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Introduction. Suppose G is a real reductive algebraic group. A unitary representation of G is a
Hilbert space endowed with a continuous action of G by unitary operators. It is irreducible if the Hilbert
space is non-zero, but cannot be written as a direct sum in a non-trivial G-invariant way. The orbit method
pioneered by Kirillov and Kostant seeks to construct irreducible unitary representations by analogy with
quantization procedures in mechanics.

A classical physical system may sometimes be modelled by a configuration space M, a manifold whose
points represent the possible positions of the bodies in the system. The corresponding phase space is the
cotangent bundle T* M, whose points represent the possible states (positions and momenta) of the bodies in
the system. In this setting a classical observable is a function on 7*M. The quantum mechanical analogue
of this system is based on the Hilbert space L?(M) of square-integrable half densities on M. A state of
the quantum system is a unit vector v in L?(M); |v|? is a probability density on M, usually thought of as
describing the probability of observing the quantum mechanical state in a given classical configuration. A
quantum-mechanical observable is an operator T' on L?(M); the scalar product (T'v,v) is the expected value
of the observable on the state v. Some connection between classical and quantum observables is provided
by a symbol calculus; an interesting quantum observable is often a differential operator on M, and the
corresponding classical observable is related to the symbol of the differential operator (a function on T*M).

The states of some more complicated classical mechanical systems may be represented as points of a
symplectic manifold X. Here X corresponds to the cotangent bundle T*M in the previous example, but
there is no longer an underlying configuration manifold M. Classical observables are still functions on X. A
quantization of this classical system is a Hilbert space H(X) endowed with an algebra A(X) of operators.
Here A(X) is to be some non-commutative analogue of the algebra of functions on X. It is not easy to say
in general what H(X) ought to be, except in some special classes of examples like the one in the previous
paragraph.

This relationship between classical and quantum mechanics suggests a classical analogue of an irreducible
unitary representation of G: a homogeneous space for G, endowed with an invariant symplectic structure.
Such homogeneous spaces turn out to be very close to coadjoint orbits: orbits of G on the dual of its Lie
algebra. The orbit method in representation theory seeks to attach to a coadjoint orbit X (regarded as the
phase space of a classical mechanical system admitting G as a group of symmetries) a Hilbert space H(X)
(the state space for the quantized system). If this can be done in sufficiently natural way, then the action of
G on X by symplectomorphisms will give rise to an action of G on H(X) by unitary operators; that is, to a
unitary representation 7(X) of G.

In the case of reductive groups, the orbit method is fairly well understood for semisimple orbits X:
that is, one can construct in a natural way a unitary representation 7(X). The purpose of these notes
is to outline this construction. Following an idea of Dixmier, we will emphasize not so much the Hilbert
space H(X) as the algebra of operators A(X). There are several advantages to this approach. First, the
relationship between X and A(X) is somewhat more elementary and direct than that between X and H(X).
Second, A(X) depends only on the complexification of G. Because complex reductive groups are more or
less combinatorial in nature, the operator algebras are necessarily uncomplicated.

Here is an outline of the notes. In section 1 we recall the definition of real reductive groups, and some
of their structure theory. Section 2 recalls some general facts about representation theory of Lie groups and
enveloping algebras. Section 3 outlines ideas of Dixmier about ideals in enveloping algebras. At the end of
section 3 there is a moderately precise formulation of the problem that the orbit method seeks to solve.

Some of the basic notions from the method of coadjoint orbits are summarized in section 4. Sections 5
and 6 describe the classification of coadjoint orbits for reductive groups. The orbits are all built from three
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special classes: hyperbolic, elliptic, and nilpotent. The semisimple orbits are those built only from hyperbolic
and elliptic pieces. It turns out (although we will not explain why) that the construction of representations
attached to coadjoint orbits can more or less be reduced to these three classes. The first two have been
treated completely (as we will explain), but the third is understood only in special cases.

In section 7 we construct the representations attached to hyperbolic coadjoint orbits. Roughly speaking,
these are principal series and “degenerate series” representations induced from one-dimensional characters
of parabolic subgroups.

The operator algebras that we construct here are all differential operator algebras. Section 8 is an
elementary discussion of such operators, arranged in a form that fits well with the orbit method. The actual
construction of some algebras A(X) appears in section 9.

Finally, section 10 contains a (very incomplete) outline of Zuckerman’s construction of representations
associated to elliptic coadjoint orbits. A complete account will appear in [Knapp-Vogan].

Some other expositions of related material include [Vogan87], [Guichardet], and [Vogan88].

During the summer of 1994 T lectured on this material at the Nankai Institute of Mathematics; at
the Instituto de Matemédticas at UNAM; at CIMAT in Guanajuato; and finally at the European School of
Group Theory. The comments of all of those audiences have been a great help to me in preparing these
notes. Henrik Schlichtkrull offered many improvements and corrections to the manuscript. For the flaws
that remain, I must of course assume the responsibility.

1. Reductive groups.

A real reductive group is an abstract mathematical object of which there are relatively few examples.
For this reason the general theory is informed and guided by the examples to a remarkable extent. This is
evident even in one of the simplest definitions of a real reductive group, which is based on some familiar
properties of matrices.

Write G = GL(n, R) for the group of invertible n x n matrices with real entries, the general linear group
over R. If g € G, define

b9 ="9"", (1.1)(a)

the inverse of the transpose of g. Since transpose and inversion are both anti-automorphisms of G (meaning
that t(gh) = thlg, for example), the map 6 is an automorphism. Since transpose and inversion have order
2 and commute with each other, 8 has order 2. We call § the Cartan involution of G. Write K = G? for
the subgroup of fixed points of §. This is the group O(n) of n x n real orthogonal matrices, the orthogonal
group. It is compact.

Write go = gl(n,R) for the Lie algebra of G, consisting of all n x n matrices with real entries. The
differential of 8 at the identity is an involutive linear automorphism of gg, also written 8. We have

6X = —tX (1.1)(b)

for X € go. (Using the same letter for the differential of 8 is an abuse of notation, since G C go, but no
confusion should result.) The +1-eigenspace of € is

t) = n x n skew-symmetric real matrices; (1.1)(c)
it is the Lie algebra of K. The —1-eigenspace of 0 is
Po = n X n symmetric real matrices. (1.1)(d)

We have
go = o @ po, (L.1)(e)
the Cartan decomposition of gl(n,R).
There is a corresponding decomposition for G. For that, we need a lemma. Recall that a real matrix
g is called positive definite symmetric if the bilinear form on R™ defined by By (v,w) = (gv,w) is positive
definite and symmetric. (Here we have written (,) for the usual inner product on R".)

Lemma 1.2



a) An n x n real matriz X is symmetric if and only if there is an orthogonal basis of R™ consisting of
eigenvectors of X.

b) An n x n real matriz g is positive definite symmetric if and only if there is an orthogonal basis of R™
consisting of eigenvectors of g with strictly positive eigenvalues.

¢) The exponential map is an analytic diffeomorphism
exp:po = P
from symmetric matrices to positive definite symmetric matrices. The inverse
log: P — po

is also analytic.

Sketch of proof. Part (a) is standard linear algebra. For (b), suppose first that g € P. The symmetry
of the form B, makes g symmetric. The existence of an orthonormal basis of eigenvectors follows from (a).
If v is a non-zero eigenvector with eigenvalue A, then the assumed positivity of B, gives

0 < By(v,v)/{v,v) = (gv,0)/(v,v) = (Av,v)/{v,v) = A.

So the eigenvalues are positive. The converse assertion is elementary. For (c), it follows from (a) and (b)
that exp is a one-to-one map of pg onto P. The analyticity of log is slightly more subtle; it may be proved
for example by calculating the Jacobian of exp. Q.E.D.

Proposition 1.3 (Polar or Cartan decomposition for GL(n,R).) Suppose G = GL(n,R), K = O(n),
and pg is the space of n X n symmetric matrices. Then the map

K xpyo—>G (k, X) — kexp(X)
is an analytic diffeomorphism of K X pg onto G. The inverse is given by

g~ (gexp(—1/2log((69) '4g)),1/21og((69) ' g))-

Proof. Suppose g € GL(n,R). Define p = (6g)~'g = (*g)g. The bilinear form attached to p is

By (v,w) = (pv,w) = ("ggv,w) = (gv, gw),

which is symmetric and positive definite. So p is positive definite symmetric. By Lemma 1.2, there is a
unique symmetric matrix X with p = exp(2X). Define k = gexp(—X). Then

tkk = exp(—X)ggexp(—X) = exp(—X) exp(2X) exp(—X) = 1,

so0 k belongs to O(n). By construction g = k exp(X), which proves the surjectivity of the polar decomposition
map. The construction also proves the formula for the inverse. Q.E.D.

The polar decomposition allows one to study many structural problems about GL(n,R) in two steps:
one involving the compact group K = O(n), and one involving the vector space po (often regarded as a
representation of K). Elie Cartan discovered that all real reductive groups share a similar property. It is so
fundamental that it may be taken as the definition of the class.

Definition 1.4. A subgroup G C GL(n,R) is called a linear real reductive group if

1) G is closed;

2) if X is a symmetric matrix, then X € Lie(G) if and only if exp(X) € G; and

3) G is preserved by the Cartan involution 6 of GL(n,R). That is, a matrix g belongs to G if and only if
tg belongs to G.



Suppose G is such a group. The restriction of 6 to G (still denoted ) is called the Cartan involution of
G. Write
go = Lie(G) C gl(n, R)

for the Lie algebra of G; necessarily it is preserved by the Cartan involution 8 of gl(n,R). Accordingly we
can write

g0 =% Do

for the decomposition into +1 and —1 eigenspaces (the skew-symmetric and symmetric matrices in go). Put
K=G=GnOM0),

a compact subgroup of G (by condition (1)); its Lie algebra is €.

Proposition 1.5 (Cartan decomposition for linear real reductive groups). In the setting of Definition
1.4, the map
K xpo — G, (k,X) — kexp(X)

is an analytic diffeomorphism of K X po onto G.

Proof. Suppose g € G. Write g = kexp(X) for the polar decomposition of g in GL(n,R). Then
exp(2X) = tgg, which belongs to G by condition (3) of Definition 1.4. By condition (2) of the definition, X
belongs to pg. It follows that k = gexp(—X) belongs to GN O(n) = K. This proves the surjectivity of the
Cartan decomposition map. The remaining assertions follow from Proposition 1.3. Q.E.D.

Many of the most interesting real reductive groups are non-linear; that is, they do not appear as
subgroups of GL(n,R). The following definition is broad enough for us.

Definition 1.6. A real reductive group is a Lie group G endowed with a continuous homomorphism
7w : G = GL(n,R), subject to the following conditions:
1) n(G) = G is a linear real reductive group (Definition 1.4); and
2) the kernel of 7 is finite.

Suppose G is such a group. We use the differential of 7 to identify the Lie algebra go of G' with
9o = Lie(G) C gl(n,R). Define £, po, and K as in Definition 1.4, and put

K =17 Y(K).

By hypothesis (2), K is a compact subgroup of G with Lie algebra &.

Proposition 1.7 (Cartan decomposition for real reductive groups). In the setting of Definition 1.6, the
map
K xpy — G, (k,X) — kexp(X)

is an analytic diffeomorphism of K X pg onto G. The map 0 : G — G defined by
0(kexp(X)) = kexp(—X)

is an involutory automorphism (the Cartan involution) with G¥ = K.

Proof. Given g € G, write B .
m(g) = kexp(X),

with X € py. The identification of p, with po provides an element X € po. The element k = gexp(—X)
satisfies (k) = k, and so belongs to K. This proves the surjectivity of the decomposition, and the analyticity
of the inverse maps. Analyticity of the map to G follows from the analyticity of the exponential map and of
multiplication.

For the last assertion, € is obviously an analytic map of order two with fixed point set K. What must
be shown is that 8(gh) = 6(g)0(h) for all g, h € G. To prove this, consider the function

F(g,h) = 6(gh)6(h) " 0(g) "
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from G x G to G. We want to show that it carries G x G to the point 1. Since 8 is an automorphism of
G, F takes values in the kernel of 7. Since this is a finite set, F is constant on the connected components
of G x G. Obviously F' is trivial on K x K; but by the Cartan decomposition, this subgroup meets every
connected component of G x G. Q.E.D.

The definition of reductive group has the following “hereditary” property.

Proposition 1.8. Let G = K exp(po) be the Cartan decomposition of a real reductive group with Cartan
inwolution 6. Let H be a subgroup of G, and assume that
a) H is closed;
b) if X € po, then X € Lie(H) if and only if exp(X) € H; and
¢) H is preserved by 0.
Then H is a real reductive group with Cartan involution 0|g .

This is almost immediate from Definition 1.6.
In order to construct interesting examples of reductive groups, we need a way to verify condition (2) of
Definition 1.4. Here is one.

Lemma 1.9. Suppose A is an n x n matriz and X is a symmetric n x n matriz. Then X commutes
with A if and only if exp(X) commutes with A.

Proof. The first (respectively second) condition is equivalent to the assertion that the linear transfor-
mation A respects the decomposition of R” as a direct sum of eigenspaces of X (respectively exp(X)). By
Lemma 1.2, these decompositions coincide. Q.E.D.

Lemma 1.10. Suppose G is a real reductive group and X € pq.
a) If g € G, then Ad(9)X = X if and only if g commutes with exp X .
b) If Y € go, then ad(X)Y =0 if and only if Ad(exp X)Y =Y.

Proof. The two statements are very similar; we consider only the first. Write 7 : G — G c GL(n,R)
as in Definition 1.6, and g = 7(g), X = dn(X). “Only if” is trivial, so suppose g commutes with exp X.
Applying 7, we find that g commutes with exp X. By Lemma 1.9, g commutes with X; so Ad(g)X = X.

Consequently Ad(g)X = Ad(g)X = X. Since dr is one-to-one, it follows that Ad(g)X = X, as we wished
to show. Q.E.D.

Proposition 1.11. Suppose G is a real reductive group with Cartan involution 6.
a) If S is a O-stable subset of G, then

H=7(5)={9€G|gsg " =5, all s €S}

is a real reductive group with Cartan involution 6|g.
b) If 5 is a O-stable subset of go, then

H=27g05)={9g€G|Ad(9)Y =Y, allY € s}

is a real reductive group with Cartan involution 6|g.

Proof. We apply Proposition 1.8. Conditions (a) and (c) are immediate, and (b) is satisfied because of
Lemma 1.10. Q.E.D.
A second way to verify condition (2) is using bilinear forms.

Lemma 1.12. Suppose B is a bilinear form on R™, and X is a symmetric n X n matrixz. Then the two
conditions

1) for all v,w € R*, B(Xv,w) + B(v,Xw) =0, and
2) for all v,w € R, B(exp(X)v,exp(X)w) = B(v,w)
are equivalent.
Proof. The conditions may be checked for v and w belonging to eigenspaces of X or exp(X). Write Vj
for the eigenspace of X with eigenvalue s € R. Then (1) is equivalent to
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1') Whenever s+t # 0, B(V;, V) = 0.
Similarly, write W) for the eigenspace of exp(X) with eigenvalue A > 0. Then (2) is equivalent to
2') Whenever Au # 1, B(W,,W,) = 0.

Since Vi = Wexpt, conditions (1) and (2') are equivalent. Q.E.D.
Any bilinear form B on R™ may be represented by a unique n x n matrix A, by the formula

B(v,w) = (Av, w); (1.13)(a)
the form on the right is the standard inner product on R"”. The symmetry group of the form is

G(B) = {9 € GL(n,R) | B(gv,gw) = B(v,w), allv,w € R*} (1.13)()

={g € GL(n,R)|'gAg = A}. '
We are interested in constructing real reductive groups as symmetry groups of forms. In order to apply
Proposition 1.8, we need to know conditions for G(B) to be §-stable. Here is a simple one.

Proposition 1.14. Suppose B is a bilinear form on R", represented by an n xn matriz A. If A2 = cI is
a non-zero scalar matriz, then the symmetry group G(B) is preserved by the Cartan involution 8 of GL(n,R).
Consequently G(B) is a real reductive group; the mazimal compact subgroup K (B) is the centralizer of A in

O(n).

Proof. Recall that g =tg ' for g € GL(n,R). The condition in (1.13)(b) for g to belong to G(B) is
tgAg = A. By inverting both sides, this condition is equivalent to g~*A~1tg~" = A~1. The hypothesis on
A says that A~! = ¢~14; multiplying our condition on g by ¢ gives g~1Atg~" = A, or {(g)A(fg) = A; and
this is the condition for 8¢ to belong to G(B). To see that G(B) is reductive, apply Definition 1.4: condition
(1) is clear, (2) is Lemma 1.12, and we have just established (3). Q.E.D.

Example 1.15. Suppose p and ¢ are non-negative integers, and n = p 4+ ¢q. The standard quadratic
form of signature (p,q) on R” is the form

By (v, w) = viwy + - - + UpWp — Upp1Wpy1 — - — UpnWn.

The corresponding matrix A, , is diagonal with p entries equal to 1 and ¢ equal to —1. Obviously Af,’q =1,
so the symmetry group of B, , is a linear real reductive group. It is called O(p, q), the real orthogonal group
of signature (p,q). The maximal compact subgroup is O(p) x O(q).

For a second example, the standard symplectic form on R?” is

n

w(v,w) = E ViWn44 — UniWi-
i=1

The corresponding matrix is often called J; it is

(0 —I,
1=(0 o)
This is precisely the matrix of multiplication by i in a certain identification of R?*" with C". A first conse-
quence is that J? = —I, so the symmetry group of w is a linear real reductive group. It is called Sp(2n,R),
the real symplectic group. The maximal compact subgroup K(w) is the centralizer of J in O(2n). The

centralizer of J consists precisely of the linear transformations that are complex linear when R2" is identified
with C". We may therefore identify K (w) with the unitary group U(n).

A third construction of real reductive groups is by changing the base field. Let F denote one of the
three fields R, C, or H, and put d = dimg F. The standard basis of F (namely {1}, or {1,}, or {1,4,4,k})
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provides an identification of the right vector space F* with R"?. In particular, each element z € F defines
by right multiplication a linear transformation p(z) € End(R"?). The R-bilinear form on F" defined by

(v,w) =Re (i va_p>

is just the standard inner product on R??; here bar denotes the standard anti-automorphism of F (acting by
+1 on the first basis element of F ands by —1 on the others). Obviously

{p(z)v,w) = (vz,w) = Re (i Upzw_p>

i (1.16)(a)
=Re (Z vpm> = (v,wz) = (v, p(z)w)
So
p(z) = *p(2), (1.16)(b)
and
p(z™1) = 6(p(2)) (1.16)(c)

for z € F non-zero.

Now the algebra gl(n,F) of n x n matrices over F may be identified with the algebra of F-linear trans-
formations of F*, and so with the R-linear transformations of R*? commuting with right multiplications by
F; that is, with the centralizer of p(F) (or p(F*)) in gl(nd,R). In particular,

GL(n,F) = centralizer of p(F*) in GL(nd, R); (1.17)

this is a linear real reductive group by (1.16)(c) and Proposition 1.11. More generally, we have

Proposition 1.18. Suppose F is a field of dimension d over R, and G is a linear real reductive group
in GL(nd,R). Then GNGL(n,F) (¢f. (1.17)) is a linear real reductive group.

This follows from Proposition 1.8, Lemma 1.9, and (1.16)(c).

Example 1.19. Suppose p and ¢ are non-negative integers, and n = p + q. The standard Hermitian
form of signature (p,q) on C" is the form

Hy, o (v,w) = 007 + - - + VpWp — Vp41Wpt1 — - - — UpWp-

The group of complex-linear transformations preserving this form is called U(p,q), the unitary group of
signature (p,q). If we identify C* with R?", then the real part of H, , is the quadratic form Bsp s, of
Example 1.15. It is easy to check that a complex-linear transformation preserving the real part of H, , must
preserve the entire form; so it follows that

U(p,q) = O(2p,2q9) N GL(n,C).

By Proposition 1.18, this is a linear real reductive group. The proof shows that its maximal compact
subgroup is
(0(2p) x O(2¢)) NGL(n,C) =U(p) x U(q).

