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Old reasons for listening to Langlands R
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Introduction

This is introduction number one.
GL,, is everybody’s favorite reductive group/local F.

——

Want to understand GL,(F) = set of irr repns (hard).
Classical approach (Harish-Chandra et alia 1950s):
1. find big compact subgp K ¢ GL,(F);

2. understand K (supposed to be easy?)

3. understand reps of GL,(F) restricted to K.
Langlands (1960s) studies GL/n(\F) (global reasons).
Global theory suggests: GL/,,(\F) <> n-diml reps of Gal(F/F).
Harris and Taylor prove Langlands conjecture:

GL(F) <% n-diml reps of W’ (F).
Here Weil-Deligne group W’(F) is an improvement of Gal(F/F).

Langlands conjecture for other G largely still open.



Representations of finite Chevalley groups R
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Introduction

This is introduction number two.
Suppose G is a reductive group defined over F,.
Deligne-Lusztig and Lusztig described irr reps of G(Fg).
Can their results be formulated in spirit of Langlands?
Deligne-Lusztig use ratl max torus T c G, character

6: T(Fq) - C*.
Lusztig: (T, 6) ~ semisimple conj class x € ¥ G(Fy).

This is a step in the right direction, but not quite a
Langlands classification.

_—

Question today: what’s Langlands say about G(Fq)?
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Local p-adic Weil group
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Weil groups

Fix p-adic F>DO> P, O/P ~k =F,.

Define Galois groups ' = Gal F/F, Ty = Gal(k/k).

Naturality of integral structures ~»
1—>I,:—>F,.——>Fk—>‘|.

Extensions of k = Fq are Fgm, so [y = limZ/mZ.
m

Generator is arithm Frobenius Frob: k — k, Frob(x) = x9.
Weil group of F is preimage of Z = (Frob), so

1— I —> WFr — (Frob) — 1.
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Weil group of F, (MacDonald)
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k = F finite field; M« = Gal(k/k) = limZ/mZ.

m Weil groups
Definition (MacDonald) Weil grp Wy = Ii(_mIF"CX’m
Fym = Z/(q™ - 1)Z but not canonically. m
Inverse limit is taken using norm maps Npmgm: ]F:md — ]F:m
Hom(F,,H) = (h € H| h®"~' =1} but not canonically.
Homgont(Wk, H) =~ {h € Hfin ord prime to q}  but not canonically.
Ik acts on W, Frob-w = w9.

Definition (MacDonald) Continuous ¢: Wy — H is
Frob-equivariant if 3f so that [Ad(f)¢](w) = ¢(Frob -w)

Equivalently: ¢ «~ h € H finite order, h conjugate to h9.
Example: g =2, H = SL(2,C), w = exp(27i/3),

w 0 0o 1
=3 =5 )
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Relating p-adic F and finite k
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Recall p-adic F> O > P, O/P ~k =F,.
Galois groups 'r = Gal F/F, Tk = Gal(k/k).
p-adic Weil 1 — Ig - Wr — (Frob) — 1.

Prg = wild ramif = (normal) p-Sylow subgp C I;

Weil groups

IF/ PE ~ W (as k-modules.)
Conclusion:
[trivon Pr ¢F: WE — H] =~ [Frob-eqvt ¢x: Wi — H].

Desideratum: Tamely ramified Langlands parameter for
nice G/F ~» Langlands parameter for G/k.

G(k) = quotient of a maximal compact G(O) c G(F); G(k) rep
7(¢x) meant to be lowest G(O)-type of n(¢r).
To make this precise, need Langlands classification.



What'’s a root datum?

G connected reductive aIg/R alg. closed.
T c G maximal torus ~» root datum of T in G

R(G, T) = (X*,R, X.,R"), X" = X*(T) = Hom(T,K")

DR=R(G,T) rootsof TinG
X. = X.(T) = Hom(K*, T)
> RY=RY(G,T) corootsof TinG.
R and RY in bijection, @ «~ @". Lattices X*, X* dual. Pair (a,a@") ~
Set X' = X, 8,(A) = A—(aVa, s, ="s": X, — X.

