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What can we ask about representations?
Start with a reasonable category of representations.
Example: g ⊃ b = h + n; Bernstein-Gelfand-Gelfand category O
consists of U(g)-modules V subject to

1. fin gen: ∃V0 ⊂ V , dim V0 <∞, U(g)V0 = V .
2. b-locally finite: ∀v ∈ V , dim U(b)v <∞.
3. h-semisimple: V =

∑
γ∈h∗ V (γ).

Want precise information about reps in the category.
Example: V in category O

1. dim V (γ) is almost polynomial as function of γ.
2. Ass(V ) is int comb of B-stable irr cones in (g/b)∗.
3. V has a formal character

[∑
λ∈h∗ aV (λ)eλ

]
/∆.

Want construction/classification of reps in the category.
Example: λ ∈ h∗  Iλ =def U(g)⊗U(b) Cλ = Verma module.

1. (SUBQUOTIENT THM): for every irr J ∈ O ∃λ dominant
with J comp factor of Iλ.

2. (STRUCTURE THM): ∃Cλ ↪→ Inλ.
3. (LANGLANDS THM): Iλ has unique irr quo Jλ; satisfies

Cλ ↪→ Jn
λ.

4. Each irr in O is Jλ for unique λ ∈ h∗.
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How do you do that?
g ⊃ b = h + n, ∆ = ∆(g, h) ⊂ h∗ roots, ∆+ roots in n.

Introduce partial order on h∗:
µ′ ≤ µ ⇐⇒ µ′ ∈ µ− N∆+ :

that is, that µ′ = µ−
∑
α∈∆+ nαα, with nα ∈ N.

Proposition
Suppose V ∈ O.

1. ∃{λ1, . . . , λr} ⊂ h∗ so V (µ′) 6= 0 =⇒ ∃i , µ′ ≤ λi .
2. If V 6= 0,∃ maximal µ ∈ h∗ subject to V (µ) 6= 0.
3. If µ ∈ h∗ is maxl subj to V (µ) 6= 0, then V (µ) ⊂ V n.
4. If V 6= 0,∃µ with 0 6= V (µ) ⊂ V n.
5. ∀λ ∈ h∗, Homg(Iλ,V ) ' Homh(Cλ,V n).

Parts (1)–(4) guarantee existence of “highest weights;”
based on formal calculations with lattices in vector
spaces, and n · V (µ′) ⊂

∑
α∈∆+ V (µ′ + α).

Sketch of proof of (5):
HomU(g)(U(g)⊗U(b)Cλ,V ) ' HomU(b)(Cλ,V ) = HomU(h)(Cλ,V n).

First isom: “change of rings.” Second: n · Cλ =def 0.
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Moral of the story

For category O, two key ingredients:
1. Highest weight: V n 6= 0.
2. Universality: V n  maps from Verma modules.

1st from comb/geom in h∗, 2nd from homological alg.
Irrs J in O param by λ ∈ h∗; characteristic is Cλ ⊂ Jn

λ.
Same two ideas apply to (g,K )-modules.
Technical problem: change of rings needed is not
projective, so ⊗ has to be supplemented by Tor.
Parallel problem: construct not n-fixed vectors, but
some derived functors Hp(n, ·).
Irrs J inM(g,K ) param by γ ∈ Ĥ, some θ-stable
Cartan H ⊂ G; characteristic is Cγ ⊂ Hs(n, J).
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Lie algebra cohomology
n Lie alg (e.g. nil radical of a parabolic in reductive g.)
Study functor of n-invts V 7→ V n on reps of n.

Extra structure: nC b =⇒ V n is b/n-module.

Functor left exact; not right exact unless n = 0.

Definition 1. Hp(n, ·) is the pth right derived functor of ·n.

Definition 2. Suppose
0→ V → I0 → · · · → Ip−1 → Ip → Ip+1 → · · ·

is an injective resolution of V as a U(n)-module. Then

Hp(n,V ) = ker[Inp → Inp+1]/ im[Inp−1 → Inp ].

Definition 3. Hp(n,V ) = pth coh of cplx Hom(
∧p

n,V ).

Extra structure: nC b =⇒ Hp(n,V ) is b/n-module.

0→ V1 → V2 → V3 → 0 exact seq of n-modules =⇒
0 −→H0(n,V1) −→ H0(n,V2) −→ H0(n,V3)

−→H1(n,V1) −→ H1(n,V2) −→ H1(n,V3)...
...

...
−→Hd (n,V1) −→ Hd (n,V2) −→ Hd (n,V3) −→ 0
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Casselman-Osborne theorem

K ⊃ G max compact in real reductive, θ Cartan invol 
pair (g,K ).

q = l + u Levi decomp of parabolic subalg; assume
l = θl = l. Get Levi pair (l,L ∩ K ).

Theorem
Lie algebra cohomology is a cohomological family of functors
Hp(u, ·) : M(g,K )→M(l,L ∩ K ). Each carries modules of
finite length to modules of finite length.

“Finite length” close to “quasisimple.” Proof of thm
depends on analyzing Z(g). . .

U(g) = U(u)⊗ U(l)⊗ U(u−) gives linear projection

ξ : U(g)→ U(l); ξ : U(g)z(l) → U(l)z(l) alg hom.

Theorem (Casselman-Osborne)
If V is a g-module, then Z(g) acts on Hp(u,V ). This action is
related to the l action by z · ω = ξ(z) · ω.



