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Cells in affine Weyl groups, IV

By George LUSzTIG®

(Communicated by Y. Matsumoto)

This paper continues the series [13], [14], [156]. Our main result is
the construction of a bijection between the set of two-sided cells in an
affine Weyl group W, and the set of unipotent classes in a certain
complex reductive group G, associated with W. (See Theorem 4.8.) We
also show that the value of the a-function (see [13]) on a two-sided cell
of W is equal to the dimension of the variety of Borel subgroups of G
containing an element of the corresponding unipotent class. Our proof is
based on the representation theory of affine Hecke algebras [6] and of the
algebras J in [14], [156]. One of the main tools is a formula (6.4) expressing
the restriction of a standard module of an affine Hecke algebra to a finite
dimensional Hecke algebra; this formula is in terms of character sheaves.
(This formula is not proved in this paper.) This allows us to use prop-
erties of character sheaves (6.7) to get information on modules of an
affine Hecke algebra. We also prove that (in the case where G is semi-
simple) any two-sided cell of W meets some finite parabolic subgroup of
W. Several of the results of this paper have been conjectured in [9,
Problem V]. On the other hand, we state some new conjectures relating
the algebras J with certain equivariant vector bundles.

The classification of two-sided cells of W has been known previously
in certain special cases: for G of rank 2, see [13]; for G of type A,, see
[20], [12]; for G of rank 3, see [2], [3].

I want to thank Shi Jian Yi and the referee for some useful comments.

We use this opportunity to correct some errors in [14], [15].

Errata for [14]. On p. 536, line —9, replace 6, by t,. On p. 539, lines
12, 13, replace “z( )" by ‘“constant term of =( ).
Errata for [156]. On p. 231, lines —2, —3, (2.6 (a)) should read: “If a

simple Hx-module is V-tempered, then Cu is a V-tempered conjugacy
class.”; 2.5 (a) should be deleted. The last line (conclusion) of Prop. 2.9

*) Supported in part by the National Science Foundation, Grant DMS 8702842.
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(p. 232, line —2) should read: “Then C » contains some C-point of G.”
At the end of 2.10 (p. 234) one should add the sentence: “(a) Fix
V:K*>R as in 2.8 and let Y be the set of iSsomorphism classes of simple,

V-tempered Hg-modules M such that é’ » contains some C-points of G.”
The references to 2.5(a) on p. 234, line —4, p. 237, line —3, p. 238,
line —1, p. 241, line —10 should be replaced by references to 2.10 (a).

1. Notations

1.1. Let (W', S) be a Coxeter group (S is the set of simple reflec-
tions). Let 2 be an abelian group acting on W’ in such a way that
o(S)=Sforallwe 2. We form the semidirect product W= -W’; it has
multiplication (w,-w?)(w,- wh) =ww,- w7 (w)wj. Let [: W —N be the length
function; we extend it to a function [: W—N by l(ow’)=[(w’).

For y, w € W’ we define the polynomial P, , € C[v], (v an indeterminate)
as follows: write y=wy’, w=0'w’ (0, ®' € 2, y',w’' € W) and set P,,=P, .
(P, as in [b]) if w=e’ and P,,=0 if v+

The preorders <, < on W’ and the associated equivalence relations

L LR
~,~ on W’ are defined in [5] (see also [13]) in terms of the P,,. We
L LR
extend them to W by y<w (resp. y~w)e=3y, w' € W, w,, w,€ 2 with
L L
Y=oy, w=ow’, y'<w’ (resp. y'~w'); y<w (resp. y~w)=3y’, w' € W,
L L LR LR
1, Wy, W5, 0, € 2 With y=wy'w;,, w=0w'ow, Yy <w' (resp. y'~w'). The
LR LR
equivalence classes for ~ (resp. ~) on W are called left cells (resp.
L LR
two-sided cells). The image of a left cell under w—w™ is called a right
cell.

Let A=C[v,v']. We shall often identify A with the C-algebra of
regular funetions C*—C with v being the obvious inclusion C*CC.

Let k=C(v) and let k£ be an algebraic closure of k.

The Hecke algebra H is the free A-module with basis T, (we W)

with the associative (A-algebra structure defined by 7,7.,=T,, if
Lww') =1(w) + 1w, (T,+v)(T,—v)=0 if re 8.

It has a unit element 1=7, where ¢ is the neutral element of W.
The elements

Co= Y (—0)!™ 0P, WA T,€H, (weW),

(see [5]) are well defined and form an A-basis of H. We can write



Cells in affine Weyl groups, IV 299

C.C,= €zwhx,,,,,c,, By, €A

(this is a finite sum).
We shall write H.=H® k, H.=HQ k.
A A

1.2. Let I be a subset of S. Let W’ be the subgroup of W
generated by I, Q' ={we Q|o(I)=1I}, W=2'-W'cQ W =W.
Then the previous definitions are applicable for W’ instead of W.
In particular, to W' corresponds a Hecke algebra H’. It can be identified
with the subalgebra of H, spanned as an A-module by T,, (w€ W?). For
w € W', the elements C, defined in terms of W' or W coincide. We have
iCHk, HgCH;;

1.3. From now on, we assume that (W’, S) is a finite of affine Weyl
group. A general reference for 1.3-1.4 is [13],[14].

There are well defined functions a: W—N, y: WX WX W—N such
that

VN =7, ..~ € VZ[V] for all z,y,ze W

and such that for any z€ W there exists x,y€ W with 7,,,.#0.
Let D={we W’|2deg P, ,=l(w)—a(w)}. Then &) is a finite set of
involutions in W’. Any left cell of W contains a unique element of 9.
Let J be the C-vector space with basis (t,).cw. It has a unique
structure of associative C-algebra such that ¢.,= é\__‘,wrx,,,,:tfl. It has a

unit element 3 t,.
de9g

For any subset Zc W, let J; be the subspace of J spanned by ¢,
(we Z). Then J is a direct sum @ J, where ¢ runs over the set of two-

sided cells of W. Each J, is a gubalgebra of J (with a different unit

element: Y t;) and J,-J,, =0 for c+#c¢, so the last direct sum is a
dedNne

direct sum of algebras. For any left cell I" of W, J.,r-t is a subalgebra
of J with unit element t; where d is the unique element of I'N 9.

If ¢ is a two-sided cell of W, the restriction of a: W—N to ¢ is
constant; we set a(c)=a(w) where w is any element of ¢.

1.4. We have a homomorphism of A-algebras with 1, d: H—»J ® A
defined by @(C,)= ¥ h,.,.t.. It induces a homomorphism of Ek-algebras
d€E9
ZEW
d~z
L

®:H,—~J ® k and, by specializing v to 1,2 homomorphism of C-algebras
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®,:C[W]—J. For any J-module E, we can consider EQ kL as a J @ k-

C
module in the obvious way, hence as an H,-module with k€ H, acting as
@(h); this H,-module is denoted °E. When W’ is finite, @: H,—J Q F,
@, . C[W]—J are isomorphisms.

1.5. Let I be as in 1.2. Let J' be the C-algebra defined in the
same way as J, replacing W by W’ Let o, 7!, 9" be defined as a, 7, 9
in 1.3 for W’ instead of W. As in [14, 1.9] we see that a’ is equal to
the restriction of a to W!. If z,y,z€ W', then h,,, computed in terms
of W and W' coincide; hence y!,.=7.,. Thus J’ may be identified
with the subalgebra J,r of J. We have 9'=9PNW’ hence the unit
element of J'is X i,

degnwl

1.6. Let G be a connected reductive algebraic group over C with
Lie algebra g. We fix a Borel subgroup B, of G and a maximal torus
T, of By, let n,: By—T, be the canonical projection. Let X be the group
of characters T,—C¥*, written additively; let Rc X be the set of roots,
R~ the set of roots such that the corresponding root subgroup is con-
tained in B,, R*=R—R~, IICR* the corresponding set of simple roots.
For a € R, let & : X—Z be the corresponding coroot. Let X’ be the sub-
group of X generated by R. Let (W, S;) be the Weyl group of G with
respect to T,, with simple reflections S, corresponding to the simple roots.
W, acts naturally on X and we form the semidirect product W=W,- X
(with X normal); the multiplication is given (wx)(w’z’) = (ww’) (w'~'(x) + '),
for w,w' e W, xz,2’€ X. Following Iwahori and Matsumoto, we define
l:W—N by lwzx)= a§+ |&(x) |+ an;+ |a(x)+1|, (we W, x€X). Let

w(a@) ert w(@) ER™
W =W, X' cW, .QZ{l(U)é Wll(w):O}(, )fS':{we W'|l(w)=1}. Then £ is an
abelian subgroup of W normalizing both W’ and S, W=Q- W’ (semidirect
product) and (W, S) is a Coxeter group (an affine Weyl group). Hence
the definitions in 1.1-1.4 are applicable to W. In the rest of the paper,
W will be as just defined and H,J, --- of 1.1-1.4 will refer to this W.
We have S,cS.

1.7. Let B be the variety of Borel subgroups of G.

G acts on B transitively by conjugation. For any x€ X there is a
G-equivariant line bundle L, on B (unique up to isomorphism) with the
following property: B, acts on the fibre of L, at B, via the character
bo—2x(mo(be)). We shall use the notation X,,,={x € X|d(x)>0 for all a € IT}.
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If w€G is unipotent and s€ G is semisimple, we denote $,=
{Be Blue B}, B:={Bc B|uc B, sc B}.