2. Representations and operator algebras.

Suppose G is a topological group. A wunitary representation of G is a pair (w,H), with H a complex
Hilbert space and 7 : G — U(#H) a homomorphism into the group of unitary operators on H. These are the
invertible operators preserving the inner product: the assumption is

(m(@)v,m(gw) = (v,w)  (v,w e H,g9€G) (2.1)(a)
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Often it is convenient to formulate this condition as
(r(g)v,w) = (v,m(g")w)  (v,we€H,g€Q) (2.1)(b)
or simply as 7(g)* = 7w(g~!). We assume also that 7 is weakly continuous; that is, that the map
GxH-—->H (g9,v) — w(g)v (2.1)(c¢)

is continuous. An invariant subspace of H is a closed subspace Ho C H that is preserved by all the operators
m(g)- In this case the restricted operators define a unitary representation (m,Ho) of G. The orthogonal
complement #H; of Hj is a second invariant subspace, and ‘H = Ho & H1; we write 7 = mo @ 71 accordingly.
We say that 7 is irreducible if H # 0, and the only invariant subspaces of H are 0 and H.

Suppose (m1,H1) and (72, Hz) are unitary representations of G. An intertwining operator from 7 to
7o is a continuous linear map T from #H; to Hs with the property that

Tri(g) = m(9)T, (9 € G).

The space of all intertwining operators is written Homg(H;1, H2). Forming the adjoint T* defines a conjugate-
linear isomorphism
HOHIG (Hl ; Hg) ~ HOIHG (7‘[2, 7‘[1 ) .

If some intertwining operator is a unitary isomorphism, then we say that m; and 7 are equivalent. We write
G for the set of equivalence classes of irreducible unitary representations of G.

The fundamental problem of abstract harmonic analysis is this: to decompose into irreducible repre-
sentations an arbitrary unitary representation of G. This problem has a fairly good abstract answer for
a large class of groups including the real reductive Lie groups. The case of compact groups is recalled at
(2.16) below. The abstract answer is of little help in finding explicit decompositions for particular interesting
representations, however, and this remains an active area of research. R

A second basic problem in abstract harmonic analysis is the determination of the set G. If this can
be accomplished, a question about G may sometimes be analyzed along the following lines. First, the
question is made into one about some unitary representation (w,H) of G (perhaps on square-integrable
functions on a homogeneous space, for example). Next, the representation 7 is decomposed into irreducible
representations. At the same time one tries to make the original question into a family of questions about
the irreducible constituents of 7. Finally, this family of questions is answered using our knowledge of all
irreducible representations. Of course each step of this program is fraught with peril; but it has been carried
out with some success in a variety of cases. A striking example quite close to the topic of these notes is
provided by the book [Borel-Wallach], which analyzes the cohomology of cocompact discrete subgroups of
real reductive Lie groups.

In order to carry out the program just sketched, one needs to understand not all irreducible unitary
representations, but rather just those appearing in whatever representation 7 one first constructs. With this
in mind, we formulate

Problem. Suppose G is a real reductive Lie group. Construct a family of irreducible unitary represen-
tations of G sufficiently large to decompose many interesting unitary representations into irreducibles.

Of course this “problem” is not at all well-defined, because of the phrase “many interesting.” We will
make it more precise, and outline what is known about solving it.

In order to explain the approach we will adopt, it is helpful to begin with the case of a finite group G.
The group algebra C[G] is the algebra over C with basis {d,| ¢ € G}, and multiplication table

0g0n = Ogn (g,h € @G). (2.2)(a)
This algebra has a conjugate-linear antiautomorphism x*, defined by

D agdy | = @by (2.2)(b)

geG geG



Then a unitary representation (7, H) of G defines an associative algebra homomorphism

7 : C[G] — End(H), W(Z agly) = Zagw(g), (2-2)(c)

satisfying
m(a*) = w(a)*. (2.2)(d)

(We say that 7 is a x-homomorphism.) Conversely, any *-homomorphism 7 from C[G] to End(H) arises
from a unitary representation of G on H.

Proposition 2.3. Suppose G is a finite group. Then the equivalence classes of irreducible unitary
representations ™ of G are in one-to-one correspondence with the mazimal two-sided ideals I; in C[G]. This
bijection has the following properties.

a) If (w,Hz) is an irreducible unitary representation, then I, is the kernel of the algebra homomorphism
7 : C[G] — End(Hx) of (2.2)(c).

b) Suppose I is a mazimal two-sided ideal in C[G]. Choose a mazimal left ideal Jr D I, and define
Ve = C[G]/Jr. Then Vy is isomorphic to Hr as a module for C[G].

This is well-known, and not very hard to prove. It is not often used directly to determine the irreducible
representations of G, because C[G] is such a complicated algebra. Nevertheless, the proposition suggests a
way to approach the representation theory of a group G. First, one should find an associative algebra A(G)
whose module theory is related to the representation theory of G. Next, one should study the ideals in A(G).

For a locally compact group G, a natural candidate for the algebra A(G) is the convolution algebra L!(G)
(with respect to a left Haar measure dg). Given a unitary representation (7, ) and f € L'(G), one defines
7(f) = [ f(9)7(g)dg. Then one can make an excellent correspondence between unitary representations of
G and appropriate modules for L!(G). These modules all extend to a certain completion of L*(G), called
C*(@G). For type I groups G (which include the real reductive Lie groups), there is a bijection between
irreducible unitary representations of G and primitive ideals in C*(G).

Now this bijection is a powerful technical tool — for example, it is at the heart of the abstract theory of
decomposition into irreducible representations. But as a way to describe irreducible representations explicitly,
it is (like Proposition 2.3) of little value. The algebra C*(G) is too complicated. We would like instead an
algebra whose module theory is perhaps not quite so perfectly related to the unitary representation theory
of G, but whose ideal theory we can hope to study directly.

Suppose now that G is a Lie group. Write

go = Lie(G), g=go®rC, U(g)= universal enveloping algebra of g. (2.4)

One of the central ideas of Lie theory is that these objects can be used to translate problems about Lie groups
into linear algebra. Here is an example, along the lines of Proposition 2.3. Recall that a finite-dimensional
(non-unitary) representation (7, V) of G is just a continuous homomorphism 7 of G into GL(V} ), the general
linear group of some finite-dimensional complex vector space V.

Proposition 2.5. Suppose G is a connected, simply connected Lie group. Then the finite-dimensional
irreducible representations m of G are in one-to-one correspondence with the two-sided mazximal ideals I, of
finite codimension in U(g). This bijection has the following properties.

a) Suppose (7w, Vy) is a finite-dimensional irreducible representation of G. Write 7 : go — gl(Vi) for the
differential of © (a Lie algebra representation), and « : U(g) — End(Vy) for its extension to U(g) (a
homomorphism of associative algebras). Then I is the kernel of m : U(g) — End (V).

b) Suppose I is a mazimal two-sided ideal of finite codimension in U(g). Choose a mazimal left ideal
Jr D I, and define Vo = U(g)/Jr. Then the action of go on Vi by left multiplication in U(g) s a Lie
algebra representation; the corresponding group representation of G is isomorphic to .

Like Proposition 2.3, this is an elementary result. Because U(g) is a relatively uncomplicated algebra,
Proposition 2.5 is sometimes even directly useful for studying finite-dimensional representations.

We turn now to the problem of extending Proposition 2.5 to cover unitary representations. A continuous
homomorphism between Lie groups is automatically smooth (and even analytic); this is used in Proposition
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2.5 to guarantee the existence of the Lie algebra representation 7 : gg — gl(Vy). For infinite-dimensional
representations the situation is more complicated.

Definition 2.6 Suppose G is a Lie group, and (m,H,) is a unitary representation of G. The vector
v € H, is called smooth (respectively analytic) if the map

G — Hy, g+ w(g)v

is smooth (respectively analytic). Write HS° (respectively H) for the set of smooth (respectively analytic)
vectors in H,. These are G-invariant linear subspaces of #,, but they are usually not closed.
Suppose X € go. The differential of m at X is the linear transformation 7(X) of HS° defined by

m(X)v = li_r}r(l)(l/t)(w(exp tX)v — ).

Lemma 2.7. The differential of m is a Lie algebra representation of go on H2°. It therefore defines
a homomorphism of associative algebras w : U(g) — End(H2®). All of the resulting operators preserve the
subspace HY C H.

It is not very difficult to show that H2° is dense in H,. It is also true that H% is dense in H; this
much deeper result, which we will use in the proof of Proposition 2.14 below, is due to Nelson. In any case,
we can now construct one of the maps of Proposition 2.5 for unitary representations.

Definition 2.8. Suppose G is a Lie group, and (m, H, ) is a unitary representation of G. The annihilator
of m in U(g) is the kernel of the homomorphism of Lemma 2.7:

Ann(m) = ker(n : U(g) — End(H)).

This is a two-sided ideal in U(g); it is equal to U(g) if and only if H, = 0.
As some assurance that this definition is well-behaved, here is an elementary lemma.

Lemma 2.9. In the setting of Definition 2.8, suppose W C H° is any subspace that is dense in Hr.
Then
Ann(m) = Ann(W) = {u € U(g) | 7(u)w = 0,all w € W}.

So we may compute the annihilator on analytic or (when these are defined) K-finite vectors.
What properties can we expect of the annihilator of an irreducible unitary representation? Fairly simple
examples show that it need not be a maximal ideal in general. Ring theory has a natural suggestion to offer.

Definition 2.10. Suppose R is a ring with unit element. A left R-module M is called simple if it is
not zero, and its only submodules are 0 and M. A two-sided ideal I C R is called (left) primitive if there is
a simple R-module M such that

I'=Am(M)={re R|rM = 0}.

Theorem 2.11 (Dixmier [Dixmier]). Suppose G is a connected Lie group and (7, Hr) is an irreducible
unitary representation of G. Then Ann(n) is a primitive ideal in U(g).

The reason this is not obvious is that H° is not a simple U(g) module (unless 7 is finite-dimensional).
For reductive G, we will see in Theorem 2.20 how Harish-Chandra constructs a simple U (g)-submodule of
H° that is dense in H,. In light of Lemma 2.9, this proves Theorem 2.11 in the reductive case. Dixmier’s
proof in general involves several important ideas, so we will outline the easiest part of it.

Lemma 2.12. Suppose G is a connected Lie group, (w,H;) is a unitary representation of G, and
V C HY is a U(g)-invariant subspace. Then the closure Ho of V in H, is a G-invariant subspace.

Proof. For any subset S of H,, define
St ={w € Hy|{w,s) =0,all s € S}.
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The closure of any subspace S may be characterized as (S+)+, so it suffices to show that V+ is G-invariant.
For this, fix w € V* and v € V; we must show that the function f(g) = (n(g)w,v) is identically zero.
Because 7 is unitary, f(g) = (w,n(g7!)v). Because v is assumed to be an analytic vector, the function f is
analytic on G. Because G is connected, it therefore suffices to show that all derivatives of f vanish at the
identity on G. A typical derivative of f at the identity is {w, 7(u)v), with u € U(g). Since V is assumed to
be U(g)-invariant, 7(u)v € V. Since w € V1, the derivative vanishes, as we wished to show. Q.E.D.

(I am grateful to P. E. Paradan for showing me this elegant argument.)

Lemma 2.13. Suppose G is a connected Lie group, and (w,H) is an irreducible unitary representation.
Then any non-zero U(g)-invariant subspace V. C HY is dense in Hr. Consequently Ann(V') = Ann(r).

(The last assertion uses Lemma 2.9.)

Proposition 2.14. Suppose G us a connected Lie group, and (m,H%) is an irreducible unitary repre-
sentation. Then Ann(w) is a prime ideal in U(g).

Proof. Recall that a two-sided ideal I in a (possibly non-commutative) ring R is called prime if whenever
J1 and J, are two-sided ideals with JiJo C I, then either J; C I or J, C I. So suppose J; and Jo are ideals
in U(g) with J;J2 C Ann(n), but Jo» ¢ Ann(nw). Then JoHY = V is a non-zero U(g)-invariant subspace of
H¥. By Lemma 2.13, Ann(V) = Ann(n). But

JIV = JioHE C Ann(n)HE = 0;

so J1 C Ann(r), as we wished to show. Q.E.D.
Dixmier completes the proof of Theorem 2.11 using

Theorem 2.15 ([Dixmier]) Suppose I C U(g) is a prime ideal. Then I is primitive if and only if the
center of the ring of fractions of U(g)/I is C.

We omit the details.

We now have a reasonable analogue of Proposition 2.5(a): a map from irreducible unitary representations
to primitive ideals in U(g). To get an analogue of (b) (a corresponding parametrization of representations)
we need to specialize to real reductive groups. Let us first recall the structure of unitary representations for
compact groups.

Suppose K is a compact topological group. Then every irreducible unitary representation of K is
finite-dimensional. Fix a model (4, V) for each equivalence class in K. If (m,H,) is an arbitrary unitary
representation of K, define

H® = Homg (Vs, Hy) (2.16)(a)

We make H? into a Hilbert space as follows. If T and S belong to HJ, then S*T is a map from V; to Vs
commuting with the action of K. By Schur’s lemma it is a scalar operator AI; and we define (T, S) = \. An
equivalent formulation is

(Tv, Sw)n, = (T, S)ys (v, whv; (2.16)(b)

for v,w € V5. Now we can form the Hilbert space tensor product H2 ® V;. (Because Vj is finite-dimensional,
it coincides with the algebraic tensor product.) There is a natural map

HRVs = Hey, TRve Tu; (2.16)(c)

and (2.16)(b) guarantees that this map preserves inner products. It is therefore an isomorphism onto its
image H(d), the d-isotypic subspace of H,. This is the largest subspace of H, on which K acts by a sum of
copies of §. By Schur’s lemma again, H,(d) and H,(d") are orthogonal whenever § and ¢’ are inequivalent.
Consequently

Ha = (DHA(0) = PHI OV, (2.16)(d)
sekK seK

the direct sums being Hilbert space direct sums.
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A vector v € H, is called K-finite if it is contained in a finite-dimensional K-invariant subspace. We
write HE for the space of K-finite vectors. Using (2.16)(d), we find that

HE ~ P HL0) ~PH Vs, (2.16)(e)
scK

scK

the direct sums now being algebraic rather than Hilbert space. The representation 7 is called admissible for
K if all of the spaces H,(d) are finite-dimensional; that is, if every irreducible representation of K has finite
multiplicity in 7.

Suppose now that G is a real reductive Lie group with maximal compact subgroup K. A unitary
representation (w, ) is called admissible if it is admissible for K.

Theorem 2.17 (Harish-Chandra [Harish-Chandrab53]). FEwvery irreducible unitary representation of a
real reductive Lie group G is admissible.

This is a rather difficult result, relying on a deep study of the adjoint action of K on U(g).
Admissible unitary representations have an excellent algebraic description.

Theorem 2.18 (Harish-Chandra [Harish-Chandra53]). Suppose (m, Hr) is an admissible unitary rep-
resentation of a real reductive Lie group G. Write HE for the space of K -finite vectors in H.

a) HE is a U(g)-invariant subspace of the analytic vectors H. In particular, HX carries representations
of the group K and the Lie algebra g.

b) There is a bijection between closed G-invariant subspaces of H, and arbitrary (g, K)-invariant subspaces
of HE. The correspondence from left to right sends a closed subspace W to WX (the K-finite vectors
in W ); from right to left it sends V to V (the closure of V in H,).

To complete this circle of ideas, we will describe formally the algebraic objects arising in Theorem 2.18.
(The definition is taken from [Lepowsky].)

Definition 2.19. Suppose G is a real reductive Lie group with maximal compact subgroup K. A
(g, K)-module is a complex vector space V endowed with representations of the Lie algebra g and the group
K, subject to the following conditions.

1) The action of K is locally finite and smooth. That is, every v € V belongs to a finite-dimensional
K-invariant subspace F' C V, and the action of K on F' is smooth.

2) The differential of the action of K (which makes sense by (1)) is equal to the action of ¢y = Lie(K) C g.

3) For ke K,veV,and X € g, we have

k- (X -v) = Ad(k)(X) - (k- v).

For k in the identity component K of K, condition (3) is a consequence of (1) and (2). We may therefore
omit condition (3) when K (or, equivalently, G) is connected.

A (g, K)-submodule of V is a complex subspace W invariant under the representations of g and K. (By
conditions (1) and (2), invariance under Ky follows from invariance under g. If K is connected, a (g, K)-
submodule is therefore just a g-submodule.) We say that V is irreducible if it is not zero, and the only
submodules are 0 and V. Finally, we say that V is unitary if it is endowed with a positive definite Hermitian
form (,) satisfying

(k-v,k-w) = (v,w), (X -v,w) + (v, X -w) =0
forv,weV, ke K,and X € go.

Theorem 2.18(a) guarantees that the space HX of K-finite vectors in an admissible unitary represen-
tation is a unitary (g, K)-module; it is called the Harish-Chandra module of w. Theorems 2.17 and 2.18(b)

say that HX is irreducible as a (g, K)-module whenever 7 is irreducible. Harish-Chandra’s last basic result
is a converse.

Theorem 2.20 (Harish-Chandra [Harish-Chandra53]). Suppose G is a real reductive Lie group. The
map © — HE is a bijection from (equivalence classes of) irreducible unitary representations of G onto
(equivalence classes of) irreducible unitary (g, K)-modules.
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When G is connected, we have seen that an irreducible (g, K)-module is irreducible as a representation
of g. This theorem may therefore be viewed as an infinite-dimensional analogue of Proposition 2.5(b). It
provides a construction of irreducible unitary representations of G from certain (very special) irreducible
U (g)-modules.

We can now refine slightly the problem formulated before (2.2).

Problem 2.21. Suppose G is a real reductive Lie group; assume for simplicity that G is connected.

a) Construct a family of interesting primitive ideals I C U(g).
b) For each primitive ideal I as in (a), construct a finite set of irreducible unitary representations 7 of G,
satisfying Ann(n) = I (Definition 2.8).

This formulation is still imperfect, but it begins to reflect what we will actually do. The constructions in
(b) will generally take place in three steps. First, we will construct some U (g)-modules W with annihilator
equal to I. This step is usually fairly easy; some possibilities for W will often be suggested by the construction
of I in (a). Next, we will construct from each W a (g, K)-module V, still annihilated by I. The principle of
this construction (due to Zuckerman) is simple and elegant, but analyzing it in detail can be quite difficult.
(One minor point is that the annihilator of V' may be strictly larger than I.) Finally, we will apply Harish-
Chandra’s Theorem 2.20 to get a unitary representation of G.

3. Primitive ideals and Dixmier algebras.

In this section we will consider more carefully part (a) of Problem 2.21: the construction of a family of
primitive ideals related to unitary representations. A more detailed account may be found in [Vogan86] and
[Vogan90].

The first point is that not every primitive ideal can be the annihilator of a unitary representation.
Suppose for a moment that G is a connected noncompact simple Lie group. Then G has a large family of
irreducible finite-dimensional representations (parametrized by a cone in a lattice of dimension equal to the
rank of G). By Proposition 2.5, it follows that U(g) has a large family of maximal ideals of finite codimension.
On the other hand, a unitary finite-dimensional representation is a homomorphism 7 : G — U(n). Because
G is noncompact and simple, such a homomorphism must be trivial. This proves

Lemma 3.1. Suppose G is a connected noncompact simple Lie group, and suppose I C U(g) is a
mazximal ideal of finite codimension. Then I is the annihilator of a unitary representation if and only if
I =gU(g) (the augmentation ideal).

What distinguishes the augmentation ideal among all maximal ideals of finite codimension? If I is such
an ideal, then the Wedderburn theorem guarantees that

U(g)/1 ~ M,(0), (3.2)

the algebra of n x n matrices. Since g is semisimple, n = 1 occurs only for the augmentation ideal. So we
may ask what distinguishes 1 x 1 matrices from larger ones. One answer is the absence of zero divisors.

Definition 3.3. Suppose [ is a two-sided ideal in a ring R. We say that the ideal I (or the quotient
ring R/I) is completely prime if whenever a and b are elements of R with ab € I, then eithera € T or b € I.

It is easy to check that a completely prime ideal is prime. (The definition of prime was included in the
proof of Proposition 2.14.) Here is some further evidence of the connection between completely prime ideals
and unitary representations.

Proposition 3.4 ([Vogan86], Proposition 7.12). Suppose G is a connected complex reductive Lie group,
and © € G is an irreducible unitary representation. Then the annihilator I, C U(g) (Definition 2.8) is
completely prime.