David Vogan

6. Langlands
classification
CategoryO
Lie algebra cohomology

7.M(g, K )
Lie algebra cohomology:
compact case

Lie algebra cohomology:
noncompact case

8.
Knapp-Zuckerman
classification
Abstract theory of Hermitian
forms

Connection with unitary
representations

Case of SL(2, R)

9. Signature
algorithm
Char formulas for invt forms

Herm KL polys

Unitarity algorithm

10. Open
problems
In conclusion

Interlude: Chevalley isomorphism
Complex reductive g ⊃ b = h + n; W = W (g, h) acts on
h, h∗.

Example: gl(n) ⊃ upper triang mats ⊃ diag mats ' Cn. W = Sn.

ρ = half sum of pos roots ∈ h∗. Twisted action ∗ of W is
w ∗ λ =def w(λ+ ρ)− ρ, (w ∗ p)(λ) =def p(w−1 ∗ λ)

(λ ∈ h∗,p ∈ S(h)).

Example: ρ = ((n − 1)/2, (n − 3)/2, . . .− (n − 1)/2),
w ∗ (λ1, . . . , λn) = (. . . , λw−1(i) + (i − w−1(i)), . . .).

Theorem (Chevalley)
The algebra homomorphism ξ : Z(g)→ S(h) from previous
slide is injection with image equal to S(h)W ,∗, the invts of the
twisted W action. Consequently maxl ideals in Z(g) are in
one-to-one corr with twisted W orbits on h∗.

Corollary of Thm and Casselman-Osborne: if g-module V
has infl char λ ∈ h∗, then Hp(u,V ) has finite filtration with
each level of infl char w ∗ λ, some w ∈W (l, h)\W (g, h).
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Cartan-Weyl and Bott-Kostant
K compact, bk = t + nk Levi decomp of Borel.

Nota bene: automatically nk = [nk]
−; defines complex

structure on K/T , identifying it with projective algebraic
complete flag variety K (C)/(BK )(C).

Write ∆+(k,T ) = ∆(nk,T ).
X∗(T ) = lattice of chars of T ⊃ X∗(T )+

K ;

X∗(T )+
K =def {µ ∈ X∗(T ) | µ(α∨) ≥ 0 (α ∈ ∆+(k,T ))}

Assume henceforth K connected.

Theorem (Cartan-Weyl)
If K connected, then irr reps of K are param by X∗(T )+

K , by
requirement Enk

µ = Cµ as rep of T : H0(nk,Eµ) = Cµ.

!Borel-Weil theorem (Eµ ⊂hol secs of bdle on K/T ).
Theorem (Bott-Kostant)
The only weights of T appearing in H∗(nk,Eµ) are those in
W ∗ µ, the twisted W-orbit of the highest weight:

Cw∗µ ⊂ Hp(nk,Eµ) ⇐⇒ `(w) = p.
!Bott theorem (Eµ ⊂ Dolbeault coh of bdle on K/T ).
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Compact gps K : Bott-Kostant continued

K cpt conn, qk = lk + uk Levi decomp of parabolic.

Nota bene: automatically uk = [uk]
−; defines complex

structure on K/LK ' K (C)/(QK )(C).

Theorem (Kostant)
If µ ∈ X ∗(T )+

K ↔ Eµ irr for K , then the only irr reps of LK
appearing in H∗(u ∩ k,Eµ) are Fw∗µ, with w ∈WLK \WK a
minimal lgth coset representative. In fact

Fw∗µ ⊂ Hp(u ∩ k,Eµ) ⇐⇒ `(w) = p.

Thm equiv to Bott’s thm on occurrence of Eµ in Dolbeault
cohom of irr holom vec bdles on K/LK .

First statement of Thm follows from Casselman-Osborne.
For second, look at complex for Lie alg cohom:

Fw∗µ appears once in Hom(
∧

uk,Eµ), deg `(w).
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Under the hood: details of Kostant proof

Pf of Kostant thm on Lie alg cohom (either for b or for
arbitrary q) was Casselman-Osborne plus

Fw∗µ appears once in Hom(
∧

uk,Eµ), deg `(w). (A)

For (A), fix dom reg r ∈ t: α(r) > 0, all α ∈ ∆+. Ask

What wts γ of Hom(
∧

uk,Eµ) maximize γ(wr)? (C)

D, R T -reps =⇒ wts of Hom(D,R) are (wts of R) − (wts of D).
So break (C) into two questions:

what wts γE of Eµ maximize γE (wr)? (CE)

what wts γ∧ of
∧

uk minimize γ∧(wr)? (C∧)

Answer to (CE) is wµ, mult one.

Define ∆+(w) = {α ∈ ∆+ | α(wr) < 0}. Easy to see
|∆+(w)| = `(w). Since w minimal in WLK w , ∆ + (w) has
no roots of ∆+(lk). Conclude answer to (C∧) is∑

α∈∆+(w) α = ρ− wρ, (mult one).

Answer to (C) is w ∗ µ, mult one, deg `(w). (A) follows.
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Theorem of extremal weights

G ⊃ K ⊃ T0 real reductive ⊃ maxl cpt ⊃ max torus.

H = TA =def CentG(T0) fundamental Cartan subgp,
W (G,H) ' W (K ,T ) ⊃ W (K0,T0).

Fix nondeg real invt bilinear form 〈, 〉 on g0, preserved by
θ, pos def on s0, neg def on k0.

Definition
An extremal wt of rep E of K is µ′ ∈ X ∗(T0) with 〈µ′, µ′〉 maxl
subject to E(µ′) 6= 0. If bk = nk + t is a Borel subalg, a
bk-highest wt of E is a wt µ of Enk .

