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Abstract. — We present an algorithm for computing the irreducible unitary repre-

sentations of a real reductive group G. The Langlands classification, as formulated by
Knapp and Zuckerman, exhibits any representation with an invariant Hermitian form

as a deformation of a unitary representation from the Plancherel formula. The behav-

ior of these deformations was in part determined in the Kazhdan-Lusztig analysis of
irreducible characters; more complete information comes from the Beilinson-Bernstein

proof of the Jantzen conjectures.

Our algorithm traces the signature of the form through this deformation, counting
changes at reducibility points. An important tool is Weyl’s “unitary trick:” replacing

the classical invariant Hermitian form (where Lie(G) acts by skew-adjoint operators)

by a new one (where a compact form of Lie(G) acts by skew-adjoint operators).

Résumé (Représentations unitaires des groupes de Lie réductifs)

Nous présentons un algorithme pour le calcul des représentations unitaires
irréductibles d’un groupe de Lie réductif réel G. La classification de Langlands, dans

sa formulation par Knapp et Zuckerman, présente toute représentation hermitienne

comme étant la déformation d’une représentation unitaire intervenant dans la
formule de Plancherel. Le comportement de ces déformations est en partie déterminé

par l’analyse de Kazhdan-Lusztig des caractères irréductibles; une information plus

complète provient de la preuve par Beilinson-Bernstein des conjectures de Jantzen.
Notre algorithme trace à travers cette déformation les changements de la signature

de la forme qui peuvent intervenir aux points de réductibilité. Un outil important
est “l’astuce unitaire” de Weyl: on remplace la forme hermitienne classique (pour
laquelle Lie(G) agit par des opérateurs antisymétriques) par une forme hermitienne
nouvelle (pour laquelle c’est une forme compacte de Lie(G) qui agit par des opérateurs
antisymétriques).
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1. First introduction

The purpose of this paper is to give a finite algorithm for computing the set of

irreducible unitary representations of a real reductive Lie group G. Before explaining

the nature of the algorithm, it is worth recalling why this is an interesting question.

A serious historical survey would go back at least to the work of Fourier (which can

be understood in terms of the irreducible unitary representations of the circle).

Since we are not serious historians, we will begin instead with a formulation of

“abstract harmonic analysis” arising from the work of Gelfand beginning in the 1930s.

In Gelfand’s formulation, one begins with a topological groupG acting on a topological

space X. A reasonable example to keep in mind is G = GL(n,R) acting on the space

X of lattices in Rn. What makes such spaces difficult to study is that there is little

scope for using algebra.

The first step in Gelfand’s program is therefore to find a nice Hilbert space H
(often of functions on X); for example, if G preserves a measure on X, one can take

H = L2(X)

If choices are made well (as in the case of an invariant measure, for example) then G

acts on the Hilbert space H by unitary operators:

π : G→ U(H).

Such a group homomorphism (assumed to be continuous, in the sense that the map

G×H → H, (g, v) 7→ π(g)v

is continuous) is called a unitary representation of G. Gelfand’s program says that

questions about the action of G on X should be recast as questions about the unitary

representation of G on H, where one can bring to bear tools of linear algebra.

One of the most powerful tools of linear algebra is the theory of eigenvalues and

eigenvectors, which allow some problems about linear transformations to be reduced

to the case of dimension one, and the arithmetic of complex numbers. An eigenvec-

tor of a linear transformation is a one-dimensional subspace preserved by the linear

transformation. In unitary representation theory the analogue of an eigenvector is an

irreducible unitary representation: a nonzero unitary representation having no proper

closed subspaces invariant under π(G). Just as a finite-dimensional complex vector

space is a direct sum of eigenspaces of any (nice enough) linear transformation, so

any (nice enough) unitary representation is something like a direct sum of irreducible

unitary representations.

The assumption that we are looking at a unitary representation avoids the diffi-

culties (like nilpotent matrices) attached to eigenvalue decompositions in the finite-

dimensional case; but allowing infinite-dimensional Hilbert spaces introduces compli-

cations of other kinds. First, one must allow not only direct sums but also “direct

integrals” of irreducible representations. This complication appears already in the case
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of the action of R on L2(R) by translation. The decomposition into one-dimensional

irreducible representations is accomplished by the Fourier transform, and so involves

integrals rather than sums.

For general groups there are more serious difficulties, described by von Neumann’s

theory of “types.” But one of Harish-Chandra’s fundamental theorems ([12, Theorem

7]) is that real reductive Lie groups are “type I,” and therefore that any unitary

representation of a reductive group may be written uniquely as a direct integral of

irreducible unitary representations. The second step in Gelfand’s program is to recast

questions about the (reducible) unitary representation π into questions about the

irreducible representations into which it is decomposed.

The third step in Gelfand’s program is to describe all of the irreducible unitary

representations of G. This is the problem of “finding the unitary dual”

(1.1a) Ĝu =def {equiv. classes of irreducible unitary representations of G}

It is this problem for which we offer a solution (for real reductive G) in this pa-

per. It is far from a completely satisfactory solution for Gelfand’s program; for of

course what Gelfand’s program asks is that one should be able to answer interesting

questions about all irreducible unitary representations. (Then these answers can be

assembled into answers to the questions about the reducible representation π, and

finally translated into answers to the original questions about the topological space

X on which G acts.) We offer not a list of unitary representations but a method to

calculate the list. To answer general questions about unitary representations in this

way, one would need to study how the questions interact with our algorithm.

Which is to say that we may continue to write papers after this one.

We will offer a more complete description of the nature of the algorithm in Section 7,

after recalling the results of Harish-Chandra, Langlands, and others in terms of which

the algorithm is formulated. For the moment we can say that the algorithm calculates

not only the set of unitary representations, but more generally the signature of the

invariant Hermitian form on any irreducible representation admitting one. What the

algorithm uses is the Kazhdan-Lusztig polynomials describing irreducible characters of

G, and their interpretation (established by Beilinson and Bernstein in [4]) in terms of

Jantzen filtrations. The algorithm in the analogous setting of highest weight modules

is treated by Yee in [49,50].

We are deeply grateful to George Lusztig for producing the mathematics in [31],

without which we would have been unable to complete this work. We thank Annegret

Paul, whose expert reading of a draft of this paper led to many emendations and

improvements. Finally, we thank Wai Ling Yee, whose work first showed us that

an analysis of unitary representations along these lines might be possible; indeed we

hoped to persuade her to be a coauthor.
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2. Nonunitary representations

In this section we will recall Harish-Chandra’s framework for the study of rep-

resentation theory for real reductive groups. Gelfand’s program says that unitary

representations are what one should care about most, partly because of their value

in applications. It is also true that working with infinite-dimensional nonunitary rep-

resentations leads to terrible difficulties from functional analysis. The difficulties are

related to those encountered in studying eigenvalues for linear operators: for normal

operators (those commuting with their adjoints, and therefore nicely related to the

Hilbert space structure) there is a clean and complete theory, but for general operators

everything goes wrong.

On the other hand, it turns out to be extremely difficult to understand unitary rep-

resentations without also looking at some nonunitary representations. What happens

in the end is that we look at certain families of possibly nonunitary representations

that are parametrized by complex vector spaces (naturally defined over the rational

numbers Q). The unitary representations are parametrized by real points of rational

polyhedra inside these complex vector spaces. This fact essentially goes back to work

of Knapp and Stein in the 1960s, and is made precise in [23, Chapter 16]. What

our algorithm does is compute these polyhedra explicitly. The point is that we are

therefore describing unitary representations as a subset of a (much simpler) set of

possibly nonunitary representations.

The first big idea is therefore Harish-Chandra’s classical one, providing a category

of possibly nonunitary representations for which functional analysis works nearly as

well as in the unitary case. In order to formulate Harish-Chandra’s definition of this

category, we need some general terminology about groups and representations.

Suppose H is a real Lie group. The real Lie algebra of H and its complexification

are written

h0 = Lie(H), h = h0 ⊗R C.

The universal enveloping algebra is written U(h). The group H acts on h and on U(h)

by automorphisms

Ad: H → Aut(U(h));

we write

Z(h) = U(h)Ad(H)

for the algebra of invariants. If H is connected, or if H is the group of real points of

a connected complex group, then Z(h) is precisely the center of U(h), but in general

we can say only

Z(h) ⊂ center of U(h).

A continuous representation of H is a complete locally convex topological vector

space V equipped with a continuous action of H by linear transformations. We will
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sometimes write representations with module notation, and sometimes with a named

homomorphism

π : H → Aut(V ).

In either case the continuity assumption means that the map

H × V → V, (h, v) 7→ h · v = π(h)v

is continuous. We mention again that the representation is called unitary if V is a

Hilbert space, and the action of H preserves the inner product.

An invariant subspace is a closed subspace W ⊂ V preserved by the action of H.

We say that V is irreducible if it has exactly two invariant subspaces (namely 0 and

V , which are required to be distinct).

The space of smooth vectors in V is

(2.1a) V∞ = {v ∈ V | the map h 7→ h · v from H to V is smooth}.

There is a natural complete locally convex topology on V∞, and the inclusion in V

is continuous with dense image. The space V∞ is preserved by the action of H, in

this way becoming a continuous representation in its own right. It carries at the

same time a natural (continuous) real Lie algebra representation of h0 (equivalently,

a complex algebra action of U(h)) obtained by differentiating the action of H. These

two representations are related by

h · (X · v) = (Ad(h)X) · (h · v) (h ∈ H,X ∈ h0, v ∈ V∞);

or in terms of the enveloping algebra

h · (u · v) = (Ad(h)u) · (h · v) (h ∈ H,u ∈ U(h), v ∈ V∞).

If (π1, V1) and (π2, V2) are two representations of H, an intertwining operator is a

continuous linear map respecting the two actions of H:

T : V1 → V2, Tπ1(h) = π2(h)T (h ∈ H).

The vector space of all intertwining operators from V1 to V2 is written HomH(V1, V2).

Intertwining operators are the morphisms in the category of representations, and

therefore they play a central part. Of particular interest are the self-intertwining

operators T ∈ HomH(V, V ); for any eigenspace of such an operator T is automatically

an invariant subspace of V . Here is an application.

Proposition 2.2. — Suppose (π, V ) is a continuous representation of a Lie group

H. If the corresponding smooth representation (π∞, V∞) (see (2.1a)) is irreducible,

then π is irreducible as well.

For any z ∈ Z(h) (see (2.1)), the operator π∞(z) is an intertwining operator for

π∞. If any π∞(z) has any nonzero eigenvector, then either π∞ is reducible, or π∞(z)

is a scalar operator.
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This proposition says that if π is an irreducible representation, and z ∈ Z, then

π∞(z) “ought to be” a scalar operator; that if it is not, then there is some kind of

pathological behavior going on, like an operator having no spectral decomposition

at all. Such pathological behavior can certainly happen, even in the representation

theory of semisimple Lie groups. There is an example due to Soergel in [39]. Harish-

Chandra’s idea was to use the absence of this pathology to define a reasonable category

of nonunitary representations. Here is his definition. (The definition of “reductive

group” is of course logically even more fundamental than that of “irreducible repre-

sentation;” but it is less important for understanding the results, and so we postpone

it to Section 3.)

Definition 2.3. (Harish-Chandra [12, page 225]). Suppose G is a a real reduc-

tive Lie group. A continuous representation (π, V ) of G is called quasisimple if

every z ∈ Z(g) ((2.1)) acts by scalars on V∞. In this case the algebra homomor-

phism

χπ : Z→ C, π(z) = χπ(z) IdV∞

is called the infinitesimal character of π.

