Some details about the calculation of Kazhdan-Lusztig polynomials for split E_{8}

Marc van Leeuwen

Laboratoire de Mathématiques et Applications Université de Poitiers

March 19, 2007 / Atlas workshop, MIT

Outline

(1) Surveying the Challenge

- First estimates
- How is Memory Used?
(2) Reducing Memory Use
- Modular Reduction of Coefficients
- The Set of Known Polynomials
- Individual Polynomials
(3) Writing and Processing the Result
- Output Format
- Processing Strategy

4 What went Wrong (until it was fixed)

- Mysterious Malfunctions
- Safe but Slow Solutions
- Precision Problems

Outline

(1) Surveying the Challenge

- First estimates
- How is Memory Used?
(2) Reducing Memory Use
- Modular Reduction of Coefficients
- The Set of Known Polynomials
- Individual Polynomials
(3)

Writing and Processing the Result

- Output Format
- Processing Strategy

4 What went Wrong (until it was fixed)

- Mysterious Malfunctions
- Safe but Slow Solutions
- Precision Problems

How Big is that matrix?

- A coarse upper bound
453060×453060 entries, each a polynomial of
degree <32 whose integral coefficients fit in 4 bytes.
So $453060^{2} \times 32 \times 4 \approx 26$ trillion bytes suffice.
- A coarse lower bound

Some 6 billion "interesting" matrix entries, 4 bytes needed
for each to distinguish their values: ≈ 24 billion bytes
More than 1 billion distinct polynomials, average size >10 :
more than 10 billion coefficients
So at least about 34 billion bytes seem necessary
$2^{32} \approx 4.3$ billion <34 billion.
So a 32-bit computer cannot store the matrix

How Big is that matrix?

- A coarse upper bound
453060×453060 entries, each a polynomial of degree <32 whose integral coefficients fit in 4 bytes. So $453060^{2} \times 32 \times 4 \approx 26$ trillion bytes suffice.
- A coarse lower bound

Some 6 billion "interesting" matrix entries, 4 bytes needed
for each to distinguish their values: ≈ 24 billion bytes
More than 1 billion distinct polynomials, average size > 10
more than 10 billion coefficients
So at least about 34 billion bytes seem necessary
$2^{32} \approx 4.3$ billion <34 billion
So a 32-bit computer cannot store the matrix

How Big is that matrix?

- A coarse upper bound
453060×453060 entries, each a polynomial of degree <32 whose integral coefficients fit in 4 bytes. So $453060^{2} \times 32 \times 4 \approx 26$ trillion bytes suffice.
- A coarse lower bound Some 6 billion "interesting" matrix entries, 4 bytes needed for each to distinguish their values: ≈ 24 billion bytes
More than 1 billion distinct polynomials, average size >10 :
more than 10 billion coefficients
So at least about 34 billion bytes seem necessary
$2^{32} \approx 4.3$ billion <34 billion
So a 32-bit computer cannot store the matrix

How Big is that matrix?

- A coarse upper bound
453060×453060 entries, each a polynomial of degree <32 whose integral coefficients fit in 4 bytes. So $453060^{2} \times 32 \times 4 \approx 26$ trillion bytes suffice.
- A coarse lower bound

Some 6 billion "interesting" matrix entries, 4 bytes needed for each to distinguish their values: ≈ 24 billion bytes More than 1 billion distinct polynomials, average size >10 : more than 10 billion coefficients
So at least about 34 billion bytes seem necessary
$2^{32} \approx 4.3$ billion <34 billion.
So a 32-bit computer cannot store the matrix

How Big is that matrix?