Theorem (Cartan-Weyl)
1. If the extremal wt µ of E is dominant for bk, then

E(µ) ⊂ Enk ; so µ is bk-highest.
2. The extremal wts of an irr E ∈ K̂ form one W (K ,T )

orbit. These weights have multiplicity one.
3. Extremal wts make finite-to-one correspondence

K̂ � X ∗(T0)/W (K ,T ).
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Top cohomology
K ⊃ T0 maxl torus, s = (dim K/T )/2.

Definition
A top cohomology weight for rep E of K is a weight of
max lgth in H∗(nk,E), with bk ⊃ t Borel subalgebra. If E
has to cohom wt γ, the top cohomology norm for E is
‖E‖top =def 〈γ, γ〉.
Proposition
Suppose E ∈ K̂ has extr wt µ. The top cohomology
weights of E are those in W · (µ+ 2ρc), with 2ρc sum of a
set of pos roots making µ dominant. Precisely, µ+ 2ρc
appears in Hp(nk,E) ⇐⇒ 2ρc ! b−k and p = s. In
particular, ‖E‖top =def 〈µ+ 2ρc , µ+ 2ρc〉.

Notice b−k : to get top degree cohomology, largest
possible weight, must use Borel opposite to one
making µ dominant.
It is these cohomology classes, not highest weights
that will be generalized to (g,K ) modules.
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Definition of lowest K -type
Want idea like “extremal weights” for (g,K )-mods.

G ⊃ K ⊃ T0, H = TA =def CentG(T0) fundamental Cartan.

Definition
If V is a (g,K )-module, lowest K -type is E ∈ K̂ that has ‖E‖top
minimal subject to the reqt that E appear in V .

Set of values of a pos def quad form on a lattice is
discrete and nonnegative. It follows that every nonzero
V ∈M(g,K ) has at least one lowest K -type.

Fix µ ∈ X ∗, ∆+(k,T0) making µ dom, 2ρc = sum of pos
roots. Choose ∆+(g,T ) making µ+ 2ρc dominant
 b = h + n θ-stable Borel subalgebra. Prev slide =⇒

dim Hs(n−k ,V )(µ+ 2ρc) =sum of mults of K reps
of top cohom wt µ+ 2ρc

These n−k cohom classes perfectly identify some (lowest)
K -types of V . But n−k too small to identify V in this way.
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Cohomology and lowest K -types: generic µ
Continue with V ∈M(g,K ), lowest K -type E of top
cohom wt µ+ 2ρc  b = h + n θ-stable Borel subalgebra.
Write ρ ∈ t∗ for half sum of roots in n−.

Theorem
If in addition µ+ 2ρc − ρ has str pos inner prod with each
positive root, then the natural restriction map

res : Hs(n−,V )→ Hs(n−k ,V )
is injective on µ+ 2ρc wt space of T0.

Proof follows proof of Kostant theorem.

In place of standard complex to compute H ·(n−,V ), use
Hochschild-Serre spectral sequence: E1 term is

Hp(n−k ,V )⊗
∧q(n−s ) (g = k + s Cartan decomp).

Spectral sequence is T -eqvt. Hypothesis E lowest, plus
Kostant desc of Hp(n−k ,V ) =⇒ wt µ+ 2ρc appears in E1

only in degree (s,0). Thm follows.

Langlands classif: V  char of H on Hs(n−,V ).
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Cohomology and lowest K -types: all µ
Continue with V ∈M(g,K ), lowest K -type E of top cohom wt
µ+ 2ρc  b = h + n θ-stable Borel subalgebra. Write ρ ∈ t∗ for
half sum of roots in n−.

λ = orth proj of µ+ 2ρc − ρ on pos Weyl chamber.

“Generic case” was λ = µ+ 2ρc − ρ in interior of chamber.

Define q = l + u ⊃ b = parabolic subalg defined by λ.

(Re)define s = dim uk, F = irr of LK of top cohom wt µ+ 2ρc

appearing in Hs(uk,E).
dim

(
HomLK (F ,Hs(u−k ,V ))

)
= sum of mults of K reps

of top cohom wt F .
Theorem
res : Hs(u−,V )→ Hs(u−k ,V ) is inj on LK -isotypic space for F .

Lowest cohom class of V =def irr (l,LK ) module VL in
Hs(u−,V ), containing LK -type F .

Langlands param for V =def Langlands param for L; turns out
(missing slides!) to be char of max split Cartan HL ⊂ L.
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Why cohomology can identify a module
K ⊃ G max cpt in real red, θ Cartan inv pair (g,K );.

FIX q = l + u Levi decomp of θ-stable parabolic subalg.
Get qk = lk + uk parabolic in k, Levi pair (l,LK ); s = dim uk.

FIX irr (g,K )-module V , (τ,Eτ ) irr for (k,LK ),
Vτ = Homk,LK (Eτ ,V ) multiplicity space.
RECALL CENTRALIZER ALGS:

if 6= 0, Vτ = irr R(g, LK )k,LK module, determines V . (CENT )

Theorem
Suppose X ∈M(g,LK ); fix coh class ω ∈ H r (u,X ) ∈M(l,LK ).

1. H r (u,X ) is (l, LK )-module, so R(l, LK ) acts.
2. H r (uk,X ) is (l, LK )-module, so R(lk, LK ) acts.
3. ∃ restriction homomorphism res : H r (u,X )→ H r (uk,X ),

respecting LK action.
4. ∃ Chevalley homomorphism ξ : R(g, LK )k,LK → R(l, LK )LK .
5. R(g, LK )k,LK acts on H r (uk,X ), on range of rep in

HomLK (
∧r uk,X ); commutes with LK .