The proof is very easy, requiring no structural information about 7. Exactly the same result is true
for G = GL(n,R); but in this case the proof requires a complete and detailed knowledge of G. Any hopes
of further generalization are dashed on the rocks of G = SU(2). This group has an irreducible unitary
representation of each dimension n > 0; and (3.2) guarantees that the corresponding primitive ideal is
completely prime only for n = 1. (More subtle examples are available for noncompact simple groups as
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well. Suppose 7 is a holomorphic discrete series representation of Sp(4, R) with Harish-Chandra parameter
A = (A1, A2). This means that Ay > Ay > 0 are positive integers. It turns out that Ann(w) is completely
prime if and only if Ay — Ay = 1.)

We can find a way out of this disappointment by looking carefully at the example of G = SU(2).
This group acts holomorphically on the Riemann sphere CP!. The n-dimensional irreducible representation
7 arises as the space of holomorphic sections of a certain holomorphic line bundle £, — CP!. Define
D(CP!),, to be the algebra of holomorphic differential operators on sections of £,. This is an algebra of
“twisted differential operators” on CP!. (We will return to a more detailed and general discussion of twisted
differential operator algebras in section 9.) The action of G on L£,, defines a homomorphism of associative
algebras

¢n = U(g) = D(CP'),. (3:5)
Write I,, for the kernel of ¢,,.

Proposition 3.6. The ideal I,, is a completely prime primitive ideal in U(g), contained in the annihi-
lator Ann(m,).

Sketch of proof. That I, is completely prime follows from the absence of zero divisors in the twisted
differential operator algebra D(CP'),,. That it is contained in Ann(7,) follows from the realization of 7, as
holomorphic sections of £,. Q.E.D.

The lesson to be drawn from this example is that an interesting unitary representation = may appear
naturally as a module for some completely prime quotient U(g)/I, even if Ann(w) properly contains I. It
is easy to modify Problem 2.21 in accordance with this lesson; we simply weaken the condition in (b) to
Ann(w) D I.

There is a hint here of a second lesson as well. The realization of 7, on holomorphic sections of £,
exhibits 7, as a module not only for U(g)/I,,, but also for the full differential operator algebra D(CP!),,. In
this example the homomorphisms ¢,, are all surjective, so that there is no difference between U(g)/I,, and
D(CP'),,. When we treat general reductive groups, however, we will encounter homomorphisms

¢ : U(g) = D(X)ax. (3.7)

Here X is a “partial flag variety” for g (a quotient of a complex reductive group G¢ by a parabolic subgroup
Qc); A is a character of the Lie algebra q; and D(X), is a twisted differential operator algebra on X. In this
setting the homomorphism ¢, is usually but not always surjective. Perhaps the simplest example when ¢, is
not surjective has g = sp(4,C), X = CP? (the variety of lines in the natural four-dimensional representation
of g), and D(X), the algebra of differential operators on “half forms” on X. (The top exterior power of
the cotangent bundle of X has a well-defined square root £ — X in this example; D(X), is the algebra of
holomorphic differential operators on sections of £.) In any case, we will construct modules for D(X)y, and
not just for U(g)/ker ¢». In order to accommodate this extra structure in something like Problem 2.21, we
need a definition.

Definition 3.8. Suppose G¢ is a complex reductive algebraic group with Lie algebra g. A Dizmier
algebra for G¢ is a pair (4, ¢) satisfying the following conditions.

i) A is an algebra over C, equipped with an algebraic action of G¢ by algebra automorphisms Ad(g).
ii) The map ¢ : U(g) — A is an algebra homomorphism, respecting the adjoint actions of G¢ on U(g) and
A. The differential ad of the adjoint action of G¢ on A is the difference of the left and right actions of
g defined by ¢:
ad(X)(a) = ¢(X)a—ap(X) (X €g,a€A).
iii) A is finitely generated as a U(g) module.
iv) Each irreducible G¢-module occurs at most finitely often in the adjoint action of G¢ on A.

We say that the Dixmier algebra is completely primeif A is a completely prime algebra. This immediately
implies that the kernel I of ¢ is a completely prime ideal in U(g), and one can show (using condition (iv))
that I must also be primitive.
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If I is a primitive ideal in U(g), then U(g)/I is a Dixmier algebra for any connected G¢. In the setting of
(3.7), D(X)» is a completely prime Dixmier algebra for G¢. The adjoint action arises from the action of G¢
on X, by change of variable in the differential operators.

It is an idea of Dixmier that for a connected complex algebraic group G¢ there should be a close
connection between completely prime primitive ideals in U(g) and orbits of G¢ on g*. Borho, Joseph, and
others found that for reductive G¢, this “close connection” can not be a reasonable bijection. The goal of
[Vogan86] was to find a geometric description of all completely prime primitive ideals. That attempt failed,
as was shown by work of McGovern. Here is a weaker statement (taken from [Vogan90], Conjecture 2.3)
that appears to be consistent with everything we now understand about Dixmier algebras.

Conjecture 3.9. Suppose Gc is a connected complex reductive algebraic group. Let O C g* be a
coadjoint orbit for G¢, and let O — O be a connected covering on which G¢ acts compatibly. Write R(O)
for the algebra of regular functions on O); this algebra carries a natural algebraic action of G¢ by algebra

automorphisms. Attached to O there should be a completely prime Dixmier algebra (A(O), #(0)), with the

property that A(O) is isomorphic to R(O) as algebraic representations of G¢. The “Dixmier correspondence”
O — (A(O), #(0)) should be injective.

The requirements of the conjecture are very far from specifying A(O) completely; but fortunately they
are most restrictive precisely in those cases when we know least about how to construct A(O).
The following result allows us to relate Conjecture 3.9 to primitive ideals.

Lemma 3.10. Suppose G¢ is a complex reductive algebraic group, and (A, @) is a completely prime
Dizmier algebra for Gc. Then ker ¢ = I(A, ¢) is a completely prime primitive ideal in U(g).

Proof. Since A is completely prime, so is its subalgebra U(g)/I(A, ¢). So I(A, ¢) is a completely prime
ideal, and therefore prime; we need only show it is primitive. Write Z(g) for the center of U(g). As a
consequence of Theorem 2.15, I(A, ¢) will be primitive if and only if I(A, ¢) N Z(g) is a maximal ideal in
Z(g); that is, if and only if

#(Z(g)) c C. (3.11)(a)

Now
Z(g) = {2 € U(g) | Ad(g)(2) = 2,all z € (Gc)o}- (3.11)(b)

Let Ao be the subalgebra of A on which (G¢)o acts trivially. By Definition 3.8(iv), Ao is finite-dimensional.
Since it is also a completely prime algebra over C, we must have Ag = C. Since (3.11)(b) guarantees that
?(Z(g)) C Ao, (3.11)(a) follows. Q.E.D.

In the setting of Conjecture 3.9, we write

I(0) = ker ¢(O) C U(g) (3.12)

for the completely prime primitive ideal provided by the conjecture and Lemma 3.10. The correspondence
sending O to {I(O)|O a cover of O} is (conjecturally) a kind of multi-valued Dixmier correspondence from
coadjoint orbits to completely prime primitive ideals.

From the point of view of primitive ideal theory, the most serious problem with Conjecture 3.9 is that
this correspondence is not surjective: not every completely prime Dixmier algebra is of the form A(O) for a
coadjoint orbit cover ©. Even the underlying correspondence (3.12) to completely prime primitive ideals is
not surjective. To understand why this is not entirely bad, we recall an example from [Joseph] and [Vogan86].

Suppose G¢ is of type G2. There is exactly one coadjoint orbit Og in g* of dimension 8, and it
is simply connected. Joseph found a (unique) completely prime primitive ideal I(Og) with the property
that U(g)/I(Os) is isomorphic to R(Og) as representations of G¢. It is therefore reasonable to define
A(Og) =U(g)/I(Og) as the Dixmier algebra predicted by Conjecture 3.9.

Let G be a simply connected split real reductive Lie group of type G2. It turns out that G has exactly
one irreducible (g, K)-module V with Ann(V) = I(Og). This (g, K)-module corresponds to an isolated
unitary representation 7; in the classification of G given in [Vogan94], 7 is the unique isolated point among
the Langlands quotients of the principal series for the non-linear group. It is constructed in [Vogan94] as the
restriction to G of a ladder representation of §5(4, 3). Certainly 7 is an interesting unitary representation
of G, and evidence that the approach of Problem 2.21 will find it is welcome.
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Joseph found a second completely prime primitive ideal I'(Os) closely related to Og. (Under the adjoint
action of G¢, U(g)/I(Os) is slightly smaller than R(Qg).) The Dixmier correspondence of Conjecture 3.9 (or
even (3.12)) has no room for I'(Og), however; this ideal is simply omitted. There is exactly one irreducible
(g, K)-module V' with Ann(V") = I'(Og). But it turns out that V’ is not unitary; so from the point of view
of finding unitary representations, the omission of I'(Og) is harmless (or even desirable).

Encouraged by this example, we are going to refine Problem 2.21 to accommodate Dixmier algebras.
Here is the setting.

Definition 3.13. Suppose G is a real reductive Lie group. Let G¢ be a connected complex reductive
algebraic group with Lie algebra g = Lie(G)c. We assume that the adjoint action of G on g factors through
a homomorphism

j:G = G

inducing the identity map on g. (This can always be arranged by an appropriate choice of G¢ if G is of
“inner type:” that is, if every automorphism Ad(g) (for g € G) of g is inner.) In this setting we say that G
is of inner type Gc.

Suppose now that (A, ¢) is a Dixmier algebra for Gc. An (A, K)-module is a complex vector space
endowed with a module structure for the algebra A and a representation of the group K, subject to the
following conditions. (Compare Definition 2.19.)

1) The action of K is locally finite and smooth.
2) The differential of the action of K (which makes sense by (1)) is equal to the action of ¢(&) C A.
3) Forke K,veV,and a € A, we have

k-(a-v) =[Ad(j(K))(a)] - (k- v).

(Just as in Definition 2.19, condition (3) for k € Ky is a consequence of (1) and (2).)
A Hermitian transpose on A is a conjugate-linear antiautomorphism * of A of order 2:

(ab)* =b*a*, (za)* =Zza* (a,be A,z € C).

We assume in addition that * is compatible with the usual Hermitian transpose on U(g) defined by the real
form go:
[B(X +iY)]" = (-X +i¥)  (X,Y € go)-

Suppose finally that V' is an (A, K) module and that * is a Hermitian transpose on A. We say that V
is unitary if it is endowed with a positive definite Hermitian form (,) satisfying

*

(k‘-v,k-w):(v,w), (a-v,w):(v,a 'U))

forv,weV, ke K,and a € A.

The map ¢ provides a forgetful functor that makes any (unitary) (A4, K)-module into a (unitary) (g, K)-
module. This functor sends (A, K)-modules of finite length to (g, K)-modules of finite length, but it need
not send irreducibles to irreducibles.

Theorem 3.14. In the setting of Definition 3.13, suppose V is a unitary (A, K)-module. Then the
Hilbert space completion H(V) carries a unitary representation w(V) of G. The space H(V)™® carries a
natural action of A. This action preserves the space H(V)X of K-finite vectors (which are automatically
smooth), making H(V)E an (A, K)-module. If V has finite length, then H (V)X is equal to V as an (A, K)-
module.

This is an immediate consequence of Harish-Chandra’s Theorem 2.20.
Here is a refinement of Problem 2.21.

Problem 3.15. Suppose G is real reductive Lie group of inner type Gc (Definition 3.13). Let O C g*
be a coadjoint orbit for G¢, and let O — O be a connected covering on which G¢ acts compatibly.

a) Construct a completely prime Dixmier algebra (A(0), #(0)) as in Conjecture 3.9.
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b) Construct a finite collection {W;(0) |i = 1,...,r} of modules for A(O).

¢) For each i, construct from W;(O) an (A(0O), K)-module V;(O) (Definition 3.13).
d) For each 4, construct a Hermitian transpose * on A(Q) (Definition 3.13) and a unitary structure (,) on

Vi(O) (Definition 3.13).

If all these steps are completed, then Theorem 3.14 makes the Hilbert space completion H,(@) of V,(@)
into a unitary representation of G.

The method of coadjoint orbits suggests roughly how the modules W;(©) should be parametrized. Write
gg for the real dual of the real Lie algebra of G. It is contained in g* as a real form.

Lemma 3.16. In the setting of Problem 3.15, the intersection O(R) = ONgy is a finite union of orbits
of G:
OR) = O1(R) U---U O4(R).

The covering map O — O induces (possibly disconnected) G-equivariant coverings
0i(R) — 0;(R)

having the same degree as O.

This is elementary. What the orbit method suggests is that each of the modules in Problem 3.15 should
be parametrized by one of the real orbit covers @;(R), together with some additional data. (This idea can
be made precise and correct for semisimple orbits, but it requires further refinement in general.) In section
4 we will begin to study real coadjoint orbits, and to see how one might attach representations to them.

4. Structure of coadjoint orbits.

In this section we recall some general structure theory for coadjoint orbits. We work at first with an
arbitrary real Lie group G, writing

go = Lie(Q), g5 = Homg(go, R). (4.1)(a)

We write G for the identity component of G. Often we write elements of G as lower case Roman letters,
elements of go as upper case Roman letters, and elements of gj as lower case Greek letters. The coadjoint
action of G on g is just the transpose of the adjoint action:

[Ad*(9)€](Y) = £(Ad(g™")Y)  (E€ 95,9 €G,Y € go). (4.1)(b)
The differential of this action is written
ad” :go = End(gg),  [ad"(X)¢](Y) = £(ad(—X)Y) = &([Y, X]). (4.1)(c)
The isotropy group for Ad* at £ is written Gg:
Ge = {9 € G|Ad"(9)¢ = ¢} (4.1)(d)

The Lie algebra of G¢ is
ge.0 = {X € go[ad"(X)¢§ = 0}

— {X € g0 (V. X]) = 0,all Y € go}. e
To each £ € g we attach a skew-symmetric bilinear form wg on go, defined by
we(X,Y) = £([X,Y]) = [ad™(Y)g)(X) = [-ad"(X)E](Y) (4.1)(f)

Lemma 4.2. With notation as in (4.1), the radical of we is equal to geo. Consequently we descends to
a non-degenerate symplectic form (still denoted we) on

90/9c,0 = Te(G - §)
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(the tangent space at & to the coadjoint orbit through £). As &' varies over the orbit W = G - £, the family
of wer defines a closed two-form ww , and therefore a G-invariant symplectic structure on W.

Proof. That the radical of wg is g¢ g is clear from (4.1)(e) and (4.1)(f). It follows that wyy is a two-form
on W. Each element X € g¢ defines a vector field Xy on W. These span the tangent space TW at each
point; so to prove that wy is closed, it suffices to show that dww (Xw,Yw,Zw) = 0 for all X,Y, Z € go.
We compute

dww (Xw,Yw, Zw) =Xw - ww Yw, Zw) — Yw -ww (Xw, Zw) + Zw-
ww (Xw, Yw) —ww ([Xw, Yw], Zw) + ww ([Xw, Zw], Yw) — ww ([Yw, Zw], Xw ).

Evaluating at the point £’ € W, we get
= Xw - {([Y, 2]) - Yw - (X, Z])) + Zw - £ (X, Y]) - €' ([X, Y], Z2]) + €(([X, 2], Y]) — €'([[, 2], X]).

In the first three terms, we are differentiating the function on W obtained by applying the variable linear
functional &' to a fixed element of go. This amounts to applying —ad* to £'. We get

= —(ad*(X)EN[Y, 2]) + (ad* (V)E) (X, Z]) — (ad™(2)¢)([X, Y])

- (X, Y], 2] - [[X, 2], Y] + [V, Z], X])
= -¢([[lv; 2, X)) + £ ([IX, 2, Y]) - £([1X, Y], 2]) - €'([X, Y], 2] - [[X, Z], Y] + [, Z], X])
= —20([[X, Y], 2] - [[X, 2], Y] + [[Y; Z], X]).

The argument of £ vanishes by the Jacobi identity, so wy is closed. The G-invariance is clear from the
definition. Q.E.D.

Lemma 4.2 says that any coadjoint orbit is in a natural way a symplectic homogeneous space. The
converse (that any symplectic homogeneous space is a coadjoint orbit) is not quite true, for two reasons.
First, a coadjoint orbit has a slightly stronger structure (which we will describe in a moment). Second, this
additional structure lifts to covering spaces.

Definition 4.3. Suppose (W,w) is a symplectic manifold. The symplectic form provides a smooth
identification of the tangent bundle of W with the cotangent bundle: to the tangent vector X € T,,(W) we
associate the cotangent vector 7(X) defined by

T(X)(Y) =wu(Y, X) (Y € Tu(W));

this is the contraction of —w,, with X. If f is a smooth function on W, then df is a one-form (a smooth
section of the cotangent bundle). We may therefore define

Xy =77 (df),

a smooth vector field on W, called the Hamiltonian vector field of f. Using the action of vector fields on
functions, we now define the Poisson bracket of the smooth functions f and g by

{f,9} = X9 =dg(Xy) = w(Xy,Xy) = -X, - f.

Proposition 4.4. The Poisson bracket defines a Lie algebra structure on C*°(W). The map f — X;
is a Lie algebra homomorphism from C* (W) to the Lie algebra of vector fields on W. Its kernel consists of
the locally constant functions on W.

Suppose W is a coadjoint orbit in gi, and Y € go. Write f(Y) for the smooth function on W obtained
by restricting to W the linear function Y on gg. Then the corresponding Hamiltonian vector field Xy y,)
is equal to the vector field Yy induced by the action of G on W. The map Y — f(Y) is a Lie algebra
homomorphism.
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Proof. The assertions about general symplectic manifolds are standard (see for example [Arnold], Chap-
ter 8, or [Abraham-Marsden], Chapter 3; both sources use slightly different sign conventions from ours). For
the rest, we compute (for Y, Z € gq)

ww(Zw,Yw) = f([Z,Y]) (definition of wy)
=Zw - f(Y) (as at the end of the proof of Lemma 4.2)
=df(Y)(Zw)
= T(Xf(y))(ZW) (deﬁnition of Xf(y))
=ww(Zw, Xf(v)) (definition of 7).

Because wy is non-degenerate, and the vector fields Zy span each tangent space, it follows that Yiy = Xy y,.
At the same time we have shown that

{1(2), f(Y)} = Xjz)- f(Y) = Zw - (Y) = £([Z,Y)),

proving the last assertion. Q.E.D.

Definition 4.5 (see [Kostant], section 5). A Hamiltonian G-space is a symplectic manifold W equipped
with a symplectic action of G and a linear map f : go = C°° (W, R), with the following properties.

a) The map f is a Lie algebra homomorphism (for the Poisson bracket Lie algebra structure).

b) The Hamiltonian vector field Xy on W associated to Y € go is equal to the vector field Yy obtained
by differentiating the action of G in the direction Y.

c) The map f is G-equivariant:

F(Ad(g9)Y)(w) = F(V)(g7" - w).

Condition (a) is actually a consequence of (b) and (c), but we include it because of its appealing simplicity.
For g in the identity component Gg of G, condition (c) is a consequence of (a) and (b). Condition (b) also
guarantees that the action of Gy is symplectic; so the entire definition may be phrased more succinctly for
connected G.

Suppose (W, f) is a Hamiltonian G-space. The moment map for W is the G-equivariant smooth map

W =g, pw)Y)=fY)(w).

Proposition 4.4 implies that each coadjoint orbit is a Hamiltonian G-space (the requirement in (c) being
easy to verify). Its moment map is the identity. It is also easy to see that a G-equivariant covering of a
Hamiltonian G-space is again a Hamiltonian G-space. The following result is a partial converse.

Proposition 4.6 ([Kostant], Theorem 5.4.1). Suppose W is a homogeneous Hamiltonian G-space.
Then the moment map is a covering of a coadjoint orbit G-£. Consequently W ~ G /G 1, with G¢1 an open
subgroup of the isotropy group G¢.

Proof. Since p is G-equivariant, its image must be a single orbit G-£. Fix a point w € W with p(w) = &,
and define G¢,1 to be the isotropy group at w. Obviously this is a subgroup of G¢; we need only show it is
open. This amounts to showing that the differential of y is one-to-one. Because W is a homogeneous space
for G, the tangent space Ty, is spanned by the vector fields Yy = X(y). We must show that Yy, vanishes
at w if and only if Y.¢ vanishes at £. By the non-degeneracy of the symplectic form on W, X(y) vanishes
at w if and only if wy (Xz(y), X¢(z)) =0 for all Z € go. By the definition of the Poisson bracket on W, this
is the same as the vanishing of all {f(Z), f(Y)}(w). By assumption (a) in Definition 4.5 and the definition
of p, this is the same as the vanishing of all [Z,Y] (for varying Z) at £&. By (4.1)(e), this last condition is
the same as Y € g¢ o; that is, Yg.¢ vanishes at {. Q.E.D.

