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Plan of talk

Lie groups, repn theory are continuous, analytic.
But lists of Lie groups, repns can be discrete.
Allows for exact computer calculations.
Idea: conjugation by G reduces probs about G 
probs about max torus, Weyl group.
Example (Cartan-Weyl): fin-diml reps! dom wts.
Agenda:

1. Root datum classif of complex reductive groups
2. Extended groups (combinatorial) classif of real forms
3. Extended dual groups = L-groups, classif of repns
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Classifying compact groups: take one

Compact conn Lie gps! Dynkin diagrams
Dynkin diags for classical compact groups U. . .

type diagram U

An
s s. . . s s

SU(n + 1), quotients

Bn
s s s. . . s s> SO(2n + 1), Spin(2n + 1)

Cn
s s s. . . s s< Sp(n) = U(n,H), PSp(n)

Dn
s s s. . . s ss��

QQ SO(2n), Spin(2n), etc.

Missing from pictures: covering groups. . .
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Classifying compact groups: take two

Grothendieck replaced Dynkin diag by root datum.
U compact T maximal torus 
X ∗(T ) = lattice of characters

⊃ R(U,T ) roots of T in U (finite subset),
X∗(T ) = lattice of cocharacters

⊃ R∨(U,T ) coroots of T in U (finite subset).

Structure: lattices X ∗, X∗ dual by 〈, 〉 : X ∗ × X∗ → Z;
Bijection α 7→ α∨ from R to R∨;

root refl sα : X ∗ → X ∗, sα(λ) = λ− 〈λ, α∨〉α

carrying R to R, R∨ to R∨.
Weyl group W = W (U,T ) generated by various sα.
Structure is integer matrices; COMPUTERIZABLE!
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Main theorems about root data

Definition. Root datum is (X ∗,R,X∗,R∨) subj to
1. X ∗ and X∗ are dual lattices, by pairing 〈, 〉.
2. R ⊂ X ∗, R∨ ⊂ X∗ finite, in bijection by α↔ α∨.
3. 〈α, α∨〉 = 2, all α ∈ R.
4. Aut of X ∗ sα(λ) =def λ− 〈λ, α∨〉α permutes R.
5. Transpose sα∨ of X∗ permutes R∨.
6. Root datum is reduced if α ∈ R =⇒ 2α /∈ R.

Weyl group is W = 〈sα | α ∈ R〉 ⊂ Aut(X ∗).
Theorem.

1. Every reduced root datum arises from a compact
connected Lie group.

2. Every isomorphism of root data
(X ∗(T ),R(U,T ),X∗(T ),R∨(U,T ))

→ (X ∗(T ′),R(U ′,T ′),X∗(T ′),R∨(U ′,T ′))

arises from isomorphism (U,T )→ (U ′,T ′) of
compact connected Lie groups.

Open problem: describe group maps with root data.
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Examples of root data
Case U ⊃ T  U(n) ⊃ U(1)n

X∗ = Hom(U(1)n,U(1)) ' Zn, X∗ = Hom(U(1),U(1)n) ' Zn

R = {ep − eq | p 6= q}, R∨ = {ep − eq | p 6= q}

sep−eq (λ1, . . . , λn) = (λ1, . . . , λn)− (λp − λq)(ep − eq)

= (λ1, . . . , λq , . . . , λp, . . . , λn)

= transposition of p and q coords.
W = Sn symmetric group of order n!

Case U = SU(n) determinant 1 subgroup

X ∗ = Zn/Z(1, . . . ,1), X∗ = {ξ ∈ Zn |
∑
ξp = 0}.

Case U = G2 14-diml group ⊃ SU(3)

X ∗ = Z3/Z(1,1,1), X∗ = {ξ ∈ Zn | ξ1 + ξ2 + ξ3 = 0}.

R = {ep − eq} ∪ {±er}, R∨ = {ep − eq} ∪ {2er − ep − eq}

se1 (λ1, λ2, λ3) = (−λ1 +λ2 +λ3, λ2, λ3) ≡ (−λ1,−λ3,−λ2).

W = 〈S3,−Id〉 dihedral group of order 12
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Complexifying U
Root data so good as description of compact groups 
seek more questions with the same answer. . .

Cplx alg group is a subgp of GL(E) def by poly eqns.

Cpt Lie gp U  faithful rep on complex E  embed
U ↪→ GL(E).