Harish-Chandra’s “good” nonunitary representations are the irreducible quasisim-

ple representations. In order to state his basic results about these representations,

and about how the unitary representations appear among them, we need one more

bit of technology. The difficulty is that these nonunitary representations do not yet

form a nice category: there are not enough intertwining operators.

Here is an illustrative example. The group G = SL(2,R) acts by linear transfor-

mations on R2, and therefore on the real projective space RP1 of lines in R2; this is

just a circle. On the circle (as on any manifold) we can define a complex line bundle

L1/2 of half densities; a smooth section of L1/2 may be written as f(θ)|dθ|1/2, with

f a smooth 2π-periodic function. There is a natural pre-Hilbert space structure on

these sections, with

〈f1|dθ|1/2, f2|dθ|1/2〉 =

∫ 2π

0

f1(θ)f2(θ)dθ.

The full group of diffeomorphisms of the circle acts on the space C∞(L1/2); the

factor |dθ|1/2 transforms by the square root of the absolute value of the Jacobian.

Consequently this action is by unitary operators, and it extends to the Hilbert space

completion L2(L1/2). We can restrict this representation to SL(2,R), obtaining a

unitary representation π(2). This turns out to be an irreducible unitary representation;

it is called the “spherical principal series with parameter zero.” (The word “spherical”

refers to the fact that there is a vector fixed by the rotation subgroup SO(2), namely

the standard half-density 1 · |dθ|1/2.)

The difficulty arises because there are many variants of this representation. We can

for example consider the representation π∞ on the original space C∞(L1/2); with the

standard locally convex topology on C∞, this is again an irreducible representation.
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Or we could require the function f(θ) to be in Lp rather than L2; although the Lp

norm is not preserved by diffeomorphisms, they still act by bounded operators, and

define an irreducible representation π(p) for 1 ≤ p <∞. (The action π(∞) on bounded

functions is not continuous in the L∞ norm.) There is an irreducible representation

π−∞ on distribution sections, and one πω on analytic sections. There are Sobolev

spaces, and functions with a finite number of continuous derivatives. In order to get

a nice classification of representations, one must regard all of these representations

as essentially the same; but the questions of what intertwining operators exist among

the spaces is complicated. (For instance, there is a continuous inclusion of Lp in Lq

whenever p > q, since the circle has finite measure, and therefore an intertwining

operator from π(p) to π(q); but there is no nonzero intertwining operator from π(q) to

π(p).)

In the case of the circle, all of these function spaces contain the trigonometric poly-

nomials, and of course the theory of Fourier series offers good descriptions of many

(not all!) of them in terms of growth conditions on the Fourier coefficients. The tech-

nical difficulty for doing representation theory in this way is that the group SL(2,R)

does not preserve the space of trigonometric polynomials. Harish-Chandra observed

that the action of the universal enveloping algebra does preserve trigonometric poly-

nomials, and that this property can be generalized to all reductive groups. He showed

that some part of the group action is determined by differential equations involving

only these trigonometric polynomials, even though the solutions of the equations may

have infinite Fourier series.

Part of Harish-Chandra’s definition makes sense in a very general setting. Assume

again that H is a real Lie group, and fix an arbitrary choice of

L = compact subgroup of H.

If (π, V ) is any representation of H, we define

(2.4) VL = {v ∈ V | dim(〈π(L)v〉) <∞};

here 〈π(L)v〉 denotes the span of the vectors π(l)v as l runs over L. This is the

smallest L-invariant subspace of V containing v, so we call VL the space of L-finite

vectors of π. Let us write

L̂ = {equivalence classes of irreducible representations of L}

By elementary representation theory for compact groups,

VL =
∑
δ∈L̂

V (δ), V (δ) = largest sum of copies of δ in V ;

V (δ) is called the space of δ-isotypic vectors in V . There is a natural complete locally

convex topology on VL, making it the algebraic direct sum of the subspaces V (δ);

each V (δ) is a closed subspace of V .



10 J. D. ADAMS, M. VAN LEEUWEN, P. E. TRAPA & D. A. VOGAN, JR.

Lemma 2.5 ([12]). — Suppose V is a representation of a real Lie group H, and L

is a compact subgroup of H. Then the space V∞L of smooth L-finite vectors ( (2.1a),

(2.4)) is preserved by the actions of L and of h0 (equivalently, of U(h)). These two

actions satisfy the conditions

1. the representation of L is a direct sum of finite-dimensional irreducible repre-

sentations;

2. the differential of the action of L is equal to the restriction to l0 of the action

of h0; and

3. l · (X · v) = (Ad(l)X) · (l · v), l ∈ L, X ∈ h0, v ∈ V∞L ); or equivalently

4. l · (u · v) = (Ad(l)u) · (l · v), l ∈ L, u ∈ U(h), v ∈ V∞L ).

Definition 2.6. Suppose L is a compact subgroup of a real Lie group H. An

(h0, L)-module is a complex vector space V that is at the same time a represen-

tation of the group L and of the real Lie algebra h0, subject to the conditions

in Lemma 2.5. A morphism of (h0, L)-modules is a linear map respecting the

actions of L and of h0 separately.

Lemma 2.7. — Suppose L is a compact subgroup of a real Lie group H. Passage to

L-finite smooth vectors

V → V∞L

defines a faithful functor from the category of representations to the category of (h0, L)-

modules. In particular, any (nonzero) intertwining operator between representations

induces a (nonzero) morphism between the corresponding (h0, L)-modules.

This is very easy. What is harder (and requires more hypotheses) is proving results

in the other direction: that (h0, L)-morphisms induce maps between group represen-

tations. For that, we return to the setting of a real reductive Lie group G.

Fix once and for all a choice of

K = maximal compact subgroup of G.

By a theorem of E. Cartan (see Theorem 3.4 below), this choice is unique up to con-

jugation. Here are some of Harish-Chandra’s fundamental results about quasisimple

representations.

Theorem 2.8. — Suppose G is a real reductive Lie group and K is a maximal com-

pact subgroup.

1. Suppose V is an irreducible unitary representation of G. Then V is quasisimple.

2. Suppose V is an irreducible quasisimple representation of G (Definition 2.3).

Then the associated (g0,K)-module V∞K (Lemma 2.5) is irreducible.

3. Suppose V1 and V2 are irreducible unitary representations of G, and that V∞1,K '
V∞2,K as (g0,K)-modules. Then V1 ' V2 as unitary representations.

4. Suppose X is an irreducible (g0,K)-module. Then there is an irreducible qua-

sisimple representation V of G so that X ' V∞K as (g0,K)-modules.
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5. Suppose X is an irreducible (g0,K)-module. Then X is associated to an irre-

ducible unitary representation of G if and only if X admits a positive definite

invariant Hermitian form 〈, 〉X . Here “invariant” means

〈k · v, w〉X = 〈v, k−1 · w〉X , 〈X · v, w〉X = −〈v,X · w〉X
(k ∈ K, X ∈ g0, v, w ∈ X)

Proof. — Part 1 is due to Segal [38]. Part 2 is proved in Harish-Chandra [12], although

it is difficult to point to a precise reference; the result is a consequence of Lemmas

33 and 34 and Theorem 5 (on pages 227–228). Part 3 is [12, Theorem 8]. Part 4 is

Harish-Chandra [13, Theorem 4]. Part 5 is [12, Theorem 9]

Definition 2.9. Suppose G is a real reductive Lie group and K is a maximal

compact subgroup. Two representations V1 and V2 of G are said to be infinites-

imally equivalent if the corresponding (g0,K)-modules V∞1,K and V∞2,K (Lemma

2.5) are equivalent. We define

Ĝ =def {infinitesimal equiv. classes of irreducible quasisimple reps of G}
= {equivalence classes of irreducible (g0,K)-modules},

and call this set the “nonunitary dual of G.” The (g0,K)-module V∞1,K is called

the Harish-Chandra module of V1.

Harish-Chandra’s theorem 2.8 provides a natural containment of the unitary dual

(1.1a) in the nonunitary dual

Ĝu ⊂ Ĝ,

always assuming that G is real reductive. In case G = K is compact, then every

irreducible representation is finite-dimensional, and the representation space can be

given a K-invariant Hilbert space structure; so every representation is equivalent to

a unitary one, and

K̂u = K̂.

We will recall in Section 6 results of Langlands and of Knapp-Zuckerman that

provide a complete and explicit parametrization of the nonunitary dual Ĝ. The rest

of the paper will be devoted to an algorithm for identifying Ĝu as a subset of these

parameters for Ĝ.

It is well known that in order to discuss real-linear complex representations of a

real Lie algebra h0, it is equivalent (and often preferable) to discuss complex-linear

representations of the complexified Lie algebra

h =def h0 ⊗R C.

We will conclude this section with an equally useful language for representations of

(2.10a) L = compact Lie group.
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For that, we use the algebra

(2.10b) R(L) =def span of matrix coefficients of finite-dimensional reps of L.

The algebra R(L) is finitely generated and has no nilpotent elements, so it is the

algebra of regular functions on a complex affine algebraic variety L(C). The closed

points of L(C) are the maximal ideals of R(L), and these include the ideals of functions

vanishing at one point of L; so

(2.10c) L ⊂ L(C)

We call L(C) the complexification of L.

For the formulation of the next theorem, we need to recall (see for example [6, §§11–

14], or [41, Chapter 11]) the notion of a real form of a complex affine algebraic variety

X(C). Write R(X) for the (complex) algebra of regular functions on X(C). Because

C/R is a Galois extension, we can define a real form as a certain kind of action of the

Galois group on R(X). Since the Galois group has only one nontrivial element, a real

form of X(C) is given by a single map (the action of complex conjugation)

(2.11a) σ∗ : R(X)→ R(X)

The map σ∗ has the characteristic properties

1. σ∗ is a ring automorphism of R(X):

σ∗(fg) = σ∗(f)σ∗(g), σ∗(f + g) = σ∗(f) + σ∗(g) (f, g ∈ R(X)).

2. σ∗ has order 2.

3. σ∗ is conjugate linear:

σ∗(zf) = zσ∗(f) (z ∈ C, f ∈ R(X)).

Then σ∗ defines an automorphism σ of order 2 of the set X(C) of maximal ideals

in R(X), and the (closed) real points X(R, σ) are the maximal ideals fixed by σ.

Because the ring of functions on a variety has no nilpotent elements, we can recover

σ∗ from σ: regarding elements of R(X) as functions on X(C), we have

(2.11b) (σ∗f)(x) = f(σ(x)).

Theorem 2.12 (Chevalley [8, §§VIII–XII of Chapter VI])

Suppose L is a compact Lie group.

1. The construction of (2.10) enlarges L to a complex reductive algebraic group

L(C). It is a covariant functor in L.

2. Every locally finite continuous representation (π, V ) of L extends uniquely to an

algebraic representation (π(C), V ) of L(C); and every algebraic representation

of L(C) restricts to a locally finite continuous representation of L.

3. There is unique real form σc of L(C) with L(R, σc) = L.
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Conversely, suppose L(C) is a complex reductive algebraic group. There is a real form

σc of L(C), unique up to conjugation by L(C), whose group of real points L = L(R, σc)
is compact, and meets every component of L(C). Then L(C) is the complexification

of L.

