September 16, 2019: David Vogan (MIT), Involutive automorphisms.

In the first talk I said that the seminar would be about unitary representations of a real reductive algebraic group $G(\mathbb{R})$, and explained Harish-Chandra's results relating those to Hermitian $(\mathfrak{g}(\mathbb{R}), K(\mathbb{R}))$ -modules (Harish-Chandra modules).

In this talk I'll explain Elie Cartan's proof that (isomorphism classes of) real reductive algebraic groups $G(\mathbb{R})$ are in one-to-one correspondence with (isomorphism classes of) involutive automorphisms θ of a complex reductive algebraic G. I'll always write $K = G^{\theta}$ for the (complex reductive algebraic) group of fixed points. For example, the real group $GL(n, \mathbb{R})$ corresponds to the involutive automorphism $g \mapsto {}^tg^{-1}$ of GL(n, C), with fixed point group $K(\mathbb{C}) = O(n, \mathbb{C})$.

I'll explain how to reformulate the definition of Harish-Chandra modules in terms of (G, θ, K) , so that it lives entirely in this complex algebraic world. Then I'll look at the software (I hope putting it on zoom correctly this time!) to see how G and θ and K are being described and computed internally.