According to Proposition 4.6, the coverings @ appearing in Problem 3.15 are precisely the complex
homogeneous Hamiltonian Gc¢-spaces. This abstract characterization may lend a little respectability to
what appears to be an ad hoc setting.

We turn now to a preliminary examination of how representations are attached to coadjoint orbits.
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Definition 4.7. Suppose G is a Lie group, and & € gj. An integral orbit datum at & is an irreducible
unitary representation (7,7,) of the isotropy group G¢, subject to the condition

T(exp X) =€) .1dy, (X € gep) (4.7)

The orbit datum (7, H,) at £ is equivalent to (7', H,/) at &' if there is a g € G so that Ad*(g)é = &', and
7 is equivalent to the representation h — 7'(ghg™") of G¢. (The second requirement makes sense because
Ge¢ = gGeg™'.) The orbit G - € is called integral if it admits an integral orbit datum.

To understand this definition, notice first that the linear functional
i€ : geo = iR (48)(a)

is automatically a Lie algebra homomorphism by (4.1)(e). If G¢ is simply connected, we therefore get
automatically a unique group homomorphism

70 : Geo = U(1), To(exp X)) = ¢#(X) (4.8)(d)

on the identity component G o of G¢. In general (when G¢ ¢ need not be simply connected) the requirement
in (4.8)(b) still specifies at most one 7g; the problem is existence. Define

Leo={X € geo| exp(X) =e}. (4.8)(c)

Then 7y exists if and only if
é(Leo) C 2. (4.8)(d)

(The necessity of this condition is clear, and sufficiency is not too difficult.)

Finally, it is not difficult to show that an integral orbit datum exists if and only if 7y exists; so (4.8)(d)
is precisely the condition for G - £ to be integral. When G¢ is disconnected, 7 is usually not unique.

There is an obvious way to construct a unitary representation of G from an integral orbit datum: by
unitary induction from G¢ to G. That is, we consider continuous functions

C(G/Ge,Hr) ={f:G = H.|f(gh) =7(h)""f(9) (9 €G,he G} (4.9)(a)

Such a function is said to be of compact support modulo G if there is a compact subset K of G so that f
vanishes outside KG¢. We write C,(G/G¢,H.) for such compactly supported functions. Suppose fi and fo
belong to C(G/Ge¢,H,). Then we can define a complex-valued function on G by

(F1, f2)ioc(9) = (f1(9), f2(9))21. - (4.9)(b)

Because 7 is unitary, (4.9)(a) implies that (f1, f2)iec is actually a function on G/Ge. If one of the f; belongs
to Co(G/Ge, Hr), then (f1, fa)ioe is compactly supported on G/Ge. In that case we may define

(i fo) = /G U B (4.9)(0)

Here the G-invariant measure dz on G/G¢ ~ G - ¢ arises naturally from the symplectic structure; the volume
form may be taken to be the top exterior power of the symplectic form. In this way we get a G-invariant
positive definite Hermitian form on C.(G/G¢,H,). Its Hilbert space completion is called L*(G/G¢, H,).
This space carries a unitary representation Indge (1) of G, given on C.(G/G¢,H-) by left translation.

The difficulty is that this induced representation is almost never irreducible. (An interesting exception
occurs when G¢ is open in Gj that is, when the orbit G - { is discrete.) To get an irreducible representation,
we would like to make a similar construction on a smaller space; that is, to impose additional conditions on
the functions f in (4.9)(a). One natural idea is to extend the representation 7 to a larger subgroup H D G¢.
It turns out to be good to restrict attention to extensions 7 still satisfying the analogue of (4.7):

t(expX) =€) .1dy, (X € ho D geo)- (4.10)(a)
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Such an extension of 7 can exist only if i€ is a Lie algebra homomorphism from hg to iR; that is, only if
(X, Y)=0  (X,Y € ho). (4.10)(b)

According to (4.1)(f), this requirement is equivalent to the requirement that the symplectic form wg vanish
on ho/ge0 C go/8e,0 = Te(G - €). We digress for a moment to recall some linear algebra related to this last
condition.

Suppose (V,w) is a real symplectic vector space, and Z C V is any subspace. Define

Zt ={v eV |w,z) =0,all z € Z}. (4.11)(a)

Then
dim Z + dim Z+ = dim V. (4.11)(b)

We say that Z is isotropic if w|z = 0; equivalently, if Z C Z+. By (4.11)(b), this implies that
dimV = dim Z + dim Z+ > 2dim Z (Z isotropic). (4.11)(c)
Dually, Z is coisotropic if Z O Z*. This implies that
dimV = dim Z + dim Z* < 2dim Z (Z coisotropic). (4.11)(d)
We say that L is Lagrangian if it is both isotropic and coisotropic. In this case
dimL =1/2dimV (L Lagrangian). (4.11)(e)

Evidently L is Lagrangian if and only if L is isotropic and dim . = 1/2dim V. Lagrangian subspaces always
exist; all are conjugate under the action of the group Sp(w).

Next, suppose (M,w) is a symplectic manifold. A submanifold A C M is Lagrangian (respectively
isotropic or coisotropic) if ThA is a Lagrangian (respectively isotropic or coisotropic) subspace of T\ M for
every A € A.

We want to shrink the space (4.9)(a) as much as possible, to have a good chance of getting an irreducible
representation. In the setting of (4.10), this means taking the subgroup H as large as possible. We know
already that ho/ge 0 must be isotropic; so it is natural to impose the requirement that ho/ge,0 be Lagrangian.

Definition 4.12. Suppose (7, H,) is an integral orbit datum at £. An invariant real polarization of T
is a closed subgroup H D G¢, and an extension 7 of 7 to H, satisfying
a) TH(eXp X) = 6i£(X) . IdH.,- (X S ho);
b) H is generated by G¢ and Hp; and
¢) dim H/G¢ =1/2dim G/G.

We will show in section 7 how to construct invariant real polarizations in one large class of examples;
but let us consider briefly how one might look for them in general. According to (4.10), the existence of T
forces ho/ge,0 to be an isotropic subspace of go/ge,0 = Te(G - £). Then (c) makes it a Lagrangian subspace.
To construct a polarization, we therefore need first of all a Lagrangian subspace of the symplectic vector
space T¢(G - £). There will be many such subspaces. Each is of the form ho/ge 0, with ho a subspace of
go containing g¢o. We will show that each Lagrangian subspace gives rise to at most one invariant real
polarization.

In order to correspond to a polarization, ho must first be invariant under the adjoint action of G¢, and
it must be a Lie algebra. When these two conditions are satisfied, there is a Lie subgroup H of G with Lie
algebra hg, satisfying (b) and (c) of Definition 4.12. The requirement that H be closed is not automatically
satisfied, and is an additional restriction on ho. Because of (b), condition (a) (together with the requirement
that 7y extend 7) determines 7y uniquely; but there is a simple topological obstruction to its existence,
which further constrains bg.

Because of these requirements, it may easily happen that no invariant real polarizations exist. When
they do exist, there are often many. The only natural notion of “equivalence” of polarizations is conjugation
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under the group G¢. But we have seen that each polarization is determined by a G¢-invariant Lagrangian
subspace; so each equivalence class consists of a single element. For this reason the problem of relating
different polarizations is a difficult one, and we will ignore it entirely. (In the special setting of section 7 we
will find one distinguished polarization; others exist, however.)

In the setting of Definition 4.12, we have seen that the tangent space T¢ (H -£) is a Lagrangian subspace
of T¢(G - £). Since the symplectic structure is G-invariant, it follows that H - § ~ H/G¢ is a Lagrangian
submanifold of G - . A similar argument proves

Lemma 4.13. In the setting of Definition 4.12, consider the natural projection
m:G-§&—G/H, m(g-&) = gH.

Then the fibers of w are connected Lagrangian submanifolds of G - €.

Let us consider now the construction of a unitary representation of G from an invariant polarization
(H,7H) at £. Certainly we can define a space of continuous functions

C(G/HH:)={f:G = H-|f(gh) =7u(h) " f(9) (9€G,heH)} (4.14)(a)

For future reference, notice that we can rewrite at least the smooth functions C*°(G/H, M) as follows. The
Lie algebra go acts on smooth functions by differentiation on the right:

(o(X)1)(s) = 5 7 g exp(tX))i=o. (114)(0)

This action makes equally good sense on smooth functions with values in #H.. Then

C™(G/H,H,) ={f € C*(G/Ge, Hr) | p(X)f = —i&(X)f (X €ho)}
={f € C®(G,H,)| f(gh) = 7(h) ™" f(9),p(X)f = —i€(X)f (9€G,heCGe, X E( bo)})-( :
4.14)(c
Write C.(G/H, H,) for the subspace of functions of compact support modulo H. Just as in (4.9)(b), we can
define

<f17f2)loc(g) = (fl(g)7f2(g)>7'l-r: (414)(d)

a complex-valued function on G/H. However we cannot imitate (4.9)(c) with an integral over G/H: even
in very simple examples, this space may not admit a G-invariant measure. To circumvent this problem, we
recall the notion of half-density.

Definition 4.15. Suppose V is a finite-dimensional real vector space and t is a real number. A t-density
on V is a symbol c|dz|®, with ¢ € R and dz a Lebesgue measure on V. We identify c|dz|’ with ¢'|dz'|* if
dr' = jdr and ¢ = c'jt. The t-densities on V form a one-dimensional real vector space Dy(V). For t = 1,
they are just the multiples of Lebesgue measure on V. We have natural isomorphisms

Dy(V) @ Dg(V) = Dyys(V). (4.15)(a)

Suppose that M is a smooth manifold. Define a real line bundle D; on M by Dy(m) = Dy(T,,M). We
call Dy the t-density bundle on M; a section of Dy is called a t-density on M. If t = 1, sections of D; may be
identified with densities on M. In particular, if ¢ is a compactly supported continuous section of Dy, there
is a natural integral

/ dm)eR (6 € C.(M,Dy)). (4.15)(b)
M

There are also natural isomorphisms
Dy ® Ds >~ Dyys (4.15)(c)

as line bundles on M.
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We return now to the setting of Definition 4.12, and the problem of construction of a unitary represen-
tation from 7g. Write Dy = Dy(go/ho). The adjoint action of H gives rise to a representation ¢ of H on
go/ho, and so to an action x; of H on D;. (It is easy to check that x;(h) = | det #(h)|~t.) Consider the space
of continuous functions

C(G/H,H: ®Dys3) ={f:G = M- ®Dyss| f(gh) = (15 ® x1/2)(h"")f(9)} (4.16)(a)

(What we are doing is twisting the bundle on G/H defined by 7 by the half-density bundle.) The inner
product on #H, and (4.15)(a) provide a sesquilinear pairing

(3)1/2 :HT®D1/2 XHT®D1/2 _>_D(E

(V6,0 ®8)10=(v,0) 64 (416)()
Given f; and f in C(G/H,H,; ® Dy/3), we therefore get
(f1, f2)ioc = (f1 (), f2(-))1/2 € C(G/H, Dy). (4.16)(c)

This is a density on G/H, compactly supported if f; or f» is. By integrating densities, we therefore
get a positive definite G-invariant quadratic form on C.(G/H,H, ® D;/). Its Hilbert space completion

L*(G/H,H, ® Dy)) carries a unitary representation of G, called Ind$; (7). This is often a reasonable
unitary representation to attach to the orbit datum (£, 7). The most serious shortcoming of the construction
is that invariant real polarizations often do not exist.

Example 4.17. Suppose G = SL(2,R), so that go consists of two by two real matrices of trace zero.
We consider some examples of elements £ € gg.

1) ¢ (a b ) =va,0 # v € R. The element £ is hyperbolic (Lemma 5.7 below). Its isotropy group is

c —-a
z O
6e={(z 2 jeex).

There are exactly two orbit data at £&: both are one-dimensional unitary characters, and

z 0 i z 0 i
T+ (0 $—1> = |z|", T— (0 a:_1> = || - sgn(z).

Each has an invariant real polarization by the subgroup

— r oy X .
H_{<O $_1> |z e R ,yER},

. . 1
the characters 74 g are trivial on elements ( Y

0 1 ) The unitarily induced representations of (4.16)

are always irreducible.

2) & (a b ) = ¢. The element ¢ is nilpotent (Lemma 5.5 below). The corresponding symplectic form is

c —a
(R NER) R
cor{(i 1))
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Again the orbit data are two one-dimensional unitary characters 7, defined by

et_l € t\ _
"\ o )7 Tloe)™"

Each has an invariant real polarization by the subgroup H of (1). In this case Ind% (7, z) is irreducible,
but Indg(r_, m) is a direct sum of two irreducible components.

3) & (a b > =t/2(b—c), 0#te R Thiselement is elliptic (Lemma 5.8 below). Its isotropy group is

c —a
cosf sinf
Gg_{(—sinﬁ cosH)leeR}'

Write Z for the matrix (_01 (1)), so that the element of G¢ above is exp8Z. Since {(Z) = t, the

requirement (4.7) for an integral orbit datum is
Ti(exp8Z) = e'*’.

This is a well-defined character of G¢ if and only if ¢ € Z; so we conclude that ¢ is integral if and only
if t € Z. The subgroup G¢ is maximal in G, so there is no invariant real polarization of ;.

5. (Co)adjoint orbits for reductive groups.

We turn now to a more detailed study of coadjoint orbits in the case of real reductive groups. We single
out three special classes, called hyperbolic, elliptic, and nilpotent. A hyperbolic coadjoint orbit is isomorphic
to an affine bundle over a real flag variety. We will eventually attach representations to such orbits by real
analysis on the real flag variety. An elliptic coadjoint orbit carries an invariant (indefinite) Kéahler structure;
it is isomorphic to an open orbit in a complex flag variety. We will attach representations to elliptic orbits by
complex analysis techniques. A nilpotent coadjoint orbit has (in general) neither real nor complex structure
of these kinds; so we do not know how to attach representations to it.

In the remainder of this section we will define the three special classes of orbits, and show how to realize
a general coadjoint orbit as combination of them.

So suppose G is a real reductive Lie group, with Cartan involution €, maximal compact subgroup K,
and Lie algebra go. Definition 1.6 allows us to identify go with a Lie subalgebra of gl(n,R) closed under
transpose. On gl(n, R) we can define the trace form

(X,)Y) =tr XY. (5.1)(a)
This is a symmetric bilinear form, invariant by the adjoint action of GL(n, R):
(Ad(9)X,Ad(9)Y) = (X,Y) (5.1)(b)

for X,Y € gl(n,R) and ¢ € GL(n,R). By direct computation one finds that (,) is positive definite on
symmetric matrices and negative definite on skew-symmetric matrices, and that it makes these two subspaces
orthogonal to each other. One immediate consequence is that (,) is non-degenerate. We also deduce

Lemma 5.2. Suppose G is a real reductive Lie group with w : G — GL(n,R) as in Definition 1.6. Then
the restriction to go of the trace form on gl(n,R) (cf. (5.1)) has the following properties:
a) (Ad(g)X,Ad(g)Y) =(X,Y) XY €go,9€GC;
b) (,) is positive definite on po, negative definite on ¥y, and has (po, &) = 0 (notation as in Definition 1.4);
and
¢) (,) is nondegenerate on go.

Consequently (,) defines an isomorphism go ~ g¢ carrying the adjoint action of G on gy to the coadjoint
action of G on g§.
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Because of this lemma, coadjoint orbits for reductive groups are closely related to adjoint orbits; and

adjoint orbits in turn are closely related to conjugacy classes of matrices. We recall some facts from linear
algebra.

Lemma 5.3. Suppose X is an n x n real matriz. The following properties of X are equivalent.

a) The linear transformation of C* defined by X is diagonalizable.
b) The minimal polynomial of X has no repeated factors.
¢) The conjugacy class
GL(n,R) - X = {gXg '|g € GL(n,R)}

is closed in gl(n, R).
d) There is an X' = gXg~! in the conjugacy class of X so that X' commutes with tX'.

When these conditions are satisfied, we say that X is semisimple.

Sketch of proof. We will sketch the proof that (b) implies (c¢), which is perhaps one of the least familiar
parts of the argument. Let p = p;---p, be a factorization of the minimal polynomial of X, with p; an
irreducible real polynomial. Each p; is either linear or quadratic with no real roots. Let d; be the dimension
of kerp;(X). We have

R" = (D kerp;(X), (5-4)(a)
i=1
50 Y. d; = n. Also
GL(n,R) - X ={Y € gl(n,R) | dimkerp;(Y) > d;,all i}. (5.4)(b)

(Obviously GL(n,R) - X is contained in the right side of (5.4)(b). For the other containment, notice that
for any matrix Z, the sum )__, kerp;(Z) must be direct, as the p; are distinct irreducible polynomials. For
Y in the right side of (5.4)(b), it follows by dimension counting that

R" = @ ker p; (Y), (5.4)(c)

and that dimkerp;(Y) = d;. This implies easily that Y is conjugate to X.) To complete the proof of
(c), notice that the right side of (5.4)(b) is closed in gl(n,R); this follows from the compactness of the
Grassmannian manifolds of d-dimensional subspaces of R*. Q.E.D.

Lemma 5.5. Suppose X is an n x n real matriz. The following properties of X are equivalent.
a) X is nilpotent.
b) The characteristic polynomial of X is t™.
¢) The closure of the conjugacy class of X contains 0.
d) The conjugacy class of X contains a multiple rX of X, withr > 0 and r # 1.
e) The conjugacy class of X contains every multiple rX of X, with r > 0.
f) There is an element A € gl(n,R) with [A,X]=X.

When these conditions are satisfied, we say that X is nilpotent.

Proof. We first prove the ascending implications, beginning with (f). Then exp(sA)(X)exp(—sA4) =
exp(ad(sA))(X) = e*X, which proves (e). Trivially (e) implies (d). Assume (d); that is, that gXg=—! = rX
for some positive 7 # 1. Possibly replacing g by g~!, we may assume r < 1. Then g"Xg " = r"X — 0,
proving (c). Assume (c). The characteristic polynomial det(t] — Z) is constant on conjugacy classes and
depends continuously on Z; so the characteristic polynomial of X must coincide with that of 0, which is ¢".
Assume (b); then X™ = 0 since every matrix satisfies its characteristic polynomial, so X is nilpotent.

To finish, we prove that (a) implies (f). Define

H={r>0|gXg !=rX,some g € GL(n,R)}.

This is a subgroup of the multiplicative group of positive real numbers. If s and s’ are any two positive
numbers, then sX is conjugate to s'X if and only if s and s’ belong to the same coset of H. Now every
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multiple of X is nilpotent, and there are only finitely many conjugacy classes of nilpotent n X n matrices.
It follows that H has finite index m in R>?. Consequently every mth power belongs to H, so H = R>°,
Therefore every positive multiple of X is conjugate to X. It follows that the tangent space at X to the
conjugacy class of X contains X. Now the tangent space at Z to the conjugacy class of Z is [gl(n, R), Z]; so
(f) follows. Q.E.D.

Lemma 5.6 (Jordan decomposition). Suppose X is an n X n real matriz. Then there are a semisimple
matriz X5 and a nilpotent matriz X, uniquely characterized by the following two properties:
a) X =X, +X,,; and
b) [Xs, Xn] =0.

In addition, we have

¢) Xs and X,, may be expressed as polynomials without constant term in X ;
d) any matriz commuting with X commutes with X, and X,,; and
e) any subspace of R™ preserved by X is also preserved by X5 and X,,.

We turn now to an analogous decomposition of a semisimple matrix.

Lemma 5.7. Suppose X is an n x n real matriz. The following properties of X are equivalent.

a) X is diagonalizable.
b) The minimal polynomial of X is a product of distinct linear factors.
¢) The conjugacy class of X contains a symmetric matriz.

When these conditions are satisfied, we say that X is hyperbolic. The proof of the lemma is very easy, and
we omit it.

Lemma 5.8. Suppose X is an n x n real matriz. The following properties of X are equivalent.

a) The linear transformation of C* defined by X is diagonalizable with purely imaginary eigenvalues.
b) The minimal polynomial of X is a product of distinct factors of the form t* + a® and t.
¢) The conjugacy class of X contains a skew-symmetric matriz.

When these conditions are satisfied, we say that X is elliptic. Again we omit the proof of the lemma.
Here is a complement to the Jordan decomposition of Lemma 5.6.

