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Sizing up
How is Memory Used?

How Big is that matrix?

A coarse upper bound
453060× 453060 entries, each a polynomial of
degree < 32 whose integral coefficients fit in 4 bytes.
So 4530602 × 32× 4 ≈ 26 trillion bytes suffice.
A coarse lower bound
Some 6 billion “interesting” matrix entries, 4 bytes needed
for each to distinguish their values: ≈ 24 billion bytes
More than 1 billion distinct polynomials, average size > 10:
more than 10 billion coefficients
So at least about 34 billion bytes seem necessary

232 ≈ 4.3 billion < 34 billion.
So a 32-bit computer cannot store the matrix
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Sizing up
How is Memory Used?

It’s not just about bulk storage

Other considerations:
Deep recurrence needs data in Random Access Memory
Data must be accessible. Some choices:

Array of items
Linked tree structure using pointers
Array of pointers
Array of ID numbers, identified data looked up

Choices imply additional overhead
In arrays, fixed size slots waste space at small items
Arrays need reallocation as data grows
Each pointer uses 8 bytes (64 bits machine!)
ID Numbers may fit in 4 bytes

Speed cannot be forgotten
Linear search is no option
Nor is linear insertion into ordered array
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Sizing up
How is Memory Used?

What can be shared

Not every item needs separate storage.
Recurrence makes many matrix entries copy a of some
“previous” one.
The remaining ones are called primitive; only these entries
need any form of storage.

Already exploited

Almost half of them are zero.

Nothing stored for them.

The remaining ones are called strongly primitive.
Among strongly primitive entries, many are the same
polynomial.
Entries may references a unique copy of polynomial.

Already exploited

Maybe even distinct polynomials have parts in common

Who knows?
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Sizing up
How is Memory Used?

What can be separated?

Since memory is a bottleneck, can we split work into parts?

Unfortunately, computing later rows requires results of (almost)
all previous rows.
(But several threads of computation can work in parallel.)

Fortunately, computation involves only +, −, × of polynomials,
and extraction of coefficients in specific degrees.

So we may separately compute remainders modulo fixed n of
all coefficients.

Remainders modulo n1, . . . , nk determine remainder
modulo N = lcm(n1, . . . , nk ) (“Chinese Remainder Theorem”)

When N sufficiently large, these remainders give the result.
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Sizing up
How is Memory Used?

Where is the excess fat?

For storage, atlas uses vector and set structures from the
C++ standard library.
These are optimised for speed, not memory use:

vector uses 3 pointers to access an array
set uses 3 pointers plus one bit for each node

Memory overhead

vector : 24 bytes per vector
set : is 32 bytes per element
Unknown additional overhead for memory management
Some loss due to memory fragmentation (7%?)

Estimated memory requirement for split E8 using standard
atlas software: at least 161 GiB
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Using modular arithmetic

Computing in Z/nZ is easy; slightly slower than in Z
But no worry about overflow/underflow: speed gain
C++ “modular integer” class can be defined,
and used as drop-in replacement for certain integers
atlas defined type KLCoeff, allowing easy replacement
1 day work, gain 41 GiB
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Representing all known polynomials

Atlas used: set<vector<KLCoeff> > store. For computed P:
look up P in store (binary search)
if not present, insert a copy of P into store
in matrix, store pointer to node found/inserted; discard P

The set structure is suited, but gives more than is needed.

Instead use a hash table of polynomials. For computed P:
search ID for P near table[hash(P)]
if not present: copy P to storage vector, assigning new ID;
store ID near table[hash(P)]
in matrix, store the ID found/assigned; discard P

4 days work, gain 19 GiB (but some 20 GiB unused allocation)
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Overhead of polynomial structure

Each polynomial P is a vector.
Its coefficient array is stored, can grow/shrink and be discarded
separately.

When P is found to be new, this is no longer needed.
By copying coefficients of P to common array (pool),
the use of 3 pointers can be reduced to 1.

Use of stored polynomials in arithmetic and in matching (hash
table) needs rewriting.

2 days work, gain 31 GiB
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Not every polynomial needs a pointer

For stored P, need to locate first coefficient in pool.
Final coefficient is determined by start of next polynomial.

Each polynomial has length ≤ 32.
Pointer to first coefficient (8 bytes) contains less than 1 byte of
real information.

But storing only differences would make locating coefficients
too slow.

So decided: store 5 byte pool index once every 16 polynomials,
and a 1 byte difference for each of next 15 polynomials.

2 days work, gain 15 GiB
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Output Format
Processing Strategy

Output requirements

Compact (so retain sharing)
Processing oriented
Allow random access to polynomials
Cater for variations between moduli
in zeros and in polynomial numbering

Choice:
Separate matrix and polynomial files
Binary format
Prefer simplicity over extreme compactness
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Output format

For polynomials record:
their number,
for each one the offset of its first coefficient
all the coefficients.

For matrices record sequence of rows, with
a bitmap indicating, among the primitive entries, the
strongly primitive ones
the ID numbers of the nonzero entries
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Making polynomial numberings agree

Numbering of polynomials may differ between moduli, because
modular reduction could make polynomials equal, or zero;
multi-threading randomly perturbs assignment of ID’s.

Therefore, matrices must be compared before polynomials.

Traverse corresponding matrix entries for all k moduli:
if entry is strong only for some moduli, take 0 at others;
look up if k -tuple if ID’s is new; if so assign new
canonical ID to tuple, otherwise use ID from table;
to do this, use a hash table;
write the canonical ID to a new matrix file.

Then write k -tuples of modular ID’s to k renumbering files
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Modular lifting

Now translating polynomial ID’s through renumbering, look up
corresponding modular polynomials. Must solve:

Given remainders r1 mod n1, and r2 mod n2,
find r such that r ≡ r1 (mod n1) and r ≡ r2 (mod n2).

We must adjust r1 by multiple m of n1 with
r1 + m ≡ r2 (mod n2).
Let m0 be multiple of n1 such that
m0 ≡ d = gcd(n1, n2) (mod n2) (exists by “Bezout”).
If r2 − r1 not multiple of d , no solution exists.
Otherwise m = m0

r2−r1
d works.

The number m0 is independent of r1 and r2.
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Surprising scenarios

Various subtleties of C++ have caused headaches:
defining too much automatic conversion inadvertently did:
reference→copy→reference, and values evaporated;
strange bit shifting semantics can bite:
necessary x � 32 failed tests on 32-bit machine.
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Why David was right after all

With so much data, one cannot afford inefficiency.

Lessons we learned the hard way:
a bad choice of hash function gives congestion;
counting bits in a bitmap can be costly;
making threads safe can make them useless;
don’t over-display counters.
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Watch your Width

When space is tight, one must be extra alert:
width of operands, not of result, determine operation;
offset〈8〉 = base〈8〉 + 5 ∗ renumbering〈4〉[i〈8〉]
modular lifting can easily overflow (tables can solve this).
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Summary

Tailoring implementation of abstract data types can easily
give substantial gain.
Simple binary formats allow (relatively) rapid processing.
Handling massive data is a challenge, but fun.
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