Local Langlands conjecture for finite groups of Lie type

David Vogan

Department of Mathematics Massachusetts Institute of Technology

> JMM 2020 January 17, 2020

Langlands over \mathbb{F}_q David Vogan

Weil groups

loot data

Finite Chevalley

Outline

What Langlands can do for you

What's a Weil group?

Root data and reductive groups

Shape of the Langlands classification

Representations of finite Chevalley groups

Deligne-Langlands conjecture

Relation to p-adic local Langlands

Langlands over \mathbb{F}_q David Vogan

Introduction

Weil groups

ot data

cal Langlands

nite Chevalley

Lift to p-adic

This is introduction number one.

 GL_n is everybody's favorite reductive group/local F.

Want to understand $\widehat{GL_n(F)}$ = set of irr repns (hard). Classical approach (Harish-Chandra *et alia* 1950s):

- 1. find big compact subgp $K \subset GL_n(F)$;
- 2. understand \widehat{K} (supposed to be easy?)
- 3. understand reps of $GL_n(F)$ restricted to K.

Langlands (1960s) studies $\widehat{GL_n(F)}$ (global reasons).

Global theory suggests: $\widehat{GL_n(F)} \overset{\tilde{\sim}}{\longleftrightarrow} n$ -diml reps of $Gal(\overline{F}/F)$.

Harris and Taylor prove Langlands conjecture:

$$\widehat{GL_n(F)} \overset{\text{bij}}{\longleftrightarrow} n\text{-diml reps of } W'(F).$$

Here Weil-Deligne group W'(F) is an improvement of $Gal(\overline{F}/F)$.

Langlands conjecture for other G largely still open.

This is introduction number two.

Suppose G is a reductive group defined over \mathbb{F}_a .

Deligne-Lusztig and Lusztig described irr reps of $G(\mathbb{F}_q)$.

Can their results be formulated in spirit of Langlands?

Deligne-Lusztig use ratl max torus $T \subset G$, character

$$\theta\colon T(\mathbb{F}_q)\to\mathbb{C}^{\times}.$$

Lusztig: $(T, \theta) \rightsquigarrow$ semisimple conj class $x \in {}^{\vee}G(\mathbb{F}_q)$.

This is a step in the right direction, but not quite a Langlands classification.

Question today: what's Langlands say about $\widehat{G}(\mathbb{F}_a)$?

Local p-adic Weil group

Fix p-adic $F \supset O \supset \mathcal{P}$, $O/\mathcal{P} \simeq k = \mathbb{F}_q$. Define Galois groups $\Gamma_F = \operatorname{Gal}(\overline{F}/F, \Gamma_k = \operatorname{Gal}(\overline{k}/k))$. Naturality of integral structures ----

$$1 \rightarrow I_F \rightarrow \Gamma_F \rightarrow \Gamma_k \rightarrow 1$$
.

Extensions of $k = \mathbb{F}_q$ are \mathbb{F}_{q^m} , so $\Gamma_k = \varprojlim \mathbb{Z}/m\mathbb{Z}$.

Generator is arithm Frobenius Frob: $\overline{k} \to k$, Frob $(x) = x^q$.

Weil group of F is preimage of $\mathbb{Z} = \langle Frob \rangle$, so

$$1 \to I_F \to W_F \to \langle Frob \rangle \to 1.$$

Langlands over \mathbb{F}_{α} David Vogan

Weil groups

Weil group of \mathbb{F}_q (MacDonald)

$$k=\mathbb{F}_q \text{ finite field; } \Gamma_k=\text{Gal}\big(\overline{k}/k\big)=\varprojlim_m \mathbb{Z}/m\mathbb{Z}.$$

Definition (MacDonald) Weil grp
$$W_k = \varprojlim_m \mathbb{F}_{q^m}^{\times}$$
.

$$\mathbb{F}_{q^m}^{\times} \simeq \mathbb{Z}/(q^m-1)\mathbb{Z}$$
 but not canonically.