Lemma 5.9. Suppose X is a semisimple n x n real matriz. Then there are a hyperbolic matriz Xy and
an elliptic matriz X, uniquely characterized by the following two properties:
a) X = Xy, + X; and
b) [Xn,Xc] =0.

In addition, we have

¢) Xy and X, may be expressed as polynomials in X ;

d) any matriz commuting with X commutes with Xy and X.; and

e) any subspace of R™ preserved by X is also preserved by Xp and X,.

f) If X commutes with *X, then X, =1/2(X +!'X) and X, = 1/2(X —'X).

g) Suppose that X is a derivation of an algebra structure on R™. Then X, and X} are derivations as well.

Proof. We first establish the existence of the decomposition. Because the definitions of semisimple,
hyperbolic, and elliptic are all invariant under conjugation (see Lemmas 5.3, 5.7, and 5.8), we may replace
X by a conjugate matrix. By Lemma 5.3(d), we may therefore assume that X commutes with *X. In this
case the matrices Xp, and X, defined in (f) obviously commute and have sum X. Also X}, is symmetric, and
therefore hyperbolic (Lemma 5.7(c)), and X, is skew-symmetric, and therefore elliptic (Lemma 5.8(c)). This
proves the existence, as well as (f). For the uniqueness, regard X, X}, and X, as linear transformations of
C". They commute with each other and each is diagonalizable; so they are simultaneously diagonalizable
(with respect to some basis vy, ..., v, of C*). Write z; for the diagonal entries of X as a matrix in this basis,
and a; and b; for those of X, and X}. Then z; = a; +b;, a; is real (Lemma 5.7(a)) and b; is purely imaginary
(Lemma 5.8(b)). Therefore a; = Re z;, b; = /—1Im z;. This means that X} acts on each eigenspace of X by
the real part of the corresponding eigenvalue. Similarly, X, acts on each eigenspace of X by the imaginary
part of the eigenvalue. These descriptions establish the uniqueness of X, and X,, and properties (d) and
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(e) in the Lemma follow easily. To prove (c), we need to know the existence of real polynomials pp and pe
with the properties that
pr(z:) = Rez;, Pe(z;) = vV —1Im z;.

Because the non-real z; occur in complex conjugate pairs, this is elementary.

Finally, assume that X is a derivation of an algebra structure o. After complexification, this means
exactly that if v and v’ are eigenvectors of eigenvalues z and 2’, then v o v’ is an eigenvector of eigenvalue
z + z'. The description above of X, and X, shows that they inherit this property from X. Q.E.D.

With these facts about matrices in hand, we turn to their generalizations for reductive groups.

Definition 5.10. Suppose G is a real reductive Lie group with 7 : G — GL(n,R) as in Definition 1.6.
Recall that the Lie algebra go of G is identified with a subalgebra of gl(n,R). An element X € go is called
semisimple (respectively nilpotent, hyperbolic, or elliptic) if X has the corresponding property as a matrix
(Lemma 5.3, 5.5, 5.7, or 5.8).

In order to give more intrinsic characterizations of these properties, we will consider not the action of
X on R™, but rather the adjoint action on gg:

ad(X)(Y) =[X,Y]. (5.11)(a)
The kernel of the adjoint action is the center 3(go):
3(80) ={Z €90 |[2,Y] =0,all Y € go}. (5.11)(b)

Obviously this is preserved by 8, and so is the direct sum of its intersections with €, and pg:

3(g0) = 3e(go) © 3p(go)- (5.11)(c)

The “image” of the adjoint action is the derived algebra

g0 = [90, 9o]- (5.11)(d)

Because of the ad-invariance of the trace form (5.1), the derived algebra is precisely the orthogonal comple-
ment of the center for the trace form. Lemma, 5.2 therefore implies

g0 = 9o ® 3(80), (5.11)(e)

a direct sum of #-stable ideals. (Notice that although we used structure from matrices to prove (5.11)(e),
the summands are defined in terms of the Lie algebra structure of go.) It is not difficult to show that the
Lie algebra g is semisimple, and we will apply to it some standard structural results.

Theorem 5.12. In the setting of Definition 5.10 and (5.11), suppose p : gy, — EndV is a finite-
dimensional representation of the semisimple Lie algebra gj, and X' € gj.

a) If ad(X") is semisimple, then p(X') is semisimple.

b) If ad(X'") is nilpotent, then p(X') is nilpotent.

¢) If T is a derivation of gi,, then there is a unique element X1 € gy with T = ad(Xr).

d) If X' = X + X] is the Jordan decomposition of X' as an n x n matriz (Lemma 5.6), then X and X,
belong to g;.

e) If X' is semisimple, then there is a g € G so that Ad(g)(X') = gX'g~! commutes with (Ad(g)(X")).

Parts (a) and (b) are proved in [Humphreys], Theorem 6.5; part (c) is [Humphreys], Theorem 5.3; part
(d) is [Humphreys], Theorem 6.4; and (e) is essentially [Wallach], Lemma 2.3.3.

Lemma 5.13. In the setting of Definition 5.10, write X = X' + X; for the decomposition according to
(5.11)(e).
a) X is semisimple if and only if ad(X) is semisimple.
b) X is nilpotent if and only if X; =0 and ad(X) is nilpotent.
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¢) X is hyperbolic if and only if X; € po and ad(X) is hyperbolic.
d) X is elliptic if and only if X, € & and ad(X) is elliptic.

Proof. The matrices X' and X; commute with each other; and ad(X) = ad(X'). The matrix X is a
sum of commuting symmetric and skew-symmetric matrices (cf. (5.11)(c)), and is therefore automatically
semisimple.

We will analyze the bracket action adg, r)(X) of X on all n x n matrices. This space is naturally
identified with R” ® (R")*, and we compute

adgi(nr)(X)(v @ W) = Xvew—v® Xw. (5.14)

If X is semisimple with eigenvalues {2;}, it follows immediately that adg(, r)(X) is semisimple with eigenval-
ues {2; — #z;}. The implication “only if” in (a) is immediate. For the converse, assume that ad(X) = ad(X")
is semisimple. By Theorem 5.12(a), it follows that X' is semisimple. Therefore X = X'+ X is a commuting
sum of semisimple matrices, so X is semisimple.

For (b), suppose first that X is nilpotent; say X? = 0. By (5.14), we see that (ad(X))?? = 0; so ad(X)
is nilpotent. By Theorem 5.12(b), X' is nilpotent. The expression X = X' + X; is a commuting sum of a
nilpotent and a semisimple matrix, so it must be the Jordan decomposition of X. Since X is nilpotent, it
follows that X, = 0. Conversely, assume that X; = 0 and that ad(X) = ad(X") is nilpotent. By Theorem
5.12(b), X' is nilpotent; so since X; = 0, X is nilpotent.

For (c) and (d), assume first that X is hyperbolic; that is, that X is diagonalizable with real eigenvalues.
Then (5.14) implies that ad(X) = ad(X') is as well; so ad(X) is hyperbolic. Similarly, X elliptic implies
ad(X) elliptic.

To complete the proofs of (¢) and (d), we will use a lemma. Here is the setting. Suppose X' € g is a
semisimple element. According to Lemma 5.9, the hyperbolic and elliptic parts T} and T, of the semisimple
derivation ad(X") of gg are also (semisimple) derivations. By Theorem 5.12(c), they are given by the adjoint
action of unique elements X [’h] and X[’E] of gj. On the other hand, the semisimple matrix X' has hyperbolic
and elliptic parts X; and X/.

Lemma 5.15. In the setting just described, X[’h] = X, and X[’e] = X!. In particular, the hyperbolic
and elliptic parts of X' belong to gj.

Proof. Everything here behaves nicely with respect to conjugation by elements of G. According to
Theorem 5.12(d), we may therefore assume that X' commutes with 6X’. In this case we have

X; =1/2(X' - 6X"), X! =1/2(X'+6X")
(Lemma 5.9(f)). Evidently these matrices belong to gj. We therefore have
ad(X') = ad(X}) + ad(X]),

a commuting sum of derivations of gj. By what we have already proved, the first term is hyperbolic and
the second elliptic as endomorphisms of gj. By the uniqueness in Lemma 5.9, they are the hyperbolic and
elliptic parts of ad(X"). Q.E.D.

We return now to finish the proofs of (¢) and (d). In general we will write

X; = X5 + Xap

for the decomposition of a central element according to (5.11)(c). Suppose X is hyperbolic. We have already
shown that ad(X) = ad(X") is hyperbolic, so Lemma 5.15 implies that X' is hyperbolic. The three matrices
X', X;,, and X, are therefore hyperbolic, elliptic, and hyperbolic respectively; and they commute with each
other. It follows that X = (X' + Xj, ) + (X;,) exhibits X as a commuting sum of hyperbolic and elliptic
matrices. By the uniqueness in Lemma 5.9, the second term is zero; that is, X; belongs to po, as we wished
to show. Conversely, assume that ad(X) is hyperbolic and that X; € po. Lemma 5.15 shows that X' is
hyperbolic; so X is a sum of two commuting hyperbolic matrices, and is therefore hyperbolic. The proof of
(d) is identical. Q.E.D.
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Theorem 5.16. Suppose G is a real reductive Lie group as in Definition 1.6, and X € go. Then there
are hyperbolic, elliptic, and nilpotent elements Xy, X, and X,, of go (Definition 5.10) uniquely characterized
by the following two properties:

a) X = Xp+ Xe +Xy; and

b) [Xh;Xe] = [Xh;Xn] = [Xe;Xn] =0.
This decomposition has the following additional properties.

c) Any element g € G fizing X (that is, Ad(g)(X) = X ) also fizes Xy, X, and X,,.

d) The adjoint representation of go preserves the decomposition in (a): ad(Xp) is hyperbolic, ad(X.) is
elliptic, and ad(X,,) is nilpotent.

This is an easy consequence of Theorem 5.12, Lemma 5.13, and Lemma 5.15; we leave the details to the
reader.

Corollary 5.17. Suppose G is a real reductive Lie group as in Definition 1.6, and X € go is a
semisimple element.

a) There is a g € G so that Ad(g)(X) commutes with 0(Ad(g)(X)).
b) Suppose [X,0X] = 0. Then the centralizer

Gx ={g € G|Ad(g)(X) = X}
is a real reductive Lie group, with Cartan involution the restriction to Gx of 8. In addition

Gx = (Gx,)x. = (Gx,)x,-

Proof. Part (a) is an easy consequence of Theorem 5.12(e) (and (5.11)(c)). For (b), the descriptions of
G x as iterated centralizers follow from Theorem 5.16(c). That G x is reductive then follows from Proposition
1.11(b). Q.ED.

6. Interlude on the classification of (co)adjoint orbits.

Corollary 5.17 leads to a systematic procedure for describing all the coadjoint orbits for a real reductive
Lie group. Although we will not really need it, the classification is simple and attractive. The method of
coadjoint orbits suggests as well that it should bear a family resemblance to the classification of unitary
representations. For these reasons, we will outline the classification here. Most of the proofs are easy; the
more difficult results may be found in many places (including [Wallach], Chapter 2).

Definition 6.1. Suppose G is a real reductive Lie group. A Cartan subspace for G is a maximal abelian
subalgebra agy of pg. Given such a subspace, we define

M ={ke K|Ad(k)(X) = X,all X € ao}

M' = {k € K| Ad(k)(a0) = ao}.

The groups M' and M are compact, and M is an open normal subgroup of M'. The quotient is therefore a
finite group
W(G,a0) = M'/M C Aut(ag),

the Weyl group of ag in G. (The action on g is by Ad.)

Theorem 6.2. Suppose G is a real reductive group, and ag is a Cartan subspace of po. Then the
inclusions
ao C po C go

induce bijections among the following three sets:
i) orbits of W = W(G,a0) on ag;

i1) orbits of K on po; and

i11) hyperbolic orbits of G on go.
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Suppose X and Y belong to ag. Then the group centralizers Gx and Gy are equal if and only if the
Weyl group centralizers Wx and Wy are equal. In particular, there are only finitely many possibilities (up
to conjugation in G) for the centralizer of a hyperbolic element.

Example 6.3. Suppose G = O(p,q) (Example 1.15) with p < ¢g. After a simple change of basis, the
matrix A, , of the quadratic form B, ;, may be replaced by the matrix

0 I, 0
1
A= 0o o0
0 0 —I,,

We write B(p,q) for this new form and O'(p,q) for the corresponding group. If g € GL(p,R), then it is
easy to check that G' = O'(p, q) contains the matrix

g 01 0
M@ =10 ‘g 0
0 0 I,

The map A! provides an embedding

GL(p,R) C O'(p,q) ~ O(p,q),

and all maps respect the Cartan involutions.

Now the space of diagonal matrices is a Cartan subspace for GL(p, R), naturally isomorphic to RP. It
is not difficult to check that the image aj of the diagonal matrices under dA! is a Cartan subspace of g; aj
consists of diagonal matrices with the first p entries equal to the negatives of the next p, and the last p — ¢
entries equal to zero. The Weyl group of this Cartan subspace acts by permuting and changing the signs of
the coordinates of R?; it is isomorphic to the hyperoctahedral group

W (G, a5) = S, x (Z/2Z)7,

a semidirect product with the second factor normal.
By Theorem 6.2, each hyperbolic orbit has a unique representative

XZ(Xl,...,Xp)ElRp, XIZZXpZO
We can compute the centralizer G% as follows. Write p = p, + -- - p1 + po, in such a way that
Xi=--=Xp, >Xp 1= =Xpogoopy > Xpgogpry1 = 0.

Then
Gx ~ GL(pr,R) x --- x GL(p1,R) x O'(po,po + ¢ — p).-

(There is a natural embedding of this group in G*, which is easy to construct using A!'.)
There is a parallel result for elliptic elements.

Definition 6.4. Suppose G is a real reductive Lie group. A Cartan subalgebra for K is a maximal
abelian subalgebra ty of £,. Given such a subspace, we define

T ={keK|Ad{#)(X) = X,all X € to}

T' = {k € K|Ad(k)(to) = to}-

The group T is called a small Cartan subgroup of K. If K is connected, it is a torus. The group T' is
compact, and T' is an open normal subgroup of T'. The quotient is therefore a finite group

W(G,t) =T'/T C Aut(to),
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the Weyl group of to in G. (The action on tg is by Ad.)

Theorem 6.5. Suppose G is a real reductive group, and ty is a Cartan subalgebra of ¥,. Then the
inclusions

to C € Cgo
induce bijections among the following three sets:
i) orbits of W = W(G, o) on to;
i1) orbits of K on €; and
iii) elliptic orbits of G on go.

Suppose X and Y belong to to. Then the group centralizers Gx and Gy are equal if and only if

1) the Weyl group centralizers Wx and Wy are equal; and
2) the elements X andY annihilate exactly the same weights of to on po.

In particular, there are only finitely many possibilities (up to conjugation in G) for the centralizer of a elliptic
element.

Example 6.6. Suppose G = O(p,q) (Example 1.15). Recall that K ~ O(p) x O(q). Write p' = [p/2]
(the greatest integer in p/2) and ¢’ = [¢/2]. Then there are obvious maps

SO(2)P 7 ~ SO(2)" x SO(2)? C O(p) x O(q) C O(p, q).

The Lie algebra of SO(2) consists of skew symmetric 2 x 2 matrices, and so may be identified naturally with
R. The differential of the inclusion above therefore gives

7R xR =g

It is easy to check that the image of 7 is a Cartan subalgebra ty of €;. The Weyl group acts by permutation
and sign changes of the first p' and last ¢' coordinates separately:

W(G.to) = (Sy x (Z/22)") x (Sy x (2/22)"),

a product of two hyperoctahedral groups. According to Theorem 6.5, every elliptic orbit in go has a unique
representative

Z=(2},...,Z)),(Z2,...,Z2) e R *T . Zl>...>ZL >0, Z2>...>Z% >0.

We can compute the centralizer Gz as follows. Write p' = pl. +---p} +pj and ¢' = ¢ +---q; + q§, in such
a way that

1 T e e T 1 1 T e e T 1 1 =
Zy = =2y > 2y = - ZPr+"'+p'1 > Zp;+---+p’1+1 =0,
1_...=72 2 ...=272 2 _
Z; = - ZqL > Zq;+1 - - Zq;+~~~+q; > Zq;+~~~+q;+1 =0,

1 — 72 . _
Zy et pyt1 = L g4 15 (G=r+lr-1,..,1).

Then
Gz =~U®,,q.) x -~ x Uy, q1) x O'(p—2(p, + -+ p),q— 2(¢,. + -+ + 1))

. . 1
(The idea is that the element Z acts as ZPL ety

R?P5+24; . The centralizer of Z therefore acquires a factor consisting of the complex-linear transformations
of this subspace that preserve the quadratic form. This is the indefinite unitary group U(p}, q;) of Example
1.19.)

41 times a complex structure on a subspace of the form

Here is the procedure for constructing all adjoint orbits for a reductive group G. First, choose a Cartan
subspace ag C pg, and compute its Weyl group. For each element X} € ag, consider the reductive group Gx,,;
Theorem 6.2 guarantees that there are only finitely many such groups. (They are described for G = O(p, q)
in Example 6.3.) For each such group, choose a Cartan subalgebra tx, ¢ of €x, o, and compute its Weyl
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group. For each element X, € tx, o, consider the reductive group Gx, x.; Theorem 6.5 says that there are
still only finitely many such groups. (When Gy, is a product, it suffices to treat each factor separately. The
case of O(p,q) is handled in Example 6.6; to treat all of the hyperbolic centralizers for O(p, q), we would
need to consider also GL(n,R). The conclusion is that for O(p, ¢), each group Gx, x. is a product of factors
of the form GL(a,R), GL(b,C), U(c,d), and O(e, f); there is just one factor of this last form.)

To make a list of all semisimple adjoint orbits, we choose one representative X, in each Weyl group
orbit on ap; and then (for each X} ) one representative X, in each Weyl group orbit on tx, o. The resulting
elements

X, = X, + X,

provide exactly one representative of each semisimple orbit on gg.

This procedure can be continued to give all adjoint orbits: we just need a way to give a representative for
each of the (finitely many) nilpotent adjoint orbits for each of the (finitely many) reductive groups Gx, x.-
For the classical groups this problem is not too hard, and for the exceptional groups it has been solved. We
refer to [Collingwood-McGovern] for more information.

7. Hyperbolic elements, real polarizations and parabolic subgroups.

We turn now to the problem of attaching representations to orbits for a reductive group G. Recall from
Lemma 5.2 that we can identify go with g§ by an isomorphism X — £x:

ex(Y) = (X,Y) = tr XY, (7.1)(a)
Lemma 5.2 allows us to identify the isotropy algebra and group for the coadjoint action at £x (see (4.1)) as
Gex ={9€ GIAd(9)X =X}, gex0={Y €g0|[V,X]=0}. (7.1)(b)

We may sometimes write Gx or gx,o accordingly. The symplectic form of (4.1)(f) is
wex (Y, 2) = (X, [V, Z]) = —(Z,[Y, X]); (7.1)(c)

notice that this formula is skew symmetric in all three variables X, Y, and Z. We sometimes write simply
wx . We call £x semisimple (or nilpotent, elliptic, or hyperbolic) if X is.