1.8. Let h—*h be the unique automorphism of the (A-algebra H
such that *T,=—T;* (re 8), *T.=T:' (€ Xym). This extends to a k-
algebra automorphism of H, denoted in the same way. If M is an H-
(or H,-)module, then composition with * gives a new module *M (with
the same underlying space as M).

2. H-modules

2.1. In this and the following section we shall study certain H-
modules using the methods of [6]. Note that in [6], G was assumed to
have simply connected derived group; analogous results hold without this
hypothesis although some of the proofs in [6] need to be modified (we
will return to this question elsewhere). We shall refer to [6] for results
on general G, even though in [6] these results are proved only under
the assumption above.

2.2. Let u be a unipotent element of G and let s be a semisimple
element of G such that su=us. Let {s) be the smallest closed diag-
onalizable subgroup of G containing s.

We can choose a homomorphism of algebraic groups ¢ : SL,(C)—Z3(s)

such that ¢[(1) %]———u For each 1€ C* we set sx:gb[é 3_1]€Z3(s).

We define an action of {s)XC* on B, by (g, A) : B—g¢.s;Bsi’g7", (9:€ {s),
A€C*). (Note that uc Be=u*c B for 1€ C*.)

We consider K{"*¢"(B,)RC: equivariant K-homology as in [6], or
equivariant K-theory of coherent sheaves as in [17]. (As pointed out in
[17], the two kinds of K-theory coincide in our case.) It is naturally a
module over Rs.c. the representation ring of {s)xC*, tensored with C,
i.e., the algebra of regular functions {(s) XC*—C. This algebra can be
mapped onto the algebra A of regular functions C*—C as follows: to a
regular function f: {s) X C*—C we associate the regular function f’: C*—C,
f(A=f(s,2). Therefore we can form the tensor product

Heo= (K (BIRC) @ A

Bsyxcx

This is a finitely generated projective A-module [6, 5.11].

2.3. For any r€ S, we consider the A-linear operator 77 : K, ,—KX..
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defined in [6, 8.2(d)]. (It is more pleasant to use the definition of 7~
in terms of coherent sheaves, as in [17, 6].) For any z € X, We consider
the corresponding G-equivariant line bundle L, on . Its restriction
to B, is an {s)XC*-equivariant vector bundle via the homomorphism
(8dXC*—G, (g1, )—9:-s;. Tensor product with this line bundle defines
an A-linear operator 0, : K, . —X,..

2.4. There is a unique H-module structure on X,, extending the
natural A-module structure such that

T, acts as v (c"—1), (reS)
T, acts as 6., (@ € Xyom)-

(This follows from [6, 5.11] where, however, the module structure con-
sidered is *X,.,.)

2.5. The finite group A =Z;(su)/Z%(su) acts naturally on K% (B,)QC
by R,xc-linear automorphisms as in [6, 1.3(j)]. (Note that A can be identi-
fied with the group of components of the simultaneous centralizer A of s
and @(SL,(R)); A acts by conjugation on B, commuting with the action
of {s)xC*.) This induces an action of A on K,, by A-linear automor-
phisms which commute with the H-module structure.

Let o be any finite dimensional C[A]-module and let p* be its dual.
We define K,,,=Homy(p, K,.. It is clear that K,,, is a finitely
generated projective (A-module and it inherits an H-module structure
from K,...

For any 1€ C*, let C; be the J-module C with v acting as multi-
plication by 2. Let J(i,s,pzﬂu,,,,,@cl. This is a finite dimensional C-

vector space and an H-module in a natural way.

2.6. LEMMA. Consider the action of C* on B defined by 2: B—>s,Bs;!
and let B° be its fived point set.

(a) For any connected component Y of B there ewists a homomor-
phism my: X—Z with the following property: for any y€G such that
r'Biy €Y, any 2€C* and any x€ X, we have x(m(rs;y ")) =21""r".

If Y, Y, are two connected components of B, we have My, =My, if
and only if Y=Y,

(b) If Y in (a) meets B, then my(x)>0 for all x€ Xson.

Proor. Let L be the centralizer in G of the torus {s,|2€ C*}. The
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connected components of B¢ are exactly the L-orbits on B, hence the
B,—L double coset of y in (a) is uniquely determined by Y; from this,
(a) follows immediately. The proof of (b) is based on an argument in
[10, 2.8]. Let x€ X,., let y€G be such that B=y"'Byc YNSB,. We
can find an irreducible G-module V with a B-stable vector £+#0 such
that b&=u(m,(yby)) ¢ for all b€ B. We can regard V as an SL,(C)-
module, via ¢ :SL,(C)—G. By representation theory of SL.(C), we can
decompose V= @z V., where V.={n€ V|sp=2»n Vi€C*} and the 1-

eigenspace of ¢l(1) %] : V=V is contained in €@ V,. Since ¢ is contained
i>0

in this 1-eigenspace, there exists 1>0 such that s;é=wn(m(rs;y ™)) ¢=2¢
for all 26 C*. We have x(m(rs;y"))=4"" for all 2€ C* and (b) follows.

2.7. We now define a decomposition K,,® k=@ K¥ as a direct

A Y
sum of k-subspaces, stable under all 4,, (¢ € X,..). Consider the (A-module

H'=(K»(BinBe) @ A
Risyxcx
This is a finitely generated A-module and it has (A-linear operators
0,: K'->XK" (x€ Xyom) defined in the same way as for K,, (see 2.3).
The inclusion BN BS—B, defines an A-linear map K'—K,,. compatible
with the operators 6.. From the localization theorem in equivariant K-
theory it follows that this is an isomorphism over k. Now the decomposi-
tion of B:N B in connected components defines a decomposition of K’
into a direct sum of _A-submodules. Using the isomorphism K’ ® k>

A
K..,®k we obtain a decomposition of K,,R® k as a direct sum of k-

subspgces Z¥' indexed by the connected compongnts Y’ of B:NB. Each
summand Z¥' is stable under the operators 6, (xr€ Xy ). From the
definitions it follows that 6, acts on Z¥' as hy(x) times a unipotent
transformation, where hy. : Y—k* is a certain homomorphism which can
be described as follows.

Let Be Y’ and let y€ G be such that yBy =B, Then hy () is the
rational function on C*:

2> almlrssy ) =L (e)2 T
where Cy (x) =2(mo(ysy™")) € C* is independent of 2, Y is the connected
component of B¢ containing Y’ and my(x) is as in 2.6 (a). Hence we have

(a) hy(x)=Cr(x)v "™ € k*, with y.(x) € C*.
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2.8. LEMMA. Let p be a simple A-module. The following conditions
are equivalent.
(a) K..,#0.
b J(u,,,,p@k is a simple Hp-module.

(b)
(¢) p appears in the natural representation of A on H*(B:, C).
(d) p appears in the natural representation of A on H*(B:n B, C).

Proor. Let (O be the set of all 2¢ C* such that the eigenspaces of
Ad(ss;) : g—g coincide with the simultaneous eigenspaces of the family
of automorphisms {Ad(s), Ad(s,)(v€ C*)} of g. It is clear that O is the
complement of a finite set in C*. Fix some 1€(®. Then B;N B =B,
Zi(ss;)=Z3(s), (L as in 2.6), and the *-eigenspace of Ad(ss;) : g—g coincides
with the set 3 of vectors & in the Lie algebra of Zi(s) such that
Ad(s,)é=v%¢ for all ve C*. It is well known that Zj(s) has an open orbit
on Y and that orbit contains the nilpotent element log . It follows
that log u is contained in the open orbit of ZZ(ss;) on the 2*-eigenspace
of Ad(ss;):g—g. Using now [6, 5.12, 5.15(a)] we see that the following
three conditions are equivalent:

(e) Ki,,#0

(f) K?,,is a simple H-module

(g) p appears in the natural representation of Zg(ss;) N Zg(u)/
(Za(s8;) N Ze())'=Zs(su) | Z%(su) = AJA® on H*(B*, C), (A asin 2.5). As we
have seen, we have (g)e==(d). Since K.,, is a projective A-module,
we have (a)=(e). We obviously have (b)==(a). Hence it remains to
prove that (f)==(b) and (c)&==(d).

Now B:NB¢ is the fixed point set of a C*-action on B; which
commutes with the action of A. It is known (see [7, 1.6]) that this
implies the equality > (—1)VH!(B:, C)= S (—1)H(B:N B, C) as virtual
representations of A/A°. On the other hand the cohomology groups of
B;, BN B =B+ vanish in odd degrees [6, 4.1]. The equivalence of (c)
and (d) follows.

The proof of (f)==(b) is a standard application of Burnside’s theorem
since K3, , is a specialization of K,,,®k. This completes the proof.

An A-module p satisfying the condi%ions of the lemma is said to be
admissible.

2.9. Let V:k*—R be a homomorphism such that V(v)=1, V(av+b)=0
for a €C, b€ C*. Such a homomorphism exists; we shall fix one. An
Hi-module M of finite dimension over k is said to be V-tempered if all
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the eigenvalues { of T,: M—M satisfy V({)<0 for all x€ Xyom.