- A coarse upper bound
453060×453060 entries, each a polynomial of degree <32 whose integral coefficients fit in 4 bytes. So $453060^{2} \times 32 \times 4 \approx 26$ trillion bytes suffice.
- A coarse lower bound Some 6 billion "interesting" matrix entries, 4 bytes needed for each to distinguish their values: ≈ 24 billion bytes More than 1 billion distinct polynomials, average size >10 : more than 10 billion coefficients
So at least about 34 billion bytes seem necessary
$2^{32} \approx 4.3$ billion <34 billion.
So a 32-bit computer cannot store the matrix

It's not just about bulk storage

Other considerations:

- Deep recurrence needs data in Random Access Memory
- Array of items
- Linked tree structure using pointers
- Array of pointers
- Array of ID numbers, identified data looked up

Choices imply additional overhead

- In arrays, fixed size slots waste space at small items
- Arrays need reallocation as data grows
- Each pointer uses 8 bytes (64 bits machine!)
- ID Numbers may fit in 4 bytes
- Speed cannot be forgotten
- Linear search is no option
- Nor is linear insertion into ordered array

It's not just about bulk storage

Other considerations:

- Deep recurrence needs data in Random Access Memory
- Data must be accessible. Some choices:
- Array of items
- Linked tree structure using pointers
- Array of pointers
- Array of ID numbers, identified data looked up

Choices imply additional overhead

- In arrays, fixed size slots waste space at small items
- Arrays need reallocation as data arows
- Each pointer uses 8 bytes (64 bits machine!)
- ID Numbers may fit in 4 bytes
- Speed cannot be forqotten
- Linear search is no option
- Nor is linear insertion into ordered array

It's not just about bulk storage

Other considerations:

- Deep recurrence needs data in Random Access Memory
- Data must be accessible. Some choices:
- Array of items
- Linked tree structure using pointers
- Array of pointers
- Array of ID numbers, identified data looked up

Choices imply additional overhead

- In arrays, fixed size slots waste space at small items
- Arrays need reallocation as data grows
- Each pointer uses 8 bytes (64 bits machine!)
- ID Numbers may fit in 4 bytes
- Speed cannot be forgotten
- Linear search is no option
- Nor is linear insertion into ordered array

It's not just about bulk storage

Other considerations:

- Deep recurrence needs data in Random Access Memory
- Data must be accessible. Some choices:
- Array of items
- Linked tree structure using pointers
- Array of pointers
- Array of ID numbers, identified data looked up

Choices imply additional overhead

- In arrays, fixed size slots waste space at small items
- Arrays need reallocation as data grows
- Each pointer uses 8 bytes (64 bits machine!)
- ID Numbers may fit in 4 bytes
- Speed cannot be forgotten
- Linear search is no option
- Nor is linear insertion into ordered array

What can be shared

Not every item needs separate storage.

- Recurrence makes many matrix entries copy a of some "previous" one.
The remaining ones are called primitive; only these entries need any form of storage.
- Almost half of them are zero. The remaining ones are called strongly primitive.
- Among strongly primitive entries, many are the same polynomial.
Entries may references a unique copy of polynomial.
- Maybe even distinct polynomials have parts in common

What can be shared

Not every item needs separate storage.

- Recurrence makes many matrix entries copy a of some "previous" one.
The remaining ones are called primitive; only these entries need any form of storage.
- Almost half of them are zero.

The remaining ones are called strongly primitive.

- Among strongly primitive entries, many are the same polynomial.
Entries may references a unique copy of polynomial.
- Maybe even distinct polynomials have parts in common

What can be shared

Not every item needs separate storage.

- Recurrence makes many matrix entries copy a of some "previous" one.
The remaining ones are called primitive; only these entries need any form of storage.
- Almost half of them are zero.

The remaining ones are called strongly primitive.

- Among strongly primitive entries, many are the same polynomial.
Entries may references a unique copy of polynomial.
- Maybe even distinct polynomials have parts in common

What can be shared

Not every item needs separate storage.

- Recurrence makes many matrix entries copy a of some "previous" one.
The remaining ones are called primitive; only these entries need any form of storage. Already exploited
- Almost half of them are zero. Nothing stored for them. The remaining ones are called strongly primitive.
- Among strongly primitive entries, many are the same polynomial.
Entries may references a unique copy of polynomial. Already exploited
- Maybe even distinct polynomials have parts in common Who knows?

What can be separated?

Since memory is a bottleneck, can we split work into parts?
Unfortunately, computing later rows requires results of (almost) all previous rows.