Proposition 7.2. In the setting of (7.1), suppose that ad(X) is diagonalizable with real eigenvalues;
this happens in particular if X is hyperbolic (Lemma 5.13). Write g.0 for the t-eigenspace of ad(X), so that

go = th,o, 9x,0 = 90,0- (7.2)(@)
teR
Define
px =Y g0,  Nxo= oo, Nx =expnxyo. (7.2) (i)
>0 >0

a) The decomposition (7.2)(i) makes go an R-graded Lie algebra: [gs,0, 9t,0] C Gs+¢,0-
b) The subspace g0 is orthogonal to gso with respect to wx unless s = —t.
¢) The adjoint action of Nx on X defines a diffeomorphism

7:Nx > X +nx0,  7(n) =Ad(n)(X).
d) The coadjoint action of Nx on {x defines a diffeomorphism
Vi Nx > {A€g5 | Apx =&xlox}, 7 (n) = Ad™(n)(€x).

e) The group Nx is connected, simply connected, and nilpotent. It is normalized by Gx, and meets G x
exactly in the identity element. The semidirect product

PX :GxNX
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is a closed subgroup of G; more precisely, this is the Levi decomposition of a parabolic subgroup.
f) Suppose T is an integral orbit datum at £x (Definition 4.7). Then T has a unique extension Tpy to Px.
This extension may be characterized by

Tpx(gn) =7(9) (9 € Gx,n € Nx).
The pair (Tpy, Px) is an invariant real polarization of T.
Proof. Part (a) is elementary. For (b), suppose Y € g5 0 and Z € g;0. Then (7.1)(c) implies that
LUX(Y, Z) = S<Y7 Z) = _t<Y7 Z)a

and (b) follows.
For (c), list the positive eigenvalues of ad(X) as t; < t < --- < t;. Suppose Y; and Z; are elements of
gt;,0- Then we calculate

Ad(expV;)(X + ) Z;) = exp(ad(¥3))(X + Z Z,) (7.3)(a)
J

On the right side we are exponentiating the linear transformation ad(Y;) of go. Now ad(¥;)(X) = —t;Y;,
and ad(Y;) carries g¢,0 into gy4;,0. Consequently

(Yi)(8t;.0) C Y 8t,.0- (7.3)(b)
k>i
Inserting this information in (7.3)(a) gives
i1 1
Ad(expY:)(X + > Z) =X+ Zj+(Zi—tYo) + Y pj(Yi, Zh,..., Z)). (7.3)(c)
J Jj=1 j=i+1

Here p;(Y;, Z1,...,Z;) € gi;,0 depends in a polynomial way on Y; and linearly on the various Zp (with
k < j)-
We now consider the map from nx o to X 4+ nx o defined by

(Y1 +---+ Y1) = Ad(exp(¥7) - - - exp(¥7)) (X). (7.3)(d)
We calculate the adjoint action here one factor at a time, using (7.3)(c). The conclusion is

l
(Vi+---+Y) = Z —t;Y; + ¢;(Y1, ... Yj1)) (7.3)(e)

Here g;(Y1,...Yj_1) € g¢;,0 depends in a polynomial way on the various Y. This description shows that 7
is a diffeomorphism.
The map 7 is a composition of

T:nxo — Nx, T(Y1 4+ ---+Y)) =exp(Yy) - --exp(V]),

and the map ~ of (c) in the proposition. An argument along similar lines to the one just given shows that 7
is surjective. Whenever -y is smooth, 7 is smooth and surjective, and -yo 7 is a diffeomorphism, it follows that
~ and 7 are diffeomorphisms. This proves (c). Part (d) is just a reformulation of (¢) using the identification
of Lemma, 5.2.

For (e), Nx is connected by definition. The proof of (c) provided a diffeomorphism 7 from nx o to Nx,
so Nx is simply connected. Nilpotence is immediate from (a). By (c), only the identity element of Nx fixes
X, so Gx meets Nx exactly in the identity element. The adjoint action of G x preserves each eigenspace
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gt,0 of ad(X), and so preserves nx o. It follows that Gx normalizes Nx. It follows that Px is a subgroup of
G. As a consequence of (¢), we have

Px = {g € G|Ad(g)(X +nx,) = (X +nx,0)}.

This shows that Px is closed in G. That Px is parabolic means that it contains a minimal parabolic
subgroup of G. This is more or less obvious from standard constructions of minimal parabolic subgoups; we
omit the details. (Because we do not require G to be in the Harish-Chandra class, there is some question
about exactly how a minimal parabolic subgroup should be defined. We define it so that a Levi subgroup is
the centralizer of a maximal abelian subalgebra consisting of hyperbolic elements. Such a subspace is just a
G-conjugate of a Cartan subspace in po (Definition 6.1).)

For (f), it follows from (e) that 7p, is well-defined. Because distinct eigenspaces of ad(X) are orthogonal
with respect to {, ), the linear functional £x is zero on g, for ¢t # 0. In particular {x vanishes on nx; so 7py
satisfies condition (a) of Definition 4.12. Condition (b) of the definition follows from (e) of the proposition.
By (b) of the proposition, the non-degeneracy of wx forces the pairing it defines between g; 0 and g_ to
be non-degenerate for ¢t # 0; so in particular these two spaces have the same dimension. Consequently

dimpxyg/gxyo = dimnx’o = (dimgo/gx’o)/Z

This is condition (c) of Definition 4.12, proving that (7p, , Px) is an invariant real polarization. That 7p, is
the only extension of 7 is elementary; we omit the details. Q.E.D.

Although this construction of polarizations was the main goal of this section, we may as well discuss
orbit data in this setting.

Proposition 7.4. In the setting of (7.1), suppose that £ is a hyperbolic element of g§. Then the set
of integral orbit data at & is naturally in one-to-one correspondence with the irreducible representations of
the (finite) group of connected components of G¢. In particular, this set is non-empty, so the orbit G - £ is
integral.

Proof. By Lemma 5.2, we may write £ = £x with X a hyperbolic element of gg. By Theorem 6.2, we
may (after conjugating by an element of G) assume that X € po. By Proposition 1.11(b), it follows that G¢
is a real reductive group with Cartan involution 6|g,. Obviously the linear functional on g¢ o defined by X
is just &|gx,0. What this means is that we have reduced Proposition 7.4 to the case G = G¢, which we now
assume. This assumption means precisely that X belongs to

a1,0={Z€p0|Gz=G}

={Z € po|ad(9)(2) =0, Ad(K)(2)=Z}. (7.5)(a)

Now define
p1,0 = orthogonal complement of a; ¢ in po. (7.5)(b)

It is easy to check that g1,0 = € + p1,0 is a Lie subalgebra of go. It is the orthogonal complement of a; o in
go- Define
G1 = K -exppi,o, A; = expay . (7.5)(c)

IfY € p1o and Z € a1, then Y and Z commute; so exp(Y + Z) = exp(Y’) exp(Z). Now it follows from the
Cartan decomposition (Proposition 1.5) that G; is a real reductive group, and that

G= G1 X Al7 (75)(d)

a direct product. Furthermore A; is a vector group, isomorphic to its Lie algebra under the exponential
map. The group G; has compact center.

Now the linear functional {x is given by inner product with X € ay o, and so is trivial on gy 9. According
to Definition 4.7, an integral orbit datum at & is an irreducible unitary representation (7,#H,) of G, such
that 7 is trivial on the identity component G, and

T(exp Z) = e¥%X) . 1dyy
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for Z € a1 9. Evidently such representations correspond precisely to the representations of G1/G1,0 ~ G/Go,
as we wished to show. Q.E.D.

Propositions 7.2 and 7.4, together with the construction of (4.16), provide a finite set of unitary repre-
sentations of G attached to each hyperbolic coadjoint orbit. It can be shown that these representations are
all irreducible. We are left with two (closely related) problems: to interpret this construction as part of a
solution of Problem 3.15; and then to extend it to a wider class of coadjoint orbits. In the section 9 we will
treat the first of these problems. The Dixmier algebras we need will be algebras of differential operators. In
order to clarify the formal algebraic construction we will use for these algebras, we examine separately the
familiar case of R™.

8. Taylor series and differential operators on R".

Suppose f € C®°(R™). The Taylor series of f at 0 is a formal power series

a 1o%f
Y )z calf) = =221 (0). (81)(a)
al 0z
aENn
(Here we use standard conventions for multi-indices: 2% = z{*---28~, al = a;!---ay!, and so on.) Every
formal power series arises as the Taylor series of some smooth function f. We write C[[z1, ..., z,]] for the

space of all formal power series. Then formation of Taylor series provides a surjective linear map

T:C®[R") = C([lz1,...,za]l,  T(f)= D calf)z™. (8.1)(b)

a€eNn

What is essential about the Taylor series is the collection of complex numbers ¢, ; or, what amounts to the
same thing, the values of all the derivatives of f at 0. To formalize this point of view, define

U =C[0/d,...,0/0,]

algebra of constant coefficent differential operators on R™.

(8.1)(c)

This algebra has as a basis the operators 0%/9z®. To specify a linear functional on U, we must therefore
specify its value at each of these basis elements; and these values can be arbitrary. That is,

Homc¢ (U, C) ~ families of complex numbers {t, | a € N*}. (8.1)(d)
We may therefore regard Taylor series as a surjective map
7:C®(R") = Home(U,C),  7(f)(u) = (u- f)(0). (8.1)(e)

The connection with the formal power series in (8.1)(a) is

alf) = 1 (r(1)) (%02 1))

We could also describe this as an isomorphism
1 (67 (67 (o7
Homc(U,C) ~ C[[z1,. .., zx]], s E J,u(a ]0z*)x®. (8.1)(9)

We want to understand the algebra D" (R") of differential operators on R” with analytic coefficients.
Such operators—indeed, even the algebra Df°"™(R") of differential operators with formal power series
coefficients—act on C[[z1, .. ., Z,]], and therefore on Taylor series. These actions are faithful. (For D*", the
reason is that a non-zero differential operator cannot annihilate all analytic functions.) Consequently

U c D*™(R") ¢ Df"™(R") C End(C[[z1,...,,]]) ~ End(Homc (U, C)). (8.2)
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The problem is to identify the differential operators among all the linear transformations of formal
power series. One often thinks of differential operators as characterized by the property of not increasing
support. By considering only the action on Taylor series, we have in some sense already taken advantage of
that property. What we can study on the level of Taylor series is order of vanishing. For this purpose it is
helpful to write

ol =01 +---+an (€ N™). (8.3)(a)
Define
Up = span of monomials 0¢/0z* with |a| < p, (8.3)(b)

the constant coefficient operators of order at most p. (We will sometimes be careless about this terminology,
saying that any element of U, is of order p even though it might belong to U,_1.) These subspaces form an
increasing filtration of U. Similarly we can define

DiMRY) ={ Y falz L € C“(R™))} (8.3)(c)
la|<p
Dirrm®) = { 3 fula o (a € Cz1,...,za))}, (8.3)(d)
la|<p

the differential operators of order at most p with analytic or formal power series coefficients. By the leading
coefficients of an operator in Dg"”” written as in (8.3)(d), we will mean the formal power series f, with
|a] = p. This means that before we can speak of leading coefficients, we must specify the order p we have in

mind. If the operator happens to belong to Dgfﬁm, then its leading coefficients are all zero. Now define
Home (U, €), = {1 € Home(U, O) | u(U}) = 0}. (8:3)(e)

Under the isomorphism (8.1)(g), this corresponds to
Clz1s---2ally = { ) ca2® | ca = 0,all || < p}. (8.3)(§)

Proposition 8.4. Suppose f € C°(R"), and p > 0. The following conditions on f are equivalent.
a) For every |a| < p, (0*f/0xz*)(0) = 0.
b) For every u € Up, (u- f)(0) =0 (cf. (8.3)(b)).
¢) For every S € D*™(R™),, (S- f)(0) =0 (c¢f. (8.8)(c)).
d) The Taylor series T(f) (cf. (8.1)(b)) belongs to C[[z1,...zx]]p-
e) The Taylor series T(f) (cf. (8-1)(e)) belongs to Home (U, C),,.

This is elementary. When the conditions are satisfied, we say that f vanishes to order p at zero, and
we write

f e C® (R, (8.5)

Because of the proposition, we may refer to (say) Home (U, C), as the space of Taylor series vanishing to
order p. The first property distinguishing differential operators among all endomorphisms of Taylor series is
this.

Proposition 8.6. Suppose f € C*(R"), (cf. (8.5)) and S € Dg"(R") (cf. (8.8)(c)). Then S - f €
C*®(R")p_q. Here we write C*°(R™), = C°(R") for r <O0.

Similarly, suppose p € Homc(U,C), is a Taylor series vanishing to order p (cf. (8.3)(b)), and S €

D;"”"(R"). Then S - f € Homc(U,C)p—q is a Taylor series vanishing to order p — q. Here we write
Hom¢ (U, C), = Homg¢ (U, C) for r < 0.

This is an immediate consequence of the definitions and of the fact that the filtrations in (8.3) respect
the algebra structures:

UUr CUpir,  DOM(RM)DEMR") C D23, (RY),  DI"™(®")DI"™®") C DIT™®').  (8.7)
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With this property in mind, we say that a linear transformation A of Homc(U, C) is weakly of order q if
A -Homc(U,C), C Home(U,C)p—q (8.8)

for all p > 0. (The condition is non-empty only for p > q).
The most obvious linear transformations weakly of order ¢ are the differential operators of order ¢ with

formal power series coefficients. There are more, however. When n = 1, the differential operator A = x%

acts on formal power series by
A( chwj) = chja:j.
Jj=20 320

This action obviously preserves the subspaces C[[z]], of (8.3)(f), so A is weakly of order 0. As a differential
operator, however, A is first order. A little reflection shows that the problem is the vanishing at zero of the
coefficient of the highest derivative in A. Here is a precise statement.

Lemma 8.9. Suppose

S = Z Ua(m)aa% (00 € ([z1,-..,25]])

la|<p

s a differential operator with formal power series coefficients of order at most p. Assume that there is a 3
with |B] = p and 0g(0) # 0. (Here 03(0) means the constant term of the formal power series o3.) Then S
s not weakly of order p — 1.

Proof. The formal power series f = z” vanishes to order p— 1 at 0; but (S- £)(0) = 8!o5(0) is not zero.
So S - f does not vanish to order 0 at 0, so S cannot be weakly of order p — 1. Q.E.D.

The lemma says that the notion of weak order for endomorphisms of Taylor series allows us to detect
the order of differential operators whose leading coefficients do not vanish at zero. To continue, we need
a way to construct such differential operators from arbitrary ones (with formal power series coefficients.)
That is, we need a way to reduce the order of vanishing of the leading coefficients. The way to do that is
to differentiate those coefficients. The next lemma provides a way to differentiate leading coefficients while
still thinking of the operators as acting on Taylor series. Recall that a vector field on R"® with formal power
series coefficients is a first-order differential operator £ that annihilates the constant function:

=Y Sz (i€ Clor,.eszal) (8.10)(a)

i=1

The symbol of £ at 0 is the vector

a(§) = (f:(0)) e C" (8.10)(b)
We fix now a set {&1,...,En} of vector fields, and assume that
the symbols o (&), ..,0(&n) span C™. (8.10)(c)

(For the purposes of this section we could just take the n vector fields 9/0z;, but for the applications in
section 9 the more general assumption will be useful.) As a consequence of (8.10)(c), we can draw the
following conclusion. Suppose f is a non-zero formal power series. Then there is an integer r > 0 so that f
vanishes to order r — 1 at 0, but f does not vanish to order r. For this value of r, we can find a sequence
(i1y---,ip) € {1,...,N}" so that

(& -+ &, F)(0) # 0. (8.10)(d)

Here is the lemma that allows us to apply these ideas to differential operators.

Lemma 8.11. Suppose

S = Z Ua(m)aa% (00 € ([z1,-..,25]])
la|<p
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is a differential operator with formal power series coefficients of order at most p; and suppose
- 0
€= filD)z—  (fiear,...,an]))

is a vector field. Write
T=[¢5]=¢0S—Sot

for the commutator of S and . Then T is a differential operator of order at most p with formal power series
coefficients:

T= Y ral@) o (ra € Cller, )]

la|<p

Assume that the leading coefficients of S all vanish to order k at x = 0: that is, that
oq € C[[z1,...,2,]]r whenever |a| = p.

I 18] = p, then
8 —&-08 € ([[z1,...,2Zn]lk-

That is, the leading coefficients of T are obtained from those of S by applying the differential operator &, up

to terms vanishing to order k at x = 0.

This can be proved by a straightforward computation, which we omit.

Corollary 8.12. Suppose S is a differential operator of order at most p with formal power series
coefficients. Assume that the leading coefficients of S vanish to order r — 1 at x = 0, but that some leading
coefficient does not vanish to order r. Then we can find a sequence (i1,...,4r) € {1,...,N}" so that some
leading coefficient of the iterated commutator

T= [&1}[5%:‘9]]

has a leading coefficient that does not vanish at x = 0.

This is immediate from the lemma and (8.10)(d).

Corollary 8.12 suggests how to refine the definition of weak order g given at (8.8). In the setting of (8.10),
we say that an endomorphism A of Hom¢ (U, C) is of order ¢ if for every sequence (i1,...,i,) € {1,...,N}",
the iterated commutator

(Givs - [&inr Al +7] (8.13)

is weakly of order ¢q. The definition appears to depend on the choice of the vector fields &;, but Theorem
8.15 shows (subject to the assumption (8.10)(c)) that it does not.

Lemma 8.14. Suppose S is a non-zero differential operator with formal power series coefficients. Then
the order of S as a differential operator is equal to its order as an endomorphism of the space Home (U, C)
of formal power series (cf. (8.13)).

This follows from Corollary 8.12, Lemma 8.9, and the definitions.
Here is the main theorem of this section.

Theorem 8.15. Suppose T is an endomorphism of Taylor series of order less than or equal to p (cf.
(8.13)). Then T is a differential operator with formal power series coefficients of order less than or equal to

p.

Sketch of proof. By an elementary calculation, we can find a differential operator D of order less than
or equal to p, with formal power series coefficients, having the property that

D(z%) =T(«%)  (lof <p).



(This amounts to solving a finite system of linear equations in the ring of formal power series. The coefficient
matrix is square and upper triangular with non-zero integers on the diagonal; so the system is solvable.)
After replacing T by T — D, we may therefore assume that

T(z*)=0  (lof <p) (8.16)(a)

On the other hand, if |3| > p + 1, then z® vanishes to order at least p at 0, so T'(z°) vanishes to order at
least 0. That is
T@)0)=0 (1Bl2p+1). (8.16)(b)

We are now trying to show that 7' = 0. The first problem is to deduce from the preceding formulas
a statement about the effect of T on arbitrary formal power series. For that we use the natural topology
on formal power series, in which the various subspaces C[[z1,...,z,]], of series vanishing to order p form
a neighborhood base at 0. This means that a sequence f,, of formal power series converges to f if f — f,
vanishes to order at least r,,,, and r,,, goes to infinity with m. In this topology, a formal power series ) ¢,z
is the limit of its partial sums Zla\Sm cor®. An operator A that is weakly of order p is continuous, and

therefore
A (Z caajo‘) = n}gnoo Z caA(z®).
la|<m

This means that any fixed coefficient of the formal power series A(>" cax®) is equal to the corresponding
coefficient of 3, <, caA(2z) for m sufficiently large.
Bearing in mind these remarks, we find that (8.16)(a) and (b) imply

T(f)0)=0  (f e z1,...,zn]])- (8.16)(c)

We are trying to show that T = 0. Because of (8.10)(d), it suffices to show that if (i1,...,4,) € {1,...,N}",
then

(& -+ &, TF)(0) =0. (8.16)(d)
We will prove this statement by induction on r, simultaneously with
(&> [+ [, TT] - -1)(0) = 0. (8.16)(e)

The case r = 0 is precisely (8.16)(c); so suppose r > 1, and that (8.16)(d) and (e) are known for r — 1. The
iterated commutator in (8.16)(e) may be expanded as a sum of terms of the form £(£;7€; f)(0). Here I and
J are disjoint ordered sets whose union is {i1,...,4,}, and &r is the composition of the vector fields &; (with
i € I) in the order determined by I. Just one of these terms has |I| = r: it is exactly the term appearing in
(8.16)(d). All of the other terms have |I| < r, and therefore vanish by inductive hypothesis. It follows that
(for a fixed f) (8.16)(d) and (8.16)(e) are equivalent.

To prove one of these statements, it is enough (by the remarks about topology above) to take f = z®. If
|a] < p, then (8.16)(d) follows from (8.16)(a). So suppose |a| > p; then 2 vanishes to order at least p at 0.
By hypothesis the iterated commutator in (8.16)(e) is weakly of order at most p; so the iterated commutator
applied to % vanishes to order at least 0 at 0, as required by (8.16)(e). This completes the induction and
therefore the proof. Q.E.D.

9. Twisted differential operator algebras.

Problem 3.15 suggests that we should construct a representation by first constructing a Dixmier algebra
(A, ¢), and that the action of U(g) on the representation should be given by ¢ and an action of A. The
construction given in section 7, which may be summarized as Indgx (Tpy ), does not proceed in this way; but
it can be rearranged to fit better. For the moment we retain the setting of section 7, although that will soon
be modified. The Hilbert space of the induced representation is L?(G/Px,H, ® D;3). The group G acts
by left translation of sections of an equivariant bundle V; (whose fiber at ePx is H, ® D;/5). Consequently
elements of the complexified Lie algebra g act by first order real analytic differential operators on V;; and
elements of U(g) act by real analytic differential operators on V,. (Notice that general elements of the
Hilbert space of the representation are only L? sections of V,, rather than smooth ones; so the differential
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operators will not really act on them. But it turns out (since G/Px is compact) that the smooth vectors of
the representation (Definition 2.6) are precisely the smooth sections of V;, and differential operators do act
on these.)