6. T · res(ω) = res(ξ(T ) · ω).

If res(ω) ∈ (top) cohom for K rep Eτ , LEFT is action in
(CENT ). RIGHT is corr cent action for L on cohom.
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Forms and dual spaces
V cplx vec space (or alg rep of K , or (g,K )-module).

Hermitian dual of V
V h = {ξ : V → C additive | ξ(zv) = zξ(v)}

(V alg K -rep require ξ K -finite; V topolog.  require ξ cont.)

Sesquilinear pairings between V and W

Sesq(V ,W ) = {〈, 〉 : V ×W → C, lin in V , conj-lin in W}

Sesq(V ,W ) ' Hom(V ,W h), 〈v ,w〉T = (Tv)(w).

Cplx conj of forms is (conj linear) isom
Sesq(V ,W ) ' Sesq(W ,V ).

Corresponding (conj lin) isom is Hermitian transpose:

Hom(V ,W h) ' Hom(W ,V h), (T hw)(v) = (Tv)(w).

(TS)h = ShT h, (zT )h = z(T h).

Sesq form 〈, 〉T on V (! T ∈ Hom(V ,V h)) Hermitian if

〈v , v ′〉T = 〈v ′, v〉T ⇐⇒ T h = T .
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Defining Herm dual repn(s)
(π,V ) (g,K )-module; Recall Herm dual V h of V .

Want to construct functor
cplx linear rep (π,V ) cplx linear rep (πh,V h)

using Hermitian transpose map of operators.

Definition REQUIRES twisting by conj lin antiaut of g, gp
antiaut of K .

Since g equipped with a real form g0, have natural conj-lin
aut σ0(X + iY ) = X − iY (X ,Y ∈ g0). Also X 7→ −X is Lie
alg antiaut, and k 7→ k−1 gp antiaut.

Define (g,K )-module πh on V h,
πh(Z ) · ξ=def [π(−σ0(Z ))]h · ξ (Z ∈ g, ξ ∈ V h),

πh(k) · ξ=def [π(k−1)]h · ξ (k ∈ K , ξ ∈ V h).

Will need also a variant: suppose τ involutive aut of G
preserving K . Define (g,K )-module πh,τ on V h,

πh,τ (X ) · ξ = [π(−τ(σ0(Z ))]h · ξ (Z ∈ g, ξ ∈ V h),

πh,τ (k) · ξ = [π(τ(k)−1)]h · ξ (k ∈ K , ξ ∈ V h).
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Invariant Hermitian forms

V = (g,K )-module, τ involutive aut of (g,K ).
A τ -invt sesq form on V is sesq pairing 〈, 〉τ such that

〈Z ·v ,w〉 = 〈v ,−τ(σ0(Z )) ·w〉, 〈k ·v ,w〉 = 〈v , τ(k−1) ·w〉

(Z ∈ g; k ∈ K ; v ,w ∈ V ).

Proposition
τ -invt sesq form on V ! (g,K )-map T : V → V h,τ :

〈v ,w〉T = (Tv)(w).

Form is Hermitian ⇐⇒ T h = T .
Assume from now on V is irreducible.
V ' V h,τ ⇐⇒ ∃τ -invt sesq ⇐⇒ ∃τ -invt Herm
τ -invt Herm form on V unique up to real scalar mult.

T → T h ! real form of cplx line Homg,K (V ,V h,τ ).

Deciding existence of τ -invt Hermitian form amounts to
computing the involution V 7→ V h,τ on Ĝ.
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Hermitian forms and unitary reps
π rep of G on complete loc cvx Vπ, V h

π Hermitian dual
space. Hermitian dual reps are (τ inv aut of (G,K ))

πh(g) = π(g−1)h, πh,τ (g) = π(τ(g−1)h

Definition
A τ -invariant form is continuous Hermitian pairing

〈, 〉τπ : Vπ × Vπ → C, 〈π(g)v ,w〉τπ = 〈v , π(τ(g−1))w〉τπ.

Equivalently: T ∈ HomG(Vπ,V h,τ
π ), T = T h.

� Because infl equiv easier than topol equiv, Vπ ' V h,τ
π 6=⇒

existence of a continuous map Vπ → V h
π . So invt forms may not

exist on topological reps even if they exist on (g,K )-modules.

Theorem (Harish-Chandra)
Passage to K -finite vectors defines bijection from the unitary
dual Ĝu onto equivalence classes of irreducible (g,K ) modules
admitting a pos def invt Hermitian form.

Despite warning, get perfect alg param of Ĝu.
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Hermitian duals for SL(2,R)
Recall ρν (ν ∈ C) family of reps of SL(2,R) defined on

W = even trig polys on S1 = span(wm(θ) = eimθ,m ∈ 2Z)

Rotation by θ in SO(2) acts on wm by eimθ, Lie alg acts by

ρν(H)wm = mwm, ρν,h(H)wm= mwm,

ρν(X )wm =
1
2

(m + ν)wm+2, ρν,h(X )wm=
1
2

(m + 2− ν)wm+2,

ρν(Y )wm =
1
2

(−m + ν)wm−2 ρν,h(Y )wm =
1
2

(−m + 2− ν)wm−2.

Can identify W 'W h by obvious pos def inner product〈∑
r ar wr ,

∑
s bsws

〉
=
∑

p apbp.