Fortunately, computation involves only,,$+- \times$ of polynomials, and extraction of coefficients in specific degrees.

So we may separately compute remainders modulo fixed n of all coefficients.

Remainders modulo $n_{1} \ldots, n_{k}$ determine remainder modulo $N=\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$ ("Chinese Remainder Theorem")
When N sufficiently large, these remainders give the result.

What can be separated?

Since memory is a bottleneck, can we split work into parts?
Unfortunately, computing later rows requires results of (almost) all previous rows.

Fortunately, computation involves only,,$+- \times$ of polynomials, and extraction of coefficients in specific degrees.

So we may separately compute remainders modulo fixed n of all coefficients.

Remainders modulo n_{1}, \ldots, n_{k} determine remainder
modulo $N=\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$ ("Chinese Remainder Theorem")
When N sufficiently large, these remainders give the result.

What can be separated?

Since memory is a bottleneck, can we split work into parts?
Unfortunately, computing later rows requires results of (almost) all previous rows.
(But several threads of computation can work in parallel.)
Fortunately, computation involves only,,$+- \times$ of polynomials, and extraction of coefficients in specific degrees.

So we may separately compute remainders modulo fixed n of all coefficients.

Remainders modulo n_{1}, \ldots, n_{k} determine remainder
modulo $N=\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$ ("Chinese Remainder Theorem")
When N sufficiently large, these remainders give the result.

What can be separated?

Since memory is a bottleneck, can we split work into parts?
Unfortunately, computing later rows requires results of (almost) all previous rows.
(But several threads of computation can work in parallel.)
Fortunately, computation involves only,,$+- \times$ of polynomials, and extraction of coefficients in specific degrees.

So we may separately compute remainders modulo fixed n of all coefficients.

Remainders modulo n_{1}, \ldots, n_{k} determine remainder modulo $N=\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$ ("Chinese Remainder Theorem") When N/ sufficiently large these remainders give the result.

What can be separated?

Since memory is a bottleneck, can we split work into parts?
Unfortunately, computing later rows requires results of (almost) all previous rows.
(But several
of computation can work in parallel.)
Fortunately, computation involves only,,$+- \times$ of polynomials, and extraction of coefficients in specific degrees.

So we may separately compute remainders modulo fixed n of all coefficients.

Remainders modulo n_{1}, \ldots, n_{k} determine remainder modulo $N=\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$ ("Chinese Remainder Theorem")

When N sufficiently large, these remainders give the result.

Where is the excess fat?

For storage, at las uses vector and set structures from the C++ standard library.
These are optimised for speed, not memory use:

- vector uses 3 pointers to access an array
- set uses 3 pointers plus one bit for each node

Memory overhead

- vector: 24 bytes per vector
- set: is 32 bytes per element
- Unknown additional overhead for memory management
- Some loss due to memory fragmentation (7\%?)

Estimated memory requirement for split E_{8} using standard

Where is the excess fat?

For storage, at las uses vector and set structures from the C++ standard library.
These are optimised for speed, not memory use:

- vector uses 3 pointers to access an array
- set uses 3 pointers plus one bit for each node Memory overhead
- vector: 24 bytes per vector
- set: is 32 bytes per element
- Unknown additional overhead for memory management
- Some loss due to memory fragmentation (7\%?)

Estimated memory requirement for split E_{8} using standard

Where is the excess fat?

For storage, at las uses vector and set structures from the C++ standard library.
These are optimised for speed, not memory use:

- vector uses 3 pointers to access an array
- set uses 3 pointers plus one bit for each node

Memory overhead

- vector: 24 bytes per vector
- set: is 32 bytes per element
- Unknown additional overhead for memory management
- Some loss due to memory fragmentation (7\%?)

Estimated memory requirement for split E_{8} using standard

Where is the excess fat?

For storage, at las uses vector and set structures from the C++ standard library.
These are optimised for speed, not memory use:

- vector uses 3 pointers to access an array
- set uses 3 pointers plus one bit for each node

Memory overhead

- vector: 24 bytes per vector
- set: is 32 bytes per element
- Unknown additional overhead for memory management
- Some loss due to memory fragmentation (7\%?)

