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ABSTRACT. We examine the structure of compact Lie groups using a finite maximal
abelian subgroup A in place of a maximal torus. Just as the classical notion of roots exhibits
many interesting subgroups, so the notion of roots of A exhibits many (rather different) in-
teresting subgroups.
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1. INTRODUCTION

Suppose G is a compact Lie group, with identity component G0. There is a beautiful
and complete structure theory for G0, based on the notion of maximal tori and root systems
introduced by Élie Cartan and Hermann Weyl. The purpose of this paper is to introduce
a parallel structure theory using “finite maximal tori.” A maximal torus is by definition
a maximal connected abelian subgroup of G0. We define a finite maximal torus to be a
maximal finite abelian subgroup of G.

It would be etymologically more reasonable to use the term finite maximally diagonal-
izable subgroup, but this name seems not to roll easily off the tongue. A more restrictive
notion is that of Jordan subgroup, introduced by Alekseevskiı̆ in[1]; see also[6], Definition
3.18. Also very closely related is the notion of fine grading of a Lie algebra introduced in
[14], and studied extensively by Patera and others.

The classical theory of root systems and maximal tori displays very clearly many inter-
esting structural properties of G0. The central point is that root systems are essentially finite
combinatorial objects. Subroot systems can easily be exhibited by hand, and they corre-
spond automatically to (compact connected) subgroups of G0; so many subgroups can be
described in a combinatorial fashion. A typical example visible in this fashion is the sub-
group U(n)×U(m) of U(n+m). A more exotic example is the subgroup (E6×SU(3))/µ3
of E8 (with µ3 the cyclic group of third roots of 1).

1991 Mathematics Subject Classification. 20G07, 22C05.
Key words and phrases. root datum, reductive group, fine grading.
The first author was supported by NSFC Grant No. 10801116, and the second author in part by NSF grant

DMS-0967272.
1



2 GANG HAN AND DAVID A. VOGAN, JR.

Unfortunately, there is so far no general “converse” to this correspondence: it is not
known how to relate the root system of an arbitrary (compact connected) subgroup of G0
to the root system of G0. (Many powerful partial results in this direction were found by
Dynkin in[5].) Consequently there are interesting subgroups that are more or less invisible
to the theory of root systems.

In this paper we will describe an analogue of root systems for finite maximal tori. Again
these will be finite combinatorial objects, so it will be easy to describe subroot systems by
hand, which must correspond to subgroups of G. The subgroups arising in this fashion are
somewhat different from those revealed by classical root systems. A typical example is the
subgroup PU(n) of PU(nm), arising from the action of U(n) on Cn⊗Cm. A more exotic
example is the subgroup F4×G2 of E8 (see Example 4.5).

In Section 2 we recall Grothendieck’s formulation of the Cartan-Weyl theory in terms
of “root data.” His axiomatic characterization of root data is a model for what we seek to
do with finite maximal tori.

One of the fundamental classical theorems about maximal tori is that if T is a maximal
torus in G0, and G̃0 is a finite covering of G0, then the preimage T̃ of T in G̃0 is a maximal
torus in G̃0. The corresponding statement about finite maximal tori is false (see Example
4.1); the preimage often fails to be abelian. In order to keep this paper short, we have
avoided any serious discussion of coverings.

In Section 3 we define root data and Weyl groups for finite maximal tori. We will
establish analogues of Grothendieck’s axioms for these finite root data, but we do not
know how to prove an existence theorem like Grothendieck’s (saying that every finite root
datum arises from a compact group).

In Section 4 we offer a collection of examples of finite maximal tori. The examples
(none of which is original) are the main point of this paper, and are what interested us in
the subject. Reading this section first is an excellent way to approach the paper.

Of course it is possible and interesting to work with maximal abelian subgroups which
may be neither finite nor connected. We have done nothing about this.

Grothendieck’s theory of root data was introduced not for compact Lie groups but for
reductive groups over algebraically closed fields. The theory of finite maximal tori can be
put into that setting as well, and this seems like an excellent exercise. It is not clear to us
(for example) whether one should allow p-torsion in a “finite maximal torus” for a group
in characteristic p; excluding it would allow the theory to develop in a straightforward
parallel to what we have written about compact groups, but allowing p-torsion could lead
to more very interesting examples of finite maximal tori.

Much of the most interesting structure and representation theory for a connected reduc-
tive algebraic group G0 (over an algebraically closed field) can be expressed in terms of
(classical) root data. For example, the irreducible representations of G0 are indexed (fol-
lowing Cartan and Weyl) by orbits of the Weyl group on the character lattice; and Lusztig
has defined a surjective map from conjugacy classes in the Weyl group to unipotent classes
in G. It would be fascinating to rewrite such results in terms of finite root data; but we have
done nothing in this direction.

2. ROOT DATA

In this section we introduce Grothendieck’s root data for compact connected Lie groups.
As in the introduction, we begin with

(2.1a) G = compact connected Lie group
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The real Lie algebra of G and its complexification are written

(2.1b) g0 = Lie(G), g= g0⊗RC.

The conjugation action of G on itself is written Ad:

(2.1c) Ad: G→ Aut(G), Ad(g)(x) = gxg−1 (g,x ∈ G).

The differential (in the target variable) of this action is an action of G on g0 by Lie algebra
automorphisms

(2.1d) Ad: G→ Aut(g0).

This differential of this action of G is a Lie algebra homomorphism

(2.1e) ad : g0→ Der(g0), ad(X)(Y ) = [X ,Y ] (X ,Y ∈ g0).

Analogous notation will be used for arbitrary real Lie groups. The kernel of the adjoint
action of G on G or on g0 is the center Z(G):

(2.1f)
Z(G) = {g ∈ G | gxg−1 = x, all x ∈ G}

= {g ∈ G | Ad(g)(Y ) = Y, all Y ∈ g0}
So far all of this applies to arbitrary connected Lie groups G. We will also have occasion to
use the existence of a nondegenerate symmetric bilinear form B on g0, with the invariance
properties

(2.1g) B(Ad(g)X ,Ad(g)Y ) = B(X ,Y ) (X ,Y ∈ g0,g ∈ G).

We may arrange for this form to be negative definite: if for example G is a group of unitary
matrices, so that the Lie algebra consists of skew-Hermitian matrices, then

B(X ,Y ) = tr(XY )

will serve. (Since X has purely imaginary eigenvalues, the trace of X2 is negative.) We
will also write B for the corresponding (nondegenerate) complex-linear symmetric bilinear
form on g.

Definition 2.2. A maximal torus of a compact connected Lie group G is a maximal con-
nected abelian subgroup T of G.

We now fix a maximal torus T ⊂ G. Because of Corollary 4.52 of[11], T is actually a
maximal abelian subgroup of G, and therefore equal to its own centralizer in G:

(2.3a) T = ZG(T ) = GT = {g ∈ G | Ad(t)(g) = g, (all t ∈ T )}.

Because T is a compact connected abelian Lie group, it is isomorphic to a product of
copies of the unit circle

(2.3b) S1 = {e2πiθ |θ ∈ R}, Lie(S1) = R;

the identification of the Lie algebra is made using the coordinate θ . The character lattice
of T is

(2.3c)
X∗(T ) = Hom(T,S1)

= {λ : T → S1 continuous, λ (st) = λ (s)λ (t) (s, t ∈ T )}.
The character lattice is a (finitely generated free) abelian group, written additively, under
multiplication of characters:

(λ +µ)(t) = λ (t)µ(t) (λ ,µ ∈ X∗(T )).
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The functor X∗ is a contravariant equivalence of categories from compact abelian Lie
groups to finitely generated torsion-free abelian groups. The inverse functor is given by
Hom into S1:

(2.3d) T ' Hom(X∗(T ),S1), t 7→ (λ 7→ λ (t)).

