate that (3, H ) isa
set of weak endoscopic data. The converse follows from Lemma 6.5;
notice that we may require int(" §)lv to define a principal involution

of "H.

6.8 Corollary:

Fix “8,¢" D, let “o=int("§,), and let ' K=("G) . Then a set of
representatives for the pairs in Lemma 6.7 is given by
((3,78,) | 3¢ G°2P) satisfying:

(1) 7(3) is an elliptic element of K

(2) “elvy is a principal involution.

Two such elements $and 3 correspond to equivalent weak
endoscopic data if there exists k¢ K°®™such that (k)¢ K, and

int(k)zs=s' for some z as in 6.4(2).

We do not know whether the condition given here is necessary
for the equivalence of (3,”§,) and §,7§,). Nevertheless Corollary 6.8

is often the most convenient way to construct endoscopic groups.
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6.9 Definjtion:
Let S be an equivalence class of endoscopic data, with a

representative (§,VH",V§DH). An endoscopic group determined by S is
a quasisplit group H which has an E-group isomorphic to (VHF,V:DH).

Of course the isomorphism class of H depends only on S. More
precisely, if H' is another endoscopic group determined by S, then
there is an isomorphism from H to H', unique up to composition with
an inner automorphism of H. Note that H could be defined as a
quasisplit group with dual group “H, and inner class given by
conjugation by ~§ (via Aut("H)->0Out("H) ~Out(H)=>Aut(H)).

Recall (cf. §4) that maps of W into “HF parametrize certain
representations of covering groups of real forms of H. In the present
case we can use the p-p, cover of H. We proceed to make this
precise.

Let 6, be 2 principal involution of a Cartan subgroup T4 of H,
and choose a corresponding Cartan subgroup T of G. (This means that
one chooses a dual Cartan subgroup Ty of HC G, and then a Cartan
subgroup TCG dual to vTH.) Fix positive root systems for T in G and
Ty in H, and let p (resp. py) be one-half the sum of the positive roots
of T (resp. Ty). Choose one of the distinguished isomorphisms T*Ty
which intertwines the action of 6 and O exponentiating the
resulting homomorphism P(G,T)>P,(H,Ty4) we obtain a
homomorphism Z(G)=Z(H) independent of all choices. This also
permits us to identify Y=p-p, with an element of P*(H,T ;) (defined
up to X*(H,Ty)).



Let KH=H9H. Let KH be the inverse image of K., in the two-fold
cover of H determined by ¥. The isomorphism class of KH is
independent of the choices. The next lemma follows immediately

from the definitions and Theorem 4.8, and the remarks at (4.10).

6.10 Lemma:

Let S be an equivalence class of endoscopic data, with
("H',”Dy) an associated extended group (Definition 6.7), and H an
associated endoscopic group. Then maps of W into “H' parametrize

L-packets of genuine (r),I?fH)-modules.

We also construct an extended group (H",D®) containing H. By
Lemma 1.5 to define the pair (H,D®) up to isomorphism it is enough

to choose z<Z(H )®H.

6.11 Definition:
Given an equivalence class S of endoscopic data, and H a
corresponding endoscopic group. Let X be a strong real form of G. An

extended group defined by S and X is an extended group H"
containing H, determined by the element %2€2(G)=Z(H)

For later use we note that Proposition 2.1(a) and (b) provides a
map from infinitesimal characters for ) to those for g. We say X
corresponds to X if they may both be written X, , for some Aedt, 4t
a Cartan subalgebra of both “b and g. This is a several to one

mapping from infinitesimal characters for p to those for g.

We describe the connection between endoscopic groups defined

above and as defined in [S1] and [LS]. Let §[g1)2nd §[ ) denote the
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set of equivalence classes of endoscopic data as defined by ([S1],
§2.1) and ([LS], §2.1) respectively.

Let 1G be an L-group for G in the conventional sense [Bol.
Recall ([AV2],§9 ) "6"~1G via g-g (g¢1G%) and "§-m o. (Here
(3,%B)e” D, we fix an isomorphism X6 ~ LG9 x T, m ¢ LgO is defined
in ([AV2],9.4) from 9B, and o= the non-trivial element of T.) Note
that int(”$) is inner to int(c) on “GALGO,

In ([S1], §2.1) endoscopic data is defined as follows. A set of
endoscopic data is defined to be a sextuple
(s,"H°,'B 0, LT .0 (Y, ~),p,). Here s is the Z' -coset of a semisimple
element of LGC (Z is the T'-invariants of the center of XG°) and LHC is
the identity component of the centralizer of s. Then B0, LT % and
{Y, v} are a Borel subgroup, Cartan subgroup, and set of simple root
vectors for LHO. Most significantly p_is a map of T into Aut(*H°)
satisfying certain conditions. We refer the reader to the above
reference for the details of the definition, and for the definition of
equivalence of such data.

In the preceding discussion we have used the Galois form of
the L-group, and have modified the definitions of [S1] accordingly.
Aside from considerations of embeddings of L-groups of endoscopic
groups this is not important. With this in mind we have the following

lemma.,

6.12 Lemma:
The set $[gq]is in canonical bijection with the set of

equivalence classes of pairs (s,w) defined as follows.



6.13 (1) s is a semisimple element of 1G%; let LHO be the identity
component of the centralizer of s in 'GP,

(2) w is a component of the centralizer of s in 1G-1G?. For gew
consider int(g) as an automorphism of FH?; we require that
the corresponding element of out(*H®) have order two.

(3) Data (s,w) and (s',w') are equivalent if there exists getG°

such that glHO%'=1H", and gwg'=w"

sketch of proof:

This is an exercise using ( [S1] Lemma 2.1.6 and Lemma 2.1.7).

Note that the elements of « are of the form gxo, ge™G°. Hence there
exists such a component w if and only if the conjugacy class of s is
fixed by int(1xo), or equivalently s is conjugate to o(s) via 1G°.

Suppose (s,w) is given. We obtain endoscopic data by taking
sZ', LHO, any choice of Borel and Cartan subgroups, and set of simple
root vectors for LHC. We define the map p_as follows. Choose gecw.
Then int(g) is an element of Aut(*H®). Let ¥ denote the image of
int(g) in out(*H?), and using the preceding data define a splitting
©:Out(*H%) - Aut(LH®). This gives us an element T of Aut(*H?) of
order two; let p_map o to 7. This defines a map from pairs (s,w) to
sets of endoscopic data, which yields the desired bijection of

equivalence classes.

Using Lemma 6.12 we refer to (s,w) as a set of endoscopic data.

Note that LHO together with Y (as in the proof of the Lemma)

determine an L-group LH. However the group generated by *HO and
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gxo is not necessarily isomorphic to LY. In fact the former is an
E-group, and not necessarily an L-group.
Given weak endoscopic data (3,"H"), let s=m (%) and let
w="H"-"H. Since L6~ G, we obtain endoscopic data (s,w) in the
sense of [S1]. It is immediate that this defines a map ¥ which is well

defined and surjective on equivalence classes. Thus we have:

6.14 Theorem:

The map V¥ is a surjection ¥: 5 = S[s1] -

weak

The map VY fails to be injective for two reasons. The first is our
use of the covering group G°®™, Secondly, the notion of equivalence
in [S1] is weaker than ours. Our “extra” endoscopic data will be used
to eliminate the need for choices in lifting, to be defined in section 9.
We discuss a few examples at the end of this section. For further
examples see section 11.

We briefly discuss the connection between this data and that of
[LS]. The deﬁnitibn of Sy g) incorporates an embedding of the group
K into LG (in most instances X is the L-group of the endoscopic
group). As noted above this requires the use of the Weil form of the
L-group. If we incorporate these changes into our definition of 5, we

obtain a surjective map ¥:S —>S[Ls]- Again ¥ fails to be

weak
injective because of our use of ~G°*™ Our notion of equivalence is
close to that of [LS] (cf. [LS], §2.1,(iii)), although we do not allow
variation of ¥ by arbitrary elements in Z('G).

[t is worth mentioning that the group "H' is an E-group for H,

and not necessarily an L-group, even in cases when it is possible to



embed LH in IG. Thus we do not need an extra choice of an
embedding of the L-group of H in LG (we do not even assume that
such an embedding exists), and the embedding of the E-group H' is

canonical; the tradeoff is that we introduce a covering group of H.

Consider the notion of weak endoscopic data given by Corollary
6.8. Thus we are considering simply elements $¢ K°% It is
interesting to consider the map ¥:5->5,4,,in this context. The crucial
point is that Shelstad's automorphism of “H? given by the component
w is replaced by our int(véo), where now we have the advantage
that =&, is fixed. i

Suppose for example that G is split (or inner to a split group).
Given a semsimple element s of MG°, the choice of component w is
then canonically equivalent to a choice of a component of the
centralizer of s in XG% Furthermore given (s,w) the corresponding
endoscopic group H is split if and only if w is taken to be the identity
component. Hence note that every endoscopﬁc group is split if all such
centralizers are connected.

The corresponding facts for weak endoscopic data in the
context of Corollary 6.8 are the following. Suppose we are given s,
n(3)=s¢ K. Then the corresponding endoscopic group is split if and
only if s is contained in the identity component of “K. Thus every
endoscopic group is split if and only if K is connected.

For example, suppose G is SL(2). Then G=PGL(2), and
“Gean=51(2). We write elements of PGL(2,C) via representatives in

GL(2). We may take ~§ acting by int(diag(1,-1)), so
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"K=<{diag(z,z™") | zeC}, £ >/{I} = O(2)

01

where = ( 1 0 . Then 5 has representatives {I, -I,

wealk

diag(i,-i), € }. The corresponding endoscopic groups are SL(Z,R),
SL(2,R), R*, and S' respectively. Note that ¢ is the only element not
contained in the identity component of "X, so S'is the only non-split

endoscopic group. The map ¥ takes the same value on I and -I, but

not on any other pair of distinct elementsof 5____,..

Suppose G is PGL(2), so “G="G°*P=SL(2). Suppose _§ acts by
int(diag(1,-1)). Then "R2S0(2), and is connected. Thus all endoscopic
{1, -1, €},
with corresponding endoscopic groups PGL(2,R), PGL(2,R), and R*

groups are split. We may take as representatives for 5_,_ .
respectively. Again the map V¥ takes the same value only on [ and -I.
(In this case there are two equivalence classes of endoscopic data
corresponding to I and -I, because of the two possible extended
group structures on SL(2)xT.)

In both of these examples the endoscopic data I and -I give the
same ordinary lifting, but we will see that they give different
super-lifting.

See §11 for more examples.



§7
Method of Descent

We restate some results of [AV 1] in the setting of this paper. Let G,
an inner class of real forms, and L-groups G" and “G" be given as usual. Let
X be a strong real form of G. Let 6=int(X) and Kx=Ge be as usual, and
suppose s is an elliptic element of K.

Choose an antiholomorphic involution ¥ of G fixing s, corresponding to
the Cartan involution 6. Thus G*NK_ is a maximal compact subgroup of G*
(cf. §1). Such a ¥ exists by Lemma 6.2. Write G(R)=G". '

Let H be the identity component of the centralizer of s in G. Then ¥
and 6 stabilize H, and Y|y is a real form of H corresponding to the Cartan
involution 6|, Let H(R)=HY; then scH(R). Write G for the canonical
covering of G (cf. (4.6)). (We will need eventually to consider also the
canonical covering of a certain subgroup of G, and we prefer to reserve the
superscript "can” for that.)

Now suppose we are given a semisimple element 3¢G such that
s=7(3). Furthermore suppose we are given a Borel subgroup B of G
containing s. Let X be an infinitesimal character for g.

Suppose ® is a virtual (g,X,)-module. We assume the infinitesimal
character of © is the same as that of a finite-dimensional representation of
G. (Itis not difficult to show that this is equivalent to the apparently
weaker assumption that the infinitesimal character be regular and
integral.) This guarantees that we ma;lr use the covering group G instead of

GSCin [AV1].



7.1 Definition:
The descent of ®, written Des(§ B X)(®)' is defined by ([AV 1],
Definition 2.4). It is an H(R)-invariant eigendistribution defined in a

neighborhood of the identity Q in H(R).

The equivalence class of the pair (H(R)'DeS(E,B,‘X)(@)) is independent
of the choice of ¥, and depends only on the H-conjugacy class of B.
Furthermore if w(3)=7(¥") then Desy g y,( )=CDes(z, p xy( ) for some
constant C

We obtain an infinitesimal character X for H as in [AV1]. Thatis
define B;=BNH and choose a Cartan subgroup Ty of H contained in By,
Write X=%, for A€l*, dominant with respect to the positive root system
defined by B. Then we define X, to be the infinitesimal character for p
defined by A. Thus in the the setting of Definition 7.1, if ® has infinitesimal
character X then Des(g'B’x)(G)) has infinitesimal character X,

Let peP*(H,Ty), peP™(G,T)=P*(H,Ty) be as usual, given by the
positive roots defined by B, and B respectively. Let H(R) be the canonical
cover of H(R).

Recall that a virtual character is a Z-linear combination of irreducible
characters. A C-linear combination of irreducible characters will be called a

complex virtual character.

7.2 Theorem ([AV 1], Corollary 2.13):

(1) There exists a complex virtual character @ of H(R) such that @
restricted to Q is equal to Des,x g xy(®). We may choose @ to be of type
(2, 2, 1) (cf. (4.7)).
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(2) 1f @ is a standard module then Des z p ,(®)=cO®y, where @y is a

standard module and c is a root of unity. Both ¢ and @4 may be computed

explicitly.

We need to express this result in terms of (p K )-modules. Thus let
K4=K,NH, and let K; be the preimage of Ky, in H; this is a complexified
maximal compact subgroup of H(R).

Note that the complex virtual character @, of Theorem 7.2(1) is not
unique: it may be replaced by ©,+Z for any complex virtual character Z
which vanishes on Q. Thus (by abuse of notation) we redefine Descent as

follows:

7.3 Definition:
Des(EJB’x)((@) is the complex virtual (p K)-module @ defined by
7.2(1), and is defined modulo the space of complex virtual characters

vanishing on Q.

Note that by 7.2(2) Des(.s,’B'X)((a) may be explicitly computed for any
character ® for which there is a character formula expressing © as a linear
combination of standard modules. In principal this holds for any irreducible
character by the Kazhdan-Lusztig conjecture.

We compute the descent of a standard module in terms of the
parameters of the previous sections. First we define extended groups
containing H and "H.

Let H =HUHXCG" (note that H is int(x)-stable). Let 62 be any element

in HX such that int(élg) is a principal involution of H. Let BI?I be any Borel
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subgroup of H which is large with respect to 6;, and let Dy be the
H-conjugacy class of (SI?I,BEI).

Let “HM be an E-group containing ~H determined by the
element Vzp (Lemma 1.5). By Theorem 4.8 and the remarks at the
end of section 4, strong L-data for the pair H',"H (containing x)
parametrize (,Ky) modules of type T(vzpvsz)_ Let
S=(x,T",B,y,%T",9B,Y) be a set of (strong) integral L-data for G.
Choose an element ~§¢%T 'N" D making the positive imaginary roots in
4B into a special set of positive imaginary roots for 7§ (see the
discussion after Theorem 3.6 above). Then & gives an isomorphism

ng T > 1"

Assume now that s¢T, i.e. that T is contained in H. By ([AV2], Lemma
9.16) choose a Cartan subgroup “TII; of "H dual to T'. Fixan
isomorphism ¥,: T - ®T distinguished for H and respecting Cartan
involutions. Define B, to be the Borel subgroup of "H containing
9T, and corresponding to BNH under T, Choose “§, edTII;nvaH
making the positive imaginary roots in dBH special. We obtain an
isomorphism

Ny dTII; - TF .