2.10. Let M be an H;-module of finite dimension over k. An element
£E€M is said to be an eigenvector of M if £€+#0 and if there exists a
homomorphism 7y : X—k* such that T,&=y.(x)& for all z€ X,,,. For such
& there is a unique element o.€ Ty(k) such that y.(x)=x(s) for all
z € X=Hom(T,, C*)=Hom(T,(k), k*). We say that M is of constant type
if there exists a semisimple element '€ G and a homomorphism of
algebraic groups ¢ : SL,(C)—Zi(s') such that for any eigenvector & of

M, oc€ Ty(k) is conjugate in G(E) to ¢'[g &1]3'. (Note that ¢’ extends

canonically to a homomorphism ¢ : SL,(k)—Z5(s') (k) hence ¢’[8 2_,]6

Z4(s') (k) is well defined; on the other hand, s'€ G is a “constant element”.)

2.11. PROPOSITION. Let ¥’ be the set of G-conjugacy classes of triples
(u, s, p) where u (resp. s) 1s a unipotent (resp. semistmple) element of
G, su=us, and p is a simple, admissible module for A=Zg(su)/Z¥(su).
Let U be the set of isomorphism classes of H,-modules M’ such that
*MQQk 1s a simple V-tempered Hip-module of comstant type. The cor-

respondence (u, 8, p)—>K....,, @ k defines a bijection ¥ ST,
A

Proor. Let (u,s, p)€¥’. By 28, the Hi-module *X,,,® k is simple.
A

It is V-tempered, of constant type, since it is a direct summand of
*K..Q® k which is V-tempered, of constant type by 2.7 (a), 2.6 (b). Now
1

let (u,ks, o), (W, p') be distinct elements of ¥’. We associate to (u, s)
a subset OcC* as in 2.8 and similarly we associate to (u/, s’) a subset
&’ccC*. Then ON(’ is open, dense in C*. If 2¢ON(, then *Ki,,
*K?%.. ., are simple standard H-modules in the sense of [6, 5.12] and are
not isomorphic by [6, 5.15(b)]. It follows immediately that the H;-modules
*J(u,s,p@ k, *Kyovin (?IE are not isomorphic. Hence our map ¥'—¥” is

injective. We now fix a semisimple element s’€ G and a homomorphism
of algebraic groups ¢’ :SL,(C)—Zi(s'). Let ¥/, be the subset of ¥”
consisting of those Mc¥” such that, with the notations of 2.10, all

elements ¢, (£ an eigenvector of M) are G(k)-conjugate to 00=¢’[8 2_1]3’ .

Let w/ :¢’[(1) i] and let N’ be the number of simple Z;(s'u')/Z&(s'u’)-

modules o’ (up to isomorphism) which appear in H*($:,C). By the
first part of the proof, ¥/, contains at least N’ elements. We now use
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the classification of simple V-tempered H;-modules given by [6, 7.12, 8.2].
(Those results are applicable since k is (non-canonically) isomorphic to
C.) We deduce that the number of elements of ¥/ ,; is at most the
number of G(k)-conjugacy classes of triples (u,, o\, ) Where o, is a semi-
simple element of G(k), conjugate to ¢, u, is a unipotent element of G(k)
such that log(u’) is in the dense orbit of Zj; (o,) on the v*-eigenspace of
Ad(0y) : g®k—gRk and p, is a simple module of the component group of
Zew(01) N Zew (u,), which is admissible (relative to k). The number of
such ftriples (up to conjugacy) is N’. Thus ¥/, contains at most N’
elements. It follows that ¥'—¥” is bijective.

2.12. PROPOSITION. Let M€ ¥ and let (u, s, p) be the corresponding
element of U'. Let y: Zi—k be the character by which the centre Z; of H;
acts on the Hy-module M'®Qk. Then the conjugacy class of u in G depends
only on y, mot on M.

Proor. It is known that the k-algebra homomorphisms Z,—k are
in canonical bijection with the semisimple conjugacy classes in G(k). In

our case x corresponds to the conjugacy class of §=¢[8 2_1_I_1s"€ G(k),
where ¢ denotes a homomorphism of algebraic groups SLZ(C)—>Z3(3),
¢[(1) }]zu as well as its extension to Fk-rational points. Now

log(u) € g is known to belong to the open orbit of Zis(3) on the o>
eigenspace of Ad(37'). Hence the G(k)-conjugacy class of u is completely
determined by x. The proposition follows.

3. Deformations of H-modules

3.1. Let ¢:SL(C)—>G be a homomorphism of algebraic groups. Let
F' be the centralizer in G of the image of ¢; then F is a reductive (not
necessarily connected) algebraic group. Let F' be a connected component
of F. We define a closed subgroup D of F as follows: we choose a
semisimple element s,€ F", let 4 be a maximal torus of Zi(s,) and let D
be the subgroup of F generated by & and s,. Then:

(a) D is diagonalizable; it is generated by its connected component
D'=DN F'=389 =Ys,.

(b) Any semisimple element in F' is conjugate under F° to an
element of D

(¢) The subset D;,={s€ D'\ Z(s)=Zr(D)} is open dense in D'
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For any s€ D', we have a commutative diagram of finite groups:

(d) N#(D')/D° (Ne(D) N Zp(s))/D°
S
]
/
Zp(D)|D° Zr(8)| Zx(s)

with all the maps (=obvious ones) being injective except possibly for p
which is surjective.

3.2. Let u:¢[(1) i], 31=¢[3 2_1], A€ C*. Then DXC* acts on

B, by (d,2): B—ds;Bs;'d™’. We consider as in 2.2, K?*¢(3,)QC as a
module over Rp.c. (the representation ring of DXC* tensored with C)
which may be identified canonically with the algebra of regular functions
DX C*—C. This algebra can be mapped (by restriction) onto the algebra
R' of regular functions D'XC*—C, hence we can form the tensor product
K=(KP*(B,)RC) ® R'. This is a finitely generated projective R'-

Epxc*

module [6, 5.11] and one can define R'-linear operators " : K—XK (re S,),
0,: K»K (x€ Xum) as in 2.3, see [6, 3.2(d)]. These define an H-module
structure on K by the same formulas as in 2.4, (see [6, 5.11]).

We can regard K as the space of sections of an algebraic vector
bundle K over D'xC*. The operators of H act on K by vector bundle
endomorphisms (inducing identity on the base D'XC*). Now the finite
group Ny(D')/D° acts on K by vector bundle maps as in [6, 1.3(j)] and
at the same time it acts on the base D'XC* by conjugation on the first
factor. (Thus K is an Ng(D")/D’-equivariant vector bundle.) The restric-
tion of this action to the subgroup Zy(D)/D" preserves each fibre of K
(i.e. Zy(D)/D° acts trivially on D'XC*). Hence, for any simple Zz(D)/D’-
module M we can form the vector bundle K,=Hom;, (M, K) over
D*x C*, with space of sections K 3=Hom;p,po( M, K) which is a finitely
generated projective R-module with an H-module structure inherited
from X.

3.3. Now let s€ D' and let K, be the restriction of K to {s}xC*.
The restriction of the action of N;(D")/D° to the subgroup (Nz(D") N Zx(s))/D°
maps each fibre of K, into itself; moreover, this action of (Nz(D*) N Zr(s))/D°
on K, factors through the quotient group Zr(s)/Z(s). Using the diagram
2.2 (d), we see that the restriction of the action of Z;(D'")/D° from K to
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K, coincides with the restriction of the action of Z(s)/Zi(s) (on K,) to
the subgroup Zg(D')/D°. Hence, if M is as in 3.2, the restriction of
the vector bundle K4 to {s}XC* is the vector bundle K,; =
Homy (s 28, (1.(M), K.) where i,( M) is the Zy(s)/Z3(s)-module induced by
M. (Recall that Z.(D)/D°C Zr(s)/Z%(s).) On the other hand, by [6, 5.11],
the space of sections of K,; 4, is exactly the H-module K, in 2.5.
(Note that Zs(s)/Z4(s)=>Ze(su)/Z5(su).) Using now the fact that K, is
a vector bundle over D*XC*, we deduce that:

(a) for any he€ H, there exists a regular function f:D'XC*—C
such that Tr,(h, K., ) (2)=S(s, 2) for all (s, 2) € D'XC*.
(Recall that K., is a finitely generated projective A-module, hence
the trace of h is defined as an element of (A; we consider it as a regular
funetion C*—C)

The same argument shows that:

(b) if he H acts as zero on K., for s in an open dense subset
of D', then it acts as zero on K., for all s€ D.

3.4. Assume now that 2 is finite and IS is such that W"' is finite
(hence W' is finite and Hj is a semisimple algebra). Using the fact that
K4 (in 3.3) is a vector bundle and using the rigidity of modules over a
semisimple algebra we see that

(a) The restriction of the H,-module X, &k to Hj is independ-
ent of s (s€ D) up to isomorphism.

Now let s’€ D', s” € D!,,; let o' be a simple admissible module for
Ze(s'u) | Z3(s'w) =Zr(s')| Z3(s') and let M be a simple submodule of the
restriction of o’ to Zy(D')/D°’. We denote p” the simple Z;(s"u)/Z(s"u)-
module corresponding to H under the natural isomorphism Z.(D')/D*~
Zp(s")|Z3(s") = Zs(s"u) | Z2(s"u).