PROPERTIES: for all @ € R

1. RD1: (a,a@") =2 (sos?=1d)

2. RD2:s,R =R, syRY =R, (suff)" = s.+(B")

3. RDreduced: 2a ¢ R, 2o ¢ R".
Weyl group of root datum is |

Aut(X*) D (s, @ € Ry =g W =" (s,v |@ € R) C Aut(X.).
Root datum axioms symmetric in (X*, R) and (X., RY).

G determined by root datum and alg closed field K.

Langlands over Fq

David Vogan

Root data
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Based root data. ..

... means fixing positive roots.

TcG~ (X" R, X,RY)=R(G,T).

Borel T c B c G « simple positive [1 c R, 11" c R". Root data
~» based root datum B(G, B, T) = (X*, 1, X, ).

B is combinatorial object (two dual lattices, two finite subsets
in bijection) which (with K) determines G.

David Vogan

Definition Automorphism of based root datum
B = (X5, X, M) is o € Aut(X*) such that
c(M=N, ' '(N)=n" o)’ ="'c"a")
Nota bene: Aut(R) = Aut(8B) = W. Study factors separately.
Define 8 = (X.,M, X", M); then Aut(8) "= Aut(8Y).
If K perfect field, I = Gal(K/K), then
K-rational form of G

~»  quasisplit K-form of G
«» actionof on [B(G, B, T) = (X*,N, X., N)].
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Shape of local Langlands conjecture
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G reductive /F loc ~» B(G, B, T) based root datum.

Gal(F/F) = e 25 Auy(8).

Fix field K = K to study reps/K of G(F). (Often C.) See S

Form dual group YG/K < dual root datum B".
L-group of G(F) is ' G = T'g = VG(K).
We = Weil group of F equipped with Wg — T£.
Definition Langlands parameter is ¢: Wr — -G so
we 5 tg
NS
e

commutes, other nice properties.
Equivalence of parameters is conjugation by ¥ G(K).

Conjecture Irreps of G(F) partitioned to finite ().



Langlands parameters for k = I, oy
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k = Fy finite field; Mk = Gal(k/k).

Generator is arith Frobenius Frob = gth power map on k.

k-ratl form of conn reductive alg G = action of I' on based root

. Finite Chevalley
datum 8 = fin order aut of 8.
LG =4t VG =T; VG over C, or @[, or...: field for reps.
Weil grp W, = Li_mFZ;m; W, — T trivial.

m
Langlands param = (qb: Wi — VG)/VG conj.
N——————
respect Frob

#(Wx) € VG (not - G) since Wy — 1 € Ty.
Respect Frob = 3 f € Frob(YG) c 1 G, Ad(f)¢(y) = ¢(Frob -y).
KEEP COSET f(VGg’) as part of parameter ¢.

Equiv of params (¢, f(*GJ)), (¢, F'(*GY )) is ¥ G-conjugacy.
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Representations of finite Chevalley groups

G> B> Tconnredalg /k = Fg, Frob: G — G.
Get ', action on W permuting gens ~> "W = W > I,

David Vogan

w = w Frob (another) Frobenius morphism T — T.

Deligne-Lusztig found all irr chars of G(Fg) inside virtual
chars R] (T ratl maxl torus, & char of T’(Fg)).
Proposition. For any rational (= Frob-stable) max torus

T’ c G, 3! W-conj class of w so (T’, Frob) = (T, w).
Proposition (Macdonald)

TW = {¢: Wy > VT | (wFrob) - ¢(y) = ¢(Frob-y)}.
Conclusion: L-params ¢’ for G = DL-pairs (T’,¢’).

R} and R} overlap < ¢’, ¢” ¥ G-conjugate.
Deligne-Lusztig def: (T’,¢") and (T”,8") are geom conj.

————

G(Fq) partitioned by Langlands parameters.
L-packet M(¢) = allirsin all R «v ¢

Finite Chevalley

Using Deligne-Langlands params to partition L-pkts harder. ..



Deligne-LangIandS Conjecture Langlands over Fq
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G reductive /K ~» LG.

Langlands conj: reps of G(K) « params ¢: Wx — LG from
(abelian) class field theory: bijectively true for G = torus.

Deligne understood that difference between torus and
reductive is unipotent: can sharpen Langlands conjecture by

Local Deligne-L
Definition (K nonarchimedean or finite) Weil-Deligne group of
Kis W, = Wk = G,.

Frob acts on G, by gth power map mult by q.