The cocharacter lattice of T is

(2.3e)
X∗(T ) = Hom(S1,T )

= {ξ : S1→ T continuous, ξ (zw) = ξ (z)ξ (w) (z,w ∈ S1)}.
There are natural identifications

X∗(S1) = X∗(S1) = Hom(S1,S1)' Z, λn(z) = zn (z ∈ S1).

The composition of a character with a cocharacter is a homomorphism from S1 to S1, which
is therefore some nth power map. In this way we get a biadditive pairing

(2.3f) 〈·, ·〉 : X∗(T )×X∗(T )→ Z,

defined by

(2.3g) 〈λ ,ξ 〉= n⇔ λ (ξ (z)) = zn (λ ∈ X∗(T ),ξ ∈ X∗(T ),z ∈ S1).

This pairing identifies each of the lattices as the dual of the other:

(2.3h) X∗ ' HomZ(X∗,Z), X∗ ' HomZ(X∗,Z).

The functor X∗ is a covariant equivalence of categories from compact abelian Lie groups to
finitely generated torsion-free abelian groups. The inverse functor is given by ⊗ with S1:

(2.3i) X∗(T )⊗Z S1 ' T, ξ ⊗ z 7→ ξ (z).

The action by Ad of T on the complexified Lie algebra g of G, like any complex rep-
resentation of a compact group, decomposes into a direct sum of copies of irreducible
representations; in this case, of characters of T :

(2.3j) g= ∑
λ∈X∗(T )

gλ , gλ = {Y ∈ g | Ad(t)Y = λ (t)Y (t ∈ T )}.

In particular, the zero weight space is

(2.3k)
g(0) = {Y ∈ g | Ad(t)Y = 0 (t ∈ T )}

= Lie(GT )⊗RC= Lie(T )⊗RC= t,

the complexified Lie algebra of T ; the last two equalities follow from (2.3a). We define the
roots of T in G to be the non-trivial characters of T appearing in the decomposition of the
adjoint representation:

(2.3l) R(G,T ) = {α ∈ X∗(T )−{0} | gα 6= 0}.
Because of the description of the zero weight space in (2.3k), we have

(2.3m) g= t⊕ ∑
α∈R(G,T )

gα ,

We record two elementary facts relating the root decomposition to the Lie bracket and the
invariant bilinear form B:

(2.3n) [gα ,gβ ]⊂ gα+β ,

(2.3o) B(gα ,gβ ) = 0, α +β 6= 0.
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Example 2.4. Suppose G = SU(2), the group of 2× 2 unitary matrices of determinant 1.
We can choose as a maximal torus

SD(2) =
{(

e2πiθ 0
0 e−2πiθ

)
| θ ∈ R

}
' S1.

We have given this torus a name in order to be able to formulate the definition of coroot
easily. The “D” is meant to stand for “diagonal,” and the “S” for “special” (meaning
determinant one, as in the “special unitary group”). The last identification gives canonical
identifications

X∗(SD(2))' Z, X∗(SD(2))' Z.
The Lie algebra of G is

su(2) = {2×2 complex matrices X | tX =−X , tr(X) = 0}.

The obvious map identifies

su(2)C ' {2×2 complex matrices Z | tr(Z) = 0}= sl(2,C).

The adjoint action of SD(2) on g is

Ad
(

e2πiθ 0
0 e−2πiθ

)(
a b
c −a

)
=

(
a e4πiθ b

e−4πiθ c −a

)
.

This formula shows at once that the roots are

R(SU(2),SD(2)) = {±2} ⊂ X∗(SD(2))' Z,

with root spaces

sl(2)2 =

{(
0 t
0 0

)
| t ∈ C

}
, sl(2)−2 =

{(
0 0
s 0

)
| s ∈ C

}
.

When we define coroots in a moment, it will be clear that

R∨(SU(2),SD(2)) = {±1} ⊂ X∗(SD(2))' Z.

Now we are ready to define coroots in general. For every root α , we define

(2.5a) g[α] = Lie subalgebra generated by root spaces g±α .

It is easy to see that g[α] is the complexification of a real Lie subalgebra g[α]
0 , which in turn

is the Lie algebra of a compact connected subgroup

(2.5b) G[α] ⊂ G.

This subgroup meets the maximal torus T in a one-dimensional torus T [α], which is maxi-
mal in G[α]. There is a continuous surjective group homomorphism

(2.5c) φα : SU(2)→ G[α] ⊂ G,

which we may choose to have the additional properties

(2.5d) φα(SD(2)) = Tα ⊂ T (dφα)C (sl(2)2) = gα .

The homomorphism φα is then unique up to conjugation by T in G (or by SD(2) in SU(2)).
In particular, the restriction to SD(2)' S1, which we call α∨, is a uniquely defined cochar-
acter of T :

(2.5e) α
∨ : S1→ T, α

∨(e2πiθ ) = φα

(
e2πiθ 0

0 e−2πiθ

)
.
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The element α∨ ∈ X∗(T ) is called the coroot corresponding to the root α . We write

(2.5f) R∨(G,T ) = {α∨ | α ∈ R(G,T )} ⊂ X∗(T )−{0}.
Essentially because the positive root in SU(2) is +2, we see that

(2.5g) 〈α,α∨〉= 2 (α ∈ R(G,T )).

We turn now to a description of the Weyl group (of a maximal torus in a compact group).
Here is the classical definition.

Definition 2.6. Suppose G is a compact connected Lie group, and T is a maximal torus in
G. The Weyl group of T in G is

W (G,T ) = NG(T )/T,

the quotient of the normalizer of T by its centralizer. From this definition, it is clear that
W (G,T ) acts faithfully on T by automorphisms (conjugation):

W (G,T ) ↪→ Aut(T ).

By acting on the range of homomorphisms, W (G,T ) may also be regarded as acting on
cocharacters:

W (G,T ) ↪→ Aut(X∗(T )), (w ·ξ )(z) = w · (ξ (z))

(w ∈W, ξ ∈ X∗(T ) = Hom(S1,T ),z ∈ S1).

Similarly,

W (G,T ) ↪→ Aut(X∗(T )), (w ·λ )(t) = λ (w−1 · t))

(w ∈W, λ ∈ X∗(T ) = Hom(T,S1), t ∈ T ).

The actions on the dual lattices X∗(T ) and X∗(T ) are inverse transposes of each other.
Equivalently, for the pairing of (2.3g),

〈w ·λ ,ξ 〉= 〈λ ,w−1 ·ξ 〉 (λ ∈ X∗(T ),ξ ∈ X∗(T )).

We recall now how to construct the Weyl group from the roots and the coroots, this
is the construction that we will seek to extend to finite maximal tori. We begin with an
arbitrary root α ∈ R(G,T ), and φα as in (2.5c). The element

(2.7a) σα = φα

(
0 1
−1 0

)
∈ NG(T )

is well-defined (that is, independent of the choice of φα ) up to conjugation by T ∩G[α].
Consequently the coset

(2.7b) sα = σα T ∈ NG(T )/T =W (G,T )

is well-defined; it is called the reflection in the root α . Because it is constructed from the
subgroup Gα , we see that

(2.7c) σα commutes with ker(α)⊂ T ,

and therefore that

(2.7d) sα acts trivially on ker(α)⊂ T .