From (a) we deduce:

(b) The restriction of the H,-module X, ,®k to H.is isomorphic
to an Hi-submodule of the restriction of the H,-module X,.,.,®k to HX.

4. J-modules

4.1. Our next result will relate the set of ¥ of isomorphism classes
of simple J-modules to the set ¥’ in 2.11.

4.2, THEOREM. If E€ ¥, then °E 1is isomorphic as an Hy-module to
Koo @k for a well-defined (u, s, o) €¥’. The correspondence E—(u, s, o)
A
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defines a bijection ¥ 5U’.  Hence for any (u, s, p) € ¥”, there is a unique
Ec¥ such that °E= K.,k as Hr-modules.
A

Proor. Let Ec¥. According to [15, 2.11(a)] we have °Ec¥”
(notation of 2.11). Note that M—*M defines a bijection ¥’ =Y’ (Y’
as in [15, 3.3]). Indeed, by 2.11, in any H,-module M in ¥” we can find
an H-submodule M, such that M, is of finite _A-rank equal to dim,M; if
M:ﬂ,,,s,p@k. take M,=K.,,, According to [15, 8.4], E—~*(°E) defines

a bijection ¥ =Y’. Hence E—°E defines a bijection ¥—¥”. Combining
this with the bijection ¥"S¥” in 2.11, we obtain the required bijection
TSy

4.3. For (u,s, p)€¥’, we shall denote by E(u, s, o) a simple J-module
corresponding to (u,s, p) as in 4.2.

Let E be a simple J-module. Since J is a direct sum of algebras
@BJ,, there is a unique two-sided cell ¢=¢(E) of W such that

t,7#0 on K for some we€e¢
t,=0 on E for all wé¢e.

(We then have Y t;=Id on E.) We say that ¢ corresponds to E.

deDNe
We now define a map

(a) ¥’'—>set of two-sided cells in W
by (u, s, p)—¢c(u, s, p) =two-sided cell corresponding (as above) to the simple
J-module E(u, s, p).

4.4. PROPOSITION. Let Me¥U”,

(a) There is a unique integer a(M)>0 such that
v Tr(C,, M) € C[v] for all we W
1 Tr(C,, M) ¢ C[v] for some we W.

(b) Let y,eC be the constant term of (—v)** Tr(C,, M)€ C[v].
There is a unique two-sided cell c=c(M) of W such that y,#0=3w€ec.
We have a(M)=a(c) (see 1.3).

(¢) Let E€¥ be such that M=°E (see 4.2). Then 7,=Tr(t,, E),

). Hence c¢(M)=c(E) (see 4.3).
(d) We have 3 7yi=dim,M.
) If a(w)>a(M), then C,=0 on M.
) Let (u,s, p)€¥’" be such that M=K, ,Qk (see 2.11). Then
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c(M)=c(u, s, p), (see 4.3).

Proor. Let ¢=¢(E), (see 4.3). Then (a), (b), (c), (d) follow from
[16, 3.3] and (f) follows from the definitions. We now prove (e). Assume
that C,#0 on M. Then &(C,)#0 on EQFk, hence there exist d€ 9, ze W
such that h,,;.#0, t,#0 on E. Now t,#0 on E implies z€ ¢ and h,,4,, 70
implies z% w, hence a(z)>a(w), (see [13]). Thus we have a(w)<a(c)=a(M)

and (e) follows.

4.5. REMARK. Let I be a subset of S such that W' is finite. Let
E be a simple J*-module and let M=°F be the corresponding H;-module.
We can attach to E a two-sided cell ¢(E) of W', exactly as in 4.3. The
statements 4.4 (a)-(e) remain true for this E, M, and W', instead of W,
with the same proof.

4.6. PROPOSITION. Let ¢, F', "D D', D be as in 3.1, let M be a simple
Zr(D)|D*-module and let u=¢[ (1) i1 Let s, s’ € D' and let p, o' be simple
admissible modules of Zg(8)|Z3(s)=Ze(su)|Z3(su) and Zg(s')|Z3(s')=Zs(s'u)/
Z4(s'u) respectively, such that both p, o' restricted to Zg(D)/D® contain M.
Then c(u, s, p)=c(u, s, 0’).

ProOF. If o€ D, (see 8.1 (c)) then Zy(D)/D°=Zg(0)/Z3(o) and M is
clearly an admissible module of Z;(0)/Z%(0)=Zs(ou)/Z%(ow). Since a: W—N
is bounded above [13], we can find o,€ D!, such that a(c(u, g, M))>

ale(u, o, M) for all o€ D, Let c¢,=c(u,a, M), ay=alc). By 4.4, we
then have

(a) ao=a(K. o a®k)=a(K..oaRk).

We shall decompose 17,( M) (see 3.3) as a direct sum of simple
Zx(8)/Z%(s)-modules p;, o5, - -+, oy SUch o1, 0, -+ -, py, are admissible and
Py,41 +++, oy are not admissible. We shall denote K'=K,,,, @ k. Then

A
HKie®” for i€[1, N,] and K'=0 for ¢>N,. We have K, .. ®k=
A
KPKD - - PKY as H,-modules. Let we W be such that a(w)>a,.
Then for any o€ DY, we have a(w)>a(X. . «QFk) (see (a)) hence C,=0
on K., x®k (see 4.4 (e)). Using 8.3 (b) it follows that C,=0on K.,.; @k
for all ¢€ D' and, in particular, C,=0 on K,,:x®k. Hence C,=0 on

K¢ for 1€[1, N;]. Since w was an arbitrary element of W with a(w)>a,
it follows from 4.4 that
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(b) a(K)<a, for 1€[1, N,].

Let
(¢) o=dim(K...:,Qk) (=independent of o€ D).
We set h= Y. C,€ H and write

deDNey

(d) (—v)Tr(n, qu,a,iﬂ(su)®k): ; ti(o)v', (o€ D).

Then o—,(0) is a regular function D'—C, for any integer ¢ (see 3.3 (a)).

We have g,(0,) =050, see (c). Hence g,(s)+#0 for ¢ in an open dense
subset Z of D), From 4.4 it follows that a(XK., 4@k >a, (c€ Z).
Combining this with (a), we deduce that a(X,., 4@k =a, for all ¢c Z.
Using 4.4 (d) we then have g, 0)=d for all ¢€Z. Thus, the regular
function o—,(0) on D' is the constant § on Z hence it is constant on
D'. In particular,

(€) tols)=0=0,40,+ --- +dy, where §;=dim K".

Using (b) we see that we can assume that a(K)=a, for 1€[1, N,]
and a(K)<a, for 1€[N,+1, N;] (for some N,<N,). Then, by 4.4 (a), (d):

% . [ditv-Clv] i €[l N,]
=) Tr(h’ﬂ)e{ v-Clv] if 1€[N,+1, Ny],

hence
ﬂ0(8)251+52+ tre +6N2, (See (d)).

Comparing with (e), it follows that 6, +0,+ - - - +0n,=01+ds+ - -+ 40,
Since d,>0 for 1€[1, N;], it follows that N;=N, Hence

(f) (—v)"Tr(h, K') has non-zero constant term, (:€[1, N,]), so that
a(K")>a,. Combining with (b), it follows that a(X‘)=a, Using (f) and
the definition of h, we see that ¢(K*)=¢,. Since p=p; for some 1€[1, N,],
we see that c(u,o0, p)=c(K)=¢, The same argument shows that
c(u, s, p’)=c,. The proposition is proved.

4.7. PROPOSITION. Let f: M—M’' be a non-zero homomorphism of J-
modules. Assume that M and M’ are finitely generated as J-modules.
Then there exists a simple quotient E (resp. E') of the J-modules M (resp.
M') such that E=E(u,s, p), E'=EW, s, p’) where (u,s,p), (w, s, p)e¥’
and u,u are conjugate i G.



312 George LuszTIG

Proor. Let C be the centre of J. The proof of [15, 1.6(i), (ii)] shows
that J is a finitely generated C-module and C is a finitely generated
C-algebra. In particular, M, M’ are finitely generated C-modules. Since
f is also a non-zero homomorphism of C-modules, there exists a maximal
ideal & of C such that f induces a non-zero homomorphism on the locali-
zations M,—M/. In particular, we have M,+#0, M,+0. From M, +0
and Nakayama’s lemma it follows that M,/< - M;+0. This is a J-module,
let E be a simple quotient of it. Then E is a simple quotient of M and
g acts on E as zero. Similarly, we can find a simple J-module E’,
quotient of M’, such that & acts on E’ as zero. Let h:C—C be the
algebra homomorphism with kernel ; then z—h(z)-1 acts as zero on
E E for all z€(C. Let h:C (08) k—k be the k-linear extension of h. The

homomorphism @ =0R1; : H;—J @ k maps the centre Z; of H; into CQk
c ~ ~ o~
(see the proof of [15, 1.6(i)]). It follows that @(2)—h(®(2))-1 acts as zero
on EQk, E'Qk for all 2€ Z,. Thus the Hymodules *EQk, °E'®k have
the same central character. Hence the proposition follows from 2.12.
We shall now state the main result of this paper.

4.8. THEOREM. (a) The two-sided cell c(u,s, p) (for (u,s, p)e¥’)
depends only on the G-conjugacy class of u; hence it can be denoted c(u).