G(C) =1st def Zariski closure of U in GL(E)

. C(U)U = alg of U-finite functions on U

= matrix coeffs of fin-diml reps

'
X

(τ,Vτ )∈bU
End(Vτ ) (Peter-Weyl),

finitely-generated commutative algebra /C.

G(C) =2nd def Spec(C(U)U).

Theorem. Construction gives all cplx reductive alg gps.

Corollary. Root data↔ cplx conn reductive alg gps.
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Realifying G(C)

Real alg gp is cplx alg gp G(C) with Gal(C/R) action.

Require (σ · f )(g) =def σ[f (σ−1g)] (σ ∈ Gal(C/R)) is real
algebra aut of reg fns on G(C); G(R) = gp of fixed pts.

General (separable) k/k : study rational forms using Galois
cohomology, often starting from split form.

C/R: study Galois action as single automorphism σ (complex
conjugation), often relate to compact form.

Theorem (Cartan). G(C) cplx conn reductive alg.
1. Given real form form σ of G(C), there is compact real

form σ0 s.t. σσ0 = σ0σ. Therefore θ = σσ0 is alg inv
aut of G(C), Cartan involution for G(R, σ).

2. Write K (C) = G(C)θ, reductive alg subgp. Real form
K =def K (R, σ) = K (R, σ0) = G(R, σ)θ

is maximal compact subgroup of G(R).
3. Given alg inv aut θ of G(C), there is compact real

form σ0 of G(C), s.t. θσ0 = σ0θ. So σ =def θσ0 is real
form, Cartan real form for G(C) and θ.
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Cartan picture of real reductive groups
Real forms σ / (G(C) conj)! inv auts θ / (G(C) conj).

G(C)
s

mmmmmmmmm
mr

r
QQQQQQQQQ

K (C) = G(C)θ U = G(C)σθ G(R) = G(C)σ

K = G(C)σ,θ
mr

PPPPPPPP s
ms

mmmmmmmm

Subgp is max cpt (m) or real form (r) or fixed by inv aut (s).

Example SO(n,C)

jjjjjjjj
NNN

NNN

S(O(p,C)×O(q,C)) SO(n) SO(p, q)

S(O(p)×O(q))

TTTTTTTT
pppppp

Classify real forms by involutive automorphisms.

Harish-Chandra: (irreps of G(R))! (g,K (C))-mods

Involutive automorphism enough for rep theory!
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Root datum automorphisms: inner vs outer

(X ∗,R,X∗,R∨) root datum; basing is choice of basis
(simple roots) Π ⊂ R, Π∨ ⊂ R∨. Write
S = {sα | α ∈ Π} simple reflections.
(X ∗,Π,X∗,Π∨) called based root datum.
(based root datum) Dynkin diagram: nodes! Π,
edges! 〈α, β∨〉 6= 0 (α, β ∈ Π).
Theorem.

1. Simple refls S are Coxeter gens for Weyl group W .
2. W is a normal subgroup of Aut(X ∗,R,X∗,R∨)
3. W acts in simply transitive way on bases.
4. Short exact sequence

1→W → Aut(X ∗,R,X∗,R∨)→ Out(X ∗,R,X∗,R∨)→ 1

(defining Out) is split by subgroup Aut(X ∗,Π,X∗,Π∨)

Conclude: outer automorphisms of root datum
correspond to Dynkin diagram automorphisms.
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Group automorphisms: inner vs outer
G ⊃ T cplx reduc ⊃ max tor (X∗(T ),R(G,T ),X∗(T ),R∨(G,T ))

root datum; basing is choice of Borel subgroup B ⊃ T .

Pinning is choice of root SL(2)s φα : SL(2)→ G for each
α ∈ Π; pinning determines T ⊂ B.

Theorem. Suppose that (G, {φα}) and (G′, {φ′α′}) are pinnings
for reductive groups. Any isom Φ of the based root data lifts to
unique isom Φ: (G, {φα})→ (G′, {φ′α′}) of pinned alg gps.

Corollary. G cplx conn reductive alg.
1. Group Int(G) ' G/Z (G) of inner automorphisms

acts simply transitively on pinnings.
2. Short exact sequence

1→ Int(G)→ Aut(G)→ Out(G)→ 1
is split by subgroup Aut(G, {φα}).