Estimated memory requirement for split E_{8} using standard at las software: at least 161 GiB

Outline

Surveying the Challenge
 - First estimates
 - How is Memory Used?

(2) Reducing Memory Use

- Modular Reduction of Coefficients
- The Set of Known Polynomials
- Individual Polynomials

Writing and Processing the Result

- Output Format
- Processing Strategy

What went Wrong (until it was fixed)

- Mysterious Malfunctions
- Safe but Slow Solutions
- Precision Problems

Using modular arithmetic

- Computing in $\mathbf{Z} / n \mathbf{Z}$ is easy; slightly slower than in \mathbf{Z}
- But no worry about overflow/underflow: speed gain
- C++ "modular integer" class can be defined, and used as drop-in replacement for certain integers - at las defined type KLCoeff, allowing easy replacement - 1 day work, gain 41 GiB

Using modular arithmetic

- Computing in $\mathbf{Z} / n \mathbf{Z}$ is easy; slightly slower than in \mathbf{Z}
- But no worry about overflow/underflow: speed gain
- C++ "modular integer" class can be defined, and used as drop-in replacement for certain integers
- at las defined type KLCoeff, allowing easy replacement
- 1 day work, gain 41 GiB

Using modular arithmetic

- Computing in $\mathbf{Z} / n \mathbf{Z}$ is easy; slightly slower than in \mathbf{Z}
- But no worry about overflow/underflow: speed gain
- C++ "modular integer" class can be defined, and used as drop-in replacement for certain integers
- at las defined type KLCoeff, allowing easy replacement
- 1 day work, gain 41 GiB

Using modular arithmetic

- Computing in $\mathbf{Z} / n \mathbf{Z}$ is easy; slightly slower than in \mathbf{Z}
- But no worry about overflow/underflow: speed gain
- C++ "modular integer" class can be defined, and used as drop-in replacement for certain integers
- at las defined type KLCoeff, allowing easy replacement
- 1 day work, gain 41 GiB

Representing all known polynomials

At las used: set<vector<KLCoeff>> store. For computed P :

- look up P in store (binary search)
- if not present, insert a copy of P into store
- in matrix, store pointer to node found/inserted; discard P

The set structure is suited, but gives more than is needed.
Instead use a hash table of polynomials. For computed P :

- search ID for P near table[hash(P)]
- if not present: copy P to storage vector, assigning new ID; store ID near table[hash(P)]
- in matrix, store the ID found/assigned; discard P

Surveying the Challenge

Representing all known polynomials

At las used: set<vector<KLCoeff>> store. For computed P :

- look up P in store (binary search)
- if not present, insert a copy of P into store
- in matrix, store pointer to node found/inserted; discard P

The set structure is suited, but gives more than is needed.
Instead use a hash table of polynomials. For computed P :

- search ID for P near table[hash(P)]
- if not present: copy P to storage vector, assigning new ID; store ID near table[hash(P)]
- in matrix, store the ID found/assigned; discard P

4 days work, gain 19 GiB (but some 20 GiB unused allocation)

Representing all known polynomials

3. Find x.

Surveying the Challenge

Representing all known polynomials

At las used: set<vector<KLCoeff>> store. For computed P :

- look up P in store (binary search)
- if not present, insert a copy of P into store
- in matrix, store pointer to node found/inserted; discard P

The set structure is suited, but gives more than is needed.
Instead use a hash table of polynomials. For computed P :

- search ID for P near table[hash(P)]
- if not present: copy P to storage vector, assigning new ID: store ID near table[hash(P)]
- in matrix, store the ID found/assigned; discard P

4 days work, gain 19 GiB (but some 20 GiB unused allocation)

Surveying the Challenge
Reducing Memory Use
Writing and Processing the Result
Learning from Errors
Summary

Representing all known polynomials

At las used: set<vector<KLCoeff>> store. For computed P :