A calculation in SU(2) shows that

(2.7e)
(

0 1
−1 0

)
acts by inversion on SD(2),
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and therefore that

(2.7f) sα acts by inversion on im(α∨)⊂ T .

The two properties (2.7d) and (2.7f) are equivalent to

(2.7g) sα(t) = t ·α∨(α(t))−1 (t ∈ T ).

From this formula we easily deduce

(2.7h) sα(λ ) = λ −〈λ ,α∨〉α (λ ∈ X∗(T ))

and similarly

(2.7i) sα(ξ ) = ξ −〈α,ξ 〉α∨ (ξ ∈ X∗(T )).

Here is the basic theorem about the Weyl group.

Theorem 2.8. Suppose G is a compact connected Lie group, and T ⊂G is a maximal torus.
Then the Weyl group of T in G (Definition 2.6) is generated by the reflections described by
any of the equivalent conditions (2.7g), (2.7h), or (2.7i):

W (G,T ) = 〈sα | α ∈ R(G,T )〉 .
The automorphisms sα of X∗(T ) must permute the roots R(G,T ), and the automorphisms
sα of X∗(T ) must permute the coroots R∨(G,T ).

Grothendieck’s understanding of the classification of compact Lie groups by Cartan
and Killing is that the combinatorial structure of roots and Weyl group determines G com-
pletely. Here is a statement.

Definition 2.9 (Root datum; see[16], 7.4). An abstract (reduced) root datum is a quadruple
Ψ = (X∗,R,X∗,R∨), subject to the requirements
a) X∗ and X∗ are lattices (finitely generated torsion-free abelian groups), dual to each other

(cf. (2.3h)) by a specified pairing

〈,〉 : X∗×X∗→ Z;

b) R⊂ X∗ and R∨ ⊂ X∗ are finite subsets, with a specified bijection α 7→ α∨ of R onto R∨.
These data define lattice endomorphisms (for every root α ∈ R)

sα : X∗→ X∗, sα(λ ) = λ −〈λ ,α∨〉α,

sα : X∗→ X∗, sα(ξ ) = ξ −〈α,ξ 〉α∨,
called root reflections. It is easy to check that each of these endomorphisms is the transpose
of the other with respect to the pairing 〈,〉. We impose the axioms
RD 0 if α ∈ R, then 2α /∈ R;
RD 1 〈α,α∨〉= 2 (α ∈ R); and
RD 2 sα(R) = R, sα(R∨) = R∨ (α ∈ R).
Axiom (RD 0) is what makes the root datum reduced. Axiom (RD 1) implies that s2

α = 1,
so sα is invertible. The Weyl group of the root datum is the group generated by the root
reflections:

W (Ψ) = 〈sα (α ∈ R)〉 ⊂ Aut(X∗).
The definition of root datum is symmetric in the two lattices: the dual root datum is

Ψ
∨ = (X∗,R∨,X∗,R).

The inverse transpose isomorphism identifies the Weyl group with

W (Ψ∨) = 〈sα (α∨ ∈ R∨)〉 'W (Ψ).
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Theorem 2.8 (and the material leading to its formulation) show that if T is a maximal
torus in a compact connected Lie group G, then

(2.10) Ψ(G,T ) = (X∗(T ),R(G,T ),X∗(T ),R∨(G,T ))

is an abstract reduced root datum. The amazing fact—originating in the work of Cartan
and Killing, but most beautifully and perfectly formulated by Grothendieck—is that the
root datum determines the group, and that every root datum arises in this way. Here is a
statement.

Theorem 2.11 ([4], exp. XXV; see also[16], Theorems 9.6.2 and 10.1.1). Suppose Ψ =
(X∗,R,X∗,R∨) is an abstract reduced root datum. Then there is a maximal torus in a
compact connected Lie group T ⊂ G so that

Ψ(G,T )'Ψ

(notation (2.10)). The pair (G,T ) is determined by these requirements up to an inner
automorphism from T . We have

W (G,T ) = NG(T )/T 'W (Ψ).

Sketch of proof. What is proved in[4] is that to Ψ there corresponds a complex connected
reductive algebraic group G(Ψ). There is a correspondence between complex connected
reductive algebraic groups and compact connected Lie groups obtained by passage to a
compact real form (see for example[13], Theorem 5.12 (page 247)). Combining these two
facts proves the theorem. �

3. FINITE MAXIMAL TORI

Throughout this section we write

(3.1)
G = (possibly disconnected) compact Lie group

G0 = identity component of G.

We use the notation of (2.1), especially for the identity component G0.

Definition 3.2. A finite maximal torus for G is a finite maximal abelian subgroup

(3.3) A⊂ G.

The definition means that the centralizer in G of A is equal to A:

(3.3a) ZG(A) = A.

The differentiated version of this equation is

(3.3b) Zg(A) = {X ∈ g | Ad(a)X = X ,all a ∈ A}= Lie(A) = {0};

the last equality is because A is finite. We define the large Weyl group of A in G0 to be

(3.3c) Wlarge(G0,A) = NG0(A)/ZG0(A) = NG0(A)/(A∩G0).

Clearly

(3.3d) Wlarge(G0,A)⊂ Aut(A),

a finite group.
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The term “large” should be thought of as temporary. We will introduce in Definition 3.8
a subgroup Wsmall(G,A), given by generators analogous to the root reflections in a classical
Weyl group. We believe that the two groups are equal; but until that is proved, we need
terminology to talk about them separately.

In contrast to classical maximal tori, finite maximal tori need not exist. For example,
if G = U(n), then any abelian subgroup must (after change of basis) consist entirely of
diagonal matrices; so the only maximal abelian subgroups are the connected maximal tori,
none of which is finite.

For the rest of this section we fix a (possibly disconnected) compact Lie group G, and a
finite maximal torus

(3.4a) A⊂ G.

Our goal in this section is to introduce roots, coroots, and root transvections, all by analogy
with the classical case described in Section 2.

The character group of A is

(3.4b)
X∗(A) = Hom(A,S1)

= {λ : A→ S1
λ (ab) = λ (a)λ (b) (a,b ∈ A)}.

The character group is a finite abelian group, written additively, under multiplication of
characters:

(λ +µ)(a) = λ (a)µ(a) (λ ,µ ∈ X∗(A)).
In particular, we write 0 for the trivial character of A. We can recover A from X∗(A) by a
natural isomorphism

(3.4c) A' Hom(X∗(A),S1), a 7→ [λ 7→ λ (a)].

As a consequence, the functor X∗ is a contravariant exact functor from the category
of finite abelian groups to itself. The group X∗(A) is always isomorphic to A, but not
canonically.

For any positive integer n, define

(3.4d) µn = {z ∈ C | zn = 1},
the group of nth roots of unity in C. We identify

(3.4e) X∗(Z/nZ)' µn, λω(m) = ω
m (ω ∈ µn,m ∈ Z/nZ).

Similarly we identify

(3.4f) X∗(µn)' Z/nZ, λm(ω) = ω
m (m ∈ Z/nZ,ω ∈ µn).

Of course we can write

µn = {e2πiθ | θ ∈ Z/nZ} ' Z/nZ,

and so identify a particular generator of the cyclic group µn; but (partly with the idea of
working with reductive groups over other fields, and partly to to see what is most natural)
we prefer to avoid using this identification.

A character λ ∈ X∗(A) is said to be of order dividing n if nλ = 0; equivalently, if

(3.4g) λ : A→ µn.

We will say “character of order n” to mean a character of order dividing n. We write

(3.4h)
X∗(A)(n) = {λ ∈ X∗(A) | nλ = 0}

= Hom(A,µn),
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for the group of characters of order n. Therefore

(3.4i) X∗(A) =
⋃
n≥1

X∗(A)(n).