In the setting of the theorem, suppose (π, V ) is a finite-dimensional unitary repre-

sentation of L with inner product 〈, 〉. If u, v ∈ V , then the matrix coefficient

fu,v(`) =def 〈π(`)u, v〉

is one of the spanning functions used to define R(L). The real form in the theorem is

(σ∗fu,v)(`) = 〈π(`−1)v, u〉.

From this one can see that

L = {` ∈ L(C) | π(C)(`) is unitary, all π ∈ L̂u}.

It follows in particular that L is a maximal compact subgroup of L(C).

Corollary 2.13. — Suppose L is a compact subgroup of a real Lie group H, and

L(C) is the complexification of L (cf. (2.10)). Define an (h, L(C))-module by anal-

ogy with Definition 2.6, requiring the representation of h to be complex linear and

the action of L(C) to be algebraic. Then any (h0, L)-module extends uniquely to an

(h, L(C))-module; and this extension defines an equivalence of categories from (h0, L)-

modules to (h, L(C))-modules.

3. Real reductive groups

Before embarking on more representation theory, we must be more precise about

the definition of “reductive group,” since the detailed description of the nonunitary

dual is sensitive to details of this definition.

We begin with a complex connected reductive algebraic group

(3.1a) G(C).

Recall that this means a subgroup of the group of n×n invertible matrices, specified

as the zero locus of a collection of polynomial equations in the matrix entries and the

inverse of the determinant, with two additional properties:

1. G(C) has no nontrivial normal subgroup consisting of unipotent matrices, and

2. G(C) is connected as a Lie group.

The words preceding the conditions are the definition of “complex algebraic;” the first

condition is the definition of “reductive;” and the second condition is (equivalent to)

the definition of “connected.” The first condition may be replaced by
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1′. After an appropriate change of basis in Cn, the group G(C) is preserved by the

automorphism σc,

(3.1b) σc(g) = (g∗)−1

(inverse conjugate transpose) of GL(n,C).

The reason for the equivalence is that the presence of a nontrivial unipotent normal

subgroup of G(C) implies the existence of a basis in which G(C) is block upper tri-

angular, but not block diagonal. On the other hand, block upper triangular matrices

preserved by conjugate transpose must be block diagonal. (This does not easily or

immediately prove either direction of the equivalence, but it gives some hint of the

relationship.)

Another way to think of the equivalence of 1′ and 1 is in terms of the equivalence

of Theorem 2.12: the automorphism σc is a compact real form of G(C).

A real form of a complex Lie group G(C) is an antiholomorphic Lie group auto-

morphism σ of order 2:

(3.1c) σ : G(C)→ G(C), σ2 = Id .

(Essentially we are repeating the discussion of real forms from (2.11), but now in the

category of analytic manifolds rather than of varieties. For reductive algebraic groups,

the two categories give rise to exactly the same real forms.) Here “antiholomorphic”

means that if f is a (locally defined) holomorphic function on G(C), then

(σ∗f)(g) = f(σ(g))

is also holomorphic. Clearly the differential at the identity of a real form of G(C) is

a real form of the complex Lie algebra g: that is, a real Lie algebra automorphism of

order two carrying multiplication by i to multiplication by −i. (But not every real

form of the Lie algebra must exponentiate to the group.)

Given a real form σ, the group of real points is

(3.1d) G = G(R, σ) = G(C)σ,

the group of fixed points of σ on G(C). This is a real Lie group of real dimension

equal to the complex dimension of G(C). A real reductive algebraic group is a group

of real points G = G(R, σ) for a complex connected reductive algebraic group.

This is the class of groups with which we will work in this paper. It is fairly to

common to work with a somewhat larger class of groups: to start with G(R, σ) as

above, and to allow a real Lie group G̃ endowed with a homomorphism

(3.1e) π : G̃→ G(R, σ)

having finite kernel and open image. For such a group G̃, it is still possible to formulate

the very precise form of the Langlands classification theorem that we need. But the

unitarity algorithm will use also the Kazhdan-Lusztig theory of irreducible characters,

and this is not available in the setting (3.1e). (A number of interesting special cases



UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS 15

have been treated, for example in [33].) Once this Kazhdan-Lusztig theory is available,

the rest of the proof of the unitarity algorithm can proceed as in the linear case. But

we will not discuss such extensions further.

Example 3.2. — Suppose G(C) is a complex connected reductive algebraic group;

that is, a subgroup of GL(n,C) satisfying the conditions described above. According

to the reformulated definition of reductive, we can (after change of basis in Cn)

assume that G(C) is preserved by the operation σc(g) = (g∗)−1, the inverse conjugate

transpose of g. Clearly σc is an antiholomorphic involution of G(C), so it defines a

real form

G(R, σc) = G(C) ∩ U(n),

the group of unitary matrices in G(C). Since G(C) is closed in GL(n,C) (as the

set of zeros of some polynomials), its intersection with U(n) is closed, and therefore

compact. This real form is called a compact real form of G(C). It is unique up to

conjugation by an inner automorphism of G(C).

Example 3.3. — Suppose G(C) = SO(n,C), the group of n×n orthogonal matrices

(g · tg = Id) of determinant 1. Clearly this is an algebraic subgroup of GL(n,C), and

clearly it satisfies the second condition 1′ to be reductive. It is not difficult to show

that G(C) is connected. Because tg = g−1 for g ∈ G(C), the compact real form acts

by σc(g) = g; so the group of fixed points is

G(R, σc) = SO(n) = {real orthogonal matrices of determinant 1}.

To construct other real forms, write n = p+ q for nonnegative integers p and q, and

let ε(p, q) be the diagonal matrix whose first p entries are +1 and whose last q entries

are −1. Then

σ(p, q) = σc ◦ (conjugation by ε(p, q))

is an antiholomorphic involutive automorphism of G(C): a real form. (The key

point is that the automorphism σc fixes ε(p, q), so that the two factors in the

definition of σ(p, q) commute.) A little thought shows that G(R, σ(p, q)) consists

of the elements of SO(n,C) that are represented by real matrices in the basis

{e1, . . . , ep, iep+1, . . . , iep+q}. From this it follows easily that

G(R, σ(p, q)) ' SO(p, q),

the group of determinant one real matrices preserving a quadratic form of signature

(p, q).

If n = p+ q is odd, this turns out to be all the real forms of SO(n,C). If n is even

and at least 4, there are more (perhaps best understood as groups of (n/2) × (n/2)

quaternionic matrices).

Part of the point of this example is to understand what groups are being excluded

by our convention. One example is the connected semisimple group SOe(p, q), the

identity component of SO(p, q). There is no difficulty in formulating the Langlands
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classification for this group, and the Kazhdan-Lusztig theory works perfectly for it,

so our unitarity algorithm could be applied; but for convenience we are excluding this

group. (Its unitary representations are precisely the constituents of the restrictions

of unitary representations of SO(p, q), so they are not difficult to compute from what

we do.)

A more serious exclusion is (for p and q each at least 3) the four-fold universal

cover [SOe(p, q)]
∼. This group is not a matrix group, so extending our algorithm to

apply to it requires a nontrivial extension of the Kazhdan-Lusztig theory (parallel to

what is done in [33]).

We conclude with a little structure theory for real reductive groups, which will be

vital for the formulation of the Langlands classification.

Theorem 3.4 (Cartan; see for example [24, Proposition 1.143], or [32, Theorem

5.1.4])

Suppose G(C) is a complex connected reductive algebraic group ( (3.1)).

1. Suppose σ0 is a real form of G(C). Then there is a compact real form σc of G(C)

that commutes with σ0. This compact real form is unique up to conjugation by

G = G(R, σ0). The composition

(3.4a) θ = σ0 ◦ σc

is an algebraic automorphism of G(C) of order two; it is called a Cartan invo-

lution for the real form σ0.

2. Suppose θ is an involutive algebraic automorphism of G(C). Then there is a

compact real form σc of G(C) that commutes with θ. This compact real form is

unique up to conjugation by K(C) = G(C)θ. The composition

σ0 = θ ◦ σc

is a real form of G(C), called a real form for the involution θ.

3. The constructions above define a bijection

{real forms of G(C)} / (conjugation by G(C))

←→{algebraic involutions of G(C)} / (conjugation by G(C))

4. The group K = Gθ is maximally compact in G. Its complexification is the

reductive algebraic group

K(C) = G(C)θ.

5. Write

g0 = k0 + s0

for the decomposition of the real Lie algebra g0 = Lie(G(R, σ0)) into the +1 and

−1 eigenspaces of the Cartan involution θ. (In the setting (3.1b), these are the
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skew-hermitian and hermitian matrices in the Lie algebra, respectively.) Then

there is a (K-equivariant under conjugation) diffeomorphism

K × s0 → G, (k,X) 7→ k · exp(X).

The last assertion is a generalization (and also a consequence) of the polar decom-

position for invertible matrices. The fact that K is a maximal compact subgroup

follows immediately from this decomposition.

4. Maximal tori

Our next serious goal is Langlands’ classification of the irreducible (possibly nonuni-

tary) representations of a real reductive group. To a first approximation, it says that

the irreducible representations of such a group are indexed by orbits of the (real) Weyl

groups on characters of (real points of) maximal tori. What requires a little care is

the understanding of “maximal tori;” that is the subject of the present section.

Definition 4.1. Suppose G(C) is a complex connected reductive algebraic group

((3.1)). A (complex) maximal torus in G(C) is a maximal connected abelian

subgroup consisting of diagonalizable matrices. Automatically such a subgroup

H(C) is again complex connected reductive algebraic. Its character lattice is the

group of algebraic group homomorphisms

X∗ =def Homalg(H(C),C×).

This is a lattice (a finitely-generated torsion free abelian group) of rank equal to

the complex dimension of H(C). The dual lattice

X∗ =def Hom(X∗,Z)

is naturally isomorphic to

X∗ ' Homalg(C×, H(C)),

the lattice of one-parameter subgroups.

Suppose now that σ is a real form of G(C), so that G(R, σ) is a real reductive

algebraic group. We say that H(C) is defined over R (with respect to σ) if it is

preserved by σ. In that case the group of real points of H(C) is

H = H(R, σ) = G(R, σ) ∩H(C) = G ∩H(C),

which we call a (real) maximal torus of G.

All complex maximal tori in G(C) are conjugate, and all are isomorphic to (C×)n.

There can be more than one conjugacy class of real maximal tori in G, and in that

case they are not all isomorphic. For example, in the real form SL(2,R) of SL(2,C)

there are two real forms of the maximal torus C×. One is σ(z) = z, with real points

R×; and the other is σc(z) = (z)−1, with real points the (compact) circle group.
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Because lattices are built from copies of Z, it is traditional and natural to write

the group law in X∗ as +. But the group law in X∗ arises from multiplication of

the (nonzero complex) values of algebraic characters, so there is always a danger of

confusion in the notation. We will try to offer warnings about some instances of this

confusion.

The lattice X∗ is a fundamental invariant of the complex reductive group. Our

first goal is to describe all of the (continuous) characters—the possibly nonunitary

representations—of a real torus H in terms of this lattice of (algebraic) characters of

H(C). (This is a way of thinking about the Langlands classification theorem for the

abelian reductive group H.) It will be instructive at the same time to identify the

unitary characters within these nonunitary representations, since that is the simplest

case of the classification of unitary representations at which we are aiming.