(Here we use the fact that (78,)?="z, by the construction of “H".)
Finally, we get an isomorphism
Mg *Ng = Nu,a dTII:I > °T".

Define y, = (TIH,G)-1(V)-

7.4 Theorem:
Let S=(x,T",B,y,3T",9B,T) be a set of (strong) integral L-data. Fix a
regular parameter A¢®(S) and let X=%, . Let ® be the standard
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(g,K,)-module I(S,\) defined by S. Let Sand B’ be given as in Definition
7.1, 50 Des(z g xy 1S defined. Let s=m(3).

(1) Suppose s is not conjugate via K, to an element of T, or B is not
conjugate via HK, to B'. Then Desx . 4,(®)=0.

(2) Suppose s is conjugate via K, to an element of T, and
int(k )B=int(h )B' for some kK, and heH. By replacing B by int(k)B,
we may assume B=int(h)B'. Choose dTII_“I and define 9B, Ny, ¥y and
IH as in the paragraph preceding the theorem.

Set

=(w 1" arl 4
Sy=(x,T", BAH, ¥ ,%Ty, By, T4),

and let ®H be the corresponding standard (f),ﬁH) module with infinitesimal
character Ay,

Then Des(§']3‘>()((9)=c@)H for some oc¢C.

proof:
We refer to (JAV 1], Theorem 2.11) as (*). Case (1) follows

immediately from (¥) and Lemma 6.2.

Suppose we are in case (2). Let Des(®)=Des; 5 4(®). By
conjugating by K, we may assume s€T, and furthermore that
B=int(h)B' for some hecH. Recall that @ is constructed from a genuine
character A of T(IR)p, which in turn depends on y,A, and the
isomorphism n 5. One can check that, in the notation of [AV 1],
®=0,(T(R),A). Now (¥) says that Des(®)=(constant)®y(T(R),A). On
the other hand, A is obviously equal to the character of T(IR)p
constructed using ¥y A, and the isomorphism n 4. Consequently
®L(T(R),A) is the standard module associated to the L-data S;;. This

completes the proof of the Theorem.



The first thing to notice about this result is that the
dependence of Des(®) on the element $is quite weak: except for the
constant ¢ in front, Des(®) depends only on the groups H and B.

' For the applications to lifting, we will need to regard Des(®) as
belonging to the block of a finite-dimensional representation. The
character ®, of Theorem 7.4 belongs to such a block if and only if y
defines a principal involution of “HT, which is not true in general.
What we use is the fact that Des(®) is defined only near the identity,
so the corresponding L-data is not well-defined. The next Lemma

considers this situation.

7.5 Lemma:

suppose G(R) is a real reductive group with abelian Cartan
subgroups, and T(R)CSG(R) is a Cartan subgroup.

(1) Let A, and A, be genuine characters of T(IR)p having the
same G-regular differential Act™. Then O(T(R),A,) and 8(T(R),A,)
agree on a neighborhood of the:identity.

(2) The space of virtual characters of regular infinitesimal
character vanishing in a2 neighborhood of the identity is spanned by

the set of all ®(T(R),A,)-O(T(R),A,), as T(R) and A, vary as in (1).

roof:
Part (1) follows immediately from [D1]; see also ([AV 1], 3.8).
Part (2) follows from the relationship between Langlands parameters

and leading terms of character formulas, established in [HS].



87

7.6 Corollary:

suppose S = (x,T7,P,y,%T",%P,Y) and $'=(x,T7,P,y" ,(3T")",%P",3")
are two sets of L-data for G, attached to E-groups G" and (' G")'
respectively. Assume that 8T=9T", ¢p=2%p', I=T' and y?=(y')?. Fix
AeP(S)=®(S"), and let ® (respectively ®') denote the character of the
standard (g,K,)-module attached to S and A (respectively S'and A).

Then 6-0' vanishes near the identity.

roof:
‘The character ® is ®(T(R),A), where A has differential
TN t~1*: and ©'is O(T(R),A'). Since T=T', the result is an

immediate consequence of Lemma 7.5(1).

7.7 Corollary:

Let S = (x,T",P,v,%T",%P,Y) be a set of integral L-data, and
assume that s¢T. Fix a regular parameter Ae@(S), and let ®=0(S,\).
Let ("HM)' be an extenced group containing “H defined by
v2¢Z("G)-Z("H). Choose a Cartan subgroup (dTII:I)' of ("H")' dual to TT,
and a distinguished isomorphism 3': 'T - %T', implementing the
duality. Define 9B’y to be the Borel subgroup of “H containing °T'y
corresponding to BNH under I',. Choose vé'Hc(dT;)'nvD'H making
the positive imaginary roots in dBH special. Set

S'y= (17, BNH, 78y, (3T)', %B'y, T,

Then ', 37! 91 - 91’ induces an inclusion G(S)=>®(S'y); write Ay

for the image of A. Then
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Des(g‘B‘X)((a) = o@H(S'H)\H).
The constant ¢ is the same as in Theorem 7.4. The standard

(5,Ky)-module on the right has type T(yzvsz).

roof:

This is an immediate consequence of Theorem 7.4 and Corollary
7.6 (applied to H). The main point is that V6H=y2 by the construction
of ("H')".

For our applications we need to drop the assumption that x2€2(G).
We continue to assume integral infinitesimal character for G, i.e. y2 cz('G),
and that x? belongs to H. Let c=x2, and let G_be the identity component of
the centralizer of ¢ in G, 6=int(x), K, = (Gc)e, etc. as in §4. Let s be an elliptic
element of K,. Let H (respectively H ) be the identity component of the
centralizer of s in G (respectively G_). Let Kp =HNK,, and let H(IR)G=(HC)*;
here ¥ is an antiholomorphic involution of G _fixing s, corresponding to-the
Cartan involution 6.

Recall that G is the canonical covering of G, with group
T, (GHR)=7,(G)/(1+®)7,(G). Write G."" for the canonical covering of
G°, which has group 7, (G _)(R)=m,(G_)/(1+®)7,(G ). Since G_isa
subgroup of G sharing a maximal torus, there is a natural surjection
7, (G )7, (G). This induces 7, (G )(R)-»7,(G)R) and (writing G,
for the preimage of G_in G) Gy » G _.

We want to descend from G_to H_. To do this using the theory
outlined above requires the choice of a preimage 3°?" of §in Gzan.
We will see eventually (Corollary 7.11) that descent is independent

of this choice; but it is not yet convenient to prove that, so we simply
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carry along the extra choice temporarily. Fixa Borel subgroup B _ of

G_and a G _-regular infinitesimal character X for G_.. For ® a virtual
can

(gKy

before; it is a virtual (r)c,K;Ia;1 )-module defined near the identity in

)-module we may then define Des(®)= Des(gcqnch’Xc)(G)) as

H (R)®*™ (This last group and Ky, are related to the canonical cover
of H,, notof G_.)

We could now formulate generalizations of Theorem 7.4 and
Corollary 7.7. We state only the latter, since that is the one used in

endoscopy.

7.8 Corollary:
Let S = (x, T\, P, v, %17, 9P, T) be a set of L-data for G" and “G'
(Definition 4.3). Assume that y2¢Z('G), and write c=x%¢G. Fixa
G -regular weight A€®(S); then ®=08(5,\) is the character of a
standard (gc,K;an)—module of of type T(vzpvzp(c)) (Theorem 4.8).
Now assume that se€TNK,, and that 3°*™ is a preimage of s in

G2", write H_ for the identity component of the centralizer of s in

¢
G, B_ for the Borel subgroup of G _corresponding to P, and X for the
G.-infinitesimal character attached to A. Write Py for the roots of T
in H belonging to P.

Construct an E-group ("H")' for H defined by y2¢Z( G)CZ('H).
As in Corollary 7.7, choose (3Tg)'C("HT)" dual to T', and I T-9T',,
Define %P’y to be the roots of ®Ty in “H corresponding to Py, and
choose ~ &'y as in Corollary 7.7. Set

Sy = (% T, Py, "8', OTg), %P’y T'h)

Ag = T3 € @(S'y).
Then |

v
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for some complex number ¢. The standard (r)c,K;Ia::)—module on the

right has type T(yzvsz(c)).

We next need to specify the constant ¢ appearing in Theorem

7.4 and Corollary 7.8.

7.9 Definition:

(1) Given G and a Cartan involution 0, let K=G®, and let A, be the
split part of a fundamental Cartan subgroup of G. We define:

q(G,8) =3[ dim(G/K) - dim(A )]

(2) If XeG'-G, we define

q(G,x) =q(G,,.8)

= 3[dim(G ,/K,) - dim(A ()]

where G_,, Ky, ©=int(x) are as usual (cf. §3) and A is the split part of a
fundamental Cartan subgroup of G_,. If we do not specify X, then q(G) is
defined to be q(G,8) with § defining the involution for the quasisplit form
of G.

(3) suppose ~ is a standard or irreducible (g_, K,)-module with
integral infinitesimal character. We define 2,(®) by Definition 3.24, with

co=%dim(A)-q(G,x) and A as in (2).

Note that 2q(G,x) is the dimension of ®,/Q,, where @, is the -1
eigenspace of 8 on g_,, and G, is the Lie algebra of A.. This decomposes
into root spaces for the action of the compact part of the fundamental
Cartan subgroup. Since these these roots come in pairs this number is even,

so q(G,x)€Z.
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We have included the next lemma for comparison with ([AV1],

Lemma 2.12).

7.10 Lemma:
Given T(€5m(gx2,Kx) having regular integral infinitesimal character, let
I=1(¥,P,_,

roots of T in ze determined by dA. Then

A) be the corresponding standard module. Let A* be the positive

2o(m0) = 29(Gx) - { xeA* | x is imaginary non-compact}| -

I{ xeA” | x is complex, OxcA* }| .
P

proof:
In the notation of 3.26, let a,b,c,d and ¢ denote the number of:

imaginary non-compact roots x€A*; imaginary compact roots x€A”; pairs of
complex roots «,6xeA*; pairs of complex roots x,-6xcA”, and real roots
xeA* respectively. Then q(G,x)=3dim(G,/K,)-idim(A )=
idim(A)+a+c+d+ie-4dim(A ). Thus, with A the split part of T,
24(1)-2q(G %)
= [d+ie+idim(A)]-3dim(A )
-[3dim(A)+a+c+d+ie-1dim(A )]
=-a-C,

proving the Lemma.
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With this normalization of lengths (on G and H) we have:

7.11 Corollary:
(1) Suppose we are in the setting of Theorem 7.4. Let A be as in the

proof, considered as a character of the inverse image T(R) of T(R) in G.

Then the constant ¢ of Theorem 7.4 is given by:

A
C = (—1)30(0)"'-%0(01.1) —-(“S')
ed./\

(2) Suppose we are in the setting of Corollary 7.8. Now A isa
character of the inverse image of T(R) in (G_)°*", and Ale? factors
to T(R) (cf. the discussion preceding Corolla;;y 7.7). Then (1) holds
as stated. (In particular Des(®) depends only on 3, not on §°%%),

In all cases, the dependence of Des(®) on 7, (G)(R) (as § varies
over the preimage of s in G) is of type T(vzpy'z)). In particular if

y?="z_, then Des(®) depends only on s itself.

roof:

By Lemma 7.9,

24(1)=l{ xeA* | « is imaginary non-compact}| -

I xea* | x is complex, 6xcA” }| mod(2Z).

Part (1) follows immediately from ([AV 1], Theorem 2.11). For
(2) and the last claim, notice the e defines a character of T of type
y2 (by the definition of the bijection between characters of 7, (G)(R)
and 2(7G)®). By the construction of A in the Langlands classification,
it is a character of T(R) of type "z, (the type of the E-group G').

This proves the Corollary.
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7.12 Coroflary:

Suppose (3,B,X) and (3'B',X') are two choices of the data of Definition
7.1, and ®cU(g K,).

(1) Suppose there exists K¢G such that (kK )<K,, and
int(k)(§, B, X)= (&, B',X").

Then Des(ng’X)(@D)%Des(?’B.,x.)(@))

(2) Assume Cent(s)°=Cent(s')?, and call this group H. Suppse B=B’,
X=%', and $=2s', for some z contained in the identity component of the
inverse image of Z(H)? in G.

Then Des z p xy(@)¥Des x p x1y(@).

roof:

The first part is immediate. For (2) we only need to check the
constant of Corollary 7.11. We need to show A/ed(Z)=1. This follows
immediately since A and ¢dM nave the same differential, and z is contained

in the identity component.
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§8
Stable Characters

Once again fix G and an inner class of real forms, and L—groupstr
and G" usual.
Let X be a strong real form of G. By a real form ¥ corresponding
to ¥ we mean a real form of G corresponding to 6=int(x) by Lemma
1.6. Thus ¥ is an antiholmorphic involution of G, and letting G(R)=G?
we have a bijection between virtual G(R)-modules and (g K,)-
modules (¢f. §1). We say a virtual (g, K,)-module vanishes near the
identity if this holds for the corresponding G(R)-module; of course
this is independent of the choice of ¥.
Recall (cf. §2) U(gK,) is the direct sum of blocks, and projection on a

block is defined with respect to this decomposition.

8.1 Definition:

(1) Fix an admissible pair (x,y), with %x2¢2(G), and let B and @B
be the corresponding blocks. Fix @ and 4® as in Lemma 2.11. Fix
regular elements Ae® and *Ae®Q®. Suppose @ is a virtual (g K,)
module contained in B(\).

We say O is stable if <@, 92>=0 for all 4Z¢ " ®(®)\) such that ¢z

vanishes near the identity.
(2) In general (still for regular infinjtesimal character) we say @ is
stable if the projection of @ on a block B and the infinitesimal character X,

is stable for all B and A.
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It is immediate that the notion of stability is independent of the

normalization of length.

Recall an L-packet TT is a finite set of irreducible (g,K,)-modules, or
alternatively the Z-module of virtual modules spanned by this set. Given a
standard module I, we write [€TT if the Langlands submodule wof I is
contained in TT. This does not imply all the constituents of I are contained in

TT.

8.2 Theorem.:

(1) Let TT be an L-packet of (g,K,)-modules with regular
infinitesimal character. Then @,=%x; I is stable.

(2) Any stable virtual (g,K,)-module is a finite sum of terms of the

form (1).

roof:

We may assume @_<B(\) for some B and A. Choose xand y so that @
is the block defined by (x,y) via Corollary 3.22. Let “® denote the dual_
block. The sum in (1) is the sum of the standard modules associated to
inequivalent data of the form (x,T",P,y,%T",%P,Y), where ¢T" and P are

fixed. The Theorem follows immediately from Lemma 7.5 (cf. Corollary 7.6).