Herm trans: T = (tij ) T h = tT = (tji ); Herm dual rep ↑.

See that (ρν)h = ρ2−ν . So ν − 1 imag =⇒ ρν Herm; in
fact form is pos def, so ρν unitary (ν ∈ 1 + iR). These are
unitary principal series.

There is more to say!
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ν − 1 non-imaginary
Calculated (ρν)h = ρ2−ν . Saw that ν ∈ 1 + iR gave
unitary principal series. But we know that ρν is
approximately isomorphic to ρ−ν+2; so expect to find
more Hermitian representations for ν ∈ R.

Theorem (Knapp-Stein)
∃! merom fam of lin maps char by

A(ν) : W → W , A(ν)ρν = ρ2−νA(ν), A(ν)w0 = w0.

A(ν) has simple zero spanned by submodule
{wm | |m| ≥ m0}, (ν = m0 = 2, 4, 6 . . . )
A(ν) is finite only on submodule spanned by
{wm | |m| < m0} (ν = −m0 + 2 = 0, −2,−4, . . .2);
simple pole on quotient.

Form 〈, 〉ν for ρν is std form on W , twisted by A(ν):
〈w1,w2〉ν = 〈A(ν)w1,w2〉 (ν ∈ R).

Question of whether 〈, 〉ν is positive, and the
signature, changes with ν (zeros, poles of A(ν)).
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Signatures for SL(2,R)

Recall E(ν) = (ν2 − 1)-eigenspace of ∆H.

Need “signature” of Herm form on this inf-diml space.

Harish-Chandra (or Fourier) idea:
use K = SO(2) break into fin-diml subspaces

E(ν)2m = {f ∈ E(ν) |
(

cos θ sin θ
− sin θ cos θ

)
· f = e2imθf}.

E(ν) ⊃
∑

m

E(ν)m, (dense subspace)

Decomp is orthogonal for any invariant Herm form.

Signature is + or − for each m. For 3 < |ν| < 5

· · · −6 −4 −2 0 +2 +4 +6 · · ·
· · · + + − + − + + · · ·
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Deforming signatures for SL(2,R)
Here’s how signatures of the reps E(ν) change with ν.

ν = 0, E(0) “⊂” L2(H): unitary, signature positive.
0 < ν < 1, E(ν) irr: signature remains positive.
ν = 1, form finite pos on J(1)! SO(2) rep 0.
ν = 1, form has pole, pos residue on E(1)/J(1).
1 < ν < 3, across pole at ν = 1, signature changes.
ν = 3, Herm form finite −+− on J(3).
ν = 3, Herm form has pole, neg residue on E(3)/J(3).
3 < ν < 5, across pole at ν = 3, signature changes. ETC.
Conclude: J(ν) unitary, ν ∈ [0, 1]; nonunitary, ν ∈ [1,∞).
· · · −6 −4 −2 0 +2 +4 +6 · · · SO(2) reps

· · · + + + + + + + · · · ν = 0

· · · + + + + + + + · · · 0 < ν < 1

· · · + + + + + + + · · · ν = 1

· · · − − − + − − − · · · 1 < ν < 3
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From SL(2,R) to reductive G

Calculated signatures of invt Herm forms on
spherical reps of SL(2,R).
Seek to do “same” for real reductive group. Need. . .
List of irr reps = ctble union (cplx vec space)/(fin grp).

reps for purely imag points “⊂” L2(G): unitary!

Natural (orth) decomp of any irr (Herm) rep into fin-diml
subspaces define signature subspace-by-subspace.

Signature at ν + iτ by analytic cont tν + iτ , 0 ≤ t ≤ 1.

Precisely: start w unitary (pos def) signature at t = 0; add
contribs of sign changes from zeros/poles of odd order in
0 ≤ t ≤ 1 signature at t = 1.
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Character formulas
Can decompose Verma module into irreducibles

Iλ =
∑
µ≤λ mµ,λJµ (mµ,λ ∈ N)

or write a formal character for an irreducible

Jλ =
∑
µ≤λ Mµ,λIµ (Mµ,λ ∈ Z)

Can decompose standard HC module into irreducibles

I(x) =
∑

y≤x my,xJ(y) (my,x ∈ N).

Here x and y are params for irreducible (g,K )-mods, or
(what is the same thing!) params for std (g,K )-mods.

Similarly, can write a formal character for an irreducible

J(x) =
∑

y≤x My,x I(y) (My,x ∈ Z).

Matrices m and M upper triang, ones on diag, mutual
inverses. Entries are KL polynomials eval at 1:

my,x = Qy,x (1), My,x = ±Py,x (1) (Qy,x ,Py,x ∈ N[q]).

Last statements most literally true at reg infl char, but
Jantzen/Zuckerman transl princ gives sing. infl char.
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Character formulas for SL(2,R)
Std (g,K )-mods include princ series

W ν−1 =def Iev(ν)� J(ν) (Re(ν) ≥ 0);

Langlands quotient J(ν) = I(ν) except for ν = 2m + 1 . . . ,
when J(ν) has dim 2m + 1.
Need discrete series I±(n) (n = 1, 2,. . . ) char by

I+(n)|SO(2) = n + 1, n + 3, n + 5 · · ·
I−(n)|SO(2) = −n − 1, −n − 3, −n − 5 · · ·

Discrete series reps are irr: I±(n) = J±(n)

Decompose principal series

Iev(2m + 1) = Jev(2m + 1) + J+(2m + 1) + J−(2m + 1).

Character formula

Jev(2m + 1) = Iev(2m + 1)− I+(2m + 1)− I−(2m + 1).