We say that λ has order exactly n if n is the smallest positive integer such that nλ = 0;
equivalently, if

(3.4j) λ : A � µn

is surjective.
The action by Ad of A on the complexified Lie algebra g of G decomposes into a direct

sum of characters:

(3.4k) g= ∑
λ∈X∗(A)

gλ , gλ = {Y ∈ g | Ad(a)Y = λ (a)Y (a ∈ A)}.

According to (3.3b), the trivial character does not appear in this decomposition; that is,
g0 = 0. We define the roots of A in G to be the characters of A that do appear:

(3.4l) R(G,A) = {α ∈ X∗(A)} | gα 6= 0} ⊂ X∗(A)−{0}.
The analogue of the root decomposition (2.3m) has no term like the Lie algebra of the

maximal torus:

(3.4m) g= ∑
α∈R(G,A)

gα .

Just as for classical roots, we see immediately

(3.4n) [gα ,gβ ]⊂ gα+β ,

and

(3.4o) B(gα ,gβ ) = 0, α +β 6= 0.

Fix a positive integer n. A cocharacter of order dividing n is a homomorphism

(3.5a) ξ : µn→ A.

We will say “cocharacter of order n” to mean a cocharacter of order dividing n. The
cocharacter has order exactly n if and only if ξ is injective.

If we fix a primitive nth root ω , then a cocharacter ξ of order n is the same thing as an
element x ∈ A of order n, by the correspondence

(3.5b) x = ξ (ω).

We write

(3.5c) X∗(A)(n) = Hom(µn,A)

for the group of cocharacters of order n. The natural surjection

µmn � µn, ω 7→ ω
m

gives rise to a natural inclusion

(3.5d) Hom(µn,A) ↪→ Hom(µmn,A), X∗(A)(n) ↪→ X∗(A)(mn).

Using these inclusions, we can define the cocharacter group of A

(3.5e)
⋃
n

X∗(A)(n).

The functor X∗ is a covariant functor equivalence of categories from the category of finite
abelian groups to itself; but the choice of a functorial isomorphism A ' X∗(A) requires
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compatible choices of primitive nth roots ωn for every n. (The compatibility requirement
is ωn = (ωm

mn.) Partly to maintain the analogy with cocharacters of connected tori, and
partly for naturality, we prefer not to make such choices, and to keep X∗(A) as a group
distinct from A.

Suppose λ ∈ X∗(A) is any character and ξ ∈ X∗(A)(n) is an order n cocharacter. The
composition λ ◦ξ is a homomorphism µn→ S1. Such a homomorphism must take values
in µn, and is necessarily raising to the mth power for a unique m ∈ Z/nZ' (1/n)Z/Z. In
this way we get a natural pairing

(3.5f)
X∗(A)×X∗(A)(n)→ (1/n)Z/Z,

λ (ξ (ω)) = ω
n〈λ ,ξ 〉 (λ ∈ X∗(A)(n), ξ ∈ X∗(A)(n), ω ∈ µn).

Taking the union over n defines a biadditive pairing

(3.5g) X∗(A)×X∗(A)→Q/Z
which identifies

(3.5h) X∗(A)' Hom(X∗(A),Q/Z), X∗(A)' Hom(X∗(A),Q/Z).
Before defining coroots in general, we need an analog of Example 2.4.

Example 3.6. Suppose A⊂H is a finite maximal torus, in a compact Lie group H of strictly
positive dimension N. Assume that the roots of A in H lie on a single line; that is, that there
is a character α so that

(3.6a) R(H,A)⊂ {mα | m ∈ Z} ⊂ X∗(A).

(We do not assume that α itself is a root.) Since H is assumed to have positive dimension,
there must be some (necessarily nonzero) roots; so α must have some order exactly n > 0:

(3.6b) α : A � µn.

Fix now a primitive nth root of unity ω , and an element y ∈ A so that

(3.6c) µ(y) = ω.

Then

(3.6d) hmα = {X ∈ h | Ad(y)X = ω
mX}.

From this description (or indeed from (3.4m) and (3.4n)) it is clear that h[m] = hmα is a
Z/nZ-grading of the complex reductive Lie algebra h, and that h[0] = 0. According to
the Kač classification of automorphisms of finite order (see for example[10], pp. 490–515;
what we need is Lemma 10.5.3 on page 492)

(3.6e) h is necessarily abelian,

so the identity component H0 is a compact torus.
We chose y so that α(y) generates the image of α . From this it follows immediately

that A is generated by y and the kernel of α:

(3.6f) A = 〈ker(α),y〉.
Because of the definition of roots and (3.6a), Ad(ker(α)) must act trivially on h, and
therefore on H0. It follows that

ZH0(A) = Hy
0 ,

the fixed points of the automorphism Ad(y) on the torus H0. Since A is assumed to be
maximal abelian, we deduce

(3.6g) A∩H0 = Hy
0 .
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We are therefore going to analyze this fixed point group.
Because

(3.6h) Aut(H0) = Aut(X∗(H0)),

the automorphism Ad(y) is represented by a lattice automorphism

(3.6i) y∗ ∈ Aut(X∗(H0)), (y∗)n = 1

and therefore (after choice of a lattice basis) by an invertible N×N integer matrix

(3.6j) Y∗ ∈ GL(N,Z), (Y∗)n = I.

Because 0 is not a root, the matrix Y∗ does not have one as an eigenvalue. Every eigen-
value must be a primitive dth root of 1 for some d dividing n (and not equal to 1). Define

(3.6k)
my(d) = multiplicity of primitive dth roots as eigenvalues of Y∗

= dim(hmα), all m such that gcd(m,n) = n/d.

Then the characteristic polynomial of the matrix Y∗ is

(3.6l) det(xI−Y∗) = ∏
d|n, d>1

Φd(x)my(d).

The number of fixed points of Ad(y) is easily computed to be

(3.6m)
|Hy

0 |= |det(I−Y∗)|

= ∏
d|n, d>1

Φd(1)my(d)

Here Φd is the dth cyclotomic polynomial

(3.6n) Φd(x) = ∏
ω∈µd primitive

(x−ω).

Evaluating cyclotomic polynomials at 1 is standard and easy:

(3.6o) Φd(1) =


0 d = 1
p d = pm, (p prime, m≥ 1)
1 d divisible by at least two primes.

Inserting these values (3.6m) gives

(3.6p) |Hy
0 |= ∏

pm|n
p prime, m≥ 1

pdimh(n/pm)α .

It is easy to see that every element of Hy
0 has order dividing n.

Definition 3.7. Suppose A is a finite maximal torus in the compact Lie group G, and
α ∈ R(G,A) is a root of order exactly n:

(3.7a) 1−→ kerα −→ A α−→µn −→ 1.

The characters of A that are trivial on kerα are precisely the multiples of α . If we define

(3.7b) G[α] = ZG(kerα),

(a compact subgroup of G) then its complexified Lie algebra is

(3.7c) g[α] = ∑
m∈Z

gmα .
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That is, the pair (G[α],A) is of the sort considered in Example 3.6. We now use the notation
of that example, choosing in particular a primitive nth root ω ∈ µn, and an element y ∈ A
so that

(3.7d) α(y) = ω.

As we saw in the example, (G[α])0 is a (connected) torus, on which y acts as an automor-
phism of order n; and

(3.7e) A∩ (G[α])0 = ((G[α])0)
y.