Recall a semisimple element geG is strongly regular if the centralizer
of g is a Cartan subgroup. The strongly regular elements are dense in G,
and for such elements “stable” conjugacy is the same as conjugacy by G [St].
Given a strong real form X, let G¥ be the set of strongly regular semimple

elements g of G satisfying the following condition: there exists a real form ¥
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corresponding to a conjuate of x such that geGY¥. Note that G¥ is invariant
under conjugation by G.

If ®cVU(qK,), we may try to define a function ¢, on G* as follows. For
geG¥, choose ¥ corresponding to some conjugate X' of ¥ such that, with
G(R)=G¥, we have g¢G(R). Consider @ as an element of U(gK,.)and letF,
denote the function on the strongly regular semisimple elements of G(R)
which represents ® [HC]. Let &,(g)=F(g). This is not necessarily well

defined.: it may depend on the choice of ¥.

8.3 Theorem:

The following conditions on a virtual (g ,K,)-module ® are equivalent.

(1) Fix ¥ associated to X, and let G(R)=G". Then F,(h')=F,(h) for all
strongly regular semisimple elements h,h'€G(R) such that there exists g<G,
ghg™'=h".

(2) &, is a well defined function on G*.

(3) ® =%, xq O (xp€Z), where the sum is over a finite set of L-
packets.

(4) O is stable.

roof:

Suppose ¥'=int(g)Y, for some ge¢G. Then if F, (resp. F'y) represents ©
on G¥ (resp. G¥'), then by construction F,(h)=F'y(ghg™). Now if ¥ and ¥'are
real forms associated to X, then G¥ is conjugate to G¥' via G. Composing with
this conjugation we see condition (1) is the only obstruction to defining &,;
nence (1) = (2),and (2) = (1) is similar. Theorem 8.2 says (3) & (4); it
remains to show (1) €& (3). Lemmas 5.1 and 5.3 of [S4] show (1) & (3) for

tempered representations. The arguments carry over in general since @ is
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a sum of the standard modules contained in T (¢f. [A1]). We omit the

details.

Note that condition (1) is (one of the) usual definitions of stability.

Theorem 8.3 suggests a stronger version of the notion of stability,
which takes into account different real forms of G. By a virtual
(g.K)-module ®, we mean a formal sum ® = ¥, ®, , where @, is a virtual
(g.K,)-module, and the sum runs over representatives of the equivalence
classes of strong real forms of G. We allow formal infinite sums (which
may only occur if the center of G is infinite). Note that K is merely a formal
symbol, and does not denote the fixed points of an involution of G. Recail
each of these real forms is in the fixed inner class of real forms. We refer to
®, as the projection of ® on U(gK,). Let U(g,K) denote the vector space of
virtual (g K)-modules: U(g X)=T,U(g K,) . Projection of U(g,K) onto

U(g,K,) is defined with respect to this decomposition.

8.4 Definition:

Super-Block Equivalence on (g, K)-modules is the smallest
equivalence relation generated by block equivalence and
(super)-L-indistinguishability. Thatis, a super-block of irreducible
modules is the union of the super L-packets of all the irreducible
modules in a single block. By Corollary 3.23, a super-block is
associated to each semisimple element ye G'-"G:

BiITT(y) = U, BT (x,y)

Here and below, x runs over a set of representatives for the
equivalence classes of strong real forms of G.

B(y) = T, B(X,y)



Brp(y) = MBrp(Xy) .

(We define B(X,y) to be zero if (x,y) is not admissible.)

The following lemma is an immediate consequence of Definitions 3.30

and 8.4.

8.5 Lemma:
In the setting of Definition 8.4, there is a perfect pairing
Bp(y) X (&, Brp(xy)) > Z.

The first factor is the dual Z-module of the second.

Wwe want to introduce super-stability using virtual characters
in exv(B(x,y)(d)\) that vanish near the identity, in analogy with
Definition 8.1. Unfortunately this exXpression does not even make
sense as written, for the following reason. Recall from sections 2 and

4 that a transiation family of (“gv_, Ky )-modules corresponding to

y
an admissible pair (X,y) is parametrized by a set

dp(x2, P) = { ¢nct | exp(2mi®A) = %2, and %A is P-dominant }.
It can easily happen that there are two admissible pairs (%x,y) and
(x',y) with x2#x'2. In that case *®(x?,P) and ¢®(x?,P) will have no
elements in common, so there is no possible choice of 4\ to make
sense of &, B(x,y)(®X).

The solution is to extend our translation families. On the dual
side this amounts to replacing G by its canonical cover “G°*® Asin
section 7 to avoid confusion with the canonical cover VGsin, we will
write G instead of 'G°®® The preimage of a subgroup Hof Gin G
will be called "H. The discussion after Corollary 7.7 produced a

natural surjection
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Gv., 2> Gv < G;
consequently finite dimensional representations of “G may be

can

‘restricted to G-,

8.6 Lemma:

suppose T < G and 4TC”G are maximal tori. Write $:t->%t* for
one of the distinguished isomorphisms. Set

4R = (Inedt |exp(2midn) € 2(G)°).
Then T(2X) is the lattice of weights of finite-dimensional

representations of ~G.

This is an elementary consequence of the definition of “G. Now
%2 belongs to Z(G)?; so the set ¢®(x%P) is contained in
8.7 %8 = {dnctlexp(2mi®N) €2(G)?, and %A is P-dominant ).
These remarks and the general theory of translation functors

establish:

8.8 Corollary:
suppose 41 is a “G-translation family of (vgvc,vK;an)-modules
corresponding to an admissible pair (X,y), parametrized by the set
d@(x2,P) of (8.5). Then %1 may be extended in a unique way to a
v can

“G-translation family ®7 of ("gv,, K, )-modules parametrized by

the set 48 of (8.7).

Recall that the representations in ¢ all have a fixed type (that
is, restriction to 7, ("Gv_)(R)). This is no longer true for those in °7,

but the loss will cause no inconvenience.
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wWe write V@TF(X,V) for the set of enlarged translation families
constructed in Corollary 8.8, and
TBrp(y) = o Brpxy).
We use other notation (such as ~B(x,y)(®\) in analogy with section 3.
Because of the uniqueness of the extension ¢7, "B, p(X,y) is naturally
isomorphic to v(B.rF.(x,y). The following corollary to Lemma 8.5 is

immediate.

8.9 Corollary:

(1) There is a perfect pairing B p(y)x Bp(y) > Z.

(2) The parameter sets for the translation families in ~ & are all
canonically isomorphic to any one of them 4&. similarly let @ denote any
one of the parameter sets for B(x,y), and fix regular elements Ae® and
d%\¢" 9. Then there is a perfect pairing

B(y)N)x By)N) > Z.

We choose normalizations of length. Let (X,y) be an admissible
pair with X integral, with corresponding dual blocks 8 CU(g K,) and

"@cU("gy 2, Ky). Let G, be the quasisplit group dual to vaz (cf.
§3). Let A denote the split part of a fundamental Cartan subgroup

of G, .. Recall the integer q(G x) is given by Definition 7.9.

8.10 Definition:
For te®, define 2(7) as in 3.26, with

co=3dim(A )-Iq(G,x)+q(G,y)+q (G, )]

int
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If the infinitesimal character of 7 is integral, Gint is the quasisplit
form Gqs of G. The definition is more symmetric than it first appears:
q(G.. . )=q( G~

particular in the integral case this becomes q(G CIS)=<:1( Gqs).

int c'qs), where G"c,qs is the quasisplit inner form of Gv_. In

8.11 Definition:

(1) Fix a semi-simple element y¢ G'- G, with corresponding
super-block B=B(y). Fix parameter sets ® and ¢& as in the previous
lemma, and choose regular elements Ae® and *Ac?®. Let @ be a virtual
(g,K)-module contained in B(y)(N).

We say © is super-stable if <®,%Z> = 0 for all 4Z¢  B(y)(3\)

- vanishing near the identity.

(2) In general (still for regular infinitesimal character) we say @ is
super-stable if the projection of ® on a super-block B and infinitesimal
character ¥ is super-stable for all 8 and X.

A virtual (g, K)-module @ is super-stable if <®,%7>=0 for all virtual

("q, Ko™ )-modules ¢Z which vanish near the identity.

b4

This notion is pot independent of the normalization of length, which
comes into the definition of <,>. More precisely, it depends upon how
these normalizations vary as the block varies. The normalization was
chosen primarily to make Theorem 8.12 hold. (Only the term q(G,x) varies
within a superblock; the others are present for aesthetic reasons.) If @ is
super-stable, then the projection of ® on U(q,K,) is stable for any X. The
converse is false as we shall see in a moment.

It may happen that ¢Z-%Z' vanishes near the identity, where %Z and

47' are virtual (Vg,va) modules (for the same strong real form y), but ¢Z
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and 97' are contained in different blocks. Note that the definition of
stability takes no notice of this possibility, but the notion of super-stability
does. An example is TH-n", where 1" (resp. 7) denotes the reducible
(resp. irreducible) principal series representations of SL(2,R) with
infinitesimal character p. As a result we have that the discrete series
representation X of PGL(2,R) (with infinitesimal character p) is stable, as is
the trivial representation Y of PSU(2), whereas only the formal sum X-Y is
superstable. Note that X+Y in this example is not superstable, even though
its projection on U(g K,) is stable for all X. Thus the condition of
super-stability includes a compatibility condition on signs as the real form

varies.

Now suppose {¢} is a conjugacy class of maps of W into “G". Given a
strong real form X, let T, denote the corresponding L-packet (which is
possible empty). Let Op= &, (-1)KG ®p  , Where @p_is the stable
virtual (g K,)-module corresponding to T,.

Let G" denote the set of strongly regular semisimple elements of G
satisfying the following condition: there exists a strong real form xeG, and
"areal form Y corresponding to X, such that ch“. By analogy with the
situation before Theorem 8.3, if ® is a virtual (g, K)-module, we try to
define a function ¢, on G" by taking $5(g)=Fo (g), where xand ¥ are
chosen with geG¥, and @, is the projection of ® on U(g,K,). This is not

necessarily well defined.
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8.12 Theorem:

The following conditions are equivalent:

(1) For all strong real forms x and X' the following condition holds.
Choose ¥ and Y' asociated to x and X', let G(R)=GY, and let G(R)'=G¥. Then
Fo(h)=F,.(h') for all strongly regular semisimple elements heG(R) and
h'cG(R)' such that there exists geG, with ghg™'=h".

(2) @, is well-defined,

(3) ® =Zgxq Of ( xp€Z ), where the sum is over a set of super
L-packets,

(4) © is super-stable.

roof:

Conditions (3) and (4) are equivalent as in the proof of Theorem 8.3;
the signs come from our normalization of length. Furthermore (2) = (1) is
elementary. Suppose ¥ and ¥Y'are involutions corresponding to different
strong real forms x and x'. Suppose geG", and geG'NGY'. Let =0y, and let
®, denote the projection of ® onto U(g K,). Then by ([S4], Theorem 6.3)
F@x(g)=(—1)q<G"‘)'q(G"")Fexu(g). The equivalence of (1) and (3), and (3) =

(2) follow readily from this; we leave the details of the proof to the reader.
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§9
Lifting

We are now in a position to define lifting, and state the main
theorem. For the convenience of the reader (and the authors) before doing

so we spell out the choices and definitions we have made so far.

9.1 (1) We are given G and an inner class of real forms of G (cf. §1). Let
“G be a dual group, and choose an L-group ('G',”D) for G (Definition 1.3).
Any two such L-groups are isomorphic, by an isomorphism which is
canonical up to conjugation by "G.

(2) Let (G',D) be an L-group for ~G. Any two such choices are
isomorphic by an isomorphism canonical up to conjugation by G.

(3) We are given an equivalence class S of endoscopic data
(Definition 6.3). Thus if (3,"H","Dy)eS, let s=71(3), and let “H be the identity
component of the centralizer of s in ~G. Then H' has two components, -
meets “G"-"G, and has identity component "H.

(4) Let H be an endoscopic group determined by S,so His a
quasisplit group with “H' an E-group for H. Let 6 be a Cartan involution
of H, KH=H°H, and let I?fH denote the cover of K, corresponding to the

element p-p. (cf. the discussion preceding Lemma 6.10).

We will refer to the data of 9.1(1)-(4) as Lifting Data. We also need

to fixx a group to which we shall lift.

9.2 Fix a strong real form x of G (Definition 1.8); write 6=int(x) and K,=G°.
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Choose an extended group (Hr,f.DH) containing H as in Definition 6.11. Fix

I =a - 2 2
$€Dy; With int(8)=0y; then (8)°=x%

To define lifting, we need some additional structure attached to the

particular (virtual) (p,Ky)-module to be lifted.

9.3 In the setting of (9.1) and (9.2), suppose ®,¢U(p,Ky) is stable, with
G-regular infinitesimal character X, Assume that @, is contained in a
block By, for H, defined by an admissible pair (8y,y) (y¢ H'). That is we
assume @, is representation of the quasisplit form, and is of type "z pvsz,
ie. it is a genuine representation.

(1) Write "¢ =y2, "Gv_ = identity component of the centralizer of c,
“o=int(y), vK,},= ("G~_)®, "Hv_=identity component of the centralizer of "¢
in "H, "Ky=("H-)"®, K

can_
y

v _Ccan . v . . V)
Ky = preimage of K, in the canonical cover of Hv_.

preimage of "K_ in the canonical cover of Gv,

(2) Dual to By is a block By of (vr)vc,vK;Ian)—modules of type
T(xzsz("c),vc).

(3) Choose a Cartan subgroup °T of "Hv_and a set °P; of positive
roots for ¢T in vch. This fixes the parameter set @y <91 for the
translation families in B, Choose a representative A<®y for the
infinitesimal character X, of ®,. Define dPDdPH to be the set of roots of %t
in “gv_positive on A, and write ®B DT for the corresponding Borel
subgroup of vac. This fixes the parameter set ® for translation families for
G of infinitesimal character associated to ¢; and >\€®CG>HCd‘t.

(4) Choose parameter sets ¢®, and %@ for translation families for

“Hv_and “Gv_respectively, of infinitesimal character associated to (§;;)%=x2.
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By the discussion before Theorem 7.4, the Borel subgroup dBdES gives rise
to a natural injection

(ngg) - oy
Pick a “G-regular element $Ac®®, and let ¥\ be the corresponding
element of ¢®,. Write X for the infinitesimal character of “Gv_ defined by
;¢ is defined analogously.

We then define Des x dg dyy 3s in §7: by Definition 7.3 if y2€Z(VG),

+ Tdes’

or by the discussion preceding Corollary 7.8 in general. This descent takes

can

(virtual) ("g, K, )-modules of infinitesimal character 4 to (virtual)

(V v can

)-modules in (B defined near the identity (Corollary 7.8).

Of course ®T and %P are unique up to conjugation by "Hv.. The
element X is only determined up to conjugation by the full centralizer of ¢

in “h, and not just by "Hv_. Consequently the pair (X\,°B,) is unique only

des
up to conjugation by this larger centralizer, and thus Des is not as unique as
we might like. Rather than keep careful track of the amount of choice -
involved, and try to show directly that the definition of Lift is unaffected
by it, we will wait until we can calculate Lift explicitly; the formulas will be

independent of the choice in (9.3).