Inverse limit is taken using norm maps $N_{md,m} \colon \mathbb{F}_{q^{md}}^{\times} \to \mathbb{F}_{q^m}^{\times}$.

$$\operatorname{Hom}(\mathbb{F}_{q^m}^{\times}, H) \simeq \{h \in H \mid h^{q^m-1} = 1\}$$
 but not canonically.

 $\operatorname{Hom}_{\operatorname{cont}}(W_k, H) \simeq \{h \in H \text{ fin ord prime to } q\}$ but not canonically.

 Γ_k acts on W_k , $\text{Frob} \cdot w = w^q$.

Definition (MacDonald) Continuous $\phi: W_k \to H$ is

Frob-equivariant if $\exists f$ so that $[\mathrm{Ad}(f)\phi](w) = \phi(\mathrm{Frob} \cdot w)$

Equivalently: $\phi \leftrightarrow h \in H$ finite order, h conjugate to h^q .

Example:
$$q = 2$$
, $H = SL(2, \mathbb{C})$, $\omega = \exp(2\pi i/3)$,

$$h = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \qquad f = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Langlands over \mathbb{F}_q

David Vogan

mii oddollori

Weil groups

Root data

Local Langlands

I mile Grievaney

Relating p-adic F and finite k

Recall p-adic $F \supset O \supset \mathcal{P}$, $O/\mathcal{P} \simeq k = \mathbb{F}_q$. Galois groups $\Gamma_F = \operatorname{Gal} \overline{F}/F$, $\Gamma_k = \operatorname{Gal}(\overline{k}/k)$. p-adic Weil $1 \to I_F \to W_F \to \langle \operatorname{Frob} \rangle \to 1$. $P_F = \operatorname{wild\ ramif} = (\operatorname{normal})\ p$ -Sylow subgp $\subset I_F$; $I_F/P_F \simeq W_k$ (as Γ_k -modules.)

Conclusion:

[triv on $P_F \phi_F : W_F \to H$] \approx [Frob-eqvt $\phi_k : W_k \to H$].

Desideratum: Tamely ramified Langlands parameter for nice $G/F \rightsquigarrow$ Langlands parameter for G/k.

G(k)= quotient of a maximal compact $G(O)\subset G(F);$ G(k) rep $\pi(\phi_k)$ meant to be lowest G(O)-type of $\pi(\phi_F)$.

To make this precise, need Langlands classification.

Langlands over \mathbb{F}_q David Vogan

Introduction

Weil groups

Root data

Local Langlands

I mile Chevane

Local Deligne-L

Lift to *p*-adic

G connected reductive alg/ \overline{K} alg. closed.

 $T \subset G$ maximal torus \rightsquigarrow root datum of T in G

$$\mathcal{R}(G,T) = (X^*,R,X_*,R^{\vee}), \quad X^* = X^*(T) = \operatorname{Hom}(T,K^{\times})$$

$$\supset R = R(G,T) \quad \text{roots of } T \text{ in } G$$

$$X_* = X_*(T) = \operatorname{Hom}(K^{\times},T)$$

$$\supset R^{\vee} = R^{\vee}(G,T) \quad \text{coroots of } T \text{ in } G.$$

R and R^{\vee} in bijection, $\alpha \leftrightarrow \alpha^{\vee}$. Lattices X^* , X^* dual. Pair $(\alpha, \alpha^{\vee}) \rightsquigarrow s_{\alpha} : X^* \to X^*$, $s_{\alpha}(\lambda) = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$, $s_{\alpha^{\vee}} = {}^t s_{\alpha}^{-1} : X_* \to X_*$.

PROPERTIES: for all $\alpha \in R$

- 1. RD1: $\langle \alpha, \alpha^{\vee} \rangle = 2$ (so $s_{\alpha}^2 = \text{Id}$)
- 2. RD2: $s_{\alpha}R = R$, $s_{\alpha}^{\vee}R^{\vee} = R^{\vee}$, $(s_{\alpha}\beta)^{\vee} = s_{\alpha^{\vee}}(\beta^{\vee})$
- 3. RDreduced: $2\alpha \notin R$, $2\alpha^{\vee} \notin R^{\vee}$.