(b) wu—c(u) defines a bijection between the set U(G) of wunipotent
congugacy classes in G and the set Cell(W) of two-sided cells in W.

(¢) alc(u))=dim B, for any unipotent element u € G.

(d) For any two-sided cell ¢ of W there exists ICS such that W'
18 finite and ¢\ W'+,

4.9. In this subsection we assume that G is adjoint and that
o: W—W is an automorphism of (W, S) such that the restriction of ¢ to
X coincides with the restriction to X of an inner automorphism of W
(which does not necessarily preserve S,). Then ¢ defines isomorphisms
J—J (t,—>t,w) and H—H; (T,—T,.,), which restricts to an isomorphism
Zi—Z;. Also ¢ maps each two-sided cell of W onto a two-sided cell of
W so it defines a map oy : Cell(W)—Cell(W). We assert that

(a) If 4.8 (b) holds for G, then oc,=Identity.

We first show that the map Z;—Z; defined above (by o) is the identity.
Now Z; can be regarded as the coordinate ring of the variety CU/ of
semisimple classes of G(k). The restriction of ¢ to X corresponds to an
isomorphism T,—T, or T,(k)—T,(k), and it is clear that this induces on
C)) (=space of W,-orbits on T,(k)) an automorphism C{/—C}/ which
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corresponds to the automorphism Z;—Z; of the coordinate ring considered
above. By our assumption on ¢, the isomorphism T\—T, is given by
conjugation by an element of W, hence CI/—C{/ is the identity, hence
Zi—Zy; is the identity, as stated.

Let E be a simple J-module. Composition with ¢ gives a new simple
J-module °E. It is clear that the central characters of the H;-modules
°ERQk, °("E)®k are related by composition with the automorphim Z;—Z;
considered above. Hence these two central characters coincide. We
have E=E(u,s, o), " E=EW, s, p') for some (u,s, p)e¥’, (W, ¢, o)e¥".
Using 2.12, we see that u, u’ are conjugate in G. Let ¢ be the two-
sided cell of W corresponding to E; then o¢(c) is the two-sided cell of W
corresponding to “E. By definition and by 4.8 (a) we have c¢=c(u),
o(c)=c(u’). Since u,u’ are conjugate, it follows that c¢=oc(¢c) and (a)
follows.

4.10. We now return to a general G. Let =:G—G be the adjoint
quotient. The definitions in §1 are applicable to G, T,==T,, B,==B,
instead of G, T, B,; the group W (defined in terms of G, T), B,) may be
identified (as a Coxeter group) with the subgroup W’ of the group W
defined in terms of G, T, B, and the character group of 7, may be
identified with the subgroup X’ of X. We have a natural map j : Cell( W)—
Cell(W) defined by associating to a two-sided cell of W’ the unique two-
sided cell of W containing it. It is clear that j is surjective and its
fibres are precisely the orbits of the natural action of 2 on Cell(W)
(induced by the conjugation action of 2 on W’). We assert that:

(a) If 48 (a) holds for G then j:Cell(W’)—Cell(W) is bijective.

It is enough to show that £ acts trivially on Cell(W’). By 4.9 (a) it is
enough to show that any w¢€ 2 acts (by conjugation) on X’ in the same
way as the conjugation by some element of W’. We can write w=w-x
(we Wy, x€X). Then, for '€ X', we have wx’o '=w2x'w™* and we W',
since X is commutative. Thus, (a) follows.

4.11. In the setup of 4.10 we assume that 4.8 (a) holds for G and
we denote by H’ (resp. J’) the algebra defined in terms of W’ in the
same way as H (resp. J) is defined in terms of W. Let H=H Q k.
We can identify H’, J’, H, with subalgebras of H,J, H,. .

Let (u,s, p)€¥’. Let u=n(u), s=x(s).

From the definitions it is easy to see that the restrictions of the
H,-module K,.®k to H{ is isomorphic K, .Qk. (K, is defined in terms
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of G,%,5 in the same way as K,, is defined in terms of G,u,s.) It
follows that the restriction of the H,-module K, ,,Qk to H} is isomorphic
to a direct sum of Hj-modules K, ,,Qk for various p. From 4.2, it then
follows that the restriction of the J-module E(u,s, p) to J’ is a direct
sum of J’-modules of the form E(#,5, p) for various pg. (Here E(%,S5, p)
is defined in terms of G, %,5 g in the same way as E(u,s, o) in terms
of G,u,s, p.) Hence, if ¢(@t) € Cell(W") is defined as in 4.8 (a) (for G), there
exists w € ¢(#) such that ¢,#0 on E(u,s, p). Hence c¢(u, s, p)Dc(%). Since
in W there is exactly one two-sided cell containing a given two-sided cell
of W, it follows that ¢(u, s, p) depends only on u, not on s, p. Thus, if

4.8 (a) holds for G then it also holds for G.

4.12. Assume that 4.8 holds for G. We assert that in this case
4.8 holds also for G. We have seen already in (4.11) that 4.8 (a) holds
for G. Using 4.10 (a) and the fact that z:G—G defines a bijection
U(@)—U(G), we see that 4.8 (b) holds for G. It is immediate that 4.8
(), (d) for G follow from the corresponding statements for G. Thus,
we are reduced to proving 4.8 in the case where G is adjoint. The
proof will be given in Section 7.

5. Truncated induction

5.1. In this section we shall assume that Q is finite (i.e. G is
semisimple) and we fix a subset IcS such W’ (hence W’) is finite and
a two-sided cell ¢, of W!. Then ¢ is contained in a unique two-sided
cell ¢ of W. We identify J; with the subalgebra J,, of J.. Let M, be
a left J;-module. We define i(Ml):JEQIK)Ml. (Note that J; acts by

J

right multiplication on J, but its unit element does not act as identity;

it also acts on the left on M,. Traditionally, the tensor product is not

defined in this case. However, we shall define it as J, ® M, modulo the
c

subspace spanned by all elements xy@m, —2Qym,, (x€J,, y € J;, m € My).)
We shall regard +(M;) as a left J,-module with multiplication defined
by ' (x@m,) =x'zQm,, (x,x’ € J, m,€ M,).
Let M be a left J,-module. We define

rM)={me M |eem=m}

where ¢, is the unit element of J;. Then r(M) is in a natural way a
left J; -module (restricting the J.-module structure of M).
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5.2, LEMMA. If M, M are as in 5.1, we have a natural isomorphism
Hom, (i(M,), M) =Hom,! (M;, r(M)).

Proor. The left hand side is the set of all C-linear functions
f:J. @ Mi—>M such that flxy@m,) =f(aQ@ym.), f(@'z@m.)=2"f(x@m.) for
all x,2’€J, yeJ;, m,€ M,.

The right hand side is the set of all C-linear functions f':M,—>M
such that f'(ym,)=yf"(m,) for all y€J; (such f’ has automatically image
contained in 7(M)). To f we associate [’ by f/(m,)=,f(e®m,), (e=unit
element of J,); this establishes the desired bijection.

5.3. LEMMA. Assume that M, is non-zero. Then t(M,) is a non-zero
J -module.

ProOF. Assume that we can find C-subspace Z of J, complementary
to J;, and stable under right multiplication by elements of J;. Then
1(M,) is a direct sum of two vector spaces: one is Z Q M, (defined as in

A

5.1), the other is J; @ M,=M,+0, so that i(M,)+0.
JI

It remains to prové the existence of Z. We can decompose J,=J'@PJ”
by J'=dJ,-e, J"=J,(e—e) where ¢ (resp. &) is the unit element of J,
(resp. J;). Then J’,J” are clearly stable under right multiplication by
J! and J{cJ'. Now J’ is a right J;-module (¢, acts as identity) and
Ji is a semisimple algebra since W’ is finite (see 1.4) hence J; admits
a complement in J’ which is a right J]-submodule. This complement
plus J” form the required subspace Z.

5.4. PROPOSITION. Assume that M, is a simple J;-module. Then
there exists a simple J-module M’ such that r(M’) contains M, as a
direct summand.

Proor. By 5.3, 4(M,) is non-zero. By Zorn’s lemma, ¢(}M;) has some
maximal proper submodule. Hence there exists a simple J,-module M’
such that Hom,, (i(M,), M’)#0. It remains to use 5.2 and the semisimplicity
of the J;-module r(M).

5.5. LEMMA. Let I, be a left cell of W' contained in ¢, so that
Jir,=Jr, is a left ideal of J;. Let I' be the unique left cell of W con-
taining I, so that Jr is a left ideal of J,. We have i(Jt)=Jr as (left)
J -modules.
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Proor. The J-linear map J.&J—J, *@y—xy, factors through a
J-linear map f:4(J;)—J,. Let d be the unique element of PNI.
Then d€ /'y and the J-linear map J,—J, Q J;, 2—2Qt;, induces a J-

(o}

linear map f’:J,—i(J; ). One checks easily that f, /" are inverse to each
other.

5.6. PROPOSITION. Let E' be a simple J-module and let res;(°E’) be
the restriction of the H,-module °E’ to the subalgebra Hi. Let E” be a
simple J'-module. Let ¢’ (resp. ¢”) be the two-sided cell of W (resp. W')
corresponding to E' (resp. E”).