9.4 Definition:
In the setting (9.1)-(9.3), define ® to be the block of (g,K,)-modules
associated to the pair (x,y). The dual block ~ @ is a block of

can

y-modules of type T(z2v R “¢) (cf. 4.7). The parameter sets

( gvc, p( c)’
for translat1on families in these blocks are @ and d@, in which we have

elements A and %\ (cf. (9.3)(3)-(4)).
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The liftof @, to G (and the strong real form x), written Lift(@H), is
the unique virtual (g,K,)-module contained in B(X\) satisfying the following

condition:

9.5 < Lift(®y), %Z > = < @y, Des(®Z) > for all °Z¢ B(*A).

Here the pairing on the left is on B(A\)x B(%A), and that on the right is on
By (%H)xV(BH(dAH).

Extend the definition of Lift(®) to all stable virtual (r),ﬁH)-modules
of G-regular infinitesimal character by linearity, via projection on
infinitesimal characters and blocks.

If it is necessary to specify the strong real form x to which we are

lifting we will write Lift (®4).

Recall Des(%Z) is only defined up to virtual characters which vanish on

a neighborhood of the identity in “H. Precisely because @ is stable, and
hence orthogonal to such characters, we see that <®H,Des(dZ) > and hence
Lift(@y), is independent of the choice of Des(%Z). Thus Lift(®y) is
well-defined. The only part of the following Lemma which is not immediate

is the independence of the choice of A and %X; this will be proved below.

86 Lemma:

Lift, (@) depends only on the data (9.1) and (9.2). In particular it is

independent of the choice of § (within the given equivalence class of

endoscopic data).
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Given lifting data 9.1 and a strong real form x of G, let Ty be an
L-packet of (b,ﬁH)—moduIes with G-regular infinitesimal character. We
obtain an L-packet (possibly empty) of (g, K,)-modules as follows. Choose
¢ W g HF corresponding to Ty, and let ¢ denote the map Wy H -GN
If ¢ is admissible we let T denote the L-packet for G corresponding to ¢,
otherwise it is empty.

The main theorem is the following.

9.7 Theorem:

Suppose we are in the setting of (9.1) and (9.2), and T is an
L-packet of (I),I?:'H)—modules with G-regular infinitesimal character. If Ty
is relevant to G, let T denote the L-packet of (g K,)-modules associated to
T4 by the preceding discussion. Let @y be the stable virtual character
corresponding to T (Theorem 8.2). Then Lift(®y) is defined by Definition
9.4.

(1) Lift(@)=0 if T is not relevant to G.

(2) Suppose Ty is relevant to G. Then Lift(®y)=%; ¢, I for some
¢ eC™.

(3) Let <, >: Tx§, > €* be the pairing of Definition 5.2 restricted to

. Consider §as a representative of an element of §w. Then
CI=(_1)q(G,x)+q(H)<I’§>_

We note that ¢;/c;, €{¢1} for all I and I', and write this in a different
form in Theorem 9.11. Since the expression for ¢; does not involve the
choice of ¢\, we see that the definition of Lift is independent of that choice

(cf. Lemma 9.6).



109

proof:
Choose data (y,%T",\) for the L-packet T as in Proposition 3.4.

Define “c=y?, and let 4P ,C%P be the “c-integral positive systems making A
dominant. This notation is consistent with that of (9.3). Since X?¢Z(G), the

set of positive roots 3P defines a Borel subgroup B, _of ~Gv_ (see the

des

discussion following Definition 3.8).

We first consider (2). Fix ¢\ as in Definition 9.4. It is enough to show
that for any standard module 1¢”®(¢\), <Lift(®),*1>#0 implies 41 .
By 9.6, it is enough to show for all standard modules ¢I¢ ®(%A):
9.8 <@, Des(®I)>=0 = 41T

Since “@(%\) is the block defined by (y,x), we have that 91 is given
by (or rather dual to) some L-data S=(x,T" P,y,°T",%B,Y). We compute

c=<@, Des(®1)>. Write *B=%B, N"H.

By Theorem 7.4 (applied to "G~ o) if Des(%1)=#0 we may without loss of
generality (by conjugating by "K_ if necessary) assume s¢?T', and ®B is

vch -conjugate to B Then Des(®I) is a non-zero constant times the

des’

standard (“pv_,"Ky )-module given by some L-data

(84, Tp, *,y ., T, %B'N"H,T ). Then c#0 impties *B'N"H=k+*By, and
kedTT=9T for some ke K. Thus by replacing S by int(k)S we may assume

B'n"H=%B,;, and 4TT=4%T. We still have that °B'is ~Hv_-conjugate to °B

des’

so suppose %B'=int(h)%B ;__ Then since B, N H=9B,, we see he®B, B,

so 4B=9B Thus S is conjugate to (5., T7 B,y ,°T",%B T). Therefore

des’ des’

41¢Y1T, which proves 9.8. Since this holds for any standard module %I, this
proves (2).
The same argument proves (1), by simply noting ¢#0 implies ¢1l is

relevant to G; (1) is the contrapositive of this statement.
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Assuming T is relevant, write Lift(@)=% ¢; I as in (2). Taking
41="1 for 1¢Tl any standard module, we have the left-hand side of 9.5 is
equal to
9.9 (-1)¥De¢,

By Corollary 7.11 the right-hand side of 9.5 is given by:
9.10 (~1)MIE) (=1)8eC°D *+ 3oCT) (8576 )(3),

By Lemma 5.5, the final factor is equal to <I,$>. It is not hard to see
that (-1)3I*8:0D=(-1)2G¥) ang (-1 )8T@*eC I =(- 1)) Thus equating
(9.9) and (9.10) we conclude the Theorem.

Definition 9.4 and Theorem 9.6(3) depend on the choices of
normalizations of length of §8. Such choices amount to the following: for
each conjugacy class of admissible pairs (x,y) we choose real numbers
Co=¢o(X,y) to normalize length on ® (cf. 2.15). (We must make these choices
so that all lengths are integral.) Given such choices, define Lift*( ) as
above; it is immediate that on each block ®, Lift*( )=+Lift( ). The
definition of Lift( ) is independent of the normalization of length for ~G and
“H ; we have chosen these normalizations for convenience, and to make

Corollary 7.11 and Theorem S.11 have a nice form.
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Suppose we are in the setting of Theorem 9.7. Fix a standard module
[<TT, with Langlands subquotient ®. The set of standard characters
contained in T is then { wxI | weW,  }, and these characters span T. Let
&1 sWim ™ {+1} be as in Definition 5.2. The following Theorem computes
the coefficents in Lifting.

9.11 Theorem:

Suppose we are in the setting of Theorem 9.7, and fixX I€Tl. For
wew,  let I =wxI. Define ceC, e (w)e{£1} (WeW, ) by:
9.12 (1) e,(1)=1,

(i) Lift(@H)= cZelw)I,, (the sum is over W NWE,TNAW, ).

Then
9.43 (1) e (W)= §; (W)
4
G,x)+ q(H) “A
(2) ¢ = (-)TOT I g
N

In particular,
(3) e (xy) = g.(y) eyXI(x) for all X,yeWw., .
(4) For x an imaginary root,
g,(s, ) = sgn(x )(s) « non-compact
1 x compact.
(5) e,(xy) = g,(y) forallyeW,  ,xeW, NWI(K,T).
(6) €,(xy) = g, (x) for all XeW, ., yeW, (H,T)

pfOOﬁ

The first assertion follows immediately from theorem 9.7 and the

definition of §, and (2) is Lemma 5.5. Similarly (3) and (4) are immediate
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consequences of Lemma 5.8, and (S) follows immediately from (4). We
leave the proof of (6) as an exXercise using Lemma 5.5. This completes the

proof of the Theorem.

This definition of lifting differs from the usual one in part because we
have taken 3¢ G°®® This only plays a serious role in super-lifting
(discussed below) as we see by the following Lemma, which follows
immediately from Lemma 5.6. Recall (cf. §4 and Lemma 5.6) the definition

of the characters 1(z,1) of 7, ("G°*®)(R) associated to zeZ(G )e.

9.14 Corollary:

Suppose we are in the setting of Definition 9.4, with S=(5,"H", D).
Let S'=(Z5,"H',"Dy,) for some Zen, ("G°*R)(R), and let Lift'( ) be defined
accordingly. Let T=T(vax'2,1).

Then Lift'( )=7(Z) Lift( ).

As a special case, suppose 3e1, ('G®*®)(R), and ('H',"D)=("6","D);

then H is the quasiplit inner form of G.

S.15 Corollary:

In the setting of the preceding Corollary, suppose S=(Z, G",” D), with
ger, ("GP )(R).

Then Lift(8, )=(-1)X&*Dr@) e,

In particular Lift(@nH) is stable.

proof:
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Recall (cf. §8) O,=%,  I; which we write @,=%_ I __asin Theorem
9.11. Now "H=G, so by Theorem 9.11 (6) e,(x)=1 for all XeW ;_; the result
follows immediately.

Endoscopy is used to study the structure of L-packets, so we should
fix ¢ : Wy - "Gl and consider endoscopic groups through which this map
factors. Thus suppose we are given a conjugacy class of homomorphisms
{og} Wp = “G". Suppose x is a strong real form of G, and {¢,} is relevant for
G, Suppose (3, H,"Dy) is a set of endoscopic data such that ¢ factors
through “H' for some p€{py). Let T, be the corresponding L-packet, with
stable virtual character @,. This data determines blocks for G, "G, H and 'H,

hence all the choices of 9. 3, and Lift ( ) is defined.

9.16 Corollary:

Suppose we are given ¢:Wy = G', and endoscopic data (3, H, Dy)
such that ¢ factors through "H'.

Then Lift(0,) = (-1)10® " a®s <1z

(and is independent of the choice of “Dp).

From Corollary 9.16 and Fourier inversion on the group S o We
immediately obtain an inversion formula, which we defer until we have

discussed super-lifting (cf. Theorem 9.24).

Theorem 9.11 enables us to compare our results with those of [S1].
Suppose we are in the setting of Corollary 9.16. Fix I€Tl, and define ¢ and

e.(w) by 9.11.
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Recall (Theorem 6.13) there is a surjective map ¥:S =3}, where
Sig1] is the set of equivalence classes of endoscopic data of [S1]. For S¢S let
(s,w) be a representative of ¥(S). Given the choices of ([S1], §4) we obtain
an L-packet '} of (),Ky)-modules.

Let Lift'( ) denote lifting of stable virtual characters from H to G as
defined in ([S1],§4). As in [A2] we extend this to non-tempered
distributions. Thus we obtain Lift'(®'y), which is a virtual (g K,)-module.
With I1€TT fixed as above, we have ([S1], Theorem 4.1.1):

Lift'(®@'p)=% , B(w)(wxI) for some numbers S(w)e{x1}, where the

sum runs over we(W, NW(EK,TIN\W, .

9.17 Theorem:
There exists §e{+1} and ceC™ such that Lift(@) = Ec Lift'(®'y). The
constant ¢ is given by Theorem 9.11(2); up to sign it depends only on the

block B containing .

roof:

This follows from ([S1], 4.4.3, 4.4.10, and 4.5.1). The essential point is
that given I, in the notation of 5.12, we may choose n such that
;3(w)/;3(1)/= "n,s(W)="'(W)- The Theorem follows immediately from

Corollary 5.14.

It is the authors' opinion that the question of whether £ is equal to +1
or -1 is probably undecidable.

The L-packets T and ', are similar but not necessarily the same.
First of all Ty and T have the same infinitesimal character (considered as

an element of 1*) whereas the infinitesimal character of 'y is shifted by
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the choice of embedding YH<LG. Finally T is an L-packet for a covering
group H(R) of H(R). Let T7'; denote the pullback of 'y to H(R) via
projection. We leave the proof of the following lemma to the conscience of

the reader.

9.18 Lemma:

There is a translation functor ¥ on H(R) so that T = W(1T',).

We proceed to discuss super-lifting. Note that in Definition 9.4 we
may vary the strong real form X of G. Recall the notion of virtual
(g,K)-module (cf. §8): a virtual (g X)-module is a formal sum z, ®, where
Q, is a virtual (g,Kx)—module, and the sum runs over equivalence classes of

strong real forms. (If G has infinite center the formal sum may be infinite).

9.19 Definjtjon:
Suppose we are given lifting data 9.1 and a stable virtual
(I),I?fH)—module @4, wWith G-regular infinitesimal character. Then we define

the virtual (g,K)-module Lift*(@y) as follows:
9.20 Lift*(@,)=%, Lift (@)

where Lift (@) is the virtual (q K,)-module of Definition 9.4, and the sum

runs over equivalence classes of strong real forms of G.

Recall the definition of a super L-packet T, and the super-stable
virtual (g, K)-module @, associated to T (cf. §8). The following two results

are immediate consequences of Theorem 9.7.
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9.21 Theorem.:

Suppose ® is the stable virtual (f),I?fH)—module ®,; associated to an
L-packet T of G-regular infinitesimal character. Then Lift*(@H) is
contained the super L-packet T defined in the discussion preceding
Theorem 9.7, and

Lift*(0y)=(-1)T® g o (-1)AE&X D)<y 3> 1

Here x(I) is the strong real form of which I is a representation.

9.22 Theorem:
suppose S=(1,”G",”D). Then Lift*(®)=(-1)¥® e In particular
Lift*(@) is super-stable.

Inversion now takes the following form. Let ¢:W ;> "G" pe an
admissible homomorphism (with regular infinitesimal character), with
corresponding super L-packet T . Let 4T be the centralizer of ¢(C*), and
pick “8¢”D such that ~8lap=int(¢(j))la . Then S, is the group of fixed points
of int("8) on °T. By Lemma 6.6, to define endoscopic data it is enough to
choose 3¢ G®2™such that the image of 3is elliptic and fixed by int(*§). We
see immediately that we may pick a set of representatives of S /S °
satisfying these conditions. We change notation slightly and let § , denote
this set of representatives. For 3e§ , We choose ViDH,§ making a set
(§,VH.§,V®H§) of endoscopic data, and let H; denote a corresponding
endoscopic group. Now ¢ factors through “Hy, and we obtain a stable
virtual (f),I?fH)—module ®H§. Let Lift*(‘é,@Hg) denote the lift of this character

to (g, K). By Corollary 9.16 it is independent of the choice of viDH,,.
s
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To avoid technicalities we assume the center of G is finite, so T and
§w are finite. The following Theorem follows from Theorems 5.1, 9.7 and

Fourier inversion on the group §.

9.23 Theorem:
For 1¢T  a standard (g K, )-module,

(-1)3(G,%
5 z (-1)3(H) T $>Lift(3,0y,)
'

s€§w

I =

Here x is the strong real form of which I is a representation.
Suppose we fix a strong real form x of G. Letting Lift( ) denote lifting
for this strong real form, and projecting both sides of 9.2 onto

(g, K, )-modules, we obtain:

(-1)HG

|§ | z( 1)3H) <1 5> Lift(s, Ony)

9.24

= ] if Iisa (gXK,)-module

0 if Iisa (gXK,)-module for X' not conjugate to x.

This explains the "ghosts” of [S1].
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§10

Singular Infinitesimal Character

In this section we will extend the material of sections 5 through 9 to
the case of singular infinitesimal character. We begin with some
generalities, followed by a discussion of L-packets. Theorem 10.19
describes the parametrization of L-packets, generalizing Theorem 5.1, and
Theorem 10.24 generalizes Theorem 8.2 on stable characters. Finally lifting
is carried over from section in in Theorem 10.42.