Proposition 4.2. — Suppose H(C) is a connected abelian complex reductive alge-

braic group (a complex torus), and X∗ is the lattice of algebraic characters (Definition

4.1).

1. We can recover H(C) from X∗ by the contravariant functor

H(C) ' Hom(X∗,C×).

The complex Lie algebra h is

h ' X∗ ⊗Z C,

and therefore is in a natural way defined over Z.

2. Any real form σ of H(C) gives rise to an automorphism θ of order 2 of X∗, by

the requirement

θ(λ)(h) = λ(σh)
−1
.

This defines a bijection between real forms and automorphisms of order two of

X∗.

3. An automorphism θ of X∗ of order two induces an automorphism (still called

θ) of H(C) of order two, by means of the functor in (1). This automorphism

is the Cartan involution corresponding to σ (Theorem 3.4). In particular, θ is

trivial if and only if H(R, σ) is compact.

Proposition 4.3. — Suppose H(C) is a connected abelian complex reductive alge-

braic group (a complex torus), X∗ is the lattice of algebraic characters (Definition

4.1), and σ is a real form of H(C). Write θ for the corresponding Cartan involution

(Proposition 4.2), and H = H(R, σ) for the group of real points.

1. The group

T = Hθ
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is the (unique) maximal compact subgroup of H. Its complexification is the

(possibly disconnected) reductive algebraic group

T (C) = H(C)θ.

2. Write

h0 = t0 + a0

for the decomposition of the real Lie algebra of H into +1 and −1 eigenspaces

of θ. Then

t0 ' HomZ((X∗)θ, iR),

a0 ' HomZ((X∗)−θ,R).

3. Write

A = exp(a0),

the identity component of the maximal split torus of H: the identity component

of the subgroup of elements h with θh = h−1. The group A is isomorphic to its

Lie algebra, and

H ' T ×A,
a direct product of abelian Lie groups.

4. The group of continuous characters of T may be identified with the group of

algebraic characters of T (C), and so (by restriction) with a quotient of X∗:

T̂ ' Homalg(T (C),C×) ' X∗/(1− θ)X∗.

5. The group of continuous characters of A is

Â ' a∗ ' (X∗)−θ ⊗Z C,

a complex vector space naturally defined over Z. Therefore

Ĥ ' T̂ × Â ' [X∗/(1− θ)X∗]× [(X∗)−θ ⊗Z C],

a direct product of a finitely generated discrete abelian group and a complex

vector space defined over Z.

6. Suppose γ = (λ, ν) ∈ T̂ × Â is a parameter for a character of H. Then the

character is unitary if and only if ν is purely imaginary; that is,

ν ∈ (X∗)−θ ⊗Z iR.

There is an essential asymmetry between the two factors T and A in part (3). The

first is the group of real points of an algebraic group. The symmetrically defined

algebraic group

A(C) = H(C)−θ

is also defined over R, and its group of real points is

A(R) = {h ∈ H | θ(h) = h−1}.
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This group is often disconnected; and

A = identity component of A(R).

(This notation is inconsistent with our general practice of writing unadorned Roman

letters for groups of real points; we will not make use of the algebraic group A(C), so

no confusion should arise.)

Proof. — Parts (1)–(3) are just the Cartan decomposition of Theorem 3.4 for the

abelian case. The first assertion in part (4) (identifying continuous representations

of a compact Lie group with algebraic representations of its complexification) is very

general, and in some sense amounts to the way the complexification is defined. The

second part of (4) is part of the general fact that taking algebraic characters is a con-

travariant equivalence of categories from complex reductive abelian groups to finitely

generated abelian groups.

For (5), the characters of a vector group are the same thing as complex-valued

linear functionals on the Lie algebra; this can be computed from the description of

the Lie algebra in (2). The linear functional ν corresponds to the character eν defined

by

eν(expX) = eν(X) (X ∈ a0).

This formula makes it plain that the character eν is unitary if and only if ν takes purely

imaginary values. (Any character of the compact abelian group T is automatically

unitary.)

We see therefore that a parameter for a character of H has a discrete part (the

restriction to T , given by an element of the lattice quotient X∗/(1 − θ)X∗) and a

continuous part (the restriction to A, given by an element of the complex vector

space a∗). The complex vector space is naturally defined over R (with real points a∗0);

and the character is unitary if and only if the real part of the continuous parameter

is equal to zero. These statements are the ones we will generalize to all real reductive

groups.

5. Coverings of tori

What enters most naturally in the Langlands classification are characters not of

the real tori H, but of certain double covers

1→ {1, ε} → H̃ → H → 1.

The reason is that we are interested in versions of the Weyl character formula, and

the Weyl denominator is a function not on the torus but rather on such a double

cover. Here is the construction we need.
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Definition 5.1. Suppose H is a Lie group, n is a positive integer, and

γ ∈ Hom(H,C×),

an element of the group of (one-dimensional) continuous characters of H. The

γ/n cover of H is the Lie group

H̃ = {(h, z) ∈ H × C× | γ(h) = zn}.

(Here γ/n is for the moment a formal symbol, recording the defining character

γ and the level n of the cover. Despite the absence of γ and n in the notation,

the group H̃ depends very much on both of these values; we write H̃(γ/n) when

necessary.) Projection on the first factor defines a surjective homomorphism to

H; the kernel is isomorphic (by projection on the second factor) to the group

〈ζn〉 = {1, ζn, ζ2
n, . . . , ζ

n−1
n }

(with ζn = e2πi/n) of nth roots of 1 in C×. Therefore H̃ is an n-fold cover of H,

in the sense that there is a natural short exact sequence

1→ 〈ζn〉 → H̃ → H → 1.

The subgroup 〈ζn〉 is central. Projection on the second factor defines a group

character

(γ/n) : H̃ → C×, (γ/n)(h, z) = z.

The nth power of this character descends to H, and is equal to γ; that is why

we call H̃ the “γ/n cover.”

Any (reasonable; for example, if H is reductive, “quasisimple” is a strong

enough hypothesis) irreducible representation π of H̃ must send ζn to ζkn for

some k ∈ Z; we say that such a representation has level k. It is easy to check

that all level k representations are uniquely of the form τ ⊗ k(γ/n) for some

τ ∈ Ĥ: (
H̃
)̂
k

=def {level k irreducibles of H̃} ↔ k(γ/n)⊗ Ĥ.

Different characters can define isomorphic covers. An expression γ2 = γ1 +nφ

for one-dimensional characters of H gives rise to a natural isomorphism

H̃(γ1/n) 'φ H̃(γ2/n), (h, z) 7→ (h, zφ(h)).

In order to introduce the coverings we need, we recall now the fundamental struc-

ture theory of complex reductive groups.

Definition 5.2. Suppose G(C) is a complex connected reductive algebraic

group, H(C) is a maximal torus, and X∗ is the lattice of algebraic characters of

H(C). Write

R = R(G(C), H(C)) ⊂ X∗
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for the finite set of nonzero weights of the adjoint representation of H(C) on g,

the roots of H(C) in G(C). Attached to each root α there is a three-dimensional

subgroup

φα : SL(2,C)→ G(C),

an algebraic group homomorphism with finite kernel satisfying

φα(diagonal matrices) ⊂ H(C), 0 6= dφα

(
0 1

0 0

)
∈ gα.

These conditions characterize φα uniquely up to conjugation by diagonal matrices

in SL(2,C), or by H(C). In particular, they characterize uniquely the coroot α∨

corresponding to α,

α∨ : C× → H(C), α∨(z) =def φα

((
z 0

0 z−1

))
.

Write

R∨ = R∨(G(C), H(C)) ⊂ X∗
(notation as in Definition 4.1) for the set of coroots.

Attached to the root α is the root reflection

sα ∈ Aut(X∗), sα(λ) = λ− 〈λ, α∨〉α.

This reflection acts also (by transpose) on X∗, and by extension of scalars on

h∗ = X∗ ⊗Z C and h and H(C). The group generated by all reflections is the

complex Weyl group

W (G(C), H(C)) = 〈sα | α ∈ R(G,H)〉 ⊂ Aut(X∗).

This group may also be described as

W (G(C), H(C)) = NG(C)(H(C))/H(C) ⊂ Aut(H(C)),

the group of automorphisms of H(C) arising from G(C).

Suppose R+ ⊂ R is a choice of positive roots (see [18, 10.1]). Define

2ρ = 2ρ(R+) =
∑
α∈R+

α ∈ X∗,

Write Π = Π(R+) for the corresponding set of simple roots ([18, 10.1]). Then

([18, Lemma 13.3A])

Π = {α ∈ R | 〈2ρ, α∨〉 = 2}.

Consequently all coroots take nonzero even integer values on 2ρ; the positive

coroots are those taking positive values on 2ρ; and the simple coroots are those

taking the value 2 on 2ρ.

We pause here for a moment to recall Harish-Chandra’s description of the center

of the enveloping algebra Z(g) (2.1).
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Definition 5.3. In the setting of Definition 5.2, suppose R+ is a choice of posi-

tive roots. Write

n = n(R+) =
∑
α∈R+

gα, n− = n(−R+) =
∑
α∈R+

g−α,

b = b(R+) = h + n, b− = b(−R+) = h + n−

for the corresponding maximal nilpotent and Borel subalgebras, so that

g = n− ⊕ h⊕ n

U(g) = U(n−)⊗ U(h)⊗ U(n), U(g) = U(b−)⊕ U(g)n.

Write

ξ̃ : U(g)→ U(b−)

for the (linear) projection corresponding to the last direct sum decomposition.

Then Harish-Chandra observes that

ξ̃ : U(g)h → U(b−)h = U(h) ' S(h) ' polynomial functions on h∗

is an algebra homomomorphism, the unnormalized Harish-Chandra homomor-

phism. Every σ ∈ h∗ gives rise to an algebra automorphism of S(h)

τσ = translation by σ, τσ(Z) = Z − σ(Z) (Z ∈ h).

The normalized Harish-Chandra homomorphism is

ξ : U(g)h → S(h), ξ(z) = τρ(ξ̃(z)).

Here ρ ∈ h∗ (Definition 5.2) is half the sum of the roots in R+. For any λ ∈ h∗,

the infinitesimal character λ is the algebra homomorphism

ξλ : Z(g)→ C, ξλ(z) = ξ(z)(λ) = ξ̃(z)(λ− ρ).

Theorem 5.4 (Harish-Chandra; see [18, 130–134]). — . Suppose H(C) ⊂ G(C)

is a maximal torus in a connected reductive algebraic group; use the notation of Def-

inition 5.3. The Harish-Chandra homomorphism ξ is an algebra isomorphism

ξ : Z(g)→ S(h)W (G(C),H(C)).

Consequently

1. the homomorphism ξ is independent of the choice of positive root system;

2. every algebra homomorphism from Z(g) to C is ξλ for some λ ∈ h∗; and

3. ξλ = ξλ′ if and only if λ′ ∈W (G(C), H(C)) · λ.

Algebraically the most complicated questions in representation theory concern the

integral weights X∗ ⊂ h∗. The key to the arguments of this paper is deformation: un-

derstanding the behavior of representation theory in one-parameter families. Because

of these two facts, we will make a great deal of use of
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Definition 5.5 ([42, Definition 5.4.11]). Suppose we are in the setting of Defi-

nition 5.2. Recall from Proposition 4.2 the identifications

h ' X∗ ⊗Z C, h∗ ' X∗ ⊗Z C

exhibiting h as canonically defined over Z. This means in particular that h is

canonically defined over R; we write

hRE = X∗ ⊗Z R, h∗RE = X∗ ⊗Z R,

the canonical real form of h. (This real form is not the real form defined by a

real maximal torus unless that torus is split.) Clearly these spaces are preserved

by the action of the Weyl group. The infinitesimal character ξλ is said to be real

if λ ∈ h∗RE. By Theorem 5.4(3), this property is independent of the choice of λ

representing the infinitesimal character.