The outer parentheses are included for clarity: first take the identity component, then com-
pute the fixed points of Ad(y). Reversing this order would give (G[α])y = A, which has
trivial identity component. But we will omit them henceforth. We define the group of
coroots for α to be

(3.7f) R∨(α) = {ξ : µn→ (G[α])y
0 ⊂ kerα ⊂ A} ⊂ X∗(kerα)(n)⊂ X∗(n),

the cocharacters taking values in the group of fixed points of Ad(y) on (G[α])0. Choosing
a primitive nth root of 1 identifies R∨(α) with (G[α])y

0. Its cardinality may therefore be
computed in terms of root multiplicities using (3.6p):

(3.7g)

|R∨(α)|= |(G[α])y
0|

= ∏
pm|n

p prime, m≥ 1

pdimg(n/pm)α .

There are nontrivial coroots for α if and only if there is a nontrivial prime power pm

dividing n so that (n/pm)α is a root.

Definition 3.8. Suppose A is a finite maximal torus in the compact Lie group G, and
α ∈ R(G,A) is a root of order n, and

(3.8a) ξ : µn→ (G[α])y
0 ⊂ kerα ⊂ A

is a coroot for α (Definition 3.7). A transvection generator for (α,ξ ) is an element

(3.8b) σ(α,ξ ) ∈ (G[α])0

with the property that

(3.8c) Ad(y−1)(σ(α,ξ )) = σ(α,ξ )ξ (ω).

We claim that there is a transvection generator for each coroot. To see this, write the
abelian group (G[α])0 additively. Then the equation we want to solve looks like

[Ad(y−1)− I]σ = ξ (ω).

Because the determinant of the Lie algebra action is

|det(Ad(y−1)− I)|= |det(I−Ad(y))|= |det(I−Y∗)|
which is equal to the number of coroots (see (3.6m)), we see that (3.8c) has a solution
σ(α,ξ ), and that in fact σ(α,ξ ) is unique up to a factor from (G[α])y

0.
The defining equation for a transvection generator may be rewritten as

(3.8d) σ(α,ξ )yσ(α,ξ )−1 = yξ (α(y)).

Because σ(α,ξ ) is built from exponentials of root vectors for roots that are multiples of
α , σ(α,ξ ) must commute with kerα:

(3.8e) σ(α,ξ )a0 σ(α,ξ )−1 = a0 (a0 ∈ kerα ⊂ A).
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Combining the last two formulas, and the fact that A is generated by kerα and y, we find

(3.8f) σ(α,ξ )aσ(α,ξ )−1 = aξ (α(a)) (a ∈ A).

In particular,

(3.8g) σ(α,ξ ) ∈ NG0(A),

and the root transvection is the coset

(3.8h) s(α,ξ ) = σ(α,ξ )(A∩G0) ∈ NG0(A)/(A∩G0) =Wlarge(G,A).

We define the small Weyl group of A in G to be the subgroup

(3.8i) Wsmall(G,A) =
〈
s(α,ξ ) (α ∈ R(G,A),ξ ∈ R∨(α)

〉
.

generated by root transvections.

Conjecture 3.9. If A is a finite maximal torus in a compact Lie group G (Definition 3.2),
the normalizer of A in G0 is generated by A∩G0 and the transvection generators σ(α,ξ )
described in Definition 3.8. Equivalently,

Wsmall(G,A) =Wlarge(G,A)

(Definitions 3.2 and 3.8).

In case G is the projective unitary group PU(n), then it is shown in[9] that A must be
one of the subgroups described in (4.3) below. In these cases the conjecture is established
in[8].

We want to record explicitly one of the conclusions of Example 3.6.

Proposition 3.10. Suppose A is a finite maximal torus in a compact Lie group G (Definition
3.2), and that α and β are roots of A in G.

(1) If α and β are both multiples of the same root γ , then [gα ,gβ ] = 0.
(2) If α and β have relatively prime orders, then [gα ,gβ ] = 0.

Proof. Part (1) is (3.6e) (together with the argument used in Definition 3.7 to get into
the setting of Example 3.6). If α and β have orders m and n, then the hypothesis of (2)
produces integers x and y so that mx+ny = 1. Consequently

β = (mx+ny)β = mxβ = mx(α +β ),

and similarly
α = ny(α +β ).

So (2) follows from (1) (with γ = α +β ). �

We conclude this section with a (tentative and preliminary) analogue of Grothendieck’s
notion of root datum.

Definition 3.11 (Finite root datum). An abstract finite root datum is a quadruple Ψ =
(X∗,R,X∗,R∨), subject to the requirements
a) X∗ and X∗ are finite abelian groups, dual to each other (cf. (3.5h)) by a specified pairing

〈,〉 : X∗×X∗→Q/Z;

b) R⊂ X∗−{0}
c) R∨ is a map from R to subgroups of X∗; we call R∨(α) the group of coroots for α .
We impose first the axioms
FRD 0 If α has order n, and k is relatively prime to n, then kα is also a root and R∨(α) =

R∨(kα)⊂ X∗(n); and
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FRD 1 If ξ ∈ R∨(α), then 〈α,ξ 〉= 0.

(The condition about k is a rationality hypothesis, corresponding to some automorphism
being defined over Q. The rest of (FRD)(0) says that the order of a coroot must divide the
order of the corresponding root. Axiom (FRD)(1) says that a coroot must take values in
the kernel of the corresponding root.)

For each root α of order n and coroot ξ ∈ R∨(α) we get homomorphisms of abelian
groups

s(α,ξ ) : X∗→ X∗, s(α,ξ )(λ ) = λ −n〈λ ,ξ 〉α,

s(α,ξ ) : X∗→ X∗, s(α,ξ )(τ) = τ−n〈α,τ〉ξ ,
called root transvections. The coefficients of α and of ξ in these formulas are integers
because of axiom (FRD)(0); so the formulas make sense. It is easy to check that each
of these endomorphisms is the transpose of the other with respect to the pairing 〈,〉. The
axiom (FRD)(1) means that s(α,ξ ) is the identity on multiples of α , and clearly s(α,ξ )
induces the identity on the quotient X∗/〈α〉. Therefore s(α,ξ ) is a transvection, and

s(α, ·) : R∨(α) ↪→ Aut(X∗)

is a group homomorphism.
We impose in addition the axioms

FRD 2 If α ∈ R and ξ ∈ R∨(α), then s(α,ξ )(R) = R.
FRD 3 If α ∈ R and ξ ∈ R∨(α), then s(α,ξ )(R∨(β )) = R∨(s(α,ξ )(β )).

The Weyl group of the root datum is the group generated by the root transvections:

W (Ψ) = 〈s(α,ξ ) (α ∈ R, ξ ∈ R∨(α))〉 ⊂ Aut(X∗).

The inverse transpose isomorphism identifies the Weyl group with a group of automor-
phisms of X∗.

We have shown in this section that the root datum

(3.12) Ψ(G,A) = (X∗(A),R(G,A),X∗(A),R∨)

of a finite maximal A torus in a compact Lie group G is an abstract finite root datum. The
point of making these observations is the hope of finding and proving a result analogous to
Theorem 2.11: that an abstract finite root datum determines a pair (G,A) uniquely.