To begin, we take G and ~G as usual, and a semisimple element ¢ of
G corresponding to a translation family of infinitesimal characters for G as
in section 2. (The pair (¢, ¢c) of section 2 will here be taken to be (z,7¢),
with z some element of Z(G).) We recall and extend some of the notation of
section 2. Fix maximal tori
101 (@) TCG, % C "Gv,
and a distinguished isomorphism
101 (b) T:°T-°T.

To each root « of T in G corresponds a coroot «, which (via I) may be
regarded as a character of "T. Set

10.1 (€) Rvy=Rv(3) ={x ¢RG.T)IT(x )(c) =1}

(cf. (2.4)). The corresponding set of coroots is written vva. It is identified
by T with

10.1(d)  %Rv_={®x ¢ RCG,T) | %x(Tc) =1} .

As in section 5, we will sometimes find it convenient to write «=3(x") for

the rootin G corresponding to «.
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Choose positive root systems
101 (¢) P CRv,, %P C Ry,
corresponding by I. Definition 2.9 now provides a parameter set
10.1 (f) ©=0C¢c, %) ct
for a translation family. Now write
101 (g) BcpP, Bcdp

for the corresponding sets of simple roots.

10.2 Definijtion:

In the setting of (10.1), suppose T is a translation family of
irreducible g-modules (or Harish-Chandra modules) based on ®. The
Borho-Jantzen-Duflo T-invariant of m is a subset T(71)CB, defined to be the
T-invariant of the primitive ideal Ann(w(\)) for any regular Ae® (cf. [D2]

or [V1]).

Wwe have not indicated the dependence on the various choices of
(10.1) in the notation. Since Lemma 2.11 provides a canonical bijection
between the corresponding sets attached to any two choices, this leads to
no confusion.

We have not explained the definition of the T-invariant of an ideal.
The following lemma does not quite characterize T(1) in general, but for

our purposes it can be taken more or less as a definition.

10.3 Lemma (cf. [D2] or [V 1], Corollary 7.3.23):
In the setting of Definition 10.2, suppose puc<®. Then n(u)=0 if and
only if there is a root x€T (1) such that the corresponding root I(« )eB

satisfies T(x )(u)=0.
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We need the analogous structure on the dual side as well. In (10.1)
we have made enough choices to fix a parameter set
e =dp@Ep)Ct

for translation families of ~gv_-modules.

10.4 Definition:

Suppose T is a translation family of irreducible ~gv -modules (or
Harish-Chandra modules) based on ¢®. The v-invariant T( 1) is a subset
of 9B, defined to be the T-invariant of the primitive ideal Ann("w(¢\)) for

any regular *AedC.

The obvious analogue of Lemma 10.2 applies to translation families
for ngc; we leave its formulation to the reader.

We turn next to the calculation of T-invariants. Fix a set of L-data

S=(,T",P, vy, %17, ¢pP, 7)
(with X% =z € 2(G), y% = “¢) corresponding to irreducible translation
families J(S) and J('S) for g and ~gv_ respectively. As the notation
indicates, we assume that T, P, dT, CIP, and T are as in (10.1); this can
always be arranged by conjugation of S by G and vac. Write as usual

o=int(x) and ~6=int(y).

10.5 Lemma ([V1], Theorem 8.5.18):

In the setting just described, a root x¢ B € P belongs to t(J(S)) if and
only if one of the following conditions holds:

(a) 6« = x,and « is compact;or

(b) 6« = -«,and « satisfies the parity condition; or
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(¢) ©Ox # +tx,and 6x ¢ P.

An analogous result holds for ~T(J{'S)). Since (using the condition of

(10.1)) “(ex)=-"6("«), (5.10) implies

10.6 Lemma:
In the setting of (10.4), the v-invariants of J(S) and J('S) correspond
to complementary sets of simple roots:

x € T(J($)) & " ¢ T(JCS)).

We now fix a parameter
107 (@) AgeC®ctc g,
generally singular; we will be studying representations of g having
infinitesimal character attached to A,. Set
10.7 () By={x e€B|T(x )(Ag) =0},
the set of singular simple roots for Ag, and let d130 be the corresponding

subset of 9B.

10.8 Theorem.

In the setting of (10.7), fix regular parameters Ae® and ¢AcdQ.
suppose B is a block of (g X,)-modules of infinitesimal character associated
to "¢, and ¢® is a dual block of (Tgv., 'Ky )-modules (Definition 4.9).
Define

(BO,TF = span of translation families of irreducible modules 1 having

some root « € By in ()

B, 7 = Span of translation families of irreducible modules " with

“t(w) o 9B,
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(2a) The translation functor \Pio is a surjective map from B(A) to
B(A,) with kernel By(X) = By rp(A). Consequently there is a natural
isomorphism

B(Ag) & BN/ By(N).

(b) In the pairing between B pand v(B.I.F of Definition 3.30 and 4.9,

((BO,TF)-L = v031 ,TF"

Consequently there is a natural perfect pairing

<, >4 B X BN Z,
between modules for g of singular infinitesimal character, and modules for
gy o ©f regular infinitesimal character and sufficently large tv-invariant.

(¢) Suppose S and S'are two sets of L-data in B, and

T(J(S))NB, = T(J(5'))NB, = @.

Then
<IN, JCS, 8N) >p = ( (-1)8ISAD s m g
i 0 S#S'.

This theorem is a formal consequence of Lemmas 10.2 and 10.6 (and the
definition of <, >). There is no immediately obvious analogue of Corollary
3.31, since ®, (®\) may contain no standard modules. This gap will be
filled by Corollary 10.26 below.

We extend these ideas to their "super” form as in Section 8. Recall
from Corollary 8.8 the identification ~® p # Brpof “G-coherent families of

(vggc,vK;an)-modules with “G-coherent families. The parameter set for

thse larger families is
10.9 (@) %6 = Cpctlexp2mi ¢p) €Z(G)®, and %y is P-dominant}
(cf. (8.7)). Let B(y) be a super-block (Definition 8.4) and
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By rry) = o By ppxY)
these are translation families having all roots in B, in the T-invariants of
all irreducible constituents. We use other notation (such asvtﬁiirr(y) for the
corresponding collection of irreducible modules) analogously. The analogue
of Corollary 8.9 is a perfect pairing

109 (¢) <,>5:By)A) x B (y)ON)>Z.

We turn now to the parametrization of L-packets. We temporarily
set aside the notation introduced so far; it will be reconstructed in this new
context. Fixa quasi-admissible homomorphism
10.10 (@) ¢ : Wy G|
Define
10.10 (b) “G, = centralizer of ¢(C*), "Gy = <"Gg, o(Wp)>,

8, = int(e(j)).
Thus 6, is an involution of “G,. The centralizer S o Of @(Wp)in "G is
10.10 (¢) S, ={ge Gyl g =g} = (VGO)VGO;
this is the complexification of a maximal compact subgroup of the real form
of vG0 with Cartan involution veo. Define A, from ¢ as in Proposition 3.4. A
priori A, belongs to a particular Cartan subalgebra of vgo, but clearly it is
central in ~g,, SO
10.10 (d) A, = (center of “g,) € %1,, for any Cartan subalgebra $t1,C g,
Define
10.10 (e) ¢ = exp(27iN,),

"G, = centralizer of Ay in "G,
and let “Gv_ D "G, D “G, be the identity component of the centralizer of "¢

as usual. Finally, define
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1011 (1) y e Gy -G,
as in Proposition 3.4; then int(y) = "6, 0n G,

If 4T is any ~©,-stable Cartan subgroup of VGE, write ¢TM=<¢T y>
Then
10.11 (@) ¢ = o(y,°T", Ay)
(cf. (3.3)). Choose a set P of positive roots for T in ~Gv_ making A,
dominant. (Notice that the choice involved is just an arbitrary set <1P1 of
positive roots for 4T in vG1 .) This gives a parameter set
10.11 () @ =(¢c,’P) c
containing A,. We want to get the representations in the L-packet attached
to ¢ by translation from an L-packet at a regular infinitesimal character. It

is natural to try an L-packet attached to some ¢(y,%T",u).

10.12 Proposition:

In the setting of (10.10) - (10.11), fix a G-regular weight ue®, and an
irreducible translation family J with J(it) in the L-packet of ¢(y,*T",u).-
(@) If J(Ay) is non-zero, then it belongs to the L-packet of
¢(y,%T",A,); and every element of the L-packet arises in this way.
(b) Suppose that there is a simple root %x of 9T in ~G, such-that
either
(1) %xis complex, and ~©,(%x) is positive; or
(2) %« is non-compact imaginary.

Then J(A,) = 0.

proof:
Write I for the standard translation family with I(u)D](u). Then

I(Ag) D J(Ay) by the exactness of translation functors. By Theorem 3.6,
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I()\,) is a direct summand of a standard module I, attached to @y, 0T N\g);
so I,DJ(A,). Consequently J(A,) belongs to the L-packet of ¢(y,°T",Ay).

For the converse, let ] be an irreducible translation family with J(A,)
attached to ¢(y,8T",\y). Then J(u) belongs to some L-packet o(y',(*TM)",u"),
so (by the first part) J(\,) is attached to o(X\',(*T")",A;"). By the Langlands
classification, ¢(y',(4T")',\',) is conjugate to ¢(y",(*T")",\y). After replacing
(¥, (¢TM),u") by a conjugate, we may therefore assume that y=y'and
Ao=A,' (regarded as elements of ~g rather then ®t and ®t'). Now (°T")"is
clearly a ve_c,—sta‘r;)le Cartan subgroup of VGE, and (a) is established. Part (b)

follows from Lemmas 10.3, 10.5, and 10.6.

Part (b) of the Proposition suggests a way to pin down the choices of
4T and P in (10.11). The next Lemma is stated in terms of G to make the
notation as familiar as possible; it will be applied to vGO. We first establish

some notation.

10.13 Definition:

Suppose G is a connected complex reductive group, and 8 is an
involution of G; write K=G® for the fixed points, and g=Xe@ for the
decomposition of the Lie algebra into the +1 and -1 eigenspaces of K.
Choose a maximal abelian subalgebra Q of @ consisting of semisimple
elements, and write A=exp(Q) for the corresponding torus. Let L be the
centralizer of A in G, and let M=LNK. Then L is a connected 6-stable
reductive group, and L=MA; here the factors commute, but the product
may not be direct. Choose a set of positive restricted roots of A in G,

corresponding to a parabolic subgroup Q,,=LN=MAN, an [wasawa

parabloic subgroup. A maximal torus T,,,CL is called an [wasawa maximal
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torus, and a Borel subgroup B, With T, CB 1y CQpqy IS called an [wasawa

Borel subgroup. Finally, the positive root system P, corresponding to B,

is called an [wasawa positive root system.

10.14 Lemma.

In the setting of Definition 10.13, each of the structures A, L, M, N,
Qrw- T1w: Brw and Py, is unique up to conjugation by K.

Suppose (T,P) is a pair consisting of a ©-stable maximal torus in G and
a positive root system for T in G. Then (T,P) is K-conjugate to (T, Py ) if
and only if there is no simple root < in P such that either

(1) «is complex, and 6« is positive; or

(2) « is noncompact imaginary.

This is standard and easy; we omit the proof.
We return now to the setting (10.10), and consider the problem of

specifying the positive root system 4p chosen in (10.11).

10.15 Lemma:

In the setting of (10.10), suppose P is a set of positive roots for 4T in
“Gv_ making A\, dominant. Write 4P, 9P, for the roots in *P and 'G,, G,
respectively.

(a) Suppose that there is a root ¢f of T in P, such that <®B,"e A >
> 0. Then there is a complex simple root %« of T in “G, such that ~6,(%«)
is posiﬁive.

(b) Suppose there is no root satisfying the condition in (a). Then

p, - 9P, = {*Barootof ¥Tin "G, | <%B, "o N, > <0 }.

In this case %P, is spanned by simple roots of T in °P.
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proof:

For (a), write 48 =% nd“d

, a sum of simple roots in ®P,. Obviously
<%x, "84N, > > O for some 3. Since %« is a root in dP1 , it is orthogonal to
Ao; SO dx cannot be real or imaginary. This proves (a). The first claim of

(b) is clear, and the second follows immediately.

We can now explain how to choose ¢p in (10.11). In the setting of
(10.10), choose an Iwasawa maximal torus
10.16 @) °T € "G, ;put ®T = < 9T ,y>.
Choose an [wasawa positive root system "*PO for 8T in VGO, and extend it to
a positive system
10.16 (b) %P, D P, for T in "G, making - 64, dominant. Finally,
extend °P, to
10.16 (¢) %P D %P, for T in "G, making A, dominant.
This gives a parameter set
10.16 (@) ¢ =(cp)
containing A. The data (y,°T',%P,\,) is unique up to conjugation by S_ (cf.
(10.10)(c)).

10.17 Corollary:
In the setting of (10.10) and (10.16), fixa G-regular weight pue®. List

the irreducible translation families {J;}, ; with J,(u) in the L-packet of

iel
wreg=<p(y,dTr,J.1). Then the L-packet of ¢ consists precisely of the non-zero

representations in {J,(A4)).

This follows from Proposition 10.12 and Lemmas 10.14 and 10.15.
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To state the final parametrization of the L-packet, we need some
coverings. Let "G ve the canonical cover of G, and use the tilde for the
preimages in G of subgroups of G. We have
10.18 (a) (Tns,))” <5, < G.

Define

10.18 (b) §,=5,/(5,)°.

The group ®TNS, is the centralizer of y in °T. It is therefore equal to Soreg
(cf. Corollary 10.17), and we get a natural map

10.18 (c) §wreg—> S, -

10.19 Theorem:

Suppose we are in the setting of (10.10) and (10.16)-(10.18). Then
there is a natural bijection between the super L-packet Tl attached to ¢
and (§,)", the group of characters of §_.

More precisely, the map (10.18)(c) is surjective. A character of §wreg
is trivial on the kernel of this map (and so lifts to §w) if and only if the -

corresponding irreducible translation family J. has J,(A,)*0.

We will first give a proof of the parametrization alone, and then a

somewhat different argument leading to the second assertion.

first proof:
Fix y as in Corollary 10.17, and choose
1020 (@) TP <G, T: T °T,P
as in the discussion after Definition 3.12 for wreg=q>(y,dTr,u). By Lemma
3.13, L-data for the translation families J; may be taken to be

10.20 (b) Sx)=(x, T",P,y, T , %P, ) (x?€2(G))
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as X runs over a set of representatives of the T-conjugacy classes in T'-T,
subject to the restriction indicated. Define G 2T to be the (Levi) subgroup
of G corresponding to "G, under 3. Since G, is normalized by y, the
corresponding set of roots is “g-stable; so the set of roots of T in Gq is
o-stable, and T’ normalizes G,. Set

GE = <G, T'>

Fix § ¢ DNT' making the set of positive imaginary roots in P
distinguished; this é is unique up to conjugation by T. Choose an extended
group structure D, on Gg with 8€D,, so that the set of positive imaginary
roots in P, is distinguished with respect to 8. Then Gg is an E-group
structure for VGO associated to zv szPo ; the factors here are the obvious
elements of 2(G,). Now L-data for ("Gp, Gg ) involving y therefore

correspond to translation families of (~ S, S seon

)-modules of type 2,20
(Here S‘P is contained in the canonical cover of Go-) Each S(X) gives such a
family

YS(x) = (7, 0T, %Py, %, TV, Py, T°1) .
We are interested in those S(X) for which no simple root in G, belongs to
the tv-invariant. They correspond to those VS(X)O for which every simple
root in VG belongs to the T-invariant (Lemma 10.6), and thus to

can
)

finite-dimensional (~ gg, S, )-modules.