A real infinitesimal character must indeed be real-valued on the form of Z(g) defined

by the split real form of G(C), but this is neither a sufficient condition to be real nor

(as far as we know) an interesting one.

Lemma 5.6. — In the setting of Definition 5.2, suppose R+ and (R+)′ are two

choices of positive root system, with corresponding sums of positive roots 2ρ and 2ρ′.

1. There is a homomorphism

ε : W (G(C), H(C))→ {±1}, ε(sα) = −1 (α ∈ R).

2. There is a unique element w ∈ W (G,H) (depending on R+ and (R+)′) such

that w(R+) = (R+)′.

3. Define

S = {α ∈ R+ | α /∈ (R+)′}, 2ρ(S) =
∑
α∈S

α ∈ X∗.

Then 2ρ′ = 2ρ− 4ρ(S).

4. The ρ and ρ′ double covers of H(C) (Definition 5.1) are canonically isomorphic.

We may therefore speak of “the” ρ double cover of H(C) without reference to a

particular choice of positive root system.

The notation introduced in Definition 5.1 says that we should call the coverings in

(4) the “2ρ/2” and “2ρ′/2” covers. We prefer either to think of ρ as an abbreviation

for the formal symbol 2ρ/2, or else simply to abuse notation in this way. Consistent

with this convention, we will also write ρ for the character of this double cover that

is called 2ρ/2 in Definition 5.1.

Proof. — Part (1) is [18, Exercise 6 on page 54]. Part (2) is [18, Theorem 10.3].

(Notice that this says that W (G,H) acts in a simply transitive way on positive root

systems for R.) Part (3) is almost obvious: what matters is that the roots appear in

pairs {±α}, and that a positive system picks exactly one root from each pair. Part

(4) follows from (3) and from the discussion at the end of Definition 5.1.
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For real groups, the character ρ is not quite the most useful one. In Mackey’s

definition of unitary induction there appears the square root of the absolute value

of the determinant of an action of a reductive subgroup (on the cotangent space of

a real flag variety). This determinant is essentially a sum of positive roots, so the

square root gives something close to ρ; but the absolute value has no parallel in

what we have done so far. In [1] there is a systematic use of the “ρ double cover”

of maximal tori. The absence of Mackey’s absolute value requires a complicated

correction (see [1, Definition 11.6]). In this paper we will adopt a slightly different

approach, introducing a slightly complicated modification of ρ to define the covering,

and as a reward getting a simpler formulation of the Langlands classification in the

next section.

Definition 5.7. Suppose G(C) is complex connected reductive algebraic group

endowed with a real form σ0 (cf. (3.1)) and a Cartan involution θ (Theorem

3.4). Suppose that H(C) is a maximal torus defined over R. After conjugating

by G, we may assume that H is also preserved by θ; the shorthand is that “H is

a θ-stable maximal torus in G.” Define

W (G,H) = NG(H)/H ' NK(H)/H ∩K ⊂ Aut(H),

the real Weyl group of H in G. Because of the second description of the complex

Weyl group in Definition 5.2, it is clear that W (G,H) ⊂W (G(C), H(C)).

Write

R = R(G(C), H(C)) ⊂ X∗

for the roots (Definition 5.2). These roots fall into three classes (each of which

is preserved by the real Weyl group W (G,H)).

a) the real roots RR, those defining real-valued characters α of H (or equivalently

of the Lie algebra h0). Equivalent conditions are

σ0(α) = α, θ(α) = −α.

The real roots are a root subsystem, a Levi factor of R.

b) the imaginary roots RiR, those defining unitary characters β of H (or equiv-

alently, purely imaginary-valued characters of the Lie algebra h0). Equivalent

conditions are

σ0(β) = −β, θ(β) = β.

The imaginary roots are a root subsystem, a Levi factor of R.

c) the complex roots RC, those which are neither real-valued nor unitary. Equiv-

alently, these are the roots taking neither real nor purely imaginary values on

the Lie algebra h0. Complex roots appear in four-tuples of distinct roots

{δ, σ0(δ),−δ,−σ0(δ)} = {δ,−θ(δ),−δ, θ(δ)}.

Recall from Definition 5.2 the algebraic group homomorphism

φα : SL(2,C)→ G(C).
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If α is real or imaginary, then the real form σ0 and the Cartan involution θ both

preserve the image of φα. It follows easily that these automorphisms pull back

to a real form σα of SL(2,C) and a corresponding Cartan involution θα:

φα(σα(g)) = σ0(φα(g)), φα(θα(g)) = θ(φα(g)) (g ∈ SL(2,C).

If α is imaginary, then the diagonal torus in SL(2,C) is compact for σα. We may

conjugate φα so that σα defines either SU(1, 1) (in which case we say that α is

noncompact) or SU(2) (in which case α is called compact). If α is real, then the

diagonal torus is split, and we may conjugate φα so that σα defines the real form

SL(2,R).

If α is a real or imaginary root, define

mα = φα

(
−1 0

0 −1

)
= α∨(−1),

an element of order (one or) two in T ⊂ H.

If δ is complex, the sum δ+σ0(δ) takes positive real values on H, and therefore

has a distinguished positive-valued square root

1

2
(δ + σ0(δ)) ∈ Ĥ.

Similarly, the difference δ − σ0(δ) is a unitary character of H, and has a

distinguished unitary square root

1

2
(δ − σ0(δ)) =def δ −

(
1

2
(δ + σ0(δ))

)
∈ Ĥ.

We will eventually need Knapp’s detailed description of the real Weyl group

W (G,H). The notation can be a little confusing: the complex roots RC of Definition

5.7 are not a root system, but in this proposition we will consider a (small) subset

RC that is a root system.

Proposition 5.8 (Knapp; see [46, Proposition 4.16]). — With notation as in Def-

inition 5.7, fix positive root systems R+
R and R+

iR for the real and imaginary roots, with

corresponding half sums ρR and ρiR in h∗. Define

RC = {α ∈ R | ρR(α∨) = ρiR(α∨) = 0}.

1. The root system RC is θ-stable and complex ([46, Definition 3.10]). That is, it

is the sum of two root systems RLC and RRC = θ(RLC) that are interchanged by θ.

2. We have

W (RC)θ = {(w, θw) | w ∈W (RLC)} ⊂W (RLC)×W (RRC);

this description shows that

W (RC)θ 'W (RLC).
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3.

W (G(C), H(C))θ = W (RC)θ n [W (RR)×W (RiR)],

a semidirect product with the subgroup in brackets normal.

4. The real Weyl group W (G,H) is a subgroup of W (G(C), H(C))θ. The first two

factors in (3) are contained in W (G,H). Consequently

W (G,H) = W (RC)θ n [W (RR)×W (GA, H)].

Here

W (GA, H) = W (RiR) ∩W (G,H)

is the subgroup of the imaginary Weyl group having representatives in G (or

equivalently in K).

In general we follow a long tradition and write the group structure on one-

dimensional characters additively, even though values of the character are being

multiplied. In Lie theory this is particularly attractive when we are identifying

certain characters (like roots) with linear functionals on the Lie algebra; we write

addition on either side of this identification, even though there is an exponential

map involved. But in the following lemma we are taking absolute values of some

roots, so the tradition would require us to write addition of absolute values when we

mean multiplication. This exceeds our (admittedly large) capacity to tolerate abuse

of notation. We will therefore write group characters multiplicatively in this lemma.

Lemma 5.9. — In the setting of Definition 5.7, suppose R+ is a choice of positive

root system.

1. Define a character 2ρabs = 2ρabs(R
+) of H by

2ρabs(h) =

 ∏
α∈R+

R

|α(h)|

 ∏
β∈R+

iR

β(h)

 ∏
δ∈R+

C

δ(h)


This character differs only by factors of ±1 from 2ρ; in particular, it has the

same differential as 2ρ.

2. In the definition of the character 2ρabs, each factor in the first product has a dis-

tinguished square root |α|1/2; and the factors in the third product fall into pairs

{δ, σ0(δ)} or {δ,−σ0(δ)}. The product of each such pair of factors has a distin-

guished square root (Definition 5.7). Consequently the quotient [2ρabs][2ρiR]−1

(the second factor being the inverse of the product of the positive imaginary

roots) has a distinguished square root.

3. The ρabs-double cover of H (Definition 5.1) exists, and is naturally isomorphic

to the ρiR-cover defined by the “half sum” (that is, the square root of the product)

of positive imaginary roots.
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4. There is a homomorphism

εiR : W (G,H)→ {±1},

εiR(w) = (−1)#{imaginary roots changing sign under w}.

5. Suppose (R+)′ is a second choice of positive roots. Define

S = {α ∈ R+ | α /∈ (R+)′} = SR ∪ SiR ∪ SC

2ρabs(S) =
∏
α∈SR

|α| ·
∏

β∈SiR∪SC

β ∈ Ĥ.

Then 2ρ′abs = 2ρabs · [2ρabs(S)]−2.

6. The ρabs and ρ′abs double covers of H (Definition 5.1) are canonically isomor-

phic. We may therefore speak of “the” ρabs double cover of H without reference

to a particular choice of positive root system.

The proof of Lemma 5.9 is parallel to that of Lemma 5.6. We omit the details.

Definition 5.10. Suppose we are in the setting of Definition 5.7. Write H̃ for

the ρabs-double cover of H,

1→ {1,−1} → H̃ → H → 1

as in Lemma 5.9. Fix a positive root system R+ for H in g, and therefore a

character

ρabs : H̃ → C×.
A Weyl denominator function is the level one (that is, the central element −1

acts by −1) function

D(h̃) = ρabs(h̃) ·

 ∏
α∈R+

R

|1− α(h)−1|

 ∏
β∈R+−R+

R

(1− β(h)−1)

 .

(Here h ∈ H is the image of h̃ under the covering map.) From this formula it is

clear that D(h̃) 6= 0 if and only if h̃ is regular; that is, if and only if α(h) 6= 1 for

all α ∈ R.

An easy calculation shows that replacing R+ by a different positive system (R+)′

changes D by a sign (namely −1 to the number of non-real roots that change sign).

Consequently there are at most two possible Weyl denominator functions on each

Cartan subgroup, differing by a sign.

The absolute values appearing in the product above are in some sense not so

important. We will be using the Weyl denominator to describe character formulas,

and these formulas take their nicest form on the subset

H+ = {h ∈ H | |α(h)| ≥ 1 (α ∈ R+
R )}.

(Every W (RR)-orbit in H must meet H+.) On H+, all of the factors 1−α(h)−1 (for

α ∈ R+
R ) are nonnegative; so the absolute value could be omitted there.
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With the Weyl denominator functions in hand, we can begin to understand the

nature of the parameters appearing in the Langlands classification of irreducible rep-

resentations. Perhaps the easiest way to describe the Langlands classification (if not

the easiest way to prove it) is by Harish-Chandra’s theory of distribution characters.