We do not yet understand precisely how to formulate a reasonable conjecture along
these lines. First, in order to avoid silly counterexamples from finite groups, we should
assume

(3.13) G = G0A;

that is, that A meets every component of G.
To see a more serious failure of the finite root datum to determine G, consider the finite

root datum

(3.14a) (Z/6Z,{1,5},(1/6)Z/Z,R∨),

in which R∨(1) = R∨(5) = {0}. Write

(3.14b) A= Z[x]/〈Φ6(x)〉= Z[x]/〈x2− x+1〉,

the ring of integers of the cyclotomic field Q[ω6], with ω6 a primitive sixth root of unity.
The choice of ω6 defines an inclusion µ6 ↪→ A sending ω6 to the image of x. Therefore
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the rank two free abelian group A acquires an action of A = µ6. If we write T 1 for the
two-dimensional torus with

(3.14c) X∗(T 1) = A,

then the equivalence of categories (2.3i) provides an action of µ6 on T 1. Explicitly, the
action of ω6 on T 1 is

(3.14d) ω6 · (z,w) = (w−1,zw) (z,w ∈ S1).

The roots for this action are 1 and 5. According to (3.6p) (or by inspection of (3.14d)) the
action of A on T 1 has no fixed points. It follows that A is a maximal abelian subgroup of

(3.14e) G1 = T 1 oA,

and that the corresponding finite root datum is exactly the one described by (3.14a).
So far so good. But we could equally well use the 2m-dimensional torus

T m = T 1×·· ·×T 1

with the diagonal action of µ6, and define

(3.14f) Gm = T m oA,

Again A = µ6 is a maximal abelian subgroup, and the root datum is exactly (3.14a). So
in this case there are many different G, of different dimensions, with the same finite root
datum.

The most obvious way to address this particular family of counterexamples is to include
root multiplicities as part of the finite root datum, and to require that they compute the
cardinalities of the coroot groups R∨(α) by (3.7g). (If A is an elementary abelian p-group,
then the coroot groups determine the root multiplicities: if α has multiplicity m, then
|R∨(α)| = pm. That is why we needed A of order 6 to have make an easy example where
many multiplicities are possible.) But the root multiplicities alone do not determine G; one
can make counterexamples with G0 a torus and A cyclic using cyclotomic fields of class
number greater than one. Perhaps the finite root datum should be enlarged to include the
tori G[α]

0 (or rather the corresponding lattices), equipped with the action of µn constructed
in Definition 3.7.

4. EXAMPLES

Example 4.1. The simplest example of a finite maximal torus is in the three-dimensional
compact group

G = SO(3)

of three by three real orthogonal matrices. We can choose

A = {

ε1 0 0
0 ε2 0
0 0 ε3

 | εi =±1, ∏
i

εi = 1}.

This is the “Klein four-group,” the four-element group in which each non-identity element
has order 2. We can identify characters with subsets of S ⊂ {1,2,3}, modulo the equiva-
lence relation that each subset is equivalent to its complement: S∼ Sc. The formula is

λS(ε1,ε2,ε3) = ∏
i∈S

εi.



FINITE MAXIMAL TORI 17

Thus the trivial character of A is λ /0 = λ{1,2,3}, and the three non-trivial characters corre-
spond to the three two-element subsets {i, j} (or equivalently to their three one-element
complements):

λ{i, j}(ε1,ε2,ε3) = εiε j.

The Lie algebra g= so(3) consists of 3×3 skew-symmetric matrices. The root spaces of
A are one-dimensional:

gλ{i, j} = C(ei j− e ji) (1≤ i 6= j ≤ 3),

the most natural and obvious lines of skew-symmetric matrices. Therefore

R(G,A) = {λ{i, j} ∈ X∗(A) | (1≤ i 6= j ≤ 3),

the set of all three non-zero characters of A.
Each root space is the Lie algebra of one of the three obvious SO(2) subgroups of

SO(3), and these are the tori G[α]
0 used in Definition 3.7. The automorphism y of each

torus is inversion, so the coroots are the two elements of order (1 or) 2 in each torus. If
ξ is the nontrivial coroot attached to the root (i, j), then the transvection s(α,ξ ) acts on
{1,2,3} by transposition of i and j. The (small) Weyl group is therefore

Wsmall(G,A) = S3.

Since this is the full automorphism group of A, it is also equal to the large Weyl group.

It is a simple and instructive matter to make a similar definition for O(n), taking for A
the group of 2n diagonal matrices. The whole calculation is exactly parallel to that for the
root system of U(n), with the role of the complex units S1 played by the real units {±1};
or, on the level of X∗, with Z replaced by Z/2Z.

Example 4.2. We begin with the unitary group

(4.2a) G̃ =U(n) = n×n unitary matrices.

The center of G̃ consists of the scalar matrices

(4.2b) Z(n) = {zI | z ∈ S1} ' S1

(notation (2.3b)). We are going to construct a finite maximal torus A inside the projective
unitary group

(4.2c) G = PU(n) =U(n)/Z(n).

It is convenient to construct a preimage Ã⊂ G̃ =U(n).
The Lie algebra of U(n) consists of skew-Hermitian n×n complex matrices:

(4.2d) g̃0 = u(n) = {X ∈Mn(C | tX =−X}.
An obvious map identifies its complexification with all n×n matrices:

(4.2e) g̃= Mn(C) = gl(n,C).

The adjoint action is given by conjugation of matrices. Dividing by the center gives

(4.2f) g0 = pu(n) = u(n)/iRI,

(4.2g) g= pgl(n,C) = Mn(C)/CI.

It will be convenient to think of U(n) as acting on the vector space

Cn = functions on Z/nZ,
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functions on the cyclic group of order n. We will call the standard basis

e0,e1, . . . ,en−1

with ei the delta function at the group element i+ nZ. It is therefore often convenient to
regard the indices as belonging to Z/nZ.

We are going to define two cyclic subgroups

(4.2h) τ : Z/nZ→U(n), σ : µn→U(n)

of U(n). We will also be interested in

(4.2i) ζ : µn→ Z(n), ζ (ω) = ωI.

The map τ comes from the action of Z/nZ on itself by translation; the generator 1 =
1+nZ acts by

(4.2j) τ(1) =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 0 0 · · · 0

 .

Often it is convenient to compute with the action on basis vectors:

τ(m)ei = ei−m,

as usual with the subscripts interpreted modulo n. The map σ is from the character group
of Z/nZ. The element ω ∈ µn is realized as multiplication by the character m 7→ ωm:

(4.2k) σ(ω) =


1 0 · · · 0
0 ω · · · 0

...
0 0 · · · ωn−1

 .

This time the formula on basis vectors is

σ(ω)ei = ω
iei.

Each of σ and τ has order n, and their commutator is

σ(ω)τ(m)σ(ω−1)τ(−m) = ω
mI = ζ (ωm) ∈ Z(G).

The three cyclic groups σ , τ , and ζ generate a group

(4.2l) Ã = 〈τ(Z/nZ),σ(µn),ζ (µn)〉

of order n3, with defining relations

(4.2m) σ(ω)τ(m)σ(ω−1)τ(−m) = ζ (ωm), σζ = ζ σ , τζ = ζ τ;

this group is a finite Heisenberg group of order n3. (One early appearance of such groups
is in[12], pp. 294–297. There is an elementary account of their representation theory in
[17], Chapter 19.)

The “finite maximal torus” we consider is

(4.2n)
A = image of Ã in PU(n)

= Ã/ζ (µn)' (Z/nZ)×µn.
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We will explain in a moment why A is maximal abelian. The adjoint action of A on the Lie
algebra is easily calculated to be

(4.2o) Ad(τ(m))(ers) = er−m,s−m,

with the subscripts interpreted modulo n. Similarly

(4.2p) Ad(σ(ω))(ers) = ω
r−sers.

The character group of A is

X∗(A)' µn×Z/nZ λφ , j(τ(m)σ(ω)) = φ
m

ω
j.