- look up P in store (binary search)
- if not present, insert a copy of P into store
- in matrix, store pointer to node found/inserted; discard P

The set structure is suited, but gives more than is needed.
Instead use a hash table of polynomials. For computed P :

- search ID for P near table[hash(P)]
- if not present: copy P to storage vector, assigning new ID; store ID near table[hash(P)]
- in matrix, store the ID found/assigned; discard P

Surveying the Challenge

Representing all known polynomials

At las used: set<vector<KLCoeff>> store. For computed P :

- look up P in store (binary search)
- if not present, insert a copy of P into store
- in matrix, store pointer to node found/inserted; discard P

The set structure is suited, but gives more than is needed.
Instead use a hash table of polynomials. For computed P :

- search ID for P near table[hash (P)]
- if not present: copy P to storage vector, assigning new ID; store ID near table[hash(P)]
- in matrix, store the ID found/assigned; discard P

4 days work, gain 19 GiB (but some 20 GiB unused allocation)

Overhead of polynomial structure

Each polynomial P is a vector.
Its coefficient array is stored, can grow/shrink and be discarded separately.

When P is found to be new, this is no longer needed.
By copying coefficients of P to common array (pool),
the use of 3 pointers can be reduced to 1.
Use of stored polynomials in arithmetic and in matching (hash table) needs rewriting.

2 days work, gain 31 GiB

Surveying the Challenge

Overhead of polynomial structure

Each polynomial P is a vector.
Its coefficient array is stored, can grow/shrink and be discarded separately.

When P is found to be new, this is no longer needed. By copying coefficients of P to common array (pool), the use of 3 pointers can be reduced to 1 .

Use of stored polynomials in arithmetic and in matching (hash
table) needs rewriting.
2 days work, gain 31 GiB

Surveying the Challenge

Overhead of polynomial structure

Each polynomial P is a vector.
Its coefficient array is stored, can grow/shrink and be discarded separately.

When P is found to be new, this is no longer needed. By copying coefficients of P to common array (pool), the use of 3 pointers can be reduced to 1 .

Use of stored polynomials in arithmetic and in matching (hash table) needs rewriting.
2 days work, gain 31 GiB

Surveying the Challenge

Overhead of polynomial structure

Each polynomial P is a vector.
Its coefficient array is stored, can grow/shrink and be discarded separately.

When P is found to be new, this is no longer needed. By copying coefficients of P to common array (pool), the use of 3 pointers can be reduced to 1.

Use of stored polynomials in arithmetic and in matching (hash table) needs rewriting.

2 days work, gain 31 GiB

Not every polynomial needs a pointer

For stored P, need to locate first coefficient in pool. Final coefficient is determined by start of next polynomial.

Each polynomial has length ≤ 32.
Pointer to first coefficient (8 bytes) contains less than 1 byte of real information.

But storing only differences would make locating coefficients too slow.

So decided: store 5 byte pool index once every 16 polynomials, and a 1 byte difference for each of next 15 polynomials.

2 days work, gain 15 GiB

Not every polynomial needs a pointer

For stored P, need to locate first coefficient in pool. Final coefficient is determined by start of next polynomial.

Each polynomial has length ≤ 32.
Pointer to first coefficient (8 bytes) contains less than 1 byte of real information.

But storing only differences would make locating coefficients
too slow.
So decided: store 5 byte pool index once every 16 polynomials.
and a 1 byte difference for each of next 15 polynomials.
2 days work, gain 15 GiB

Not every polynomial needs a pointer

For stored P, need to locate first coefficient in pool. Final coefficient is determined by start of next polynomial.

Each polynomial has length ≤ 32.
Pointer to first coefficient (8 bytes) contains less than 1 byte of real information.

But storing only differences would make locating coefficients too slow.

So decided: store 5 byte pool index once every 16 polynomials, and a 1 byte difference for each of next 15 polynomials.
2 days work, gain 15 GiB

Not every polynomial needs a pointer

For stored P, need to locate first coefficient in pool.
Final coefficient is determined by start of next polynomial.
Each polynomial has length ≤ 32.
Pointer to first coefficient (8 bytes) contains less than 1 byte of real information.