In order to talk about distributions on manifolds, where there is no natural identifica-

tion of functions with smooth measures, it is useful to be a little careful. Recall first

of all that a test density on a manifold M is a compactly supported complex-valued

smooth measure T on M . A generalized function on M is a continuous linear func-

tional on the space of test densities. For example, any locally L1 measurable function

f on M defines a generalized function, by the rule

f(T ) =

∫
M

f(m)dT (m).

Definition 5.11. Suppose (π, V ) is a continuous representation of a Lie group

G. Every test density T on G defines a continuous linear operator

π(T ) =

∫
G

π(g)dT (g) ∈ End(V ).

These operators are typically much “nicer” (in terms of decay properties) than

the operators π(g), because the integration against T is a kind of smoothing. We

say that π has a distribution character if the operators π(T ) are all trace class,

and the linear map

Θπ(T ) = tr(π(T ))

is continuous on test densities. (This requires that V be a space on which there is

a reasonable theory of traces of endomorphisms; for our purposes Hilbert spaces

will suffice.) In this case the generalized function Θπ is called the distribution

character of π.

Notice that if π is finite-dimensional, then Θπ is the ordinary continuous function

tr(π(g)) on G . If π is infinite-dimensional and unitary, then the unitary operators

π(g) are never of trace class, so tr(π(g)) is not defined for any g. That is why the

following theorem of Harish-Chandra is remarkable: it attaches a meaning to tr(π(g))

for most g.

Theorem 5.12 (Harish-Chandra and others). — Suppose G is a real reductive

Lie group, and (π, V ) is a quasisimple representation of finite length on a Hilbert

space V .

1. For every test density T , the operator π(T ) is of trace class. The resulting linear

functional on test densities is continuous, so that the character

Θπ(T ) =def tr(π(T ))

is a well-defined generalized function on G.

2. The generalized function Θπ is given by a locally L1 function on G, which is

analytic on the open subset of regular semisimple elements.
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3. Suppose H ⊂ G is a Cartan subgroup. Fix a set R+
R of positive roots for the

system RR of real roots of H in g. Since each real root takes real values on H,

we can define

H+ = {h ∈ H | |α(h)| ≥ 1 (α ∈ R+
R )}.

Write H̃ for the ρabs double cover of H (Lemma 5.9), and D for a Weyl denom-

inator function on H̃ (Definition 5.10). Then the product D ·Θπ|H (an analytic

function on the set of regular elements of H̃) is equal on H̃+
reg to a finite integer

combination of characters of H̃:

Θπ(h̃) =
( ∑
γ∈
(
H̃
)̂

1

aπ(γ)γ(h̃)
)/

D(h̃) (h̃ ∈ H̃+
reg).

The subscript 1 on
(
H̃
)̂

1
(Definition 5.1) is “level 1,” meaning that the characters

take the value −1 on the central element −1 of the cover. Therefore both the numer-

ator and denominator are “level 1” functions, so the quotient is “level 0” and defines

a function on H. The simplest example of this formula is the Weyl character formula

for the 2j + 1-dimensional representation π2j+1 of SO(3), which is

trπ2j+1

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 =
sin((j + 1

2 )θ)

sin( 1
2θ)

.

In this formula, the numerator and denominator are well defined only on the double

cover of the maximal torus. Nevertheless we like this formula because it is very simple.

(It is Theorem 5.12(3) with numerator and denominator each divided by 2i.)

Proof. — Part (1) is in [14, pages 243–245]. The analyticity in part (2) is the main

result of [15]; now that distribution theory is a familiar tool, (2) is a routine “elliptic

regularity” argument. But the proof that Θπ actually coincides with integration

against this function is much deeper, and was achieved only in [16].

Part (3) is difficult to attribute properly. The fact that the numerator looks locally

like a trigonometric polynomial on H̃ is due to Harish-Chandra, and is proved in [15].

Harish-Chandra’s arguments, which proceed by solving differential equations, allow

also terms with a polynomial dependence on h̃. That these polynomials are always

constant was first proved in [11].

Proving that the coefficients in (3) are actually integers is best accomplished by

realizing the numerator as the trace of the action of h̃ on a virtual representation of H̃.

To write down such a virtual representation, fix first of all a Cartan involution θ on

G preserving H. Let n− ⊂ g be the sum of the negative root spaces for some positive

root system R+ ⊃ R+
R . Then the Lie algebra cohomology spaces Hp(n−, V∞K ) with

coefficients in the Harish-Chandra module of V (Definition 2.9) are finite-dimensional

(h, H ∩K)-modules. (The finite-dimensionality requires proof; this is provided in [17]
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and [44].) According to Theorem 2.8, finite-dimensional (h, H ∩K)-modules may be

identified with representations of H. The numerator of the character formula in (3)

is the character of the virtual representation of H̃

Cρ−abs
⊗

(∑
p

(−1)pHp(n−, V∞K )

)
.

Here Cρ−abs
is the space of the defining character ρ−abs of H̃ (Lemma 5.9), with respect

to the positive root system consisting of the roots R− in n−.

The first very general result of this nature is the main theorem of [17]; that result

allows one to reduce (3) to the case of a compact Cartan subgroup H. A parallel

result [44, Theorem 8.1] allows reduction of (3) to the case of a split Cartan subgroup.

Applying these two results in succession (in either order!) proves (3).

6. Langlands classification and the nonunitary dual

We can now give a precise formulation of the classification of the nonunitary dual

Ĝ. This is extremely important, since we are going to explain how to compute the

unitary dual as a subset of the nonunitary dual. The most familiar case of the Lang-

lands classification is for compact connected Lie groups: in that case the irreducible

representations are in one-to-one correspondence with orbits of the Weyl group on the

lattice of characters of a maximal torus. (The correspondence sends an irreducible

representation to its set of extremal weights.) We will use a slightly different version

of this correspondence, in which an irreducible representation of a compact group

corresponds to the (Weyl group orbit) of terms in the numerator of the Weyl char-

acter formula. This modified correspondence extends to real reductive groups fairly

easily and completely. Just as for compact groups, it says (approximately) that the

irreducible representations are indexed by orbits of the Weyl groups on characters of

(the ρ-coverings of) maximal tori. The implementation (approximately) says that a

representation corresponds to some character appearing in the numerator of the Weyl

character formula (Theorem 5.12) for the representation.

What is needed to make this precise is a way to pick out a “preferred” term in

the Weyl character formula. (In the case of compact G, all the terms belong to the

same Weyl group orbit, so no choice is necessary.) Langlands’ idea in the noncom-

pact case was to pick a term with largest growth at infinity as the preferred term.

His original version in [28] made a clean and precise connection between growth and

the classification; but at the same time lumped together several different represen-

tations. Subsequent work (notably [26]) refined this into a precise classification of

representations, but at the expense of obscuring slightly the connection with charac-

ter formulas. Here is a statement. There is a closely related result on page 234 of [34];

but the emphasis there is on reducibility of standard tempered representations, so it

is difficult to extract exactly what we want. The best reference we know is [1]; but
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the formulation here is a bit different. The main change is that we have modified the

covering of H. This change means that we no longer need to keep track of a choice of

positive real roots; the definition of Langlands parameter here is accordingly simpler

than in [1].

Theorem 6.1 (Langlands classification; see [1, Chapter 11])

Suppose G is the group of real points of a connected complex reductive algebraic

group (cf. (3.1)). Then there is a one-to-one correspondence between infinitesimal

equivalence classes of irreducible quasisimple representations of G (Definition 2.9)

and G-conjugacy classes of triples (“Langlands parameters”)

Γ = (H, γ,R+
iR),

subject to the following requirements.

1. The group H is a Cartan subgroup of G: the group of real points of a maximal

torus of G(C) defined over R.

2. The character γ is level one character of the ρabs double cover of H (Definition

5.1, Lemma 5.9). Write dγ ∈ h∗ for its differential.

3. The roots R+
iR are a positive system for the imaginary roots of H in g.

4. The weight dγ is weakly dominant for R+
iR.

5. If α∨ is real and 〈dγ, α∨〉 = 0, then γq(mα) = +1 (Definition 5.7). (Here γq is

a “ρ-shift” of γ defined in (9.3e) below.)

6. If β is simple for R+
iR and 〈dγ, β∨〉 = 0, then β is noncompact.

This one-to-one correspondence may be realized in the following way. Attached to each

(equivalence class) of Langlands parameters Γ there is a “standard (limit) (g0,K)-

module” I(Γ) = Iquo(Γ), which has finite length. This module has a unique irre-

ducible quotient module J(Γ); the correspondence is Γ ↔ J(Γ). (Alternatively, there

is a standard module Isub(Γ) having J(Γ) as its unique irreducible submodule. The

two standard modules Iquo(Γ) and Isub(Γ) have the same composition factors and

multiplicities.)

The modules J(Γ) and I(Γ) both have infinitesimal character dγ ∈ h∗.

Definition 6.2. In the setting of Theorem 6.1, the set of G-conjugacy classes of

triples Γ = (H, γ,R+
iR) satisfying conditions (1)–(6) is called the set of Langlands

parameters for G, and written Π(G).

Occasionally we will need some generalizations of the Langlands parameters in The-

orem 6.1. Conditions (1)–(3) are essential to make the construction of I(Γ) described

below; conditions (4)–(6) are imposed so that I(Γ) has additional nice properties. We

record here some basic facts about these generalizations.

Definition 6.3. In the setting of Theorem 6.1, a triple Γ = (H, γ,R+
iR) satis-

fying conditions (1)–(3) is called a continued Langlands parameter. The set of

equivalence classes of such parameters is written Πcont(G).
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Attached to each Γ ∈ Πcont(G) there is a continued standard (virtual) (g0,K)-

module I(Γ) of finite length. (The construction of I(Γ) involves some cohomolog-

ical functors, and in this setting the functors may be nonzero in several different

degrees. The virtual representation I(Γ) is the alternating sum of these functors.)

If in addition Γ satisfies condition (4), then Γ is called a weak Langlands

parameter. The set of weak parameters is written Πweak(G).

Under condition (4) there is a vanishing theorem, and one can construct weak

standard (g0,K)-modules Iquo(Γ) and Isub(Γ). A weak standard module is always

a direct sum of a finite number (possibly zero) of standard modules. For any weak

Langlands parameter Γ, we can therefore define the Langlands quotient represen-

tation J(Γ) to be the corresponding direct sum of irreducible representations;

this is the cosocle of Iquo(Γ), or equivalently the socle of Isub(Γ).

If Γ does not satisfy condition (4), then we do not know any reasonable way

to define J(Γ).

In order to understand where the restrictions on Γ come from, we recall Langlands’

construction of I(Γ). Write MA for the Langlands decomposition of the centralizer of

A in G. (This centralizer is the group of real points of a connected complex reductive

algebraic group, but the factors M and A need not be. Our chosen perspective would

therefore prefer not to make this factorization, but it is traditional and some of us

are nothing if not hidebound.) The compact group T is a compact Cartan subgroup

of M , and the parameters

(6.4a) Λ = (T, γ|T , R+
iR)

are (according to conditions (1–4) of Theorem 6.1) Harish-Chandra parameters for

a limit of discrete series representation D(Λ) ∈ M̂ . A construction of D(Λ) by

Zuckerman’s cohomological induction functors is a special case of Theorem 9.4. If

“weakly dominant” is strengthened to “strictly dominant” in condition (4), we get a

discrete series representation. If condition 4 is dropped, then the vanishing-except-

in-one-degree statement of Theorem 9.4 can fail, so D(Λ) becomes only a virtual

representation (see Definition 6.3).