Suppose finally that S(x)0 does correspond to a translation family ]
of finite-dimensional representations. Fix a regular element
e (x?, dP )Ct. Then “J(%p)is a finite-dimensional (~ go, “My-module of
type vavao and infinitesimal character ¢y. On the other hand, there is a
finite-dimensional holomorphic representation F(%u) of VGBan having
infinitesimal character ¢y ; it has type exp(Zﬂidu)Zv = ¥’z po' BY

can

restriction we can regard “F@u)asa (~ ggs S )- module Define
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10.21 “E = ('J(4p) @ [TF(4u)*]) %o,
this is an irreducible (" gy, Sfpan )-module of type vax'z and trivial
infinitesimal character. By the first of these properties, it factors to S o BY
the second, "E is trivial on “gy, and so on (S,)°. We may therefore regard
"E as a character of §.

Conversely, suppose 'E is a character of § of type z¢Z(G)°. Regard 'E
as an § -module trivial on (§,)°, then as a (7g,,S,)-module trivial on " gq
Then we can define a translation family ] by ~J(¢u) = "F(®u)e 'E, for
4,e®(z,%P). The family ] must be attached to L-data ~“S(x),, and so to

L-data S(X). This establishes the bijection of the theorem.

second proof:

Begin as in (10.20). By Lemmas 10.5 and 10.6, we are interested in
those X such that all the simple imaginary roots in P, are noncompact.
Recall the proof of Theorem 5.1; since é makes all the simple imaginary
roots (including those in Py) noncompact, we are interested in elements t
such that x(t)=1 for all simple imaginary roots « in P,: the quotient

Fo = {teT | to(t)€Z(G), x(t) = 1 for all

simple imaginary roots « in P}/ {s6(s™) | s€T )
parametrizes the L-packet. This is obviously a closed subgroup of the
group J of Theorem 5.1, which we identified with characters of §‘°re
Consequently there is a subgroup

Ce8y, = CTNS)/ICTNSIP
such that J, consists of characters trivial on C. Write C for the pre-image of
Cin (*TNS,)”; then J corresponds to characters of (*TNS )™ trivial on C.

By inspection of the proof of Theorem 5.1, we can identify C:
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C=<((°TNns)7)?, (my |%xasimple real rootin °Py} >.
Here m do is the element of order 2 attached to a root; that is if
(3x)7:C*- 9T is the coroot, then m, = (3x)7(-1). Theorem 10.19 now

follows by applying the following structural result to VGO.

10.22 Proposition:

In the setting of Definition 10.13, suppose T is an Iwasawa maximal
torus in G. Then

(2) T meets every connected component of K.

(b) The kernel of the map TNK - K/KC is generated by (TNK)® and
the various m = x (-1), for « a simple real root of T in G (with respect to

an Iwasawa Borel subgroup).

The proof is elementary (using for example the fact that K is
connected when G is simply connected, and the uniqueness of Ilwasawa
Borel subgroups) and we omit it. This completes the proof of Theorem -

10.19.
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Next, we need to describe the notion of stability for singular
infinitesimal characters. In the setting of Theorem 10.8, there are two
natural candidates for a definition of stable: the image of stable characters
in B(\) under \I/io, and the characters orthogonal to characters in VtB, &N)
that vanish near the identity. The main problem will be to show that these

are equivalent.

10.23 Definition:
In the setting of Theorem 10.8, suppose © is a virtual (g,K,)-module

in B(A\,). We say that © is stable if < @, ®Z >, = 0 for all 4Z¢ " ®,(°)) such

that ¢Z vanishes near the identity. An arbitrary virtual (g,K,)-module is

called stable if its projection on a block B and an infinitesimal character X

is stable for all B and .

10.24 Theorem:

(1) In the setting of Theorem 10.8, let TT be an L-packet of
(g.K,)-modules in B(A,). List the standard limit modules in T having
unique Langlands subquotients as I,,1,,..,I , and define 6= 2;I,. Then &
is stable.

(2) Any stable virtual (g,K,)-module is a finite sum of various @.

To prove this we will need a better understanding of the characters in

"8, (%), so we pause to develop that.
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10.25 Lemma:

In the setting of Theorem 10.8, suppose "1 is a standard module
whose Langlands subquotient "] belongs to ~B,(®A). Then we can find
other standard modules "I,, L., I_in “B(®X), and integers nj, so that

(1) "T+5;n; ;€ "B, (°A)

(2) 2C"1;) < 2(C°1) for allj.

We may in addition require

(3) the Langlands quotient "], of "I is notin ~B,(*A);

and then the virtual character in (1) is unique.

roof:

One knows that ] itself may be written in the form (1); this proves
the first claim. For the second, we proceed by induction on 2(71). For
every term "I, with ], in “B,(%)), find (by induction) an expression

v v v d

I;+Engy I € B(°A)
with 2('1,)>2("1) and “J, notin "®,(*A) when n;, #0. Then the

expression

belongs to VrB1 and satisfies (2) and (3). The uniqueness is easy.

The virtual characters satisfying (1) - (3) of the lemma are c¢alled

pseudo-standard (virtual) characters of type "B, (where "B, is the set of
simple roots defining the T-invariant condition for belonging to V(B1 ).

(They can also be described using D-modules on a partial flag variety, but
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we will have no need for this.) If ¢S is a set of L-data for an irreducible
module in “®,, we write ¥(%5,%)\) for the corresponding pseudo-standard

character,

10.26 Corollary:
In the setting of Theorem 10.8, the pseudo-standard characters form

a Z-basis of v(B, (3N ), which is related to the basis of irreducible characters
by an upper triangular matrix. Each pseudo-standard character has a
unique irreducible constituent of maximal length, called its Langlands
subquotient. In the setting of (10.9),
< IS A, W(TSLAN) >p = ( (-1)8EM) gl
{ 0 S#S.

roof:
The only part which is not quite immediate is the formula for < , >.
For that, recall that I(S,7\,) = \I’io( I(S,\)). Therefore by definition we have
<I(S,A) , WCTSLEN) >o = <I(S,N) L ICS', #A) + 50, 1(85,%0) >
where the various J(35,,®\) do not belong to B,. Consequently no term ¢,
can be dual to S; they contribute O to the pairing by Corollary 3.31, and we
get
< IS A) , WS, ON) >4 = < I(SA), I(TS,%N) >

The result follows from Corollary 3.31.

The following generalization of Corollary 7.6 is the heart of the proof

of Theorem 10.24.
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10.27 Proposition:

(a) In the setting of (10.9), suppose ¢s=(y,*T",%P,x,T",P,%Y) is a set
of L-data for a pseudo-standard transiation family ¥=¥(3S)in ~®,.
Suppose X' is another element of T'-T with x?¢Z(G), and that
45'=(y,%1",%P %', T" P,¢Y) also corresponds to a pseudo-standard translation
family ¥'in v031. Extend ¥ and ¥'to ¢® asin (10.9). Then the character of
Y (3N)-¥'(¢\) vanishes near the identity.

(b) Any virtual (vgvc,K;an)—module in V(B1 (4\) vanishing near the

identity must be a sum of a finite number of terms as in (a).

The proof of this proposition rests on a refined description of the
pseudo-standard characters. To get that we need the coherent continuation
representation ([V 1], Definition 7.2.28) of the integral Weyl group W(eA) of
“gv, (Definition 3.17) on “B(%\). This is very closely related to the cross
action of Definition 3.17, but the two are not quite the same. We write the
coherent continuation action with a dot. The most important fact about the

coherent continuation representation is

10.28 Proposition:

A virtual character © in ~B(%\) belongs to ~ &, (®A) if and only if

s*@=-0 for every (simple) reflection s corresponding to a root in vBo.

10.29 Lemma ([V 1], Chapter 8):
In the setting just described, fix a simple reflection seW(%\). Then
the set of equivalence classes of L-data for elements of ~G(®A) may be

uniquely partitioned into sets of one, two, or three classes, each of which is



136

one of the following five types. (We will always write
45=(y,4T7,9p 2, T" P,%Y), and %« for the simple root of °T in ¢P
corresponding to s.)
(@) {9%s,sx?%s); the root %« is complex, 6(%«x) is negative,
2(sx%5)=2(%5)-1, and
soI(%5,9N) = I(sx35,%N).
(b) {95 }; the root %« is compact imaginary, and
$e1(25,9N) = -1(%5,%N).
(c) {95 ); the root %« is real and fails to satisfy the parity condition,
and
seI(35,9N) = 1(%s,°N).
(@) {9s, 9s%, 957 ). the root %« is real and satisfies the parity
condition, 2(357)=2(%5)-1, sx¥s=945, sx35;=957, sx?s57=457, and
seI(4S,8N) =1(%5,N)
seI(3S,9N) = 1(%5,%X) - 1(8sZ,%N)
seI(4sZ,8N) = 1(35,9A) - 1(357,4N).
The simple root for de corresponding to s is noncompact imaginary.
(e) (s, 9s’, ¢s%}; the root %« is real and satisfies the parity
condition, 2(35")=2(%S), £8(45s%)=2(%5)-1, sx%5=95", sx¥5*=95% and
seI(25,0N) = I1(48",8N), seI (35", @A) = 1(%5,%)),
$eI(35%,9N) = 1(35,8A) + 1(38",4N) -1(%5%,%N) .

The simple root for d g corresponding to s is noncompact imaginary.

10.30 Corollary:

Any virtual character @ in ~B(%A\) such that s*@=-0 is a linear

combination of contributions from the various classes in the partition of
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Lemma 10.28. The possible contributions (using the same letters to

separate cases are:
@) 1(35,%A) - I(sx%S,4N);
(b) 1(%S,°N);
(¢) no contribution;
(@) 1(%s,8N) = 1(3s7,8N) - 1(3sZ,%N);
(e) 1(%s,®A) - 1(%5%,%\) and I(%S',%N) - 1(85%,8N) .

This Corollary amounts to explicit formulas for the pseudo-standard
characters in the case when A, is singular with respect to just one root. It
leads to a fairly explicit formula for the pseudo-standard representations in

general. To state this, we need some notation.

10.31 Definition:

In the setting of Lemma 10.29, fixX a simple reflection seW(eN).
Suppose [ and I' are standard representation in ~B(¢\). Write

I <1
if 2(I')=2(I)- 1,and I and [' belong to a common set of one of the five
types in Lemma 10.29.

Define <« to be the smallest transitive relation on standard modules in
“B(3\) containing all the relations c for s corresponding to a simple root
in VBO. Explicitly, [ « I' means that there is a simple reflection s .
(corresponding to a root in “B,) and a standard module I" such that I« I',
and either

(@) 2(I"Y=2(I)-1and I"=1;0r

(b) 2(I') <.2(I)-1,and I« 1"

We may write the relation ¢ betwen sets of L-data as well, and for



138

S
representations and L-data in B instead of ~®. (Note that I<I'in B is

S
equivalent to 1'%l in "B.) Corollary 10.30 says that the virtual characters
satisfying se@=-0 are spanned by certain characters I - x I', where the
S

sum runs over [' satisfying [<I'. We deduce immediately:

10.32 Corollary:
In the setting of Theorem 10.8, suppose that 45 is a set of L-data for

a pseudo-standard translation famity ¥(°S) in V031 T
w(es) = 1(8s) + 5 (-1)8('SV - 80 (3¢

with the sum running over ¢S satisfying ¢s<9s'.

The reader may wonder why we did not use the formula of Corollary
10.32 as the definition of ¥(%S). The difficulty is that this formula does not
obviously define an element of v081 TF The problem is that one might
imagine relations I" <s- I''I«1I' butl ¢ I". Whatis obvious is that this

formula is the only one that might lead to a character in ~B, L.

10.33 Corollary:
In the setting of Theorem 10.24, let S be a set of L-data with J(S,A,)

in the L-packet of T, and let S' be any other set of L-data for B. Then

I(S,N\g) is a direct summand of I(5',\,) if and only if §'=S or S'¢5.

proof:
By Corollary 10.26, the multiplicity of I(S,A,) as 2 summand of
I(S',N\y) is
(-1)¥S< 1S, N,), F(3S,8N) >,
= (-1)¥SY< (s ,A), W(3s,9N) >
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= (-1)¥S< 1(s',A), 1(35,9N) + . zd(-1)“‘5"*“‘5)1(ds",dx) >
Seog"
= (-1 < 1(5'.N), 1(35,80) + T (-1)8(5"-8(S) (35" o) > |
S"eS

Now apply Corollary 3.31.

proof of Proposition 10.27:
For (a), write I=I(%5,%\), I'=1(%S’, ¢)\). Suppose that either I=I, or

[«l,. List the standard characters I,, .., I _such thatl; = I, near the
identity, and I«I,. Similarly write I';,..,I' ., for the standard characters
equal to I', near the identity such that I'H'J.. We must prove that r=r'. We
proceed by induction on £(I,). If I=I,, then r=r'=1; so we may suppose
2(I,)<2(I). Choose a simple reflection s corsresponding to a simple root in
vBO, and a standard character I so that I, € I,, and either I =I or I«I[,.
Let %« be the root for (L-data for) I, corresponding to s, as in Lemma
10.29. We may take L-data for I, and I', with the same Cartan subgroup
and positive root system in vac; then %« is the same root for each. There

are two cases.

Case 1 %« is complex:
In this case I,=sXxI,. Corollary 10.30 guarantees that (since se¥Y=-Y¥)

the characters sxI; must all appear in ¥, and that no others equal to I,
near the identity can appear. That is, exactly r terms equal to [, near the
identity apear in ¥. Similarly, ¥' has exactly r' terms equal to I'j=sxI’,
near the identity. By induction r=r".

Case 2 3« is noncompact imaginary:

Once again Corollary 10.30 implies that ¥ contains exactly r standard

characters equal to [, near the identity. (The only difference is that in this
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case we cannot say exactly what they must be, since the condition [,€ I,
does not determine I, from I, .) By induction, r=r".
Part (b) of Proposition 10.27 is an easy consequence of Lemma 7.5;

we omit the argument.

The proof actually shows that the numbers r defined in it are equal to
1. Now two standard ("gvc,"K;an)-modules of regular infinitesimal
character agree near the identity if and only if the dual (g, K)-modules

belong to the same L-packet. We therefore obtain:

10.34 Corollary:
In the setting of Theorem 10.24, suppose S is a set of L-data with

J(S,A\y) non-zero. Suppose S, and S, are any two other distinct sets of
L-data for B, and for i=1,2 either S;=S or §,¢S. Then I(S,,A) and I(S,,A)
must belong to distinct L-packets.