We now describe the roots of A in the Lie algebra g= Mn(C)/CI. Fix

j ∈ Z/nZ, φ ∈ µn,

and define

(4.2q) Xφ , j = ∑
r−s= j

φ
rers = σ(φ)τ(− j).

(That is, the root vectors as matrices can be taken equal to the group elements as matrices.)
It follows from (4.2o) and (4.2p) that

(4.2r) Ad(τ(m))(Xφ , j) = φ
mXφ , j, Ad(σ(ω))(Xφ , j) = ω

jXφ , j,

That is, Xφ , j is a weight vector for the character (φ , j) ∈ X∗(A). The weight vector X1,0 is
the identity matrix, by which we are dividing to get g; so (1,0) is not a root. Therefore

(4.2s) R(G,A) = {(φ , j) 6= (1,0) ∈ X∗(A)} ' [µn×Z/nZ]− (1,0),

the set of n2−1 non-trivial characters of Z/nZ×µn.
There remains the question of why A is maximal abelian in PU(n). Suppose g ∈

PU(n)A. Choose a preimage g̃ ∈ U(n) ⊂ Mn(C). Then the fact that g commutes with
the images of τ and σ in PU(n) means that

τ(m)g̃τ(−m) = b(m)g̃, σ(ω)g̃σ(ω−1) = c(ω)g̃.

If we write g̃ in the matrix basis Xφ , j of (4.2q), the conclusion is that b(m) = φ is an nth
root of unity, that c(ω) = ω j, and that

(4.2t) g̃ = zXφ , j = zσ(φ)τ(− j).

Therefore g = σ(φ)τ(− j) ∈ A, as we wished to show.
We want to understand, or at least to count, the coroots corresponding to each root α of

order d. Since every (nontrivial) character of A has multiplicity one as a root, we conclude
from (3.7g) that there are precisely d coroots ξ attached to α . In particular, if pm is the
largest power of some prime dividing n, and α has order pm, then (since A' (Z/nZ)2)

kerα ' Z/nZ)×Z/(n/pm)Z.

So in this case there are exactly pm homomorphisms from µpm into kerα , and all of them
must be coroots. We conclude that the root transvections include all transvections of A
attached to characters of order exactly pm. One can show that these transvections generate
SL(2,Z/nZ), so

(4.2u) Wsmall(G,A)' SL(2,Z/nZ).
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We conclude this example by calculating the structure constants of g in the root basis.
Using the relation Xφ , j = σ(φ)τ(− j) from (4.2q), and the commutation relation (4.2m),
we find

Xφ , jXψ,k = σ(φ)τ(− j)σ(ψ)τ(−k)

= ψ
j
σ(φ)σ(ψ)τ(− j)τ(−k)

= ψ
j
σ(φψ)τ(− j− k) = ψ

jXφψ, j+k.

Similarly
Xψ,kXφ , j = φ

kXφψ, j+k.

Therefore

(4.2v) [Xφ , j,Xψ,k] = (ψ j−φ
k)Xφψ, j+k.

A fundamental fact about classical roots in reductive Lie algebras (critical to Chevalley’s
construction of reductive groups over arbitrary fields; see[16], Chapter 10) is that the struc-
ture constants may be chosen to be integers. Here we see that the structure constants are
integers in the cyclotomic field Q[µn].

The preceding example can be generalized by replacing the cyclic group Z/nZ with any
abelian group F of order n, and A by the “symplectic space” A = F ×X∗(F) ([18], page
148). If D is the largest order of an element of F , then the symplectic form takes values in
µD:

(4.3a) Σ(( f1,λ1),( f2,λ2)) = λ1( f2)[λ2( f1)]
−1.

Characters of A may be indexed by elements of A using the symplectic form:

αx(a) = Σ(a,x).

The transvection generators are precisely the symplectic transvections

(4.3b) a 7→ a+ξ (〈a,x〉)

on A. Here x is any element of A of order d, and

ξ : µd → 〈x〉

is any homomorphism. They generate the full symplectic group

(4.3c) Wsmall(G,A) = Sp(A,Σ);

a proof may be found in[8], Theorem 3.16. (When F is a product of elementary abelian
p groups for various primes p, the assertion that symplectic transvections generate the full
symplectic group comes down to the (finite) field case, and there it is well known.)

Here is a very different example.

Example 4.4. We begin with the compact connected Lie group G of type E8; this is a simple
group of dimension 248, with trivial center. We are going to describe a finite maximal torus

(4.4a) A = Z/5Z×µ5×µ5.

The roots will be the 124 nontrivial characters of A, each occurring with multiplicity 2.
The group A is described in detail in[7], Lemma 10.3. We present here another description,
taken from[2], p. 231.

An element of the maximal torus T of G may be specified by specifying its eigenvalue
γi (a complex number of absolute value 1) on each of the eight simple roots αi (the white
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c c c c c c c s2 4 6 5 4 3 2 1

c3

FIGURE 1. extended Dynkin diagram for E8

vertices in Figure 4.4. Then the eigenvalue γ0 on the lowest root α0 (the black vertex) is
specified by the requirement

(4.4b) γ
−1
0 =

8

∏
i=1

γ
ni
i ,

with ni the coefficient of αi in the highest root (the vertex labels in the figure). Equivalently,
we require

(4.4c)
8

∏
i=0

γ
ni
i = 1.

There is a map

(4.4d) ρ : µ5→ T

in which the element ρ(ω) corresponds to the diagram of Figure 4.4. The eight roots

c c c c c c c s1 1 1 ω 1 1 1 1

c1

FIGURE 2. Toral subgroup µ5 ⊂ E8

labeled 1 in this diagram are simple roots for a subsystem of type A4×A4. As is explained
in[3], page 219, this subsystem corresponds to a subgroup

(4.4e) H = (SU(5)×SU(5))/(µ5)∆,

the quotient by the diagonal copy of µ5 in the center.
We have

(4.4f) Gρ(µ5) = H, ρ(µ5) = Z(H).

Because of this, the rest of the calculations we want to do can be performed inside H. It is
convenient to label the two SU(5) factors as L and R (for “left” and “right”)

We now recall the maps σ , τ , and ζ of Example 4.2. Because 5 is odd, they are actually
maps into SU(5) (rather than just U(5)). We use subscripts L and R to denote the maps
into the two factors of H, so that for example

σL×σR : µ5×µ5→ H.

Taking the diagonal copies of these maps gives

(4.4g) σ∆ : µ5→ SU(5)×SU(5), τ∆ : Z/5Z→ SU(5)×SU(5).
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The diagonal map ζ∆ is trivial. According to (4.2m), we have

(4.4h) σ∆(ω)τ∆(m)σ∆(ω
−1)τ∆(−m) = ζ∆(ω

m)

in SU(5)×SU(5); so in the quotient group H, we get

(4.4i) τ∆×σ∆×ρ : Z/5Z×µ5×µ5→ H ⊂ G;

the image is our abelian group A of order 125. Because of (4.4f), we have

(4.4j) GA = Hτ∆,σ∆ ,

and an easy calculation in SU(5)×SU(5) (parallel to the one leading to (4.2t)) shows that
this is exactly A. So A is indeed a finite maximal torus.

We turn next to calculation of the roots. The character group of A is

X∗(A) = µ5×Z/5Z×Z/5Z.
The roots (φ , j,0) are those in the centralizer H of ρ(µ5); so they are the roots of A in

h= sl(5,C)L× sl(5,C)R.

These were essentially calculated in Example 4.2. We have

gφ , j,0 = 〈XL
φ , j,X

R
φ , j〉 ((φ , j) 6= (1,0).