(a) If the stmple Hi-module *E” appears with non-zero multiplicity
n the (semisimple) Hi-module res;(°E’) then a(c”)<a(c).

(b) If ¢=e¢, ¢"=c, are as in 5.1 (so that ¢,Cc), then the multiplicity
of *E” in res;("E’) is equal to the multiplicity of the J;-module E” in r(E').

ProoF. (a) We can find d€ PNe¢” such that Tr(ty, E”)=7+0. By
45, we have (—v)" Tr(C,, °E”)=y+element of »C[v]. In particular,
C;#0 on °E”. Since ?E” is isomorphic to an Hj-submodule of res;(°E’)
it follows that C;#0 on °E’. Using 4.4 (e), it follows that a(d)<a(*E’)=
a(¢’). But a(d)=a(c”) and (a) follows.

(b) Let EY,E/,---, Ef be a set of representatives for the isomor-
phism classes of simple J’-modules with corresponding two-sided cell ¢,
and let p; denote the multiplicity of ?E7 in res;(°E’). Using 4.5 for W,
and (a) we have for all we ¢, : (—v)"® Tr(C,, res;(°E’))= X p; Tr(t.,, E) +

element of vC[v]. The left hand side is (—v)*® Tr(C,, °E’) which by 4.4
(for W) is of the form Tr(t,, E')+element of vC[v]. It follows that

Tr(ty, B')= Y o Tr(te, B7) for all wee,
i=1

N
Hence Tr(t., r(E'))= X p: Tr(t,, E) for all wE ¢, Since J; is a semisimle
i=1

algebra, a J; -module of finite dimension is determined up to isomorphism
by the traces of ¢, (w€e¢,) on it. It follows that r(E') is isomorphic as
a J;-module to the direct sum of s, copies of EY,p, copies of Ey, etc.
The proposition is proved.

6. Character sheaves

6.1. In this section we assume that 0 is finite (i.e. G is semisimple).
We shall describe a relationship between H,-modules on the one hand
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and character sheaves [11] on G on the other hand. We shall recall the
definition of the character sheaves that we need. Let S(T,) be the set
of isomorphism classes of C-local systems of rank 1 on T, with finite
monodromy. Now W, acts on T, (by conjugation) hence it also acts
naturally on the set S(7y). For L€ S(Ty), let (W,), be the stabilizer of
L in W,

Let G.., (resp. (T,).;) be the set of regular semisimple elements of
G (resp. Ty). Let G.s={(g, 2T0) € G,y X G/ Ty 2792 € (To)res). Then p:Gry—Gey,
p(g, xT,) =g is a principal covering with group W, (which acts on ng by
w- (g, xTo) = (g, v ~'T,), w=representative of w in the normalizer of T\).
Let ¢:G..,— T, d(g, #T,)=x""'gx. Consider the local system [ =p40*.L on
G.,. As in [11, 83.5] we can define a canonical isomorphism End(.[)=
C[(W,),]. Hence (W), acts naturally on L (inducing identity on G..,).
For any simple C[(W,) J-module & we set fE:Hom(wo) L&, L). We then

have a canonical direct sum decomposition L= @ (ER-L,), (€ runs over
&

the simple C[(W,) Jmodules up to isomorphism) and [, are irreducible
local systems on G.,. We consider the intersection cohomology complex
IC(G, L,). Ttis (up to shift) a “character sheaf” of G of a special kind.
Its cohomology sheaves HIC(G, L ¢) are G-equivariant constructible
sheaves on G, (zero for ¢ odd). Hence for each g € G, the group Za(g)/Zza(g)
acts naturally on the stalk 4 IC(G, _L,), so that for any simple C[Z:(g)/Z3(9) ]
module p the multiplicity (o: H:IC(G, L)) is well defined.

6.2. Given L€ S(T,), there exists wc W, and IcS such that the
canonical projection W—W, defines an isomorphism W' =>(Wy),... (In
particular, W* is finite.)

6.3. Conversely, given IcS such that W' is finite, there exists
LeS(T,) such that W' =5 (W,); we shall select such an £ and denote
it L(I). We shall identify W’ and (W,),, using the isomorphism above.
Hence given a simple C[W/]-module &£, we can regard it as a C[(W,) ;]
module so that _[(I), is well defined (see 6.1). Now & gives rise via
@, : C[W']=J' (see 1.4) to a simple J'-module & and via 0 : HI=S 'Rk,
to a simple HI-module °€. We can now state the following result.

6.4. THEOREM. Let (u,s, p)€ ¥, and let I, L(I),E,°C be as in 6.3.
Then the simple Hi-module °E appears in the restriction of the Hy-module
Koo o®Fk to Hi with a multiplicity equal to

(a) ;[P:ﬂ[ii(IC(G, L))
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To prove this theorem one needs a bridge between the K-theoretic
construction of H,modules and the intersection-cohomology-theoretic
construction of Weyl group representations. Such a bridge is provided
by the series [18] where the proof of the theorem will be given.

6.5. In the rest of this section we shall assume that Q={e}, ie. G
is adjoint. Let I be as in 6.3 and let ¢, be a two-sided cell in W'
Following [8] we attach to ¢, a unipotent class O=0(l,¢,) in G. Let
&, be the unique special representation of W’ which corresponds to ¢,.
We identify W' with its image under the natural projection W—W, and
we induce &, from this image to W, Let %, be the smallest integer
>0 such that the resulting induced W,-module is not disjoint from the
standard Wy-module H*(B, C). Then there is a unique simple W,-module
&, (up to isomorphism) which appears in both these W,-modules. As
pointed out in [8], [1], &, corresponds under Springer’s correspondence to
a unipotent class @ in G and the local system C on it; moreover:

(a) dim B,=a(e)=% (®eO0).

6.6. Let ¢:SL,(C)>G be a homomorphism of algebraic groups, and
let F' be the centralizer in G of the image of ¢. Let F} (1<j<m) be
connected components of F, one in each conjugacy class of F/F°, (F"° is
the component of ¢). To each F'; we associate a diagonalizable subgroup
D;,CcF (in the same way as D is defined in terms of F" in 3.1) and let
D;=D;N F}; we also choose s;€ Dj such that Zr(s;)=Zr(D;) (see 3.1(c)).

6.7. THEOREM. (a) In the setup of 6.6 let u=¢[(1) i] and let O, be

the conjugacy class of u in G. There exists a subset ICS (with W'
finite) and a two-sided cell ¢, of W' such that the properties (al), (a2), (a3)
below hold.

@l) 0.=0, c) (see 6.5).

(a2) Let j€[1, m] and p be such that (u,s;, p) € ¥'; then there exists
a simple W-module & corresponding to ¢, such that p appears in the
Zg(sju)| Zt(su)-module H3.(IC(G, L(I)e)) for some 4.

(a3) Let 7,5’ €[1, m] and p, o’ be such that (u, s;, p) €V, (u,s;, o) €P".
Assume that there exists a simple W-module & corresponding to ¢, such
that p appears in the Zg(su)/Z%(s;u)-module ﬂ[fj.u(IC(G, L(I),)) for some
it and o appears in the Zg(s;u)|Zi(s;w)-module I7.(IC(G, L(I),)) for
some . Then j=3' and p=p'.

(b) Let I,E be as in 6.3 and let (u, s, p) € ¥’ be such that p appears
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in the Zg(su)/Z%sw)-module HE(IC(G, L(I),)) for some i. Let ¢, be the
two-sided cell of W' corresponding to E and let O=0O, ¢c,) be as in 6.5.
Then w €O (=closure of O).

The statements of the theorem express properties which hold for
general character sheaves; these properties can be verified in principle
by computation since the cohomology sheaves of character sheaves are
relatively well understood. More details of the proof will be given in a
future article. Note that the special case of (b) with W/ =W, s=e¢ is
contained in [4].

7. Proof of Theorem 4.8

7.1. In this section we give the proof of Theorem 4.8 assuming the
results on character sheaves in Section 6. We may assume that G is ad-
joint (see 4.12).

7.2. LEMMA. Let ICS be such that W' is finite and let ¢, be a two-
sided cell of W'. Let (u',s', 0 )€¥’. Let & be a simple W-module cor-
responding to ¢,. Assume that the restriction of the H,-module K, . ,Qk
to H! contains the simple Hi-module °C, (see 6.3). Then w €O, c). If
dim B, =alc,), then uw’' € O, c,).

Proor. Using 6.4 we see that o’ appears in the Zg(s'w')/Z(s'u’)-
module %%,(IC(G, L(I);)) for some 7, and using 6.7 (b) we see that
wWeOU, e) If weOl c)—O,¢) then clearly dim B, >dim B, where
u €O, ¢,). But dim B,=a(c,) by 6.5 (a) hence dim B, >a(c,). The lemma

is proved.

7.3. We shall first prove 4.8 (a), (c) by induction. We fix ¢, F, F,
D, D}, s;,5€[1,m], as in 6.6 and let u,0, I, ¢, W' be as in 6.7 (a).
Assume that dim B,=a,, and that 4.8 (a), (¢) hold whenever u is replaced
by w' with dim 9%, >a, Let ¢ be the unique two-sided cell of W con-
taining ¢,.

7.4. LEMMA. In the setup of 7.3, we consider a semisimple element
s€ Zg(u) and let p be an admaissible simple module of Zg(su)|Zg(su).
Then c(u, s, p) (see 4.3) coincides with ¢ (in 7.3).