For a weak parameter Γ (that is, assuming condition (4)) condition (6) is exactly

what is required to make D(Λ) nonzero. (The fact that D(Λ) = 0 if dλ vanishes on

a compact simple coroot is the simpler of the eponymous character identities of [37].)

So condition (6) is needed to get a nonzero standard representation.

Now write

ν = γ|A ∈ Â

for the (possibly nonunitary) character of A defined by Γ. (The character 2ρiR (sum

of the positive imaginary roots) is trivial on A. According to Lemma 5.9(3), it follows

that the level one character γ ∈
(
H̃
)̂

1
may be regarded as a pair (λ, ν), with λ ∈

(
T̃
)̂

1

and ν ∈ Â.)
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Choose a parabolic subgroup P = MAN of G making (the real part of) ν weakly

dominant for the weights of a in n. Then the standard representation of Theorem 6.1

may be realized as

Iquo(Γ) = IndGP D(Λ)⊗ ν ⊗ 1

(The dominance requirement does not specify P uniquely, but all choices give isomor-

phic standard representations. Replacing P by the opposite parabolic subgroup P op

replaces Iquo(Γ) by Isub(Γ).) If condition (5) fails in Theorem 6.1, then there is a real

coroot α∨ with 〈dγ, α∨〉 = 0; equivalently, 〈ν, α∨〉 = 0. Possibly after modifying P ,

this coroot defines a parabolic subgroup

Pα = MαAαNα ⊃ P.

Induction by stages realizes the standard representation I(Γ) as

Iquo(Γ) = IndGPα
[
IndM(A∩Mα)(N∩Mα)D(Λ)⊗ 1⊗ 1

]
⊗ ν|Aα ⊗ 1.

The fact that the inner induction involves the trivial character 1 of A∩Mα is precisely

the condition 〈ν, α∨〉 = 0. The inner induction to Mα is therefore unitary induction.

We claim that when condition (5) above fails (that is, when γq(mα) = −1) then

this induced representation may be written (using the first character identity of [37])

as a sum of one or two standard representations attached to the (more compact)

Cartan subgroup obtained from H by Cayley transform through the real root α. In

case G = SL(2), this claim is just the familiar fact that the nonspherical principal

series representation with continuous parameter zero is a sum of two limits of discrete

series. More generally, when the Cartan subgroup H is split, the group Mα is locally

isomorphic to SL(2,R), and the claim again reduces to SL(2). In general, one can

realize the standard representation I(Γ) by cohomological induction from a split Levi

subgroup of G (see Section 9) and in this way reduce to the case when H is split.

The conclusion is that when condition (5) fails, the standard representation I(Γ)

may be realized as a direct sum of one or two representations attached to weak

parameters Γ′ on a Cartan subgroup with strictly larger compact part. That is,

imposing condition (5) seeks to make a canonical realization of I(Γ): one attached to

the most compact Cartan subgroup possible. These remarks do not prove that the

realization is canonical, but this turns out to be the case.

This discussion of the realization of I(Γ) suggests the following definitions; we will

use them constantly in analyzing unitary representations.

Definition 6.5. Suppose G is the group of real points of a connected complex

reductive algebraic group (cf. (3.1)). A discrete Langlands parameter is a triple

Λ = (T, λ,R+
iR), subject to the following conditions.

1. The group T is the maximal compact subgroup of a Cartan subgroup H of G

(Proposition 4.2).

2. The character λ is a level one character of the ρiR double cover of T (Definition

5.1, Lemma 5.9). (Write dλ ∈ t∗ for the differential of λ.)



UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS 35

3. The roots R+
iR are positive roots for the imaginary roots of H in g.

4. The weight dλ is weakly dominant for R+
iR.

5. If β is a simple root of R+
iR and 〈dλ, β∨〉 = 0, then β is noncompact.

Two discrete Langlands parameters are called equivalent if they are conjugate by

G. The set of equivalence classes of discrete Langlands parameters is written

Πdisc(G).

Alternatively, one can define discrete Langlands parameters up to K(C) con-

jugacy using the θ-fixed subgroup T (C) of a θ-stable maximal torus H(C). The

K(C)-equivalence classes in this alternate definition are in one-to-correspondence

with the G-equivalence classes above, the equivalence being implemented by

choice of a θ-stable representative in the G-class.

A discrete parameter Λ is called final if in addition it satisfies

6. If α∨ is real, then λq(mα) = 1 (see (9.3e)).

We write Πfin,disc(G) for the set of final discrete parameters. Suppose now that

Λ = (T, λ,R+
iR) is a discrete Langlands parameter for G. A continuous parameter

for Λ is a pair (A, ν), subject to the following conditions:

1. The group A is the vector part of a real Cartan subgroup H with maximal

compact T (Proposition 4.2).

2. ν is a (possibly nonunitary) character of A; equivalently, ν ∈ Â ' a∗.

3. If α∨ is real and 〈ν, α∨〉 = 0, then λq(mα) = +1 ((9.3e)).

Two such continuous parameters are called equivalent if they are conjugate by

the stabilizer N(Λ) of Λ in G(R).

Proposition 6.6. — Fix a discrete Langlands parameter Λ = (T, λ,R+
iR), and a real

Cartan subgroup H(R) = TA. Define

WΛ = {w ∈W (G,H) | w · Λ = Λ},

the stabilizer of Λ in the real Weyl group (Definition 5.7).

1. Introduce a Z/2Z-grading on the real coroots R∨R by (notation (9.3e))

α∨ is odd ⇐⇒ Λq(mα) = −1.

Then the set of equivalence classes of continuous parameters for Λ is(
a∗ −

⋃
α∨ real odd

ker(α∨)

)
/WΛ.

2. Write L(Λ) for the set of lowest K-types ([42, Definition 5.4.18]) of the standard

representations I(Λ, ν) (with ν a continuous parameter for Λ). These K-types

all have multiplicity one in I(Λ, ν), and they all appear in the Langlands quo-

tients J(Λ, ν).
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3. The element 0 ∈ Â is a continuous parameter for Λ if and only if Λ is final. In

this case L(Λ) consists of exactly one irreducible representation µ(Λ) ∈ K̂.

4. The Langlands quotient J(Λ, ν) is tempered if and only if ν ∈ Âu ' ia∗0 is a

unitary character. In this case (and still assuming ν is a continuous parameter

for Λ) the standard representation I(Λ, ν) is unitary and irreducible.

5. The infinitesimal character of the Langlands quotient J(Λ, ν) is real (Definition

5.5) if and only if ν ∈ a∗0 is a real-valued character.

6. The standard representation I(Λ, ν) is reducible only if either

a) there is a real root α such that

〈ν, α∨〉 ∈ Z\{0}, Λq(mα) = (−1)〈ν,α
∨〉+1;

or

b) there is a complex root δ such that 〈(dλ, ν), δ∨〉 ∈ Z, and

〈ν, δ∨〉 > |〈dλ, δ∨〉|.

Proof. — The description of continuous parameters in (1) is just a reformulation

of Theorem 6.1. The statement about lowest K-types in (2) largely comes from

Theorem 6.5.12 in [42], although some translation of language is needed to get to this

formulation. The first assertion in (3) is immediate from (1), and the rest can be

deduced from Theorem 6.5.12 in [42]. (This is the central idea in [48].)

For (4), that the Langlands quotient is tempered if and only if the continuous pa-

rameter is unitary is part of Langlands’ original result. The fact that the standard

representation is irreducible (under the assumption that the unitary continuous pa-

rameter does not vanish on any real odd root) is a very special case of (6). Part (5) is

immediate from (and in fact motivates) the definition of real infinitesimal character.

Finally (6) is the main theorem of [40].

The point of the proposition is to describe the shape of the nonunitary dual of

G. It is a countable union (over the set of equivalence classes of discrete Langlands

parameters Λ) of connected pieces. Each connected piece is a complex vector space

a∗, minus a finite collection of hyperplanes through the origin (defined by the odd

real coroots), modulo the action of a finite group WΛ. (At the missing hyperplanes,

the standard representations can be rewritten as a direct sum of one or two standard

representations attached to a more compact Cartan subgroup. So the “missing”

representations still exist; they are just attached to a different discrete Langlands

parameter, and may be reducible.)

The complex vector space a∗ is naturally defined over R; the real subspace a∗0
corresponds to characters of A taking positive real values. Indeed it is defined over

the integers: we can take as integer points

(X∗)−θ ' (−θ)-fixed algebraic characters of H restricted to A.
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7. Second introduction: the shape of the unitary dual

We now have enough machinery in place to explain the kind of description we are

going to find for the unitary dual of a real reductive group G (cf. (3.1)).

Theorem 7.1 (Knapp-Zuckerman; see [23, Chapter 16])

Suppose Γ = (Λ, ν) is a Langlands parameter for an irreducible quasisimple rep-

resentation J(Γ) for the real reductive group G (Theorem 6.1), corresponding to the

Cartan subgroup H = TA. Define

WΛ ⊂W (G,H)

as in Proposition 6.6.

Write the continuous parameter ν as

ν = νre + iνim (νre, νim ∈ a∗0).

Define

Lim = Gνim ,

the real Levi subgroup of G corresponding to coroots vanishing on the imaginary part

of ν.

1. The irreducible representation J(Γ) admits an invariant Hermitian form if and

only if there is a w ∈WΛ such that

w · ν = −ν;

equivalently

w · νim = νim, w · νre = −νre.

The first condition here is equivalent to w ∈ WΛ
Lim

; so we conclude that J(Γ)

admits an invariant Hermitian form if and only if the irreducible JLim(Γ) for

Lim admits an invariant Hermitian form.

2. The irreducible representation J(Γ) is irreducibly induced from the representa-

tion JLim
(Γ) on Lim. In the presence of invariant Hermitian forms, this induc-

tion is unitary, so J(Γ) is unitary if and only if JLim(Γ) is unitary. This in

turn is the case if and only if JLim
((Λ, νim)) is unitary.

We will explain thoroughly and precisely what an “invariant Hermitian form” is

beginning in Section 8 (see especially (10.2)). At that point we will explain some of

the proof of this theorem.

This theorem exhibits every unitary representation as unitarily induced from a

unitary representation with real continuous parameter; equivalently, with “real in-

finitesimal character” (Definition 5.5), in a precise and simple way. The question we

need to address is classification of irreducible unitary representations with real in-

finitesimal character; that is, determining which representations with real continuous

parameter are unitary.
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Corollary 7.2. — Fix a discrete Langlands parameter Λ, attached to a Cartan sub-

group H = TA, and WΛ the stabilizer in the real Weyl group (Proposition 6.6). The

real continuous parameters attached to Λ are(
a∗0 −

⋃
α∨ real odd

ker(α∨)

)
/WΛ

(Proposition 6.6). For each w ∈WΛ, consider the −1 eigenspace

a∗w =def {ν ∈ a∗ | w · ν = −ν},

and its real form a∗w,0.

1. The Hermitian representations J(Λ, ν) with real continuous parameter are pre-

cisely those with ν ∈ a∗w,0, for some w ∈WΛ.

2. Fix w ∈WΛ. Each of the hyperplanes of possible reducibility described in Propo-

sition 6.6 meets a∗w,0 in a hyperplane, or not at all. In this way we get a locally

finite hyperplane arrangement in a∗w,0, partitioning this vector space into a lo-

cally finite collection of facets; each facet is characterized by various equalities

〈(dλ, ν), δ∨〉 = mδ

and inequalities

〈(dλ, ν), (δ′)∨〉 < `δ′

for roots δ, δ′ and integers mδ, `δ′ .