3. Out(G) ' Aut(G, {φα})︸ ︷︷ ︸
distinguished

∼−→ Aut(X ∗,Π,X∗,Π∨).

Aut(G) ' Int(G) o Aut(G, {φα}).
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Classifying real forms: extended groups
G ⊃ B ⊃ T cplx conn red alg, Borel, max torus 
(X ∗,Π,X∗,Π∨) based root datum; {φα | α ∈ Π} pinning.

Recall Cartan: real forms σ! involutive auts θ.

Inv aut θ  δ = δ(θ) ∈ Out(G) ' Aut(X ∗,Π,X∗,Π∨).

Fix involution δ ∈ Aut(X ∗,Π,X∗,Π∨) ' Aut(G, {φα}).

 extended group GΓ =def G o {1, δ} = 〈G, δ〉.

Defining relations:
δgδ−1= δ(g) (action of automorphism δ),

δ2= 1 (or replace by any z ∈ Z (G)δ)

Definition. Strong inv is ξ ∈ GΓ\G s.t. ξ2 ∈ Z (G).

Proposition. NG(T ) orbits on strong invs in T δ
∼−→G orbits on strong invs
�G orbits of inv auts θ s.t. δ(θ) = δ

FIRST LINE computerizable, LAST LINE interesting.
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Secrets of KGB
G ⊃ B ⊃ T ; GΓ = 〈G, δ〉 ext grp; θ inv aut, K = Gθ; G(R).

Beilinson-Bernstein (approx): irrs of G(R)! K\G/B.

Classical: fix K , study orbits on G/B = Borel subgps.

Adams-du Cloux: fix B, study orbits on K\G = strong invs.
Proposition. Given K , any Borel B′ contains θ-fixed T ′,
unique up to B′ ∩ K conjugation.
Proposition. Given B ⊃ T , any strong inv has B-conj ξ′

preserving T , unique up to T conj.
Theorem (Adams-du Cloux) There are bijections

T orbits on strong invs in NG(T )δ
∼−→B orbits on strong invs
∼−→

∐
K

K orbits on G/B

FIRST LINE computerizable, LAST LINE interesting.

Cor NG(T ) orbits on strong invs in NG(T )δ! max tori in G(R)
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Dual everything: L-groups

Recall axioms for root datum (X ∗,R,X∗,R∨):
1. X ∗ and X∗ dual lattices, by pairing 〈, 〉.
2. R ⊂ X ∗, R∨ ⊂ X∗ finite, in bijection by α↔ α∨.
3. 〈α, α∨〉 = 2, all α ∈ R.
4. Aut of X ∗ sα(λ) =def λ− 〈λ, α∨〉α permutes R.
5. Transpose sα∨ of X∗ permutes R∨.

Weyl group is W = 〈sα | α ∈ R〉 ⊂ Aut(X ∗)
Dual root datum is (X∗,R∨,X ∗,R); same Weyl gp.
Similarly Out(X ∗,R,X∗,R∨) ' Out(X∗,R∨,X ∗,R).
Recall (based root datum)! (cplx reductive G).
Langlands dual group ∨G: ! (X∗,Π∨,X ∗,Π).
repns of G! structure of ∨G.
Torus: characters of T ! one param subgps of ∨T .

δ ∈ Out(G) ' Out(∨G) 3 ∨δ  ∨GΓ =def
LG L-group of G(R).
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Details about representations: L-groups

G cplx reductive, inner class of real forms!
δ ∈ Out(G)! GΓ = 〈G, δ〉 extended group.
K\G/B ! {ξ ∈ NG(T )δ | ξ2 ∈ Z (G)} /T .
ξ  twisted inv wδ ∈ 〈W , δ〉. (Order 2 elt of W δ)
Reps of G(R) related to Langlands params
φ : WR → LG modulo ∨G conj.
Proposition. Langlands params!
{(η, λ) ∈ N∨G(∨T )∨δ × ∨t+ | η2 = exp(2πiλ)} /∨T .
η  twisted inv ∨w∨δ ∈ 〈W , ∨δ〉.
Definition. ξ and (η, λ) match if twisted invs are
negative transpose.
Theorem. Matching pairs (ξ, (η, λ)) / (T × ∨T )!
(irr reps of real forms in inner class).
FIRST LINE computerizable, LAST LINE interesting.
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