PrROOF. By replacing s by a conjugate under Z;(u) we may assume
that s€ D} for some j€[1,m]. (Note that c(u, s, p) depends only on the
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G-conjugacy class of (u, s, p).) We have natural homomorphisms (see 3.1 (d)):
Zy(D))|D; S Zr(s)| Z3(s) = Za(su) | Ze(sw)

L

Zr(8)|Z%(s5).

Let g be an irreducible representation of Zr(s;)/Z%(s;) such that the
corresponding representation of Z(D;)/D)] is contained in the restriction
of p. Using 4.6, we have c(u,s, p)=c(u,s;, §). Hence we can assume
that s=s;.

By 6.7 (a2) (re-expressed by 6.4) we can find a simple W’'-module
& corresponding to ¢; such that:

(a) the restriction of K,.,Qk to Hi contains the simple Hj-

module .

Here & is a simple J'-module (see 6.3) with corresponding two-sided cell
¢. By 5.4, there exists a simple J-module E with corresponding two-
sided cell ¢ such that »(E) contains € as a direct summand. Using 5.6,
we see that °€ is contained in the restriction of the H,-module °E to
Hi. By 4.2 we have °E=X,., ,®k for some (v/,s,0')€¥’. By 7.2 we
have ' €(©,, hence dim B, >dim B,=a, If dim B, >a, then by the
assumption of 7.3, we have a(c(w’, ¢/, p')) =dim B, .; but we have ¢(w/, &/, ') =
¢, alc)=a(c)=dim B,=a, (see 6.5 (a)), so dim B, =a, a contradiction.
Hence we have dim B, =a, and 7.2 shows that «'€(,. Hence we ecan
assume that v'=uwu.

Next, replacing s’ by a conjugate under Z;(u), we may assume that
s’€ D}, for some j'€[1,m]. Let p” be an irreducible representation of
Zr(8;)|Z%(s;) such that the corresponding representation of Z(D;)/Dj is
contained in the restriction of p’. Then, (u,s;,0”)€¥’, and using 3.4,
we see that the restriction of JCu,,j,,,~®k to Hj contains the restriction
of K,..., to H, and in particular:

b) the restriction of K,.. ,®Qk to Hi contains the simple Hj-
dule °& ’
module °E.

Moreover, from 4.6 we see that ¢(u, ¢/, o’)=c(u, s,,, 0”). Sinee ¢(u, 8, p’) =c¢,
it follows that



Cells in affine Weyl groups, IV 321

and p=p”. Hence (c) implies c(u,s, p)=c. (Recall that s;=s.) The
Lemma is proved.

7.5. As we have seen in the proof of 7.4, we have a(c)=a, hence
from 7.4 we have a(c(u, s, o)) =dim B,. Thus 7.4 provides the inductive
step in the proof of 4.8 (a), (¢); thus 4.8 (a), (¢) are proved.

7.6. Now let ¢’ be any two-sided cell of W. The algebra J,, must
have some simple module E’; we can regard E’ as a simple J-module
(using the canonical projection J—J,). Using 4.2 we see that E'=E(u, s, o)
for some (u,s, p)€¥’. We then have ¢'=c(u,s, p) by the definition of
¢(u,s, p). This proves that the map in 4.8 (b) is surjective. Moreover,
from 7.4 applied to u, we see that ¢’=c¢D¢, (¢, ¢; as in 7.3) hence /N W £ Y
(I as in 7.2). Thus 4.8 (d) holds.

7.7. It remains to prove that the map in 4.8 (b) is injective.

Let u, % be representatives of unipotent classes of G which are
mapped by the map in 4.8 (b) to the same two-sided cell ccW. We
attach (I,c,cW?) to u as in 6.7 (a); we attach similarly (I’,cic W") to
w'. By 7.4 we have ¢,Cc,cicc. Let I'y (resp. I'{) be a left cell of W’
(resp. W¥) contained in ¢, (resp. ¢/). Let I' (resp. I"") be the left cell
of W containing I", (resp. I'Y). We have I'ce¢, I"Cc. We now show
that:

(a) All simple quotients of the left J-module J are of form E(u, s, o)
for some s, p such that (u,s, p)c¥".

Let E be a simple quotient of J,. We have E=E(%, 5, p) for some
(@, s p)e¥?’, (see 4.2). By 5.2 and 5.5 we have

Hom,, (J},, r(E))=Hom,,(i(J},), E)=Hom,(J, E)#0

hence 7(E) contains some irreducible J’-module & with corresponding
two-sided cell ¢, (£ is the associated W’-module.) Then by 5.6 (b),
the restriction of °E to H! contains the simple Hl-module °C. Since
dim B,=a(c)=alc,) (by 4.8 (¢)) we see from 7.2 that # is conjugate to
u, and the assertion (a) is established.

Similarly, we have:

(b) all simple quotients of the left J-module .J, are of form
Ew/, ¢, o) for some ¢, o’ such that (v, ¢, o) € ¥".
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From 3.1 (k) and the line following 3.1 (1) in [16] it follows that
any left cell in ¢ has non-empty intersection with any right cell in ¢.
Hence there exists we€ I” such that w™€l”. Then w defines a homo-
morphism of (left) J-modules f:J,.—J by f(t,)=t,-t,, (y€I'). This is
non-zero since if d’e 9NI" then f(t;)=t,#0. The J-modules J..,Jr
are finitely generated; this follows from [15, 1.6 (i)] and the fact that
Jr is a direct summand of J (as a left J-module). Using 4.7, it follows
that there exists a simple quotient of J, (necessarily of form E(u,s, p),
see (a)) and a simple quotient of J. (necessarily of form E(u’, s, o’), see
(b)) with u, %’ conjugate. Thus u,u’ are conjugate and the injectivity
of the map in 4.8 (b) is established. This completes the proof of 4.8.

8. Finite cells

In this section, we assume that 2 is finite, i.e. G is semisimple.
The following result has been conjectured in [9, Problem V].

8.1. THEOREM. Let O be a unipotent class of G, and let ¢ be the
corresponding two-sided cell of W (see 4.8 (b)). The following conditions
are equivalent:

(a) ¢ ts a finite set.

(b) Z%wu,) s a unipotent group (u,€0).

ProoF. Assume first that (b) holds. Then there are only finitely
many triples (u,s, p)€¥’, up to G-conjugacy with w€(® hence J, has
only finitely many simple modules (up to isomorphism). Assume that
the centre C, of J, is infinite dimensional over C. Being a finitely
generated C-algebra (see [15, 1.6 (ii)]), its ideal of nilpotent elements is
finite dimensional over C, hence the reduced algebra is still infinite
dimensional over C. Hence C, admits infinitely many algebra homomor-
phisms into C. For each such homomorphism A there exists a simple
J, module on which C, acts via h (as in the proof of 4.7). This provides
infinitely many simple J,-modules, a contradiction. Thus C, is finite
dimensional over C. But J, is a finitely generated C-module (see [15,
1.6 (i)]) hence J, is finite dimensional over C hence (a) holds.

Conversely assume that (b) does not hold. Then there are infinitely
many triples (u, s, o) €7’ with w€(®, up to G-conjugacy. Hence J, has
infinitely many simple modules hence it is infinite dimensional over C.
Thus ¢ is infinite. The theorem is proved.
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9. Spherical representations

9.1. PrROPOSITION. Let (u,s, p)€¥’. The following conditions are
equivalent:

(a) {8€ Ku k| T.E=v'E Ywe W} #0 te. K, Qk is a spherical
representation of H,.

(b) p=L

(¢) Let Woo={wée W|w has minimal length in wW,}.

There exists d € DNe(u, s, p) N Wi such that t,E(u, s, p)#0.

ProoF. By 6.4, condition (a) is equivalent to the condition that
(0: HEIC(G, C))+0 for some i. We can take _L(I)=C in this case.)
Clearly, IC(G,C)=C since G is smooth; we have H*(C)=0 for ¢+0,
HE(C)=C for 1=0 and the equivalence of (a), (b) follows.

Let 4 be the one dimensional H;*-module defined by 7,—v*®.

Let E=E(u,s, p). For each de 9Nc(u,s, p), let E;=t,E. Then the
subspaces E, form a direct sum decomposition of E, and the action of
the elements T, (r€S) of H, in the H,-module °E is given by particularly
simple formulas (see [15, 3.8]). In particular, if

E'=@E, (d runs over DNc(u, s, p) N Wain)
E"=@E, (d runs over DNec(u,s, p) N (W—W))

then E”®kc°E is stable under H;° and does not contain 4 and EQk/E” Rk
is (as an Hj>module) a multiple of 4.

Since EQk="°FE is completely reducible as an H;*-module, it follows
that 4 appears in the H;-module °E if and only if E'Qk+0. Thus the
equivalence of (a), (c) is proved.

9.2. COROLLARY [19]. For any two-sided cell ¢ of W, the set I',=¢ N\ Wain
18 mon-empty.

Proor. By 4.8, we have ¢=c(u,1,1) for some unipotent element
% € G. It remains to use the equivalence of (b) and (c) in 9.1.

9.3. In [19] it is shown that, given a two-sided cell ¢ of W, I, is
a single left cell; this is deduced from the fact that the algebra .J r,ar;?
is commutative.