But storing only differences would make locating coefficients too slow.

So decided: store 5 byte pool index once every 16 polynomials, and a 1 byte difference for each of next 15 polynomials.
2 days work, gain 15 GiB

Not every polynomial needs a pointer

For stored P, need to locate first coefficient in pool.
Final coefficient is determined by start of next polynomial.
Each polynomial has length ≤ 32.
Pointer to first coefficient (8 bytes) contains less than 1 byte of real information.

But storing only differences would make locating coefficients too slow.

So decided: store 5 byte pool index once every 16 polynomials, and a 1 byte difference for each of next 15 polynomials.
2 days work, gain 15 GiB

Surveying the Challenge
Reducing Memory Use
Writing and Processing the Result
Learning from Errors
Summary

Final rows weigh in heavy

What difference does it make?

Outline

(1) Surveying the Challenge

- First estimates
- How is Memory Used?

(2)
Reducing Memory Use

- Modular Reduction of Coefficients
- The Set of Known Polynomials
- Individual Polynomials
(3) Writing and Processing the Result
- Output Format
- Processing Strategy
(4) What went Wrong (until it was fixed)
- Mysterious Malfunctions
- Safe but Slow Solutions
- Precision Problems

Output requirements

- Compact (so retain sharing)
- Processing oriented
- Allow random access to polynomials
- Cater for variations between moduli in zeros and in polynomial numbering

Choice:

- Separate matrix and polynomial files
- Binary format
- Prefer simplicity over extreme compactness

Output requirements

- Compact (so retain sharing)
- Processing oriented
- Allow random access to polynomials
- Cater for variations between moduli in zeros and in polynomial numbering

Choice:

- Separate matrix and polynomial files
- Binary format
- Prefer simplicity over extreme compactness

Output requirements

- Compact (so retain sharing)
- Processing oriented
- Allow random access to polynomials
- Cater for variations between moduli in zeros and in polynomial numbering

Choice:

- Separate matrix and polynomial files
- Binary format
- Prefer simplicity over extreme compactness

Output requirements

- Compact (so retain sharing)
- Processing oriented
- Allow random access to polynomials
- Cater for variations between moduli in zeros and in polynomial numbering

Choice:

- Separate matrix and polynomial files
- Binary format
- Prefer simplicity over extreme compactness

Output requirements

- Compact (so retain sharing)
- Processing oriented
- Allow random access to polynomials
- Cater for variations between moduli in zeros and in polynomial numbering

Choice:

- Separate matrix and polynomial files
- Binary format
- Prefer simplicity over extreme compactness

Output format

For polynomials record:

- their number,
- for each one the offset of its first coefficient
- all the coefficients.

For matrices record sequence of rows, with

- a bitmap indicating, among the primitive entries, the strongly primitive ones
- the ID numbers of the nonzero entries

Output format

For polynomials record:

- their number,
- for each one the offset of its first coefficient
- all the coefficients.

For matrices record sequence of rows, with

- a bitmap indicating, among the primitive entries, the strongly primitive ones
- the ID numbers of the nonzero entries

Making polynomial numberings agree

Numbering of polynomials may differ between moduli, because

- modular reduction could make polynomials equal, or zero;
- multi-threading randomly perturbs assignment of ID's.

Therefore, matrices must be compared before polynomials.

> Traverse corresponding matrix entries for all k moduli:
> - if entry is strong only for some moduli, take 0 at others;
> - look up if k-tuple if ID's is new; if so assign new to tuple, otherwise use ID from table;
> - to do this, use a hash table;
> - write the canonical ID to a new matrix file.

Then write k-tuples of modular ID's to k renumbering files

Making polynomial numberings agree

Numbering of polynomials may differ between moduli, because

- modular reduction could make polynomials equal, or zero;
- multi-threading randomly perturbs assignment of ID's.