Definition Deligne-Langlands parameter p = (¢,. N,) has
dp: Wi — LG Langlands param, N, € ¥g nilpotent, with
1. Case K = F local: require Ad(¢,(Frob))(N,) = gN,.
2. Case K = k = Fq: require KEPT COSET f(VG‘g") to
have rep fp, satisfying Ad(fo. N,) = gN,.

For K = k = Fq, KEEP COSET fp, (Y G}) as part of p.
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Lusztig’s big orange book
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F finite ~» S(F) =qet {(f,0)If € F,0 € B}/(Conj by F).

S((Z/27)") = (Z/2Z)" x (ZJ2Z)"  2n-diml sympl /F,.
S(S3) ={(1,€), (1,fl), (1.5gn). (s2, C). (52, 59n), (83, C), (83, ). (3. %) .
G > B> T conn red alg /Fq, L G L-group.
Def p = (¢, N) special if N € Vg? is special nilp. Local Deligne-L
Recall that p remembers coset f(VGg’N).

Theorem (Lusztig). Irreducible reps of G(F,) are
partitioned into packets IM(p) by special DL parameters
p- The packet IN(p) is indexed by S(F) using Lusztig
quotient F of YG?/V GS.

To make this look like other Langlands classifications, prefer
to drop, requirement N special, replace, Lusztig quotient by
VG /(Z(YG)") (Y Gp)), replace; S(F) by subset F.

Prefs 1 and 2 ~» more params, Pref 3 ~» fewer params.



Rewriting Lusztig’s book & la Langlands R
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Definition Deligne-Langlands param for G(Fg) is
p = (¢.N.1),
1. ¢: Wx — VG semisimple, N € Vg nilpotent,
2. f=1("Gy"), feG — Frob
3. Ad(f)(p(w)) = p(w?), Ad(f)(N) = aN.

Local Deligne-L

Complete geometric Deligne-Langlands param has also
4. £ VGNP GEN, Elzpayr = 1.
Conjecture Irreducible reps of G(Fq) partitioned into packets

M(p) by all Deligne-Langlands parameters p. Packet M(p)
indexed by irr reps £ of YG? /Y G Z(¥ G)"*.



Let us pause for a moment Langlen over Fg
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Talk was meant to make me think through next few slides.
This plan was an abject failure.
So perhaps some of you will think through them?

Local Deligne-L

Q@ Hopefully yours,@
David



Lifting finite to p-adic

G connected reductive algebraic /k = Fg.

Fix p-adic FDO> P, O/P ~Kk.

Fix p-adic G «» based root datum of G/k, I'r acts via k.
G/F can be any unramified quasisplit group/F.

G/k and G/F have same complex dual group ¥ G.
LGE=VGxTE G ="GxT="'Ge/lr:

note Ir normal since it acts trivially on based root datum.
Set Pr = wild ramif grp C Ig; recall Ie/Pg ~ W.

tamely ram. pf for F: ( ¢: Ig/PF > VG, NeVg’, f )
param pj for k: ( ¢: Ie/Pr— "G, Ne'g’, f('GiN) )

Here f - Frob, f¢(i)f~' =9, Ad(f)(N) = gN, (i € I/P).
Deduce tamely ramif params for G/F - params for G/k

Langlands over Fq

David Vogan

Lift to p-adic



Lowest K-types Langlands over Fq

G/F p-adic unramified quasisplit /F <~ G/k finite. e
G(F) has maximal compact G(O) - G(k).
tamely ram. pf for F: ( é: Is/Pr— "G, Ne'g, £ )
parampy fork:  ( ¢:le/Pr > 'G, Nee’, f('GN) )
Definition component group for Deligne-Langlands p is
Lift to p-adic

Alp) ="G"/12(YG) VG
p-adic packet M(pfg) conjecturally indexed by A/(p;), ne(€) em &
k packet M(px) conjecturally indexed by A(py), 7 (1) e .
Suggests: tamely ramified G(F) rep ng(£) has
G(O)-type factoring to G(k) rep nx(7). Which 772
Cent means stab of f(VGg’N) > cent of f: A(pr) — Al(pk)-
If £ doesn'’t factor to image, no 7.
If £ factors to € on image, then all 7 in Ind“*) (&).

image
Homework: extend to all params, all max cpts, all G.
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