Weyl group of root datum is

$$\operatorname{Aut}(X^*) \supset \langle s_{\alpha} \mid \alpha \in R \rangle =_{\operatorname{def}} W \stackrel{w \mapsto^{\operatorname{t}} w^{-1}}{\simeq} \langle s_{\alpha^{\vee}} \mid \alpha \in R \rangle \subset \operatorname{Aut}(X_*).$$

Root datum axioms symmetric in (X^*, R) and (X_*, R^{\vee}) .

G determined by root datum and alg closed field \overline{K} .

$$T \subset G \rightsquigarrow (X^*, R, X_*, R^{\vee}) = \mathcal{R}(G, T).$$

Borel $T \subset B \subset G \iff$ simple positive $\Pi \subset R$, $\Pi^{\vee} \subset R^{\vee}$.

$$\leadsto$$
 based root datum $\mathcal{B}(G, B, T) = (X^*, \Pi, X_*, \Pi^{\vee}).$

 \mathcal{B} is combinatorial object (two dual lattices, two finite subsets in bijection) which (with \overline{K}) determines G.

Definition Automorphism of based root datum $\mathcal{B} = (X^*, \Pi, X_*, \Pi^{\vee})$ is $\sigma \in \text{Aut}(X^*)$ such that

$$\sigma(\Pi) = \Pi, \quad {}^t\sigma^{-1}(\Pi^{\vee}) = \Pi^{\vee}, \quad \sigma(\alpha)^{\vee} = {}^t\sigma^{-1}(\alpha^{\vee})$$

Nota bene: $Aut(\mathcal{R}) = Aut(\mathcal{B}) \ltimes W$. Study factors separately.

Define
$$\mathcal{B}^{\vee} = (X_*, \Pi^{\vee}, X^*, \Pi)$$
; then $\operatorname{Aut}(\mathcal{B}) \stackrel{\sigma \mapsto^{t} \sigma^{-1}}{\simeq} \operatorname{Aut}(\mathcal{B}^{\vee})$.

If K perfect field, $\Gamma = Gal(\overline{K}/K)$, then

K-rational form of G

$$\longleftrightarrow$$
 action of Γ on $[\mathcal{B}(G,B,T)=(X^*,\Pi,X_*,\Pi^\vee)].$

... means fixing positive roots.

Shape of local Langlands conjecture

G reductive /F loc $\rightsquigarrow \mathcal{B}(G, B, T)$ based root datum.

$$\operatorname{\mathsf{Gal}}(\overline{F}/F) = \Gamma_F \stackrel{G/F}{\longrightarrow} \operatorname{\mathsf{Aut}}(\mathcal{B}).$$

Fix field $K = \overline{K}$ to study reps/K of G(F). (Often \mathbb{C} .)

Form dual group ${}^{\vee}G/K \longleftrightarrow$ dual root datum \mathcal{B}^{\vee} .

L-group of
$$G(F)$$
 is ${}^LG = \Gamma_F \ltimes {}^\vee G(K)$.

 W_F = Weil group of F equipped with $W_F \to \Gamma_F$.

Definition Langlands parameter is $\phi: W_F \to {}^L G$ so

$$W_F \stackrel{\phi}{\longrightarrow} {}^L G$$
 Γ_F

commutes, other nice properties.

Equivalence of parameters is conjugation by ${}^{\vee}G(K)$.

Conjecture Irreps of G(F) partitioned to finite $\Pi(\phi)$.

Langlands over \mathbb{F}_q David Vogan

Introduction

Neil groups

Root data

Local Langlands

Finite Chevalley
Local Deligne-L

_iff to p-adic

 $k = \mathbb{F}_q$ finite field; $\Gamma_k = \operatorname{Gal}(\overline{k}/k)$.