Therefore, matrices must be compared before polynomials.
Traverse corresponding matrix entries for all k moduli:

- if entry is strong only for some moduli, take 0 at others;
- look up if k-tuple if ID's is new; if so assign new canonical ID to tuple, otherwise use ID from table;
- to do this, use a hash table;
- write the canonical ID to a new matrix file.

Then write k-tuples of modular ID's to k

Making polynomial numberings agree

Numbering of polynomials may differ between moduli, because

- modular reduction could make polynomials equal, or zero;
- multi-threading randomly perturbs assignment of ID's.

Therefore, matrices must be compared before polynomials.
Traverse corresponding matrix entries for all k moduli:

- if entry is strong only for some moduli, take 0 at others;
- look up if k-tuple if ID's is new; if so assign new canonical ID to tuple, otherwise use ID from table;
- to do this, use a hash table;
- write the canonical ID to a new matrix file.

Then write k-tuples of modular ID's to k renumbering files

Modular lifting

Now translating polynomial ID's through renumbering, look up corresponding modular polynomials. Must solve:

Given remainders $r_{1} \bmod n_{1}$, and $r_{2} \bmod n_{2}$, find r such that $r \equiv r_{1}\left(\bmod n_{1}\right)$ and $r \equiv r_{2}\left(\bmod n_{2}\right)$.

Modular lifting

Now translating polynomial ID's through renumbering, look up corresponding modular polynomials. Must solve:

Given remainders $r_{1} \bmod n_{1}$, and $r_{2} \bmod n_{2}$, find r such that $r \equiv r_{1}\left(\bmod n_{1}\right)$ and $r \equiv r_{2}\left(\bmod n_{2}\right)$.

- We must adjust r_{1} by multiple m of n_{1} with $r_{1}+m \equiv r_{2}\left(\bmod n_{2}\right)$.
- Let m_{0} be multiple of n_{1} such that $m_{0} \equiv d=\operatorname{gcd}\left(n_{1}, n_{2}\right)\left(\bmod n_{2}\right) \quad$ (exists by "Bezout").
- If $r_{2}-r_{1}$ not multiple of d, no solution exists.
- Otherwise $m=m_{0} \frac{r_{2}-r_{1}}{d}$ works.
- The number m_{0} is independent of r_{1} and r_{2}.

Modular lifting

Now translating polynomial ID's through renumbering, look up corresponding modular polynomials. Must solve:

Given remainders $r_{1} \bmod n_{1}$, and $r_{2} \bmod n_{2}$, find r such that $r \equiv r_{1}\left(\bmod n_{1}\right)$ and $r \equiv r_{2}\left(\bmod n_{2}\right)$.

- We must adjust r_{1} by multiple m of n_{1} with

$$
r_{1}+m \equiv r_{2}\left(\bmod n_{2}\right)
$$

- Let m_{0} be multiple of n_{1} such that $m_{0} \equiv d=\operatorname{gcd}\left(n_{1}, n_{2}\right)\left(\bmod n_{2}\right) \quad$ (exists by "Bezout").
- If $r_{2}-r_{1}$ not multiple of d, no solution exists.
- Otherwise $m=m_{0} \frac{r_{2}-r_{1}}{d}$ works.
- The number m_{0} is independent of r_{1} and r_{2}

Modular lifting

Now translating polynomial ID's through renumbering, look up corresponding modular polynomials. Must solve:

Given remainders $r_{1} \bmod n_{1}$, and $r_{2} \bmod n_{2}$, find r such that $r \equiv r_{1}\left(\bmod n_{1}\right)$ and $r \equiv r_{2}\left(\bmod n_{2}\right)$.

- We must adjust r_{1} by multiple m of n_{1} with

$$
r_{1}+m \equiv r_{2}\left(\bmod n_{2}\right)
$$

- Let m_{0} be multiple of n_{1} such that $m_{0} \equiv d=\operatorname{gcd}\left(n_{1}, n_{2}\right)\left(\bmod n_{2}\right) \quad$ (exists by "Bezout").
- If $r_{2}-r_{1}$ not multiple of d, no solution exists.
- Otherwise $m=m_{0} \frac{r_{2}-r_{1}}{d}$ works.
- The number m_{0} is independent of r_{1} and r_{2}

Modular lifting

Now translating polynomial ID's through renumbering, look up corresponding modular polynomials. Must solve:

Given remainders $r_{1} \bmod n_{1}$, and $r_{2} \bmod n_{2}$, find r such that $r \equiv r_{1}\left(\bmod n_{1}\right)$ and $r \equiv r_{2}\left(\bmod n_{2}\right)$.