9.4. PROPOSITION. The simple modules of J r.ar;t are one-dimensional
and are naturally in 1-1 correspondence with the semisimple conjugacy
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classes of Zs(u), (u as in 9.2).

ProorF. The first assertion follows from the commutativity of J roar;t
[19].

Let d be the unique element of YNNI, We have J pcnpc—lzthctd.

By a general property of algebras in which the unit element is a
sum of orthogonal idempotents, we see that M—¢,M defines a bijection
between the set of simple J,-modules M (up to isomorphism) such that
tsM+0 and the set of simple t;J,t,-modules (up to isomorphism). Using
9.1, we see that the simple modules for J r.ar;t are precisely t,E(u,s, 1)
where s is any semisimple element of Z;(u) (up to conjugacy).

10. A conjecture

10.1. In this section we shall assume that G is almost simple,
simply connected. We shall formulate a conjecture which makes the struc-
ture of the algebra J very explicit; it is a generalization of the conjecture
[16, 3.15]; we also derive some consequences of this conjecture.

10.2. The following discussion is a slight generalization of that in
[16, 2.2]: we replace finite groups by reductive groups. Let F be a
reductive (possibly disconnected) algebraic group over C. Let Y be a
finite F-set (i.e. set with an algebraic action of F'; thus, F" acts trivially).
An F-vector bundle (=F-v.b.) on Y is a collection of finite dimensional
C-vector spaces V, (y€ Y) with a given algebraic representation of F' on
@ V,such that gV,=V,, forall g€ F, y€ Y. There is an obvious notion

VEY

of direct sum and tensor product of F-v.b. on Y. Let Kp(Y) be the
Grothendieck group of the category of F-v.b. on Y. It has as basis the
irreducible F-v.b. on Y (i.e. those F-v.b. which are #0 and are not
direct sums of two F-v.b. which are both +#0). If V is an irreducible
F-v.b. on Y then the set {y€ Y |V,#0} is a single F-orbit o in Y and,
for y € o, the obvious representation of the isotropy group F, on V, is
irreducible; this gives a bijection between the set of irreducible F-v.b.
on Y (up to isomorphism) and the set of pairs (y, p) where y€ Y, p is
an irreducible (algebraic) representation of F',, modulo the obvious action
of F.

Let Y’ be another finite F-set and let =: Y—Y’ be an F-equivariant
map. Let V an F-v.b. on Y. Define =,V to be the F-v.b. on Y’ with
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(7, V)= 691 V., (¥ € Y'), with the obvious action of F. This defines a
yen~ H(y')

homomorphism 7, : Kr(Y)—>Kr(Y’). Let V' be an F-v.b. on Y’. Define
7'V’ to be the F-v.b. on Y with (z'V"),=V%, (y€Y), with the obvious
action of F. This defines a homomorphism 7' : Kp(Y")—>Kg(Y).

We now consider the finite F-set YX Y with diagonal action of F,
and two F-v.b. V, V' on YXY. We define a new F-v.b. V.,V on YXY
by Vi V'=(my), (7. VQmisV’) where z;;: YXYXY—-Y XY are the various
projections. Thus, we have (VxV'),,= & (V,.,.QV,.,). This defines an

ho s
associative ring structure on K (Y X Y); the unit element is the F-v.b.
C, which is C on the diagonal in Y X Y and is zero outside it. We define
for any F-v.b. V on YXY a new F-vh. V on YXY by V=4(V¥)
where V*is the F-v.b. dual to V and 7: YXY->Y XY is i(y, ¥)=(¥, ¥);
thus V,, =V%* . clearly V is irreducible if V is irreducible. Note that
K:(YxY) is a based ring in the sense of [16, 1.1]. We denote the C-
algebra Kp(YXY)®XC by Ki(YXY).

10.3. Let s be a semisimple element of F. Let <, be the algebra
of C-valued functions on the fixed point set (Y X Y)* which are constant
on the orbits of Zg(s) (i.e. of Zr(s)/Z%(s)); the algebra structure is given
by (f+f)(y. ¥)= X Sy, v")f (v ¥).

We have an algebra homomorphism h,: Kx(Y X Y)—>%, defined by
associating to an F-v.b. V on YXY the funection f(y, ¥)=Tr(s, V,,).
Now let p be a simple Z(s)/Z}(s)-module which appears in the permuta-
tion representation of this finite group on the fixed point set Y*. We
attach to p the vector space E,, of all functions Y*—p which commute
with the action of Zg(s)/Z%(s); this is an < ,module; if f€ <, and g€ E,,
we define fuc€ E,, by (fu)(x) :,,ezwf(x' Y)ply), (x€Y"). This is in fact,

a simple &,module and, by varying p one gets each simple ¢,-module
exactly once. Furthermore we can regard E,, as a Ky(Y X Y)-module,
via h,; this is a simple K;(Y X Y)-module and (s, p)—>E,,, defines a bijection
between the set of pairs (s, p) as above (up to F-conjugacy) and the set
of isomorphism classes of simple Kr(Y X Y)-modules.

We have dim E, ,=multiplicity of p in the permutation representation
of Zp(s)/Z%(s) on Y*.

10.4. We fix a two-sided cell ¢ of W. Let © be the unipotent
class of G corresponding to ¢ as in 4.8. Let ¢:SL,(C)>G be a homo-

morphism of algebraic groups such that u=¢[(1) ﬂe@ and let F' be
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the centralizer in G of the image of ¢; then F' is a maximal reductive
subgroup of Zg(u).
We can now state the following:

10.5. CONJECTURE. In the setup of 10.4, there exists a finite F-set
Y and a bijection

Il : c=5>set of irreducible F-v.b. on YXY (up to isomorphism)
with the following properties:

(a) the C-linear map J—~Kr(YXY), t,~Il(w), is an algebra iso-
morphism (preserving the unit element).

(b) Hw™)=Iw) wee).

(e) For any semisimple element s€ F, the Zr(s)|Z%(s)-module carried
by the permutation representation of this finite group on the fixed point
set Y* is isomorphic to @ H*(B:, C) regarded as a module over Zy(s)/Z3(s) =

Zs(su)|Zy(su) in a natural way.
(d) Under II, the simple Kr(Y X Y)-module E,, , (see 10.3) corresponds
to the simple J-module E(u,s, p), (see 4.3).

(An analogous conjecture for W, instead of W was formulated in
[16, 3.15] and the remark following it; in that case instead of F' we had
a finite group.) It follows that for w,w’, w” € ¢ we have

HIH(w)*IT(w')= D 7w w,wll (W) in Kp(YXY)
w'ee
so that the structure constants 7,,,.. of J, are completely described in
terms of operations with vector bundles.
Note that the number of elements of Y is equal to the Euler
characteristic of B,.

10.6. Let F, be the isotropy group of yc€Y in F. We can also
regard Il as a bijection

(a) II':¢>set of triples (y, ¥/, p) where y, ¥’ € Y, p is an irreducible
(algebraic) representation of F,N F',,, modulo the obvious action of F/F".
Note that II'(w)=(y, ¥, o)==II'"(w™)=(y', ¥, p*).

We have the following consequence of the conjecture 10.5.

(b) For each F-orbit o on Y, the set of triples (y, %', p) in (a) with
yE€o (resp. ¥ €o) corresponds under /I’ to a left cell (resp. right cell)
in ¢; this gives bijections between the set of left cells in ¢, the set of
right cells in ¢, and the set of F-orbits in Y.
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Hence to each left cell I" in ¢ one can associate a subgroup F of
F containing F°, well defined up to F-conjugacy; it is the isotropy group
of some point in the F-orbit oC Y corresponding to I.

The following is also a consequence of the conjecture 10.5.

(e) If I',o are as above then /I’ restricts to a bijection

I, :I'NI""Sset of irreducible F-v.b. on oXo
=get of F/F'-orbits of triples (v, ¥, o) in (a) with
Y€o, Y'Eo

and this extends to an algebra isomorphism
Jrar-1—> Kr(0X0)=K¢(F|Fp X F|FY).

(I have recently proved the analogue of (c) for W, which has been
formulated in [16, 3.15] as a conjecture.)

10.7. Let I', be as in 9.2, 9.3. One can expect that for this ", one
has F. =F, hence the F-orbit in Y corresponding to I, (see 10.6) is a
single element of Y, and /I defines a bijection between I',N/";" and
the set of irreducible representations (up to isomorphism) of F, which
extends to an algebra isomorphism Jrar-i—>Rr (the representation ring
of F, tensored with C). Let p be an irreducible representation of F' and
let w,e I',NI";* be the element corresponding to it under our (conjectural)
bijection. It is likely that w, can be characterized by the property that
tu, € Jrar;t acts on the simple module corresponding to the semisimple
element s€ FCZ(u) (see 9.4) by the scalar Tr(s, p).

10.8. The union U (I",NI";") is equal to the set of all we W such

that w has minimal length in WwW,, that set is in natural bijection
with X,... (Each double coset W,wW, contains a unique element X,
and a unique element of minimal length.) Using then 10.7 we obtain
a (conjectural) bijection between X, and the set of pairs (u, o), (up to
G-conjugacy) with # € G unipotent and p an irreducible representation
of Zg(u).
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