Generator is arith Frobenius Frob = qth power map on \overline{k} .

k-ratl form of conn reductive alg G= action of Γ on based root datum $\mathcal{B}=$ fin order aut of $\mathcal{B}.$

 ${}^LG =_{\mathsf{def}} {}^{\vee}G \rtimes \Gamma; {}^{\vee}G \text{ over } \mathbb{C}, \text{ or } \overline{\mathbb{Q}}_{\ell}, \text{ or...}$: field for reps.

Weil grp $W_k = \varprojlim_m \mathbb{F}_{q^m}^{\times}$; $W_k \to \Gamma_k$ trivial.

Langlands param = $(\underbrace{\phi \colon W_k \to {}^{\vee}G})/{}^{\vee}G$ conj.

 $\phi(W_k) \subset {}^{\vee}G \text{ (not } {}^{L}G) \text{ since } W_k \to 1 \in \Gamma_k.$

Respect Frob = $\exists f \in \operatorname{Frob}({}^{\vee}G) \subset {}^{L}G$, $\operatorname{Ad}(f)\phi(\gamma) = \phi(\operatorname{Frob} \cdot \gamma)$.

KEEP COSET $f({}^{\vee}G_0^{\phi})$ as part of parameter ϕ .

Equiv of params $(\phi, f({}^{\vee}G_0^{\phi})), (\phi', f'({}^{\vee}G_0^{\phi'}))$ is ${}^{\vee}G$ -conjugacy.

Langlands over \mathbb{F}_q David Vogan

Introduction

veii group:

Root data

Local Langianos

Finite Chevalley

ocal Deligne-L

 $G \supset B \supset T$ conn red alg $/k = \mathbb{F}_q$, Frob: $G \to G$.

Get Γ_k action on W permuting gens $\leadsto \Gamma W = W \rtimes \Gamma_k$

 $\tilde{w} = w$ Frob (another) Frobenius morphism $T \to T$.

Deligne-Lusztig found all irr chars of $G(\mathbb{F}_q)$ inside virtual chars $R_{\theta'}^{T'}$ (T' ratl maxl torus, θ' char of $T'(\mathbb{F}_q)$).

Proposition. For any rational (= Frob-stable) max torus $T' \subset G$, $\exists ! W$ -conj class of \tilde{w} so $(T', \text{Frob}) \simeq (T, \tilde{w})$.

Proposition (Macdonald)

 $\widehat{T^{\widetilde{w}}} \simeq \{\phi \colon W_k \to {}^{\vee}T \mid (w \operatorname{\mathsf{Frob}}) \cdot \phi(\gamma) = \phi(\operatorname{\mathsf{Frob}} \cdot \gamma)\}.$

Conclusion: L-params ϕ' for G = DL-pairs (T', θ') .

 $R_{\theta'}^{T'}$ and $R_{\theta''}^{T''}$ overlap $\iff \phi', \phi'' \ ^{\vee}G$ -conjugate.

Deligne-Lusztig def: (T', θ') and (T'', θ'') are geom conj.

 $\widehat{G(\mathbb{F}_q)}$ partitioned by Langlands parameters.

L-packet $\Pi(\phi)$ = all irrs in all $R_{\theta'}^{T'} \leftrightarrow \phi$

Using Deligne-Langlands params to partition L-pkts harder...

Langlands over \mathbb{F}_q David Vogan

Introduction

Weil groups

i ioot data

Finite Chevalley

ocal Deligne-L

G reductive $/K \rightsquigarrow {}^LG$.

Langlands conj: reps of $G(K) \longleftrightarrow \text{params } \phi \colon W_K \to {}^L G \text{ from (abelian) class field theory: bijectively true for } G = \text{torus.}$

Deligne understood that difference between torus and reductive is unipotent: can sharpen Langlands conjecture by

Definition (K nonarchimedean or finite) Weil-Deligne group of K is $W'_K = W_K \ltimes \mathbb{G}_a$.

Frob acts on \mathbb{G}_a by qth power map mult by q.