This discussion suggests a candidate for the Dixmier algebra A: it might be the algebra D" of all
real analytic differential operators on V. We have seen that there is a natural algebra homomorphism
¢ : U(g) = D?". The action of G on G/Px provides an action Ad of G on D" by algebra automorphisms,
and this is easily seen to be compatible with ¢ and the adjoint action on U(g).

The first problem is that the action of G on D" is not algebraic in any sense. A basic property
of algebraic representations is that they are locally finite: any vector is contained in a finite-dimensional
G-invariant subspace. The differential operators of order zero include the multiplication operators my by
analytic functions f on G/Px. The adjoint action on my is by translation of the function f. If f is not
locally constant, then its translates can never span a finite-dimensional representation of G. (Proving that
statement is a good exercise in elementary representation theory.) One way out of this difficulty is to define
D9 as the largest subspace of D" on which the adjoint action is algebraic. Since the adjoint action on
Ul(g) is algebraic, we will have ¢ : U(g) — D¥9. Tt is possible to make sense of this idea, but it will be
convenient for us to adopt a slightly less direct approach.

We are now prepared to formulate working hypotheses for the section. Suppose that

H¢ C G are complex connected algebraic groups. (9.1)(a)
We write h C g for the corresponding Lie algebras. Fix a Lie algebra homomorphism
A:h—>C (9.1)(b)
This amounts to a one-dimensional representation
A:h — End(Cy). (9.1)(»")
One particular homomorphism plays a special role:
5:h—>C (X)) = %tr(ad(X) on g/b) 9.1)(c)
Eventually we will assume

G is reductive and Hc is a parabolic subgroup. (9.1)(d)

These are all the assumptions and data required for the main construction. In order to motivate the
construction, however, it will sometimes be helpful to assume more. For those purposes, we may sometimes
assume

G is a real form of G¢, and H = Hc NG is a real form of H¢; and (9.1)(M1)

iA is the differential of a one-dimensional unitary character (A,Cy) of H. (9.1)(M2)

(The M in the equation labels stands for “motivation.”) We will then write by C go for the real Lie algebras.
Under these assumptions the real analytic manifold G/H is a real form of the complex manifold (actually
a complex algebraic variety) Ge¢/He. Then H acts by the adjoint action on the real vector space go/ho
(the real tangent space at the base point to G/H); so H acts on the one-dimensional real vector space
D'/2(go /o). We get

§ is the differential of the character A of H on D/?(go/bo). (9.1)(M3)
Using this character, we can define
L4 = line bundle on G/H induced by A ® A. (9.1)(M4)

40



Cga = space of compactly supported smooth sections of Lx. (9.1)(M5)

In the setting of (4.16), the Hilbert space of the unitary representation Ind%(A) is constructed as a completion
of C%.

Here is the main result. It is a folk theorem, much harder to attribute correctly than to prove. The main
ideas go back at least to Kirillov’s work in the 1960’s on nilpotent groups, and probably much earlier. The only
difficult part of this formulation (that D, is a Dixmier algebra in the setting of (9.1)(d)) can be deduced from
[Conze-Berline-Duflo]. The paper [Beilinson-Bernstein] demonstrated the particular importance of twisted
differential operators on flag varieties, and [Borho-Brylinski82] and [Borho-Brylinski85] provide a thorough
treatment.

Theorem 9.2. Suppose we are in the setting of (9.1)(a) and (b). Then there is a completely prime
algebra D(Gc/Hc)x = Dy, called a twisted differential operator algebra. This algebra is endowed with an
algebraic action Ad of G¢ by algebra automorphisms, and with an algebra homomorphism

¢)\ : U(g) — D/\.

The adjoint actions of G on U(g) and Dy are compatible with ¢x. The differential ad of the adjoint action
is the difference of the left and right actions of g defined by ¢, :

ad(X)(T) = oA(X)T - Tox(X) (X €9, T € D))

If in addition (9.1)(d) is satisfied, then (Dy, ¢x) is a Dizmier algebra for G¢ (Definition 3.8).

Suppose that the auxiliary conditions (9.1)(M1) and (9.1)(M2) are satisfied. Then D) is isomorphic
to o subalgebra of the analytic differential operators on sections of La (cf. (9.1)(M4) and (9.1)(M5)). The
adjoint action of G arises by change of variables from the action of G on G/H by left translation; and the
homomorphism ¢y from the natural action of U(g) by differential operators on OA -

Proof. The statements in the last paragraph are intended to guide the construction of D) in general.
The problem we face is essentially to find a description of the differential operators on £, that refers only
to G, H, and X. To that end, recall that the differential operators are certain endomorphisms of Cgf’A. The
operators we want are actually going to have analytic coefficients. This suggests the possibility of studying
them by means of Taylor series expansions. As a first step, we need to understand Taylor series for sections
of L. Now the Taylor series of a function f at a point p can be thought of as a list of all the values at p of
derivatives of f. If f is not a function but a section of a bundle, then we should apply differential operators
on sections of the bundle, and the values will lie in the fiber of the bundle at p. Here is a description of
Taylor series for sections of L4.

Lemma 9.3. In the setting of (9.1)(M), there is a surjective linear map (Taylor series at eH)
7 : Coop — Homy ) (U(9), Cings)-
(Here the Hom is defined using the left action of U(h) on U(g).) The kernel of T consists of all sections
vanishing to infinite order at eH.

Sketch of proof. The fiber of £, at eH is the one-dimensional representation Co ® D'/2(go/bo) of H.
Because of (9.1)(M2) and (9.1)(M3), the Lie algebra § acts on this fiber by i\ + J; so (after fixing a choice
of a half density on go/ho) we may identify the fiber with C;y+s. The space C§% may be identified with a
certain space of smooth functions on G with values in C;y4s (transforming appropriately under H on the
right, and satisfying a support condition.) The group G acts on this space by left translation, and the Lie
algebra go acts by right-invariant vector fields. Explicitly,

(X -0)(g9) = %(J(GXP(—tX)g))lt:o (0 € Con, X € 90,9 € G) (9.4)(a)

This is a Lie algebra representation, and so extends to an action of the universal enveloping algebra on Cg .
(This is the action mentioned at the end of Theorem 9.2.) The Taylor series map 7 is defined by

T(0)(u) = (u-0)(1) (o€ C5h,ueU(g) (9-4)(b)
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If Z € o, then
7(0)(Zu) = (Z -u-0)(1)
= %(u - 0)(exp(~tZ))|=o
= LA A)exp 12)] - (w-0) Dleso
=[N+ 6)(2)] - (u - (1))
= [(iA +6)(2)] - (o) (u)-

(The third equality follows from the transformation property of u - ¢ under H on the right.) This shows
that 7 maps to the correct Hom space. Surjectivity of 7 is equivalent (after introducing appropriate local
coordinates on G/H and using the Poincare-Birkhoff-Witt Theorem) to the fact that every formal power
series on R is the Taylor series at 0 of a smooth function. The assertion about the kernel of 7 is clear from
(9.4)(b). Q.E.D.

We want to investigate the space of Taylor series more closely. Notice first that

My = Homy () (U(9), Cirys) (95)(a)

may be defined in the setting (9.1)(a—d); the additional structure of (9.1)(M) is not used. The complex
vector space M) carries a U(g)-module structure:

(v-p)(u) = pluww)  (u,v € U(g),p € M). (9-5)(b)

Sometimes it will be convenient to write this action as an algebra homomorphism

¢x:U(g) = End(My),  (da(0)p)(u) = p(uv). (9-5)(¥)

Because we use the right action of U(g) on itself, v - y inherits from u the transformation property under
U(h) on the left, and so belongs to M. Next, recall the standard filtration on U(g): U,(g) is the span of
all products of less than or equal to n elements of g. In terms of the realization of U(g) as right-invariant
differential operators on a real form G, U,(g) corresponds to the differential operators of order at most 7.
We define the order of vanishing filtration of M) by

Myn = {pn € Mx|p(Un(g)) = 0} (9.5)(c)
This is a decreasing filtration of My:
oo
MyD MyoD Myx1D--, [ Mxn=0. (9.5)(d)
n=0

(It is often useful to define U_4(g) = 0, and M, _; = M),.) The action of U(g) is compatible with the
filtrations in the following sense:
Up(9) - Mx,q C My q—p- (9.5)(e)

Lemma 9.6. In the setting of (9.1)(M), the Taylor series map T of Lemma 9.3 intertwines the action
of U(g) on C5y (cf- (9-4)(a)) and on My (cf. (9.5)(b)). The subspace M, is precisely the image under T
of sections vanishing to order at least n at eH.

Here we say that a section ¢ vanishes to order zero at a point p if o(p) = 0; and we say that ¢ vanishes
to order n if (T'o)(p) = 0 for every differential operator T' of order at most n. We omit the simple proof.

Now that we have a space of Taylor series, Theorem 8.15 suggests how to define differential operators
(with formal power series coefficients). The distinguished vector fields used in (8.13) are provided here by
the action of g.
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Definition 9.7. In the setting of (9.1) and (9.5), an endomorphism T of M) is said to be weakly of
order q if T(My,p) C My p—q for all p > 0 (cf. (8.8)). It is of order q if for every sequence (Xi,...,X,) of
elements of g, the iterated commutator [¢x(X1),[ - [#a(Xr),T]] - -] is weakly of order q. We write D{f’;m
for the collection of endomorphisms of order ¢, and

D{orm — UDi‘:qum
q

It is not difficult to see that D{orm is a filtered algebra, isomorphic to the algebra of differential operators

in dim g/h variables with formal power series coefficients. (Consequently D{orm is completely prime.) As a
consequence of (9.5)(e), the map of (9.5)(b") restricts to a filtered algebra homomorphism

¢x : U(g) —» D{™. (9.8)(a)

We make g act on D{"”” by
ad(X)(T) = [¢a(X), T (9:8)(b)

Because ¢, is a Lie algebra homomorphism, ad is a Lie algebra representation of g (by derivations) on D{orm.
It therefore extends to an associative algebra homomorphism

ad : U(g) — End(D{°™). (9.8)(c)

The algebra D{orm is close to the requirements of Theorem 9.2. What is missing is the action Ad of
G by algebra automorphisms. This should be an exponentiated form of the action ad of g. We cannot
perform this exponentiation on all of D{O’"m. Using an idea of Zuckerman, we will essentially define D) to
be the largest subalgebra of Df\corm on which the exponentiated action makes sense. Here is a simple version
of Zuckerman’s idea.

Definition 9.9 (see [Vogan81], Definition 6.2.4). Suppose G is a connected complex algebraic group
with Lie algebra g, and V is a representation of g. We will define an algebraic representation I'c (V') = T'V of
Gc. (Recall that this means that every element of I'V is to lie in a finite-dimensional G¢-invariant subspace,
on which the action of G¢ is algebraic.) As a vector space, I'V will be a subspace of V; and the differential
of the representation of G is the original action of g. To do this, let G¢ be the universal covering group of
G- There is a short exact sequence

1= Z—Ge— Ge— 1.

Here Z is a discrete central subgroup of G¢. Define
IV = {v e V| dimU(g)v < oo}.
This is a g-stable subspace of V', on which the action of g is locally finite. By the dictionary between finite-
dimensional Lie group and Lie algebra representations, it follows that I'V’ carries a locally finite representation
of G¢, with differential given by the action of g. Set
ToZW={velV|z-v=u, al z € Z}.

Because Z is normal in G¢, TV is a Ge-invariant subspace of I'V; and the representation of G¢ on T'yV
obviously factors to G¢. Finally, define

T'V = {v € I'(\V | the function g — ¢ - v from G¢ to V is algebraic}.

This makes sense because the function takes values in a finite-dimensional subspace of V. It is more or less
obvious that T'V is an invariant subspace of gV, and that the representation of G¢ on I'V is algebraic.

43



We now define
Dy =T%(D{"™), (9.10)(a)

and write Ad for the representation of G¢ on D). Because g acts by derivations, it is straightforward to
check that T'D, is a subalgebra of D{Wm on which G¢ acts by algebra automorphisms. It follows easily that
D, is a subalgebra on which G¢ acts algebraically by algebra automorphisms. Because the adjoint action of
Gc on U(g) is algebraic, the image of ¢, (cf. (9.8)(a)) is contained in Djy:

¢x : U(g) = Da. (9.10)(b)

The algebra D) is completely prime because it is a subalgebra of the completely prime algebra D{"Tm.

This completes the verification of the statements in the first paragraph of Theorem 9.2. That D) is a
Dixmier algebra under the hypothesis (9.1)(d) — that is, that the finiteness requirements of Definition 3.8
are satisfied — is well-known, going back at least to [Conze-Berline-Duflo]. (There is an explicit verification
in [Vogan90], Corollary 4.17. One can also find there a discussion of the symbol calculus for Dy.) The
assertions about the embedding D, in an algebra of analytic differential operators we leave to the reader;
the discussion in section 8 should help to make them plausible. Q.E.D.

Example 9.11. Suppose G¢ = C" and Hg is trivial, and A = 0. Then
My ~C[z1,...,24]]
(see (8.1)(g) and (9.5)(a)). According to Theorem 8.15 and Definition 9.7,
D{orm ~ Dform (g,
the algebra of differential operators on R™ with formal power series coefficients. We also have
U(g) =~ C[9/0x1,...,0/0xy,],

and the map ¢, from U(g) to D{orm is the natural embedding. Tt is therefore easy to compute the adjoint
action defined in (9.8): if T' € U(g) is a constant coefficient differential operator, then

ad(T) (Z m%) = Z(Tfa)a%.

[¢]

In the setting of Definition 9.9, it follows that f(D{OTm) consists of those differential operators whose
coefficients f, have the following property: the space of all derivatives of f, is finite-dimensional. (Here
“derivatives” refers to applying constant coefficient differential operators.) Using linear algebra and calculus,
it is not hard to show that these functions are all finite linear combinations of polynomials times exponentials:

fa@) =Y pag(@)exp(d_ &z;),

£eln

with each pq¢ a polynomial in 2. The group Gc is simply connected, so f‘(D{OTm) = I‘O(D{OT’“). The
adjoint action of G¢ is by (complex) translation of the coefficients:

AdE) (Z f%) = Y ()

a

with

(p(2)fa) (@) = falz +2) = D Pag(@+2)exp(d_ &(x; + 2).

fecn
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orm

The algebraic functions on C* are the polynomials. From this it follows that I'Dj consists of differential

operators with polynomial coefficients:
Dy ~Clzy,...,2,,0/0z1,...,0/0z,)].

To complete this section, we describe the coadjoint orbits to which the Dixmier algebras D) should
correspond in Conjecture 3.9. Assume then that we are in the setting (9.1)(a—d). We follow section 3 of
[Vogan90], which the reader may consult for more details and generalizations. Define

xnce/me = {E €07 &y = A} (9.12)(a)

This is an Hc-stable affine subspace of g*, of dimension equal to the codimension of h in g. We may therefore
use it to construct the fiber product
¥y =Gc¢ XH, EA,G@/H@; (9.12)(b)

an affine bundle over the projective variety G¢/Hg. There is a natural “moment map”
tx i Xh — gt ux(equivalence class of (g,&)) = Ad*(g)(&) (9-12)(c)

Obviously the image of p) is a union of coadjoint orbits.

Proposition 9.13. In the setting of (9.1)(a—d) and (9.12), the moment map uy is proper and generically
finite; its image is the closure of a single coadjoint orbit Oy. More precisely, the parabolic subgroup Hc has
an open orbit Oy g./H. on X ) Go/H-- This defines an open subvariety

@)‘ = G¢ X He O/\,Gw:/Hﬁ:

of £x. The restriction of the moment map py to Oy is a finite covering map onto Oy.

The most difficult case of the proposition is A = 0. In that case it is essentially due to Richardson: Xy
is the cotangent bundle of the partial flag variety G¢/Hc, and O is the Richardson nilpotent orbit attached
to Hc. For the general case we simply refer to [Vogan90].

It is now more or less clear that our constructions for hyperbolic orbits in section 7 fit into the framework
of Problem 3.15. Here is a specific statement.

Corollary 9.14. Suppose G is a real reductive group of inner type G¢ (Definition 3.13), and that £ € g
is a hyperbolic element (Definition 5.10). Define a parabolic subgroup P = LN as in Proposition 7.2, and
let P C G be its complezification.

a) The linear functional & restricts to a character A(§) of the Lie algebra p. Write D¢ = Dy for the
twisted differential operator algebra on Gc/Qc attached to A(E) in (9.10).

b) Suppose T is an integral orbit datum at & (Definition 4.7 and Proposition 7.4), and (mw(1),H) is the
corresponding unitary representation of G (cf. (4.16)). Then the action of U(g) on the smooth vectors
H> extends naturally to an action of Dg.

c¢) In the notation of (9.12) and Proposition 9.13, ¥y = Ox(€) ~ 0y =Gc - €.

The assertion in (b) follows from the last part of Theorem 9.2. That in (¢) can be deduced from
Proposition 7.2(d) applied to G¢c. We leave the details to the reader, along with such tasks as the construction
of a Hermitian transpose on Dg.

In the setting of (9.1), the correspondence of Conjecture 3.9 should carry the orbit cover Oy (Proposition
9.13) to the Dixmier algebra Dy (cf. (9.10)). For G¢ = GL(n,C) every equivariant orbit cover is of the
form O, for some parabolic Hc and character A. (Actually the covers are necessarily trivial in this case.)
The same orbit may arise in several different ways, but Borho has shown in [Borho] that then the various
D, are all isomorphic. (To be precise, one needs in addition to [Borho] the result from [Borho-Brylinski82]
that the maps ¢, are always surjective for GL(n,C).) So there is a well-defined Dixmier correspondence for
GL(n,C). The injectivity of the correspondence is established in [Borho-Jantzen], proving Conjecture 3.9
for GL(n,C).
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For most other cases, there are equivariant orbit covers not of the form O,. (Such covers exist exactly
when G¢ has a simple factor not of type A, or G¢ has disconnected center.) In those cases the twisted
differential operator algebras Dy do not suffice to prove Conjecture 3.9. A discussion of what else is needed
may be found in [Vogan90].

10. Elliptic orbits, complex polarizations, and admissibility.

In section 7 we gave a construction of unitary representations of a reductive group G attached to
hyperbolic coadjoint orbits. This construction is very nice as far as it goes, but it does not apply to other
coadjoint orbits. In this section we will introduce an analogous construction for elliptic orbits. We begin
with some structure theory along the lines of Proposition 7.2.

Proposition 10.1. In the setting of (7.1), suppose that ad(X) is diagonalizable on the complexified Lie
algebra g, with purely imaginary eigenvalues. (This happens in particular if X is elliptic (Lemma 5.13).)
Write gt for the t-eigenspace of ad(iX), so that

g=> ¢, ax=g¢" (10.1) (i)
teR
Define
px=> ¢, nx=)» g (10.1)(i4)
t>0 £>0

a) The decomposition (10.1)(i) makes g an R-graded Lie algebra: [g°, g*] C g***.
b) The subspace gt is orthogonal to g° with respect to wx unless s = —t.
c¢) Complex conjugation on g with respect to the real form gy carries gt onto g~

Px=> ¢, Ax=)¢

<0 <0

t. In particular,

so that
px +Px =9, px NPy = g%

d) The adjoint action of Gx preserves each subspace gt, and so preserves the subalgebra px.

e) Suppose (v, F) is a finite-dimensional representation of Gx, and that dy(X) (the differentiated repre-
sentation applied to the Lie algebra element X ) is a scalar operator. Then dvy extends uniquely to a
representation ¢ of px. This extension satisfies ¢|ln, =0, and

$(Ad(9)Z2) = 1(9)¢(Z)7(9™") (9 € Gx,Z € px). (10.1) (i)

Proof. Parts (a) and (b) are proved just as in Proposition 7.2. (In fact ¢X is a hyperbolic element of
g, so they may be regarded as special cases of Proposition 7.2.) For (c), use the fact that iX = —iX and
the fact that complex conjugation is a Lie algebra automorphism. Part (d) is obvious. For (e), the property
of vanishing on ny is easily seen to define an extension ¢ satisfying (10.1)(iii). For the uniqueness, suppose
that ¢ is any representation of px. Then if Z € gt, ¢(Z) must carry the X eigenspace of ¢(iX) into the A +1
eigenspace. In our case ¢(iX) is assumed to act by scalars, so nx must act by zero. Q.E.D.