- We must adjust r_{1} by multiple m of n_{1} with

$$
r_{1}+m \equiv r_{2}\left(\bmod n_{2}\right) .
$$

- Let m_{0} be multiple of n_{1} such that $m_{0} \equiv d=\operatorname{gcd}\left(n_{1}, n_{2}\right)\left(\bmod n_{2}\right) \quad$ (exists by "Bezout").
- If $r_{2}-r_{1}$ not multiple of d, no solution exists.
- Otherwise $m=m_{0} \frac{r_{2}-r_{1}}{d}$ works.
- The number m_{0} is independent of r_{1} and r_{2}.

Modular lifting

Now translating polynomial ID's through renumbering, look up corresponding modular polynomials. Must solve:

Given remainders $r_{1} \bmod n_{1}$, and $r_{2} \bmod n_{2}$, find r such that $r \equiv r_{1}\left(\bmod n_{1}\right)$ and $r \equiv r_{2}\left(\bmod n_{2}\right)$.

- We must adjust r_{1} by multiple m of n_{1} with

$$
r_{1}+m \equiv r_{2}\left(\bmod n_{2}\right) .
$$

- Let m_{0} be multiple of n_{1} such that $m_{0} \equiv d=\operatorname{gcd}\left(n_{1}, n_{2}\right)\left(\bmod n_{2}\right) \quad$ (exists by "Bezout").
- If $r_{2}-r_{1}$ not multiple of d, no solution exists.
- Otherwise $m=m_{0} \frac{r_{2}-r_{1}}{d}$ works.
- The number m_{0} is independent of r_{1} and r_{2}.

Outline

Surveying the Challenge

- First estimates
- How is Memory Used?

Reducing Memory Use

- Modular Reduction of Coefficients
- The Set of Known Polynomials
- Individual Polynomials
(3)

Writing and Processing the Result

- Output Format
- Processing Strategy

4 What went Wrong (until it was fixed)

- Mysterious Malfunctions
- Safe but Slow Solutions
- Precision Problems

Surprising scenarios

Various subtleties of C++ have caused headaches:

- defining too much automatic conversion inadvertently did: reference \rightarrow copy \rightarrow reference, and values evaporated;
- strange bit shifting semantics can bite: necessary $x \gg 32$ failed tests on 32-bit machine.

Why David was right after all

With so much data, one cannot afford inefficiency.
Lessons we learned the hard way:

- a bad choice of hash function gives congestion;
- counting bits in a bitman can be costly;
- making threads safe can make them useless;
- don't over-display counters.

Why David was right after all

With so much data, one cannot afford inefficiency.
Lessons we learned the hard way:

- a bad choice of hash function gives congestion;
- counting bits in a bitmap can be costly;
- making threads safe can make them useless;
- don't over-display counters.

Watch your Width

When space is tight, one must be extra alert:

- width of operands, not of result, determine operation; offset $_{(8\rangle}=$ base $_{\langle 8\rangle}+5 *$ renumbering $_{\langle }$
- modular lifting can easily overflow (tables can solve this).

Watch your Width

When space is tight, one must be extra alert:

- width of operands, not of result, determine operation; offset $_{\langle 8\rangle}=$ base $_{\langle 8\rangle}+5 *$ renumbering $_{\langle 4\rangle}\left[i_{\langle 8\rangle}\right]$
- modular lifting can easily overflow (tables can solve this).

Summary

- Tailoring implementation of abstract data types can easily give substantial gain.
- Simple binary formats allow (relatively) rapid processing.
- Handling massive data is a challenge, but fun.