Definition Deligne-Langlands parameter $\rho = (\phi_{\rho}, N_{\rho})$ has $\phi_{\rho} \colon W_{K} \to {}^{L}G$ Langlands param, $N_{\rho} \in {}^{\vee}g$ nilpotent, with

- 1. Case K = F local: require $Ad(\phi_{\rho}(Frob))(N_{\rho}) = qN_{\rho}$.
- 2. Case $K = k = \mathbb{F}_q$: require KEPT COSET $f({}^{\vee}G_0^{\phi_p})$ to have rep f_{DL} satisfying $\mathrm{Ad}(f_{DL}N_p) = qN_p$.

For $K = k = \mathbb{F}_q$, KEEP COSET $f_{DL}(^{\vee}G_0^{\rho})$ as part of ρ .

Langlands over \mathbb{F}_q David Vogan

Introduction

Moil aroung

Root data

Local Langlands

Local Deligne-L

ift to p adia

F finite $\rightsquigarrow S(F) =_{\text{def}} \{(f, \sigma) | f \in F, \sigma \in \widehat{F}^f\} / (\text{conj by } F).$

 $S((\mathbb{Z}/2\mathbb{Z})^n) = (\mathbb{Z}/2\mathbb{Z})^n \times (\widehat{\mathbb{Z}/2\mathbb{Z}})^n \quad \text{2}n\text{-diml sympl }/\mathbb{F}_2.$ $S(S_3) = \{(1,\mathbb{C}), (1,\text{rfl}), (1,\text{sgn}), (s_2,\mathbb{C}), (s_2,\text{sgn}), (s_3,\mathbb{C}), (s_3,\omega), (s_3,\omega^2)\}.$

 $G \supset B \supset T$ conn red alg $/\mathbb{F}_q$, LG L-group.

Def $\rho = (\phi, N)$ special if $N \in {}^{\vee}\mathfrak{g}^{\phi}$ is special nilp.

Recall that ρ remembers coset $f({}^{\vee}G_0^{\phi,N})$.

Theorem (Lusztig). Irreducible reps of $G(\mathbb{F}_q)$ are partitioned into packets $\Pi(\rho)$ by special DL parameters ρ . The packet $\Pi(\rho)$ is indexed by $\mathcal{S}(F)$ using Lusztig quotient F of ${}^{\vee}G^{\rho}/{}^{\vee}G^{\rho}_{0}$.

To make this look like other Langlands classifications, prefer to drop_1 requirement N special, $\operatorname{replace}_2$ Lusztig quotient by ${}^{\vee}G^{\rho}/[(Z({}^{\vee}G)^{\Gamma})({}^{\vee}G_0^{\rho})]$, $\operatorname{replace}_3 \mathcal{S}(F)$ by subset \widehat{F} .

Prefs 1 and 2 → more params, Pref 3 → fewer params.

Rewriting Lusztig's book á la Langlands

Definition Deligne-Langlands param for $G(\mathbb{F}_q)$ is

$$\rho = (\phi, N, \overline{f}),$$

- 1. $\phi: W_k \to {}^{\vee}G$ semisimple, $N \in {}^{\vee}g^{\phi}$ nilpotent,
- 2. $\overline{f} = f(^{\vee}G_0^{\phi,N}), f \in {}^{L}G \to \text{Frob}$
- 3. $Ad(f)(\rho(w)) = \rho(w^q), Ad(f)(N) = qN.$

Complete geometric Deligne-Langlands param has also

4.
$$\xi \in {}^{\vee}\widehat{G^{\phi,N}/{}^{\vee}}\widehat{G_0^{\rho,N}}, \xi|_{Z({}^{\vee}G)^{\Gamma}}=1.$$

Conjecture Irreducible reps of $G(\mathbb{F}_q)$ partitioned into packets $\Pi(\rho)$ by all Deligne-Langlands parameters ρ . Packet $\Pi(\rho)$ indexed by irr reps ξ of ${}^{\vee}G^{\rho}/{}^{\vee}G^{\rho}_0Z({}^{\vee}G)^{\Gamma_k}$.