±Px,y Iev(2m + 1) I+(2m + 1) I−(2m + 1)
Jev(2m + 1) 1 −1 −1
J+(2m + 1) 0 1 0
J−(2m + 1) 0 0 1
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Invariant forms on standard reps

Recall multiplicity formula

I(x) =
∑

y≤x my ,xJ(y) (my ,x ∈ N)

for standard (g,K )-mod I(x).
Want parallel formulas for σ-invt Hermitian forms.
Need forms on standard modules.
Form on irr J(x)

deformation−−−−−−−→ Jantzen filt Ik (x) on std,
nondeg forms 〈, 〉k on Ik/Ik+1.
Details (proved by Beilinson-Bernstein):

I(x) = I0 ⊃ I1 ⊃ I2 ⊃ · · · , I0/I1 = J(x)

Ik/Ik+1 completely reducible

[J(y) : Ik/Ik+1] = coeff of q(`(x)−`(y)−k)/2 in KL poly Qy,x

Hence 〈, 〉I(x)
def
=

∑
k 〈, 〉k , nondeg form on gr I(x).

Restricts to original form on irr J(x).
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Virtual Hermitian forms

Z = Groth group of vec spaces.

These are mults of irr reps in virtual reps.
Z[X ] = Groth grp of finite length reps.

For invariant forms. . .

W = Z⊕ Z =
Grothendieck group of

finite-dimensional forms.

Ring structure
(p,q)(p′,q′) = (pp′ + qq′,pq′ + q′p).

Mult of irr-with-forms in virtual-with-forms is in W:
W[X ] ≈ Groth grp of fin lgth reps with invt forms.

Two problems: invt form 〈, 〉J may not exist for irr J;
and 〈, 〉J may not be preferable to −〈, 〉J .
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What’s a Jantzen filtration?
V cplx, 〈, 〉t Herm forms analytic in t , generically nondeg.

V = V 0(t) ⊃ V 1(t) = Rad(〈, 〉t ), J(t) = V 0(t)/V 1(t)

(p0(t), q0(t)) = signature of 〈, 〉t on J(t).

Question: how does (p0(t),q0(t)) change with t?

First answer: locally constant on open set V 1(t) = 0.

Refine answer. . . define form on V 1(t)

〈v ,w〉1(t) = lim
s→t

1
t − s

< v ,w >s, V2(t) = Rad(〈, 〉1(t))

(p1(t), q1(t)) = signature of 〈, 〉1(t).

Continuing gives Jantzen filtration

V = V 0(t) ⊃ V 1(t) ⊃ V 2(t) · · · ⊃ V m+1(t) = 0

From t − ε to t + ε, signature changes on odd levels:

p(t + ε) = p(t − ε) +
∑

[−p2k+1(t) + q2k+1(t)].
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Hermitian KL polynomials: multiplicities

Fix invt Hermitian form 〈, 〉J(x) on each irr having one;
recall Jantzen form 〈, 〉n on I(x)n/I(x)n+1.
MODULO problem of irrs with no invt form, write

(In/In+1, 〈, 〉n) =
∑
y≤x

wy ,x (n)(J(y), 〈, 〉J(y)),

coeffs w(n) = (p(n),q(n)) ∈W; summand means

p(n)(J(y), 〈, 〉J(y))⊕ q(n)(J(y),−〈, 〉J(y))

Define Hermitian KL polynomials

Qh
y ,x =

∑
n

wy ,x (n)q(l(x)−l(y)−n)/2 ∈W[q]

Eval in W at q = 1↔ form 〈, 〉I(x) on std.
Reduction to Z[q] by W→ Z↔ KL poly Qy ,x .
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Hermitian KL polynomials: characters

Matrix Qh
y ,x is upper tri, 1s on diag: INVERTIBLE.

Ph
x ,y

def
= (−1)l(x)−l(y)((x , y) entry of inverse) ∈W[q].

Definition of Qh
x ,y says

(gr I(x), 〈, 〉I(x)) =
∑
y≤x

Qh
x ,y (1)(J(y), 〈, 〉J(y));

inverting this gives

(J(x), 〈, 〉) =
∑
y≤x

(−1)l(x)−l(y)Ph
x ,y (1)(gr I(y), 〈, 〉).

Next question: how do you compute Ph
x ,y?
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Herm KL polys for σc

σc = cplx conj for cpt form of G, σc(K ) = K .
Plan: study σc-invt forms, relate to σ0-invt forms.

Proposition
Suppose J(x) irr (g,K )-module, real infl char. Then J(x) has
σc-invt Herm form 〈, 〉cJ(x), characterized by

〈, 〉cJ(x) is pos def on the lowest K-types of J(x).

Proposition =⇒ Herm KL polys Qc
x ,y , Pc

x ,y well-def.
Coeffs in W = Z⊕ sZ; s = (0, 1)! one-diml neg def form.

Conj: Qc
x,y (q) = s

`o (x)−`o (y)
2 Qx,y (qs), Pc

x,y (q) = s
`o (x)−`o (y)

2 Px,y (qs).

Equiv: if J(y) occurs at level k of Jantzen filt of I(x), then
Jantzen form is (−1)(l(x)−l(y)−k)/2 times 〈, 〉J(y).

Conjecture is false. . . but not seriously so. Need an extra power
of s on the right side.
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Orientation number

Conjecture↔ KL polys↔ integral roots.