Theorem 10.24 follows from Proposition 10.27 and Corollary 10.26 in
exactly the same way as Theorem 8.2 follows from Lemma 7.5 and

Corollary 3.31.

We turn now to the generalization of Theorem 8.3, characterizing
stable characters in terms of a strong invariance property of their

distribution characters.

10.35 Lemma:
Suppose B is a block of (g K, )-modules, and @ is the parameter set

for translation families in the block. Fix A €@ arbitrary, and A€® regular.
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(a) The space of stable virtual characters in B(\) is invariant under
the coherent continuation representation of the integral Weyl group W(A\).

(b) The translation functor \Pio is a surjective map from stable
characters in B(\) onto stable characters in B(A,).

(¢) Write \Ilio for the translation functor from B(A,) to B(A). Then a
virtual character @, in B(A,) is stable if and only if \I’;o@o) is stable in
BN).

(d) The space of stable virtual characters in B is invariant under
tensor products with holomorphic finite-dimensional representations and

projection on an infinitesimal character.

roof:

Suppose s is a simple reflection in W(A), @ is a virtual character in
B(\), and %Z is a virtual character in the dual block ~B(®\). A fundamental
property of the pairing of Definition 3.30 is

<@, %2> =-<@,592 >
This can be computed from Corollary 3.31 and Corollary 10.31. To prove
(a), it is therefore sufficient to prove that the space of virtual characters in
“B(¥\) vanishing near the identity is stable under the coherent
continuation action. But this is obvious from the explicit form of the action
on distribution characters.

For (b), the fact that \I/;‘O carries stable charactes to stable characters
is a formal consequence of Definition 10.23 and Theorem 10.8. Surjectivity

folows from the explicit description of stable characters in Theorem 10.24.

For (¢), suppose @, is stable; write ®0=\I/;\°(®), with @ a stable

character in ®(A). Then
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A
Yio(@)= D wed
wew (A0
(by the theory of the coherent continuation representation) which is stable

by (a). Conversely, suppose \Pio((ao) is stable. Then so is \Ifio\lfio((ao), by

(b). But
Aoy A - A
W, 005 (8,) =T WN)° | @

(by the theory of coherent continuation again). By inspection of the
definition, it follows that @, is stable.

For (d), the statement about projection on infinitesimal character is

part of the definition. Suppose @, is stable in B(A,). Choose @, stable in

B(A\) with W;°(®1 )=8,. Like any virtual character with regular

infinitesimal character, @, gives rise to a unique coherent family ® of
virtual (g K)-modules based on A + X, (%T) ([V 1], Definition 7.2.5) such that
®(N\)=0,. We have (by definition of the coherent continuation
representation) @(wk)=w“®1, which is stable by (a). If y lies in the same

Weyl chamber as w\, then @(u)=¥.,(8(wA)) (IV1], Proposition 7.2.22).

This is stable by (b); the equality also shows that @(A,)=0,. Hence all
values of ®(u) are stable. By the definition of coherent family, ®,®F is a
sum of such values, for any holomorphic finite-dimensional representation

F. This completes the proof.

10.36 Corollary:

Suppose X is a strong real form of G and ® is a virtual (g,K,)-module.

The following conditions are equivalent:
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(@) Fix a real form G(R) associated to X, and let F be the locally L

function on G(R) representing ®. Then Fy(h)=F,(h') whenever h and h'are
strongly regular semisimple elements of G(R) conjugate in G.

(b) Suppose G(R) and G(R)' are two real forms associated to x, and F
and F'y are the corresonding locally L' functions. Let g be a strongly
regular semisimple element of G(R)NG(R)". Then Fy(g)=F'y(g).

(c) O is stable.

As in Theorem 8.3, we may use (b) to associate to @ a function ¢, on the

set G¥ of strongly regular semisimple elements of G belonging to some real

form associated to x.

roof:

The equivalence of (a) and (b) is proved as in Theorem 8.3. The
space of virtual charaters satisfying (a) or (b) is clearly closed under projec
tion on an infinitesimal character or tensoring with a finite-dimensional
representation of G. Since (b) and (¢) are equivalent for regular
infinitesimal character, they are equivalent for singular infinitesimal

character by Lemma 10.35 (b) and (c).

In the same way we get the analogue of Theorem 8.12; its

formulation and proof are left to the reader.
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We will need another description of the stable character @, of

Theorem 10.24.

10.37 Proposition:

suppose %TT is a Cartan subgroup of “G', and ye®T -%T. Write “c=y2,
and let “Gv_ be the identity component of the centralizer of ¢ as usual. Fix
a set %P of positive roots for °T in “Gv_, and let ®=0("¢c,%P) be the
corresponding parameter set for translation families in G (Definition 2.9).
For pe@, write

@(U)=0(y,3T",p): Wy~ 76,
and define @() to be the stable character associated to ¢(u) by Theorem
10.24.

(a) The family {®(u) | ue@ }is a transtation family.

(b) If ANe® is regular and A €@ is arbitrary, then W;°(®(%))=®(>\o).

(€) ®(Ng) = Zg I(S',Ag)
where the sum extends over equivalence classes of L-data
S'=(x' (T Py, 8T %P, 3", with v, T, and °P fixed as above, and ¥’

conjugate to x.

sketch of proof:

For A, regular, the assertion in (¢) is just the definition. The right
side of the formula in (¢) obviously obeys the rule in (¢), so (b) is
equivalent to (¢). Statement (a) is equivalent to (b) by definition; so it is

enough to prove (b) (or (¢)). By Lemma 10.35(b) , \I/io((@()\)) is stable. By

Theorem 3.6(a), it is a sum of standard limit modules attached to ¢(A\,). By

Theorem 10.24, it is therefore a multiple of ®(A,). To see that this multiple
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is one, it is necessary to study the formula in (¢) more carefully- in

particular, to show that different terms cannot give the same non-zero

representations. We omit the argument.

We turn now to the definition of lifting for singular infinitesimal
character. As in section 9, we begin with endoscopic data (3, H", D) for
an endoscopic group H (¢f. 9.1)), a strong real form X of G, and an extended

group H DH (¢f. (9.2)). The analogue of (9.3) requires a little more care.

10.38 In the setting of (9.1) and (9.2), suppose ©,cU(p Ky is stable, with
(possibly singular) infinitesimal character X, Assume as in (9.3) that @y

is contained in the block By corresponding to (8,,y).

. v o_ .2V v v v v v can
(1) Define c¢=y<, Gv,, 6, K, Hv,, Ky K,

[}

v.,Can ,
,and Ky asin

(9.3(1)).
(2) Define the dual block ~ By of (vbvc,vKglan)—modules as in (9.3(2)).

(3) Choose a Cartan subgroup T of “Hv_and a set °P; of positive
roots for T in "Hv_, thus fixing the parameter set @ <%t for transtation
families in B, Choose a representative Ng€Qy for the infinitesimal
character X4 Choose a set P3P, of positive roots of ¢t in ~gv_ making
Ao dominant, and write 9B, _D°T for the corresponding Borel subgroup of
vGvc. This fixes the parameter set @ for translation families for G of
infinitesimal character associated to "¢, and >\€CPCG>HC““C.

(4) Choose parameter sets ¢®, and ®Q® for translation families for
“Hv_and “Gv_ respectively, of infinitesimal character associated to §?;=x.

As in (9.3)(4), we get a natural injection (1 ;) :2®>%®,; choose Al
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“G-regular, and define *A;c®®y, ¢, *Xy, and Des=Desy ap,__ dyy @S in
(9.3)(4).

(5) Let BcYP be the set of simple roots, and °B, the subset of B
vanishing on A,. Define ~&, (%)) as in (10.9) (as the span of the irreducible
modules in ~B(%\) having all roots in B, in their T-invariants). Similarly,
define By, ®By o, and (By){(*Ay). (The rootsin 9By o are positive

integral combinations of roots in °B,, but they need not belong to 9B,).

10.39 Lemma:
In the setting of (10.38), Des( ) takes ~®, (®A) into (" By); (®Ay).

roof:

Write W, for the stabilizer of A, in W (" q,%1); this is the subgroup
generated by the reflections corresponding to roots in B,. The intersection
of W, with W(vr)vc,d‘t) is the corresponding group WH,o for H. In terms of
the coherent continuation action of W( gv,,%t) on “B(%\), the virtual
characters in B, (%)) are characterized by

we® = det(w)® (weW,)

(Proposition 10.28). On the other hand, from the explicit description of
Des( ) and coherent continuation on the level of distribution characters, one
can read off (¢f. [AV 1], Theorem 4.2)

Des(x*®) = x*Des(®)

for @< B(%\) and ®eW ("pv_,%1). The lemma follows.

10.40 Definition:
In the setting of (9.1), (9.2), and (10.36), define B to be the block of
(g.K,)-modules associated to the pair (x,y). Write ~® for the dual block of
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(vgvc,vK;an)-modules. We have parameter sets ® and ¢® for these blocks
(cf. (10.36)(3)-(4)), and elements *X\e?®, N\ €®. The lift of @ to G (and the
strong real form X), written Lift(®), is defined to be the unique virtual
(g, K )-module in B(\,) satisfying
10.41 < Lift(® ), 4Z >, = <@, Des(%2) >,
for ail ®Z¢”®,(%A\). The pairings are those of Theorem 10.8 for G and H
respectively.
| Extend the definition of lift to all stable ®H€U(5,KH) by linearity. As
in Definition 9.4, we may write Lift, if it is necessary to specify the strong

real form X.

This definition involves more choices than the one in section 9,
notably of the positive roots system P in (10.38)(3). Asin Lemma 9.6,
these choices do not affect the notion of Lift; this follows from the next

theorem.

10.42 Theorem:
Suppose we are in the setting of (9.1)-(9.2), and Ty is an L-packet of

standard limit (p,K)-modules associated to ¢ ;W = "H'. Let Wy > "G
be the composition of ¢ with the inclusion “H = G If ¢ is admissible for G
and x, let TT denote the corresponding L-packet of standard limit
(g,K)-modules (each having an irreducible Langlands quotient); otherwise
T is empty. Let @, be the stable virtual character corresponding to My

(Theorem 10.24). Then Lift(®,) is defined by Definition 10.40.

(1) Lift(®y) = » ¢;1, some c,eC* .
Iem
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(2) Let< ,>: T X §w - C* be the pairing of Theorem 10.19 restricted

to TT. Regard 3as a representative of an element of §w. Then
¢ = (-1)XE&X+a(H) <1 5>

proof:

The example of section 9 would suggest that we begin by calculating
the descent of pseudo-standard characters. This is possible but painful; we
prefer to invoke Theorem 9.7, and say as little about descent as possible.

Choose (y, 3TL, 8P \,) for ¢ as in (10.10) and (10.16) (applied to H

and “H' instead of G). Extend P, to a set of positive roots P’ for °Ty in
vgv¢ in such a way that the pair (°P’, dPH) is conjugate to vch to the pair
chosen in (10.37)(3). For every weight u in the parameter set
®y=C("¢,®Py) we get a Weil group homomorphism

o) = ox(y, 3Ty, W) 1 Wy > "H,
we write ¢()1) for this map regarded as a map into G'. The corresponding
stable characters ®@,(u) form a translation family for H, and @y(A,) =04
(Proposition 10.36).

Write B8 for the block defined by Xxand y. Suppose

S=(xT,P,y, %", ¢, )
is a set of L-data with J(S,A,) a non-zero irreducible module. Then I(S,A,)
is a standard limit (g,K,)-module in B(A,) having a unique Langlands
subquotient, and all such standard limit modules arise in this way. To
prove the theorem, we must calculate the multiplicity of I(S,\,) in Lift
(®,). Fixa regular weight Ae®(7¢,%P), and let Aze®(7¢,%P') be the

corresponding element. By Corollary 10.26, the multiplicity we want is
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(-1)%5) < Lift(@ 4(Ag)), W(%S,9N) >,

= (-1)%5) < @(N,), Des(¥(%5,%N)) >, (Def. 10.41)

A
= (-1)%9 < (Y1), 7(0,(\)), Des(¥(*S,*A)) >, (Prop. 10.36)

= (-1 < @, (Ny), Des(¥(%s,°A)) >  (Thm. 10.8)
= (-1 < Litt(@y(Ay)), ¥(®S,%N) > (Def. 9.4)
= (-1)%5) < Lift(@(A ), 1(3S,8N) + £(-1)8(S1-8(S) (35 d)\) >
(Cor. 10.32).
(The final sum is over { S'| S' ¢« S }.) We can compute this by Theorem 9.7.
We obtain:

F(-1)XK&X Al < 1(S'N), 3> ;
with the sum running over all L-data S' such that

(a) S=S"or §$'¢ S;and

(b) I(S', X) belongs to the L-packet of @(A ).

(Condition (b) insures that the pairing < I(S',\),5 > makes sense.) By
Corollary 10.34, there is at most one equivalence class S' of L-data
satisfying (a) and (b); so the sum computing the multiplicity reduces to at
most a single term.

We want to show that S' satisfying (a) and (b) exists if and only if
I1(S,N,) belongs to the L-packet of ¢(A,). Suppose first that §' exists. By
Corollary 10.33, I(S,A,) is a a direct summand of I(S',A\,). By Theorem
3.6(a), I(S',7y) is a sum of standard limit representations in the L-packet of
@(Xy). Conversely, suppose I(S,A) is in the L-packet of ¢(A,). By
Proposition 10.37(c) there is an S' with I(S',Ay) in the L-packet of ¢(Ap),
such that I(S,A,) is a direct summand of I(S,A\g). By Corollary 10.33, S

satisfies (a) and (b) above.
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Finally we must compare the constant we have calculated with the

one in the Theorem. This is accomplished by

10.43 Lemma:

Suppose we are in the setting of (10.10) and (10.16)-(10.18). Fixa
set of L-data S=(x, T', P, y, ¢T', %P, ¥) with J(S,\,) an irreducible module
in the L-packet of ¢. Let (4T') be another Cartan subgroup of “Gg, and

S'=(x', (T, P',y, (*T'), P', T) another set of L-data with A e®( ¢,°P").
Assume that S=S'or S'¢S, so that I(S,\,) is a direct summand of I(S",A,).
suppose 3¢(®T'NS,)". Fix N'e®(7¢,%P') regular. Then

<I(S,Ng), 3> =<I(S, N), 3>,
The pairing on the left is defined in Theorem 10.19, and that on the right in

Theorem 5.1.

proof:
In case S'=S, this lemma is precisely the definition used in the second

proof of Theorem 10.19. In general we proceed by downward induction on
t
2(S"). If S'#S, we get a simple reflection t fixing A\,, and some S" with §'¢S5"
and S"=S or $"«S. Now the relationship between S'and S" is very simple
and explicit (cf. Lemma 10.29). One checks first of all that § still belongs to
the Cartan subgroup %T" for S". By the inductive hypothesis, therefore
< I(S,7g), 8> =<I(s",N), 5>
Now one can use the explicit relationship between S'and S" to prove that
<I(SA),3>=<I(8"N),§>;

it is convenient to use Lemma 5.4 to calculate the pairings. (Essentially one
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is reduced to the case of SL(2,R).) We omit the details. This completes the

proof of the Lemma.

Now Lemma 10.43 shows that the calculation in the proof of Theorem

10.42 agrees with statement (b), completing the proof of the Theorem.