Langlands over \mathbb{F}_q David Vogan

Introduction

Weil groups

oot data

ocal Langlands

Local Deligne-L

the same and the

Let us pause for a moment

Talk was meant to make me think through next few slides.

This plan was an abject failure.

So perhaps some of you will think through them?

○ Hopefully yours,
 ○
 David

Langlands over \mathbb{F}_q David Vogan

introduction

ven groups

oot data

First Observation

Local Deligne-L

Local Deligne-L

Lift to p-adic

G connected reductive algebraic $/k = \mathbb{F}_q$.

Fix p-adic $F \supset O \supset \mathcal{P}$, $O/\mathcal{P} \simeq k$.

Fix p-adic $\mathbb{G} \longleftrightarrow$ based root datum of G/k, Γ_F acts via Γ_k .

 \mathbb{G}/F can be any unramified quasisplit group/F.

G/k and G/F have same complex dual group ${}^{\vee}G$.

$${}^{L}G_{F} = {}^{\vee}G \rtimes \Gamma_{F}, \quad {}^{L}G_{k} = {}^{\vee}G \rtimes \Gamma_{k} = {}^{L}G_{F}/I_{F}$$
:

note I_F normal since it acts trivially on based root datum.

Set P_F = wild ramif grp $\subset I_F$; recall $I_F/P_F \simeq W_k$.

tamely ram.
$$\rho_F$$
 for F : $\left(\begin{array}{cc} \phi \colon I_F/P_F \to {}^\vee G, & N \in {}^\vee g^\phi, & f \end{array}\right)$
param ρ_k for k : $\left(\begin{array}{cc} \phi \colon I_F/P_F \to {}^\vee G, & N \in {}^\vee g^\phi, & f({}^\vee G_0^{\phi,N}) \end{array}\right)$

Here $f \mapsto \text{Frob}$, $f\phi(i)f^{-1} = i^q$, Ad(f)(N) = qN, $(i \in I/P)$.

Deduce tamely ramif params for $\mathbb{G}/F \twoheadrightarrow \text{params for } G/k$

 \mathbb{G}/F p-adic unramified quasisplit $F \longleftrightarrow G/k$ finite.

G(F) has maximal compact $G(O) \rightarrow G(K)$.

tamely ram.
$$\rho_F$$
 for F : $\left(\begin{array}{cc} \phi \colon I_F/P_F \to {}^{\vee}G, & N \in {}^{\vee}g^{\phi}, & f \end{array}\right)$
param ρ_k for k : $\left(\begin{array}{cc} \phi \colon I_F/P_F \to {}^{\vee}G, & N \in {}^{\vee}g^{\phi}, & f({}^{\vee}G_0^{\phi,N}) \end{array}\right)$

Definition component group for Deligne-Langlands ρ is

$$A(\rho) = {}^{\vee}G^{\rho}/Z({}^{\vee}G)^{\Gamma\vee}G_0^{\rho}.$$

p-adic packet $\Pi(\rho_F)$ conjecturally indexed by $\widehat{A(\rho_F)}$, $\pi_F(\xi) \leftrightarrow \xi$.

k packet $\Pi(\rho_k)$ conjecturally indexed by $\widehat{A(\rho_k)}$, $\pi_k(\tau) \leftrightarrow \tau$.

Suggests: tamely ramified $\mathbb{G}(F)$ rep $\pi_F(\xi)$ has $\mathbb{G}(O)$ -type factoring to G(k) rep $\pi_k(\tau)$. Which τ ?

Cent means stab of $f({}^{\vee}G_0^{\phi,N}) \supset \text{cent of } f: A(\rho_F) \to A(\rho_k)$.

If ξ doesn't factor to image, no τ .

If ξ factors to $\overline{\xi}$ on image, then all τ in $\operatorname{Ind}_{image}^{A(\rho_k)}(\overline{\xi})$.

Homework: extend to all params, all max cpts, all G.