Simple form of Conjecture⇒ Jantzen-Zuckerman
translation across non-integral root walls preserves
signatures of (σc-invariant) Hermitian forms.
It ain’t necessarily so.
SL(2,R): translating spherical principal series from (real
non-integral positive) ν to (negative) ν − 2m changes sign
of form iff ν ∈ (0,1) + 2Z.

Orientation number `o(x) is
1. # pairs (α,−θ(α)) cplx nonint, pos on x ; PLUS
2. # real β s.t. 〈x , β∨〉 ∈ (0,1) + ε(β, x) + 2N.

ε(β, x) = 0 spherical, 1 non-spherical.
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Deforming to ν = 0

Have computable conjectural formula (omitting `o)

(J(x), 〈, 〉cJ(x)) =
∑
y≤x

(−1)l(x)−l(y)Pc
x,y (s)(gr I(y), 〈, 〉cI(y))

for σc-invt forms in terms of forms on stds, same inf char.

Polys Pc
x,y are KL polys, computed by atlas software.

Std rep I = I(ν) deps on cont param ν. Put I(t) = I(tν), t ≥ 0.

Apply Jantzen formalism to deform t to 0. . .

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).

More rep theory gives formula for G(R)-invt forms:

〈, 〉0J =
∑

I′(0) std at ν′ = 0

sε(I′)vJ,I′〈, 〉0I′(0).

I′(0) unitary, so J unitary ⇐⇒ all coeffs are (p,0) ∈W.
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Example of G2(R)

Real parameters for spherical unitary reps of G2(R)

r Unitary rep from L2(G)r Arthur rep from 6-dim nilpr Arthur rep from 8-dim nilpr Arthur rep from 10-dim nilpr Trivial rep

r
r

r

r

r

rr
r

r

rrr

r

rr
rr
r

rrr

r

r

rr
r

r

r

r

r
r
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From σc to σ0

Cplx conjs σc (compact form) and σ0 (our real form)
differ by Cartan involution θ: σ0 = θ ◦ σc .
Irr (g,K )-mod J  Jθ (same space, rep twisted by θ).

Proposition
J admits σ0-invt Herm form if and only if Jθ ' J. If
T0 : J ∼→ Jθ, and T 2

0 = Id, then

〈v ,w〉0J = 〈v ,T0w〉cJ .

T : J ∼→ Jθ ⇒ T 2 = z ∈ C⇒ T0 = z−1/2T  σ-invt Herm form.

To convert formulas for σc invt forms formulas for
σ0-invt forms need intertwining ops TJ : J ∼→ Jθ,
consistent with decomp of std reps.
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Equal rank case

rk K = rk G⇒ Cartan inv inner: ∃τ ∈ K , Ad(τ) = θ.
θ2 = 1⇒ τ 2 = ζ ∈ Z (G) ∩ K .

Study reps π with π(ζ) = z. Fix square root z1/2.

If ζ acts by z on V , and 〈, 〉cV is σc-invt form, then
〈v ,w〉0V

def
= 〈v , z−1/2τ · w〉cV is σ0-invt form.

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).

translates to

〈, 〉0J =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉0I′(0) (vJ,I′ ∈W).

I′ has LKT µ′ ⇒ 〈, 〉0I′(0) definite, sign z−1/2µ′(τ).

J unitary ⇐⇒ each summand on right pos def.
Computability of vJ,I′ needs conjecture about Pσc

x,y .
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General case

Fix “distinguished involution” δ0 of G inner to θ
Define extended group GΓ = G o {1, δ0}.
Can arrange θ = Ad(τδ0), some τ ∈ K .
Define K Γ = CentGΓ(τδ0) = K o {1, δ0}.
Study (g,K Γ)-mods! (g,K )-mods V with
D0 : V ∼→ V δ0 , D2

0 = Id.
Beilinson-Bernstein localization: (g,K Γ)-mods! action of δ0 on
K -eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig
ideas. Not done yet!

Now translate σc-invt forms to σ0 invt forms

〈v ,w〉0V
def
= 〈v , z−1/2τδ0 · w〉cV

on (g,K Γ)-mods as in equal rank case.
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Kazhdan-Lusztig polys and Bruhat order

Classical KL polynomials are Py,w , with y and w in a Weyl
group W . They satisfy

Py,w 6= 0 ⇐⇒ y ≤ w , Py,w (0) =

{
1 y ≤ w
0 y 6≤ w

.

Here ≤ is the Bruhat order. The statements about value at
0 are related to the Möbius function for the Bruhat order.

KL polynomials for a real reductive G are Pγ′,γ , with γ′

and γ in a block B of irreducible (g,K ) modules of regular
infinitesimal character. This block has a Bruhat order. The
polynomials satisfy

1. Bruhat ord is the transitive closure of rel Pγ′,γ 6= 0.
2. Conjecturally Pγ′,γ(0) is zero or a power of 2.

prove the conjecture, and understand what KL
polynomials have to do with the Möbius function for B.
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Twisted Kazhdan-Lusztig polynomials

Fix involutive automorphism δ of (W ,S), and write Iδ
for the set of twisted involutions in W .
Lusztig and I recently introduced variants Pδ

y ,w of KL
polynomials, indexed by y ,w ∈ Iδ.
Real reductive G involutive aut δ of (W ,S) (action
of the Cartan inv on a θ-stable Borel subalgebra).
For a block B at integral infl char, ∃τ : B→ Iδ; τ is
surjective if (and only if) G is quasisplit and B
includes fundamental series representations.
Relate Pγ′,γ to Pδ

τ(γ′),τ(γ).
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Computing less
atlas software computes KL polynomials Pγ′,γ for all
γ′, γ ∈ B.