The idea is that the complex Lie algebra px is something like a polarization at £x (Definition 4.12).
In fact px/gx is a complex Lagrangian subspace of the complexified tangent space Tz, (G - {x)c. There is
no subgroup of G with Lie algebra px; but we observed in (4.14)(c) that it was possible to write down an
interesting representation space for G using only Gx and the Lie algebra of the polarization. In the setting
of Proposition 10.1(e), the space in question is

D(G/Gx,px; F) = {f € C®(G,F)| f(gh) = v(h) " f(9), p(2)f = ~&(2)f

(10.2)
(g €eG,heGx,7Z € px)}
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That is, we are beginning with sections of the smooth vector bundle on G/Gx defined by (v, F') and imposing
a family of first-order differential equations corresponding to elements of nx. Proposition 10.1(c) suggests
that these differential equations resemble the Cauchy-Riemann equations. Here is a precise statement.

Proposition 10.3. In the setting of (7.1), suppose that ad(X) is diagonalizable with purely imaginary
eigenvalues. Then there is a distinguished G-invariant complex structure on the coadjoint orbit G - £x ~
G/Gx. It may be characterized by the requirement that px /gx (Proposition 10.1(ii)) is the antiholomorphic
tangent space at the identity coset (corresponding to the point {x ).

In the setting of Proposition 10.1(e), the Lie algebra representation ¢ defines a G-invariant complex
structure on the vector bundle F = G xg F over G -£x. The space (10.2) may be identified with the space
of holomorphic sections of F.

A somewhat more detailed discussion of this result may be found in [Vogan87b], Propositions 1.19 and
1.21.

Proposition 10.3 suggests that any generalization of Corollary 9.14 to elliptic coadjoint orbits will need
to use complex analysis. In order to begin, we first consider exactly which (holomorphic) vector bundles on
G/Gx are relevant. The most obvious possibility is to use the bundle defined by an integral orbit datum
(7, H~) at Ex (Definition 4.7). That is, we might require

dy(Y) =ilx(Y) =iX,Y) (Y €gx)

But this is not precisely analogous to what we did in the hyperbolic case (cf. (4.16)). There the integral
orbit datum was first twisted by the character of the isotropy group on half-densities. Explicitly (for X
hyperbolic and g € Gx) Ax(g) is the square root of the absolute value of the determinant of the adjoint
action of g on (go/px,0)*. The differential of Ax is a character éx of gx,0: dx(Y) is half the trace of the
adjoint action of Y on (go/px,0)*.

For X elliptic the quotient g/px is only a complex vector space, lacking a G x -invariant real form. There
is accordingly no natural analogue of half-densities, or of the character Ax. But dx still makes sense: we
can compute traces in the complexification of a vector space, so it is consistent with the hyperbolic case to
define a character of gx by

5x(¥) = gtr(ad(Y) on (g/px)")

1 (10.4)(a)

= §tr(ad(Y) on ny)
This need not be the differential of a character of Gx. Nevertheless, a better analogue of (4.16) is to consider
bundles on G/Gx corresponding to irreducible unitary representations (vy, Fy) of Gx with the property that

dy(Y) = i€x (V) + 3x (Y). (10.4)(8)

Such a representation +y is called an admissible orbit datum at . The orbit G - £ is called admissible if there
is an admissible orbit datum at £. (Compare the definition of integral orbit datum in Definition 4.7. If there
is a one-dimensional character Ax of Gx with differential §x, then tensoring with Ax defines a bijection
between integral orbit data and admissible orbit data. But in general the two notions are simply different.)

The definition of admissible given here makes sense only for elliptic orbits of reductive groups. There
is a more sophisticated notion, due to Duflo, that makes sense for arbitrary coadjoint orbits of arbitrary Lie
groups. We refer to [Vogan87h], Definition 10.16 for Duflo’s definition; one can also find there a discussion
of how it reduces to (10.4) in the elliptic case.

According to Proposition 10.3, an admissible orbit datum (v, F,) defines a holomorphic vector bundle
F, over the coadjoint orbit G - {x. The unitary structure on the representation vy provides a G-invariant
Hermitian structure on the vector bundle, and the symplectic structure on the orbit provides a canonical
G-invariant measure. Accordingly there is a natural analogue of the unitary representation defined in (4.16)
for a real polarization: the Hilbert space is the space L*(G - €x,px;F,) of square-integrable holomorphic
sections of the vector bundle (compare (10.2) and (4.14)(c)).

Unfortunately this space is almost always zero: in fact 7, usually has no non-trivial holomorphic sections
at all. This is most easily seen when G is compact. Taking for example G = SU(2) and {x any non-zero
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admissible element of g§, we find that G -£x is isomorphic to CP!, and that the line bundle F, is one usually
denoted O(—n — 1), with n a positive integer. (Essentially —n arises from the term i{x in (10.4)(b), and —1
from ¢x.) The line bundle O(—n — 1) has only the zero section. What is interesting is its first cohomology:

HY G- &x,F,) ~C,

the unique irreducible representation of G of dimension n. At first glance this suggests that we have chosen
the wrong complex structure on G - £x. Indeed everything in this section works with only trivial changes if
we reverse the roles of px and px. With the new complex structure the line bundle F, becomes O(n — 1),
still with n a positive integer. This bundle does have holomorphic sections:

HYG-¢x,F,) =~C,

the n-dimensional irreducible representation.

There is a price to be paid for such a change, however. If instead we consider the group G = SL(2,R)
and take £x to be a non-zero admissible elliptic element, then G - £x is the upper half plane with the usual
action of G by linear fractional transformations. The line bundle ¥, is holomorphically trivial, and therefore
has lots of holomorphic sections (and vanishing higher cohomology). When the complex structure is chosen
as in Proposition 10.3, there are even square-integrable holomorphic sections; so we get an interesting unitary
representation of G (a holomorphic discrete series representation). But if the complex structure is defined
instead using the opposite parabolic subalgebra, the only square-integrable section is zero.

The conclusion that we draw from these two examples is that one should use the complex structure
specified in Proposition 10.3, and look for a unitary representation in some higher cohomology of G - £x with
coeflicients in F,. The question of exactly which cohomology to consider is illuminated by the following
vanishing theorem of Schmid and Wolf. Recall from Theorem 6.5 and (7.1) that any elliptic orbit in g§ has
a representative £x with X € €.

Theorem 10.5 ([Schmid-Wolf]). Suppose G is a real reductive group with mazimal compact subgroup
K, and X € ¥. Put on D = G - £x the complex structure defined by Proposition 10.3. Then Z = K - {x
is a compact complexr subvariety of D; write s for its complex dimension. The variety D is (s + 1)-complete
in the sense of Andreotti and Grauert. In particular, this means that Z is a compact complex subvariety of
mazimal dimension in D; and that if F is any coherent analytic sheaf on D, then HY(D,F) =0 for g > s.

In the first example above, Z = CP! and s = 1. In the second, Z is a point and s = 0.

We can now say what representation ought to be attached to an admissible elliptic coadjoint orbit G - €.
By Theorem 6.5, there is no loss of generality in assuming that 6 = £&. We begin with an admissible orbit
datum + as in (10.4), and form the corresponding holomorphic vector bundle F,, over the complex manifold
G - € (Proposition 10.3). Theorem 10.5 says that K - £ is a compact complex submanifold of dimension s.
Form the cohomology group H®(G - £, F,). There are at least two important ways to think of this space.
(The isomorphism between them is Dolbeault’s theorem.) One is as a Dolbeault cohomology group, the
quotient of closed (0, s) forms on G - £ with values in F, by exact forms. This shows first of all that the
cohomology group carries a natural representation of G (by translation of (0, s) forms). At the same time it
emphasizes the central difficulty in putting a nice topology on the space: it is not obvious that the space of
exact forms is closed. (This fact was proved in general by H. Wong in his 1992 Harvard thesis [Wong].) It
follows that H*(G - ¢, F) has a natural complete locally convex Hausdorff topology.

A second way to think of H*(G - ¢, F,) is as a Cech cohomology group with coefficients in the sheaf
of germs of holomorphic sections of F,. From this point of view an element is represented by a family of
holomorphic sections of F.,, each defined over some small open set (say an intersection of s + 1 elements
from a covering of G - £ by Stein open sets). The advantage of this point of view is that every holomorphic
differential operator on sections of F,, clearly acts on the cohomology.

Suppose for example that G is of inner type G¢ (Definition 3.13). Then p, (Proposition 10.1) is the Lie
algebra of a parabolic subgroup P ¢ of G, and it is not difficult to show that

Ge = {g € G|Ad(g) € Pec). (10.6)(a)
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Consequently G - { ~ G/G¢ is an open submanifold of the flag variety G¢/Pe c. Comparing (10.4) with
the definitions of section 9 (particularly (9.5)(a)), we find that the twisted differential operator algebra D¢
(attached to the character & of pg by (9.10)) may be regarded as an algebra of holomorphic differential
operators on F.,. Therefore

D¢ acts naturally on H*(G - £, F). (10.6)(b)

The Hermitian structure on F,, gives rise to a natural Hermitian transpose on differential operators on F,.
This transpose preserves D¢, defining a Hermitian transpose of Dixmier algebras in the sense of Definition
3.13.

We are now getting close to having the structure required by Problem 3.15. The Dixmier algebra D, and
the group K (or even the larger group G) both act on H*(G -, F,). This space fails to be a (D¢, K')-module
only because the action of K is not locally finite. We have already met such a problem in connection with
the construction of D¢, and we adopt the same solution here: we pass to the subspace of K-finite vectors.
Define

VE,W = HS(G : 5:‘7:7)1{

—{ve H'(G & F,)| dim(span(K -v)) < oc}. (106)(c)

It is not difficult to show that V¢ , is preserved by D¢ and K, and that it is a (D¢, K)-module in the sense
of Definition 3.13.

To complete the requirements of Problem 3.15, we need a unitary structure on V¢,. At this point
the analytic ideas that have brought us so far seem to fail: no general construction of such a unitary
structure is known. A great deal is known about special cases; two entry points to the literature are [Zierau]
and [Rawnsley-Schmid-Wolf]. Briefly, one seeks a unitary inner product defined by integrating certain
distinguished Dolbeault cohomology classes. In its simplest form this program cannot succeed for arbitrary
admissible elliptic orbits. To see why, consider elliptic orbits for the group Sp(2n,R) with G¢ ~ U(n). Such
orbits are parametrized by the non-zero real numbers; the orbit G - & with parameter ¢ is admissible if
and only if 2t + n + 1 is an even integer. (The corresponding character v of U(n) is det®+"T1/2)) The
number s is equal to zero, so H*(G - &,F,) is the space of holomorphic sections of the line bundle on
Sp(2n,R)/U(n) corresponding to the character . The unitary structure proposed in [Rawnsley-Schmid-
Wolf] is just integration of holomorphic sections over the orbit. The convergence of these integrals was
studied in [Harish-Chandra56]. For ¢ > (n — 1)/2 all the K-finite sections are square-integrable; but for
0 < t < (n —1)/2 there are no non-zero square-integrable holomorphic sections. As soon as n is at least
two, therefore, we find cases where the inner product does not arise by integration. (It seems likely that the
integrals will converge in general for “most” admissible elliptic orbits, as they do in this example. No such
convergence has yet been proved, however.)

Despite these difficulties, there is a strong positive result.

Theorem 10.7 ([Vogan84]). Suppose G is a real reductive group of inner type G¢, and that & € g
satisfies 06 = & (so that G - £ is a typical elliptic coadjoint orbit). Assume that G - £ is admissible, with
(v, Fy) an admissible orbit datum (cf. (10.4)). Define a (D¢, K) module V¢, as in (10.6). Then V¢ carries
a natural unitary structure (Definition 3.18). In particular, it is the Harish-Chandra module of a unitary
representation w(€,7) of G.

This result provides unitary representations attached to elliptic coadjoint orbits. The representation
Ve, turns out to be irreducible as a (D¢, K)-module but not necessarily as a (g, K)-module; so the unitary
representation 7(£,7) of G may be reducible.

We will now outline part of the proof of this theorem. The main point is to give (following Zuckerman) an
algebraic construction analogous to the geometric one in (10.6). Roughly speaking, we replace holomorphic
functions by formal power series. In the algebraic setting an invariant Hermitian form can be constructed
without much difficulty, and (with a little more difficulty) the positivity of the form can be proved. This
is all that is required to attach a unitary representation to the orbit G - £ (by Theorem 3.14). To complete
the proof of Theorem 10.7 as stated, one must also identify the algebraic construction with the geometric
one. Roughly speaking, this amounts to proving the convergence of some formal power series solutions of
differential equations. The necessary ideas go back to Schmid’s 1967 thesis [Schmid67]; the result was proved
completely in [Wong].

49



We begin with the finite-dimensional module F’, for G¢. By Corollary 5.17, G¢ is a real reductive group,
with Cartan involution the restriction of § and maximal compact subgroup K = G¢ N K. In particular, K
acts on F,. At the same time, Proposition 10.1(e) provides a representation of the complex Lie algebra p,
on F,. The same result ensures that the representations of p; and K, enjoy a compatiblity analogous to
that required for (g, K) modules in Definition 2.19; we call F, a (p¢, K¢)-module accordingly. Recall now
that the differential of v is i€ + & (cf. (10.4)). In analogy with the definition of M, in (9.5), we therefore set

Wy = Homy ) (U(g), Fy)- (10.8)(a)

The Lie algebra g acts on W., by right multiplication on U(g). The group K¢ acts by combining the adjoint
action on U(g) with the action on F,:

(h-w)(u) = h- (w(Ad(h™")u)) (he Ke,w e W,,u € U(g)). (10.8)(b)
This action need not be locally finite, so we define
Wi = {w € W, | dim(span(K - w)) < oo}. (10.8)(c)

Up to this point there is no need to restrict to the compact subgroup K¢; we could just as well have kept
track of an action of G¢. (The K¢-finite vectors turn out automatically to be G¢ finite.) But it is the K¢
action we will soon need.

Lemma 10.9. The space W, may be identified with the space of formal power series for sections of
the vector bundle F., at the base point £ € G - £. The actions of g and K¢ satisfy compatibility conditions
analogous to those in Definition 2.19, making WVK€ a (9, K¢)-module. If G is of inner type G¢, then the
Dizmier algebra D¢ acts naturally on W.,, extending the action of U(g) and preserving the subspace W:,Ks;
in this way W.f(f becomes a (D¢, K¢) module (Definition 3.13).

This elementary result is a holomorphic version of Lemma 9.3. In the setting of Problem 3.15, one can
take Wi ¢ as one of the D¢ modules W;(G - €).
The next step is to construct from Wﬁf( ¢ a (D¢, K)-module. We will use a functor I' = I‘ﬁ:ﬁf introduced

by Zuckerman for passing to the subspace FWJ{ ¢ of K-finite vectors in an{ ¢. One way to understand this
approach is in terms of Theorem 10.5. The “(s + 1)-completeness” property says roughly that G - £ looks
like a Stein manifold away from the compact subvariety K - £. Holomorphic bundles on Stein manifolds
have many global sections. This means that (morally) the obstruction to globalizing a formal power series
section of F,, is mostly in the direction of K - £. Now it is not difficult to see that a K-finite formal power
series section of F, must represent a holomorphic section over K - £. In light of the (s + 1)-completeness,
this suggests that elements of I‘Wf ¢ should represent global holomorphic sections of F,. That is, we might
expect

TWie ~ HOG - ¢, F,)K.

This turns out to be true, and not too difficult to prove. The problem, as we already observed after (10.4),
is that both sides are usually zero; we need analogues not of holomorphic sections but of higher cohomology.

Zuckerman’s great observation was that the functor T is only left exact, and that it has right derived
functors I'. Although it is harder to justify precisely, one might still hope formally that

WL ~ HY(G - ¢, F)¥.

This statement was proved in [Wong].
Here is the definition of I'. (Compare Definition 9.9, which is similar but simpler.)

Definition 10.10 ([Vogan81], Definition 6.2.4). Suppose K is a compact Lie group with complexified
Lie algebra €, and H is a closed subgroup of K. Suppose W is a (¢ H)-module (defined as in Definition
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2.19). We want to define a (¢, K')-module I‘Eﬁ’ggw = TW. To begin, let K, be the universal cover of the
identity component of K, so that we have

157> Ky— Ko— 1.
Here Z is a discrete central subgroup of Ky. Define
TW = {we W|dimU#)w < co}.
As in Definition 9.9, I'W carries a locally finite representation of Ko; and we can define
ToW={welW|z-w=w,all z€ Z}.

This is a subspace of W carrying a locally finite representation 7y of Ky; it is also preserved by the repre-
sentation 7 of H on W. We may therefore define

Ty W = {w € ToW | mo(h)w = r(h)w, all h € H N Ko}

This subspace is invariant under the representations my and 7. Now define K; to be the subgroup of K
generated by Ko and H. There is a unique representation m; of K; on I'yW that extends both 7y and 7.
Finally, set

TW = Indg, T\ W,

a locally finite representation of K.

The reader may try to understand geometrically each of the steps in the construction of I'W when (for
example) W is the space of H-finite formal power series sections of a bundle £ on K/H. In this case 'W may
be identified with the space of K-finite global sections of £. One interesting step is the last one, of induction
from K7 to K. The point there is that the index m of K in K is just the number of connected components of
the homogeneous space K/H. Ordinarily one could not hope to understand sections on different connected
components using Taylor series; but the group action allows us to do just that. The space I't W may be
identified with K;-finite sections of £ over the identity component K;/H ~ Ky/(Ko N H). Induction more
or less replaces this space by a sum of m copies of it; each copy corresponds to sections supported on one of
the components of K/H.

Proposition 10.11 (Zuckerman; see [Vogan81], Chapter 6). The functor I of Definition 10.10 is a
left exact functor from the category of (¢, H)-modules to the category of (¢, K)-modules. It has right derived
functors T¢, which are non-zero exactly for 0 < i < dimg(K/H).

Suppose now that K is the mazimal compact subgroup of a reductive group G. If W is a (g, H)-module
(defined in analogy with Definition 2.19), then T*W becomes naturally a (g, K)-module. Similarly, if A is a
Dizmier algebra and W is an (A, H)-module, then T*W is naturally an (A, K)-module.

The last assertion (about Dixmier algebras) is not part of Zuckerman’s original ideas; it is more or less
a folk theorem from the early 1980’s. It may be proved using the method of [Wallach], section 6.3.

Theorem 10.12 (see [Vogan84]). In the setting of (10.8), write T = Fi:ge for the functor of Definition
10.10. Write s = dim¢(K - §) = (1/2) dimgp(K/K¢).
a) I"'Wﬁf{‘E =0 fori#s.
b) FSW,f{E carries a natural non-degenerate (g, K)-invariant Hermitian form.
¢) The form in (b) is positive definite.
d) Suppose G is of inner type Gc. Then there is a natural Hermitian transpose on D¢ making FSW,f{E into
a unitary (D¢, K)-module.
e) FSW,{{E is irreducible as a (D¢, K)-module.
In lieu of a proof, here are some historical remarks. The vanishing theorem in (a) is due to Zuckerman
for most ; a proof may be found in [Vogan81]. The proof for all v as in (10.4) appears first in [Vogan84].
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The form in (b) was constructed by Zuckerman, but his proof of its invariance under g was incomplete.
Repairs were provided in [Enright-Wallach].

Part (c) is (a special case of) the main result of [Vogan84]. The proof there is a reduction to the
special case when G¢ is a compact Cartan subgroup of G. In that case Schmid in [Schmid75] had essentially
identified FSWf ¢ with one of the discrete series representations constructed by Harish-Chandra (using deep
analytic techniques). Harish-Chandra’s discrete series representations are irreducible and unitary; so any
non-zero invariant Hermitian form on them must be definite. A purely algebraic proof of (¢) was later found
by Wallach (see [Wallach]).

Part (d) is more or less a folk theorem; it can be proved in the same way as (b). The irreducibility of
FSWf ¢ even as a (g, K) module was proved by Zuckerman for most v (see [Vogan81]). The general result
in (e) is perhaps an unpublished result of Bernstein; it follows from the generic case using the translation
technique in [Vogan90], Corollary 7.14.

Theorem 10.7 follows from Theorem 10.12 and the result of Wong stated before Definition 10.10.
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