Here the root vectors are the ones defined in (4.2q). In particular, each of these 24 roots
has multiplicity two.

To study the root vectors for the 100 roots (φ , j,k) with k 6= 0 modulo 5, one can analyze
the representation of H on g/h, which has dimension 200. We will not do this here; the
conclusion is that every root space has dimension two.

Since all 124 characters of A have multiplicity two, it follows from (3.7g) that each root
α has exactly 25 coroots; these are all the homomorphisms

ξ : µ5→ kerα ⊂ A.

The corresponding transvections

(4.4k) s(α,ξ )(λ ) = λ −〈λ ,ξ 〉α
are all the transvections moving λ by a multiple of α; the multiple is given by the linear
functional ξ which is required only to vanish on α . The (small) Weyl group generated by
all of these transvections is therefore

(4.4l) Wsmall(G,A) = SL(A)' SL(3,F5),

the special linear group over the field with five elements. Its cardinality is

|Wsmall(G,A)|= (52 +5+1)(5+1)(1)(53)(5−1)2 = 372000.

Precisely parallel discussions can be given for G = F4, A = Z3×µ3×µ3, and for G =
G2, A = Z2× µ2× µ2. We omit the details. The next example, however is sufficiently
different to warrant independent discussion.

Example 4.5. We begin as in Example 4.4 with G a compact connected group of type E8.
We are going to describe a finite maximal torus

(4.5a) A = Z/6Z×µ6×µ6.

The roots will be the 215 nontrivial characters of A. The 7 characters of order 2 will
have multiplicity two; the 26 characters of order 3 will have multiplicity two; and the 182
characters of order 6 will have multiplicity one. To begin, we define

(4.5b) ρ : µ6→ T
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so that the element ρ(ω) corresponds to the diagram of Figure 3. This time the eight roots

c c c c c c c s1 1 ω 1 1 1 1 1

c1

FIGURE 3. Toral subgroup µ6 ⊂ E8

labeled 1 are those for a subsystem of type A5×A2×A1. As we learn in[3], page 220, the
corresponding subgroup of G is

(4.5c) H = (SU(6)×SU(3)×SU(2))/ζ∆(µ6);

here

ζ∆ : µ6→ µ6×µ3×µ2 = Z(SU(6)×SU(3)×SU(2)), ζ∆(ω) = (ω,ω2,ω3).

Because the centralizer of a single element of a compact simply connected Lie group is
connected, we conclude that

(4.5d) Gρ(µ6) = H, ρ(µ6) = Z(H).

Again we want to make use of the maps defined in Example 4.2. The first difficulty is that,
because 6 and 2 are even, the maps σSU(2), τSU(2), σSU(6), and τSU(6) take some of their
values in matrices of determinant −1. In order to correct this, we fix a primitive twelfth
root γ of 1, and define

(4.5e)

τ̃SU(6) : Z/12Z→ SU(6), τ̃SU(6)(m) = γ
m · τU(6)(2m),

τ̃SU(3) : Z/12Z→ SU(3), τ̃SU(3)(m) = τU(3)(4m),

τ̃SU(2) : Z/12Z→ SU(2), τ̃SU(2)(m) = γ
3m · τU(2)(6m).

It is easy to check that these three maps are well-defined. If we form the diagonal

(4.5f) τ̃∆ : Z/12Z→ SU(6)×SU(3)×SU(2),

then
τ̃∆(6) = (γ6,1,γ18) = (−1,1,−1) = ζ∆(−1).

The image in H of this element is trivial; so τ̃∆ descends to

(4.5g) τ∆ : Z/6Z→ H.

In exactly the same way we can define

(4.5h) σ̃∆ : µ12→ SU(6)×SU(3)×SU(2),

descending to

(4.5i) σ∆ : µ6→ H.

Just as in Example 4.4, we find a group homomorphism

(4.5j) τ∆×σ∆×ρ : Z/6Z×µ6×µ6→ H ⊂ G;

the image is our abelian group A of order 216. Because of (4.5d), we have

(4.5k) GA = Hτ∆,σ∆ ,
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and a calculation in SU(6)× SU(3)× SU(2) (parallel to the one leading to (4.2t)) shows
that this is exactly A. So A is indeed a finite maximal torus.

We turn next to the roots. The character group of A is

(4.5l) X∗(A) = µ6×Z/6Z×Z/6Z.

The roots (φ , j,0) are those in the centralizer H of ρ(µ6); so they are the roots of A in

h= sl(6,C)× sl(3,C)× sl(2,C).

These were essentially calculated in Example 4.2. We have

(4.5m) gφ , j,0 =
〈

Xsl(6)
φ , j ,Xsl(3)

φ , j ,Xsl(2)
φ , j

〉
(φ , j) 6= (1,0).

The meaning of the first of these root vectors (defined in (4.2q) for n = 6) is clear. The
second root vector makes sense if both φ and j have order 3; that is, if φ is the square of a
sixth root of 1, and j is twice an integer modulo 6. Similarly, the third root vector makes
sense if φ and j both have order 2. The second and third root vectors cannot both make
sense, for in that case (φ , j) would be trivial.

We have therefore shown that, among the 35 roots α vanishing on ρ(µ6),

(4.5n) dimgα =


1 if α has order 6
2 if α has order 3
2 if α has order 2.

By analyzing the action of A in the 202-dimensional representation of H on g/h, one can
see that the same statements hold for all 215 roots.

We now calculate the coroots. If α is a root of order 6, then (3.6p) says that the number
of coroots is

2dimg(6/2)α ·3dimg(6/3)α = 22 ·32 = 36;

so the coroots are all the 36 homomorphisms

(4.5o) ξ : µ6→ kerα ' (Z/6Z)2.

The corresponding root transvections are all the transvections associated to the character
α .

If β is a root of order 3, then (3.6p) says that the number of coroots is

3dimg(3/3)β = 32 = 9;

so the coroots are all the 9 homomorphisms

(4.5p) ξ : µ3→ kerβ ' (Z/3Z)2× (Z/2Z)3.

The corresponding root transvections are all the transvections associated to the character
β .

Similarly, if γ is a root of order 2, there are 4 coroots, and the root transvections are all
of the 4 transvections associated to γ .

We see therefore that the (small) Weyl group of A in G contains all the transvection
automorphisms of A' (Z/6Z)3; so

(4.5q) Wsmall(G,A)' SL(3,Z/6Z)' SL(3,Z/2Z)×SL(3,Z/3Z),

a group of order 168 ·13392 = 2249856.
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The 27 characters of A of order 3 are exactly the characters trivial on the 8-element
subgroup A[2] of elements of order 2 in A; so G[3] = GA[2] has Lie algebra

(4.5r) g[3] = ∑
3β=0

gβ .

The 26 roots here all have multiplicity 2, so G[3] has dimension 52. It turns out that

(4.5s) G[3]' F4×A[2].

Similarly, if we define G[2] = GA[3], then

(4.5t) G[2]' G2×A[3].

Now Proposition 3.10 guarantees that G[2] and G[3] commute with each other, so we get a
subgroup

(4.5u) G[2]×G[3]⊂ G, G2×F4 ⊂ E8.

Perhaps most strikingly

(4.5v) W (G,A) =W (G[2],A)×W (G[3],A);

this is just the product decomposition noted in (4.5q).
The construction also shows (since A[2]⊂G2 and A[3]⊂ F4) that each of the subgroups

G2 and F4 is the centralizer of the other in E8. The existence of these subgroups has been
known for a long time (going back at least to[5], Table 39 on page 233; see also[15], pages
62–65); but it is not easy to deduce from the classical theory of root systems alone.
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