The definition of super-lifting (Definition 9.19) extends word for
word to arbitrary infinitesimal character, along with Theorems 9.21-9.23
and the inversion formula (9.24). Corollaries 9.14-9.16 also extend
immediately. Comparison with Shelstad's definition of lifting is not quite so

trivial; but it is straightforward, and we leave it to the reader.
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Examples

We discuss a few examples. A great deal can be learned from a
consideration of real forms of SL(2) and PGL(2).

First we mention a few general facts which are of assistance in
computing examples. (For the moment we ignore coverings.) Fix
infinitesimal character p for G and ~p for “G. Suppose Xe<G' defines a strong
real form of G, and ychr defines a block B. We work in terms of
representations of G(R), in place of (g K,) modules. Suppose B is the block
containing the discrete series of G(R),. Then VG(IR)V contains a split Cartan
subgroup, and dual to the discrete series of G(R), are certain minimal
principal series of vG(IR),},. Suppose T is a one-dimensional representation
of a split group G(R),. Then VG(IR)V is quasisplit and 7 is a discrete series
representation, such that every simple root in the corresponding positive
system is non-compact. Suppose the block B is one-dimensional, ie. —
B=<mn>. Thus the standard module containing 7 is irreducible, and the
same holds for 7. For example this holds if G(R), is compact; then "G(R),
is split, and "t is an irreducible minimal principal series. (This is also the
case if the infinitesimal character of 7 has non-integral inner product with
all roots; then vG(]R)y is a torus and 7 is a character of VG(]R)V.)

Now let G be SL(2); we identify the algebraic group with its points
over C. This has only one inner class of real forms. An L-group for G is
obtained as follows. The group G may be taken to be PGL(2). Let ~§ act
by conjugation by diag(1,-1). Choose B to be upper triangular matrices,

and let "D be the conjuacy class of (7§, B). Then taking G '="GU'G’S,
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("GF,"D) is an L-group for G. Note "§=z =1. Similary (G",D) is an L-group
for G, with & acting by conjugation by diag(1,-1), B is the set of upper
triangular matrices, and §?=diag(-1,-1).

Up to equivalence G has three strong real forms: Xx=3§, or
x=zxdiag(i,-i)é (note that § is conjugate to -§). If X=4§ then G(R), is
quasisplit, i.e. isomorphic to SL(2,R). If x=xdiag(i,-i)é then G, is
isomorphic to SU(2). Itis instructive to write these three cases as SU(2,0),
SU(1,1) and SU(Q,2).

Similarly G has two equivalence classes of strong real forms. If y=$§
then “G(R), is isomorphic to PGL(2,R), and for y=diag(i,-i) §, “G(IR)Y is
isomorphic to SO(3,R).

Let T and °T be the subgroups of G and "G respectively consisting of
diagonal matrices. Fix infinitesimal character p for G and ~p for G.
Consider the blocks B and B defined by the pair (8, §), so G(R);~SL(2,R)
and vG(IR)v,b%PGL(Z,IR). Let T' (respectively 4T') denote SO(2) embedded in
G (resp. 'G) in the usual way, with B' and %B' Borels containing T' and éT",
Thus T and %T are compact, whereas T' and %T' are split (with respect to
o=int($) and “o=int(”§) respectively). Let B and B respectively denote
the subgroups of G and "G respectively, consisting of upper triangular
matrices. Let B°PP denote the lower triangular matrices.

Let S be a set of L-data. Recall (cf. the discussion following Definition
3.8) we may omit ¥ from the data. Furthermore we write Borel subgroups

in place of the positive root systems in the data.
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A d

11.1 L-data s p Tt

(8,T,B,78,%T",9B") 7, =holomorphic T =trivial
discrete
series

(§,T,B°PP,”5,°T",%B") 7_=antihol. “n, =sgn
discrete
series

(§,T,B',78,%T,%B) T =trivial 1 g=discrete

series

In fact we have that B=<m,,T_,T,>and ~®=< 7y, 7, 7 >. Note
that (8,T,B,”8,%T",%B") is conjugate via G to (-§,T,B°PP,”§ %T' 9B'). The first
set of data corresponds to the holomorphic discrete series of
G(R);~SL(2,R), whereas the latter produces the antiholomorphic discrete
series of G(R)_g#SL(2,R). This is an example in which it is necessary to
keep track not only of the Cartan involution defining the real form of G, but
the element of G producing it: in this example there is no contradiction

because we distinguish between G(R); and G(R)_,.

There are three pairs of dual blocks for G and "G with integral
infinitesimal character. We list these below, with choices of infinitesimal
character indicated by A and ~A. Note that PGL(2,R) has two irreducible
principal series with infinitesimal character 27 p, which we write ps,. We
let ps_ denote the irreducible principle series representation of SL(2,R)
with infinitesimal character p. Let

x'=diag(i,-1)§, y'=diag(,-i)”§.
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11.2 (1) (xy)=(5,"8) G(R),#SL(2,R), G(R) ~PGL(Z,R),
A=p, A="p, By=<T,,T_, 7>, ®By=< T, T, 75>
(2) (xy)=(x'"8), G(R),#SU(2,0), "G(R) ~PGL(2,R),
A=p, "A=27p, By gy=<trivial >, "®,=< ps, >.
(3) (xy)=(-x', 78), G(R),#SU(0,2), G(R) ,~PGL(Z,R),
A=p, “A=2"p, B ,y=<trivial >, “®_ =<ps_>.
(4) (x,7)=(8,y"), G(R),~SL(2,R), G(R) ~PU(2),

A=p, A="p, B_=<ps_>, @ qy=<trivial>.

In the following tables we will refer to these blocks by the indicated
labels.

We next consider endoscopic data for G, and spell out the
constructions of 9.1-9.3 in this case. We have G°*®xSL(2). By Lemma 6.7
we fix ~ & as above. Then as a set of representatives for the equivalence
classes of weak endoscopic data we may take §equal to £I, 3=5, =
diag(i,-i), or §=%_ = (_Olé) . If 3=#1 or s, then there is a unique choice of

endoscopic data extending each choice of weak endoscopic data (cf.

Corollary 6.6). If $=s,, then there are two such choices, given by V6H=:Vé.

Let R* denote the non-trivial covering group of R* given by
B*=R*UiR*, with covering map z - 22/Jz]. Define a genuine character « of
B*: &(z)=z/IzE. Let «* denote the characters of R* defined by o*(t)=t
(teRY), «™(-1)=1, «™(-1)=-1.

We will use the following convention about covering groups. Suppose
G is a covering group of G, with real points G(R) covering G(R). The

representations of G(R) of trivial type (i.e. trivial on the kernel of the
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covering map) are canoncially identified with representations of G(R).
Similarly if the covering splits the representations of G(R) of a fixed type
are in canonical bijection with the representations of G(R). In either case
by abuse of notation we identify the representations of G(R) with those of
G(R), and write G=G and G(R)=G(R). This will be applied mainly to the
group H.

113 (1) 3=l ,

Then “H'="G", H=G, and ({",D) may be taken to be (G",D). There
is only one choice for ~D,. Then H#SL(2), H(R)~SL(2,R), and
"H~PGL(2). The covering H = H is split.

(2) 3= 3,
Then “H=C*. In this case H' is isomorphic to an L-group for
H(R)~S' (not just an E-group) so H-H splits. There is only one
choice for ~ Dy in this case also.

(3) 3= 3,
Here "H=C*, and "Hf is isomorphic to an L-group for H(R)~R*,
and again H-H splits. Now there are two choices for “Dy;
changing the choice corresponds to tensoring with the sign

representations of R*.

Thus by the discussion preceding 11.3 we will identify
representations of H(R) in each case with representations of H(R).

Furthermore introducing x and y as in 9.2 we obtain a covering group

v, .Can

Hyz of vaz and blocks as follows. We describe the covering group of “H,

blocks Band B for G and G 2 defined by (x,y), and blocks By and’ By for
H and vﬁyz defined by (8,,y).
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114 (1) 3=zl

We have "H=PGL(2) and "H °"=SL(2). There is only one choice of
endoscopic data extending this weak endoscopic data.

i (x,y)=(8,78)

Then "H(R)“*" is isomorphic to PGL(2,R), the inverse image of
PGL(2,R) in SL(2,C). The representations in VLBH factor to
"H(R)~PGL(2,R). Then (B,”B)=(By, By)=(B,, By).

i (x,y)=(x,"8)

Now (B, ®)= (B, oy, B,) (x=X') or (B(g 5y, B,) (x=-X'). Again we
have "H(R)®*P~PGL(2,R)°*?, and now (By, By)= (B,, B,). Here
@, is "B, pulled back from PGL(2,R) to PGL(2,R)°*", followed by
applying the translation principle from infinitesimal character 7 p
to infinitiesmal character 2” p. This involves tensoring with the
(genuine) two-dimensional representation of PGL(2,R )%™

. x,y)=05y"

Now "H(R)°*P~SU(2), and (B, ®)=(By, By)= (B_, B, 4,) With
v03(210). Here V(B(z,o) is the block consisiting of the (non-genuine)
trivial representation of SU(2).

(2) 3=%,

We have "H(R)~R*, "H is the genuine two-fold cover C*=>C* given
by z-z2, and “H(R)~R*. Again the choice of endoscopic data is
unique.

i (x,y)=(8,78)

We have(B, B)=(B,, B,). Now H(R)~R*, "B, consists of
genuine representations, and (By, By)= (<e®> <&>).

. (x,y)=x,"8)
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In this case ((B,V(B)=((B(2’0),V(Bt). In this case By factors to R,
and (By, By)= (<e®> <u*>).

iii. (,y)=(-%,78)

This case is similar to (ii): ((B,V(B)=((B(012),VCB_), "B factors to R¥,
and (By, By)=(<e®> <x™>).

iv. (xy)=(5y")

We have (B,”B)=(B_, B, o), By consists of genuine
representations, and(By, By)=(<e®>,<x>).

(3) 3=%,,

In this case "H(R)#S'. Asin (2) we have H is the connected
two-fold cover of €*, and "H(R)~S$'> "H(R)~S! is the two-fold
cover of H(R). IN this case there are two choices of endoscopic
data extending the given weak endoscopic data, given by v6H=tv6.

i (xy)=(5,"8)

We have (B,”®)=(B,, B,). The representationsin B, are
genuine, and (By, By)= (<ot>,<e®/2>) (T§,=78) of (<o
>,<ei®/2>) (Y5, =-76).

i, xy)=(x,76)

Now (B, ®)= ((B(z’o),v(Bi) the representations in B factor to
"H(R), and (By, By)=(<u*>,<e®>) (7§ =175).

. x,y)=(-%,"8)

Now (B,”B)= (B 5y, B.) and (By, Bp)=(<a*>,<e®>) (T§y=2"9).

iv. (x,y)=0,y")

We have (B,"B)=(B_, B, ,y), the representations in ~ By are
genuine, and ((BH,V(BH)=(<0<*>,<ei°/2>) (V6H=.+.v6). Note that this
is a different strong real form of “H than in (i), with the same real

points.
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The stable virtual characters of SL(2,R) with infinitesimal character p
are T, +7_, Ty, and ps_. The trivial representation C, 4 of SU(2,0) or C0,2)
of SU(0,2) is stable.

Now G has three super L-packets T, =<7, 7(_, 0:(2’0), 0:(0’2) > and
T, =< ps_>. The superstable sums are 70, +7_-C, 5y-C¢4 ,yand ps_.

In the following table we list all the liftings (with integral
infinitesimal character) for real forms of SL(2) (up to the translation
principle). The infinitesimal character for G is always p, for "G it is either

“por 2 p. We identify H(R) with H(R) in each case.
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11.5
G(R) # SU(2,0) SL(Z,R) SU(0,2)

3=1 HRI#SL(Z.R), HER)IXPGL(Z2, R)®*™
Lift(ﬂ++ﬂ_)= _C(Z,O) Tf++1'f_ -C(O,Z)

Lift(ry) = ‘E(z,O) T, C(O’z)

3=-1 H(R)~SL(2,R), HRIX®PGL(2,R)%*™:

"B(R) = SL(Z,RY SL(Z,R) SL(2,R)
Lift(n +m_) = <« Co0) e— T < Cg 5y
Lift(ntg) = =Cy g Uy ~C0,2)

~

3=3, HR=xs', "HRIZR*
Lift(e®)= i€, o) T+ ~iCo 2

Lift(e®) = -iC, g T+ i€ 2)

3=diag(i,-1), BRI#R*, "HR)~":
Lift(ec*)= 0 ~(T,+TC_+7) O
Lift(«*)= 0 -(ps_) 0

Interesting examples of most of the constructions of this paper can be
found in the preceding tables.

For example consider the super L-packet T, =<1r+,1r_,0:(2,0),u:(0'2)>.
The super-stable element of this packet is 7r++7r_-0:(2’0)—0:(012), which is the

lift from $=I of 1_+7_. Four linearly independent sums in this packet are
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found in Table 11.5, which correspond to the four elements of §w%Z/4Z.

Note that the coefficents in these liftings are +1 or *i.

Note that the effect of varying the endoscopic data for given weak
endoscopic data may be seen in 11.5, with $=diag(i,-i). Thus that wheras
what we are lifting from («*) depends on this choice, the image of the lift is

not affected by such a change (cf. Corollary 9.16).

Suppose next that G is S'. We identify G with € so that
GTaC*xT=<C*,§>, with §2=1. We have G ~<C*,'§>, with “§(z)=z"', and
¥§2=1. An element z§ (z€C*) defines a strong real form, denoted G_, of G,
and these are all inequivalent. On the other hand up to equivalence the
only strong real form of "G is ~§,and G(R);~#R*. In this case blocks
coincide with translation families of L-packets. Thus a pair of dual blocks
(or L-packets) is given by a pair (z8,78). The corresponding translation
family of L-packets is the coherent family of characters {¢1™® |nez} of the
strong real from z§ of G. Write this L-packet T to indicate the strong real
form. Fix w so that e 1" W=z For pew+Z, let Vﬂu be the character
Tn, ()=t (teRY), Vﬂ“(—1)=(-15‘*'w. Then the dual translation family is
{7, | pew+Z).

We specialize to fixed infinitesimal characters by choosing
infinitesimal character O for G. Thus T =<7 >, where 7, denotes the
trivial representation of the strong real form zé. The unique super
L-packet T for G is U__.,T1,. The (formal) sum & __., 70 is the unique
super-stable element of T (up to a constant multiple).

Note that ~“G°2R="G5°=C, with covering map the exponential map. Fix
Vs, with "K={+1). Then endoscopic data for G is given as in Lemma 6.7 by

3¢C such that exp(3)=21. Let § =ik (keZ); these all define inequivalent
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endoscopic data, though in each case H, #S'. Note that S ={£1}, §w=§w={§k}'
These countably many distinct liftings from endoscopic groups are
necessary to distinguish the (uncountably many) distinct representations
.

Given 3,, the lift from H,_to G, of the trivial representation is 2%,
The super lift is therefore the formal sum Lift*(tt)=zz€¢*zkvrz. Formally an
element of T is a sum £ __,,x(2)7 for « a function on C*. Thus formally

inversion (Theorem 9.24) amounts to ordinary Fourier inversion for the

function «(z).
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