This is a LOT of information (tens of gigabytes for split real
E8); hard to know what is interesting.

One thing that’s interesting: KL mu function µ(γ′, γ) = top
coeff of Pγ′,γ : usually zero.

Encodes W -graph on B; fairly easy to recover any desired
family {Pγ′,γ | γ′ varying} (what’s needed to write
character of one Jγ) by short computation.

Find algorithm to compute only µ(γ′, γ). This is a version
of find algorithm to compute W -graph on B, a problem
about which Stembridge has published some results.

Lusztig web page has comments about old papers.
Comments about the 1979 KL paper include new
algorithm to compute KL polys.

Is the new algorithm comparable in complexity to the old?
Can it be extended to the real group setting?
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D-modules

Theory of reg holonomic D-mods with respect to a
stratif. {Zα | α ∈ A} of alg var Z parametrizes the irrs
by pairs (Zα,L): (stratum,local system). To a pair of
such parameters one gets local cohomological data
for perverse sheaves. In the case of flag varieties,
this is what KL theory can compute.
(Much) more elem idea: characteristic cycle = int
comb of conormal bdles NZα(Z ) to each perverse
sheaf. Seems nobody knows how to compute char
cycles (perhaps in terms of KL/perverse sheaf data).
Case of flag vars could be a good place to try to
remedy this.
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Nilpotent coadjt orbits

There are many natural ways to attach nilpotent
coadjt orbits to (g,K )-modules, including char cycles
as above. One obstruction to finding nice algorithms
to compute these is lack of parametrization of
nilpotent coadjt orbits by root datum/Weyl gp
computations.
Same problem for nilp orbits of K (C) on [g/k]∗;
computation should be same level of difficulty as
atlas computation of kgb.
Taking moment map image of conormal bundle
defines a natural surjection

K (C)\B → nilp orbs of K (C) on [g/k]∗

Find root datum algorithm for the fibers.
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Iwahori Hecke algebras and real groups

Suppose G split over Fq.
1. Convolution alg H of B(Fq)-biinvt fns on G(Fq) is

naturally Iwahori Hecke alg for W specialized to q.
Same conv alg is EndG(Fq)(fns on G(Fq/B(Fq)).

These facts explain Hecke algs control reps of G(Fq).
Works almost as well for reps of p-adic groups.
For real groups, conns with Iwahori Hecke algs are
more subtle and indirect. Fixing this might help
explain Barbasch-Ciubotaru results comparing real
and p-adic groups.
KL theory action of Iwahori Hecke alg of W on
free Z[q,q−1] with basis B (block of regular integral
infl char). See previous problem, and in the same
direction enlarge B by Zuckerman transl, enlarge
Hecke alg to affine Hecke alg.
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Chevalley homomorphisms

Slide “Why cohomology can identify a module” uses
a Chevalley homomorphism

ξ : R(g,LK )k,LK → R(l,LK )LK .

This is very easy to define. In the setting of the slide,
might have been more natural to ask about

ξ̃ : R(g,K )K ???−→ R(l,LK )LK .

Is there a natural definition of ξ̃ (leading to a version
of the theorem on the slide)?
Case G = K seems to show what the difficulties are.
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Proving Jantzen conjectures

KL conjectures seem to be deep for fundamental reasons;
probably it’s not productive to look for easy proofs.

But reasoning like that by established mathematicians 
amazing Ph.D. theses from “second rate” universities.

At any rate we know the KL conjs. A wonderful aspect of
them is that there is a “parity” on irrs of regular infl
character so that

1. J 6= J ′ of irrs same parity =⇒ Ext1(J, J ′) = 0;
2. q = l + u θ-stable =⇒ J ′L can appear in H r (u, J) only

if the parity of r − dim uk par(J)− par(J ′).

Given these deep facts (and more?), give elem pf of the
Jantzen conj (proved by Beilinson-Bernstein).
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About Jantzen filtration

Verma module Iλ satisfies (almost trivially)

Hp(n−, Iλ) =

{
Cλ (p = 0)

0 otherwise
(COHOM)

KL conjecture can be formulated as

mult of Cλ′ in Hp(n−, Jλ) = coeff of KL poly Pλ′,λ (KL)

Deduce Jantzen conjecture for O from (COHOM), (KL),
and homological algebra.

Possibly a hint for how to try this is

Find a common generalization of (COHOM) and (KL),
perhaps describing cohomology of some subquotients of
Jantzen filtration of Iλ.

These problems make sense forM(g,K ).
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Possible unitarity algorithm

Hope to get from these ideas a computer program; enter
I real reductive Lie group G(R)
I general representation π

and ask whether π is unitary.
Program would say either

I π has no invariant Hermitian form, or
I π has invt Herm form, indef on reps µ1, µ2 of K , or
I π is unitary, or
I I’m sorry Dave, I’m afraid I can’t do that.

Answers to finitely many such questions 
complete description of unitary dual of G(R).
This would be a good thing.
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An inspirational story

I was an undergrad at University of Chicago, learning
interesting math from interesting mathematicians.

I left Chicago to work on a Ph.D. with Bert Kostant.

After finishing, I came back to Chicago to visit.

I climbed up to Paul Sally’s office. Perhaps not all of
you know what an interesting mathematician he is.

I told him what I’d done in my thesis; since it was
representation theory, I hoped he’d find it interesting.

He responded kindly and gently, with a question:
“What’s it tell you about UNITARY representations?”

The answer, regrettably, was, “not much.”

So I tried again.
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