3. The signature of the Hermitian form on J(Λ, ν) (for ν ∈ a∗w,0) is constant on

each of the facets described in (2).

4. For each w ∈ WΛ there is a compact rational polyhedron Pw ⊂ a∗0,w (a finite

union of some of the facets of (2)) so that if ν is a continuous real parameter

attached to Λ, then J(Λ, ν) is unitary if and only if ν belongs to some Pw.

Again, this corollary describes only what was known about the structure of the

unitary dual in the 1980s.

The main result of this paper is an algorithm to calculate the signature of the

invariant Hermitian form on J(Λ, ν) for ν belonging to any specified facet of one of

the vector spaces a∗0,w. (Exactly what is meant by “calculate the signature” will be

explained in Section 15.) In particular, this algorithm decides whether or not the

facet consists of unitary representations. As was explained already in [47], there is

some predictable repetition in these calculations; so doing a finite number of them is

enough to determine the unitary dual of G.

8. Hermitian forms on (h, L(C))-modules

We turn now to the study of invariant forms on representations. The work that

we do depends fundamentally on generalizing and modifying the notion of “invariant

form.” We will therefore look very carefully and slowly at this notion. A convenient
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setting (allowing us to consider both group and Lie algebra representations) is that

of a “pair.”

Definition 8.1 ([25, Definition 1.64]). A pair is (h, L(C)), together with

Ad: L(C)→ Aut(h), i : l ↪→ h,

subject to

a) h is a complex Lie algebra

b) L(C) is a complex algebraic group, with (complex) Lie algebra l

c) i is an inclusion of complex Lie algebras

d) Ad is an algebraic action by automorphisms of h, extending the adjoint action

of L(C) on l, and

e) the differential of Ad is the adjoint action (by Lie bracket) of l on h.

A representation of the pair (h, L(C)) (cf. Definition 2.6) is a complex vector

space V endowed with a complex-linear representation of the Lie algebra h and an

algebraic representation of the algebraic group L(C), subject to the requirements

a) the differential of the action of L(C) (a representation of l) is equal to the

composition of i with the action of h; and

b)

` · (X · v) = (Ad(`)X) · (` · v), (` ∈ L(C), X ∈ h, v ∈ V ).

A real structure on the pair consists of two maps

σ : h→ h, σ : L(C)→ L(C),

both “conjugate linear” in the following sense. First, the map on h is a conjugate

linear Lie algebra homomorphism:

σ(zX) = zσ(X), σ([X,Y ]) = [σ(X), σ(Y )] (z ∈ C, X, Y ∈ h).

These conditions are all that is needed to define invariant sesquilinear forms on

representations; but to make sense of invariant Hermitian forms, we must assume

also that σ is a complex structure on h, meaning that

σ2 = Id .

Second, the map on L(C)

σ : L(C)→ L(C)

is a group homomorphism so that the corresponding map on functions

(σ∗f)(`) = f(σ(`))

preserves regular functions on L(C):

σ∗ : R(L(C))→ R(L(C)).

(By construction σ∗ is a conjugate-linear homomorphism of algebras.) Again

this assumption is all that is needed to define invariant sesquilinear forms, but to
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get invariant Hermitian forms we must assume also that σ is a real form of the

complex algebraic group L(C); that is, that

σ2 = Id .

We will be interested most of all in the pair (g,K(C)) coming from a real reductive

algebraic group G, described in Theorem 3.4. We include more general pairs for the

same reason that they appear in [25]: as a tool in the construction of Harish-Chandra

modules for G.

Suppose V is a complex vector space (or a representation of a complex Lie algebra

h, or an algebraic representation of an algebraic group L(C), or an (h, L(C))-module

(Definition 8.1)). Recall the Hermitian dual of V

(8.2a) V h = {ξ : V → C | ξ(u+ v) = ξ(u) + ξ(v), ξ(z · v) = z · v}

(We are going to modify this definition a little in the presence of an algebraic group

representation; see (8.2c) below.) It is clear that the Hermitian dual of V consists

of complex conjugates of the linear functionals on V . Taking Hermitian dual is a

contravariant functor: if T ∈ Hom(V,W ), then the Hermitian transpose of T is

(8.2b) Th ∈ Hom(Wh, V h), Th(ξ)(v) = ξ(T (v)) (v ∈ V, ξ ∈Wh).

What makes everything complicated and interesting is that the Hermitian transpose

operation is not complex linear:

(S ◦ T )h = Th ◦ Sh, (zT )h = z(Th).

To see why this is a complication, suppose that ρ : h→ End(V ) is a representation

of the complex Lie algebra h. This means that ρ is a complex-linear Lie algebra

homomorphism. If we try to take Hermitian transpose, we find

ρh : h→ End(V h), ρh(X) = −[ρ(X)]h

is additive and respects the Lie bracket; but ρh(zX) = zρh(X), so ρh is not complex

linear.

There is a parallel problem in case V carries an algebraic representation π of an

algebraic group L(C). The group homomorphism π : L(C)→ GL(V ) is assumed to be

algebraic; this means in particular that every matrix coefficient of the homomorphism

is an algebraic function on L(C). We can get a group homomorphism

πh : L(C)→ GL(V h), πh(k) = [π(k−1)]h.

But the matrix coefficients of πh include complex conjugates of the matrix coeffi-

cients of π. Since the complex conjugates of nonconstant algebraic functions are not

algebraic, πh is almost never an algebraic representation.

There is a smaller technical problem here. Part of what it means for V to be an

algebraic representation of L(C) is that the action is locally finite:

dim〈π(L(C))v〉 <∞ (v ∈ V ).
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This condition is not inherited by the Hermitian dual as defined in (8.2a) above.

Whenever we have in mind an algebraic representation of L(C) on V , it is therefore

convenient to modify that definition to the smaller space

(8.2c)
V h = {ξ : V → C | ξ(u+ v) = ξ(u) + ξ(v), ξ(z · v) = z · v,

dim〈πh(L(C))ξ〉 <∞}

It would be more natural to retain the definition (8.2a) for V h, and to denote this

subspace by V hL(C); but for the purposes of this paper, imposing L(C)-finiteness silently

is more convenient.

We can now discuss forms. Recall that if V and W are complex vector spaces, a

sesquilinear pairing between V and W is

(8.3a) 〈, 〉 : V ×W → C, linear in V , conjugate linear in W.

We write

(8.3b) Sesq(V,W ) = {sesquilinear pairings between V and W}.

A sesquilinear pairing on one vector space V is called Hermitian if it satisfies

(8.3c) 〈v, v′〉 = 〈v′, v〉 (v, v′ ∈ V ).

Lemma 8.4. — Suppose V and W are complex vector spaces.

1. Sesquilinear pairings between V and W may be naturally identified with linear

maps from V to the Hermitian dual Wh (cf. (8.2a)):

Hom(V,Wh) ' Sesq(V,W ), T ↔ 〈v, w〉T =def (Tv)(w).

2. Complex conjugation defines a (conjugate linear) isomorphism

Sesq(V,W ) ' Sesq(W,V ).

The corresponding (conjugate linear) isomorphism on linear maps is

Hom(V,Wh) ' Hom(W,V h), T 7→ Th.

3. A sesquilinear form 〈, 〉T on V is Hermitian if and only if Th = T .

The statements of the lemma are just versions of the standard dictionary between

bilinear forms and linear maps, and the proofs are short and straightforward. In (2),

the Hermitian transpose Th was defined as a map from (Wh)h to V h. But there is a

natural inclusion W ↪→ (Wh)h, and it is the corresponding restriction of Th that is

intended in (2).

We fix now a pair (h, L(C)) with a real structure σ (Definition 8.1); we wish to

define the σ-Hermitian dual

(8.5a) V h,σ
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of an (h, L(C))-module V . The space is just the space V h defined in (8.2c), of com-

plex conjugates of L(C)-finite linear functionals on V . To define the Lie algebra

representation on V h,σ, we write ρ for the complex Lie algebra representation on V :

ρ : h→ End(V ).

In (8.2), we have seen how to define a (complex conjugate linear) Lie algebra repre-

sentation

ρh : h→ End(V h).

(That this representation preserves the subspace of L(C)-finite vectors is an elemen-

tary exercise.) In order to get a complex linear Lie algebra representation, we sim-

ply compose with the conjugate linear Lie algebra homomorphism σ, defining the

σ-Hermitian dual Lie algebra representation

(8.5b) ρh,σ : h→ End(V h), ρh,σ(X) = −[ρ(σ(X))]h.

The construction of the Hermitian dual of the algebraic group representation

π : L(C)→ GL(V ).

is exactly parallel. We have introduced in (8.2) a (nonalgebraic) group representation

πh : L(C)→ GL(V h),

which is locally finite on V h (because of the redefinition in (8.2c)). The matrix

coefficients of πh are complex conjugates of matrix coefficients of ρ (composed with the

inversion map on L(C)), so they are not algebraic. In order to make them algebraic, we

need to compose them with our fixed conjugate linear algebraic group homomorphism

σ : L(C)→ L(C).

The σ-Hermitian dual representation is

(8.5c) πh,σ : L(C)→ GL(V h), πh,σ(k) = [π(σ(k−1))]h.

This is an algebraic representation of L(C). (The hypothesis on σ makes some nice

matrix coefficients of πh,σ into regular functions. The restriction to L(C)-finite vectors

provides the remaining formal properties making an algebraic representation.)

Of course we can apply this process twice, obtaining a σ-Hermitian double dual

representation on (V h,σ)h,σ. The representation on (V h,σ)h,σ preserves the subspace

V (see the remarks after Lemma 8.4) and acts there by the original representation

twisted by σ2. Because of our assumption in Definition 8.1 that σ2 = Id, it follows

that the inclusion V ⊂ (V h,σ)h,σ is an inclusion of (h, L(C))-modules.

We define σ-invariant sesquilinear pairings between (h, L(C))-modules V and W :

in addition to the sesquilinearity condition in (8.3), we require

〈X · v, w〉 = 〈v,−σ(X) · w〉, (X ∈ h, ` ∈ L(C), v ∈ V, w ∈W )

〈` · v, w〉 = 〈v, σ(`−1) · w〉 (` ∈ L(C), v ∈ V, w ∈W ).
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The dictionary in Lemma 8.4 extends immediately to

(8.5d) Sesqσh,L(C)(V,W ) ' Homh,L(C)(V,W
h,σ)

(Since V is locally L(C)-finite, an intertwining operator necessarily takes values in

L(C)-finite vectors; this uses our assumed surjectivity of σ.)

We can now define the most general invariant Hermitian forms that we need.

Definition 8.6. Suppose (h, L(C)) is a pair with a real structure σ (Definition

8.1), and V is an (h, L(C))-module. A σ-invariant Hermitian form on V is a

Hermitian pairing 〈, 〉 on V , satisfying

〈X · v, w〉 = 〈v,−σ(X) · w〉 (X ∈ h, v, w ∈ V ),

and

〈` · v, w〉 = 〈v, σ(`−1) · w〉 (` ∈ L(C), v, w ∈ V ).

Such a form may be identified with an intertwining operator

T ∈ Homh,L(C)(V, V
h,σ)

satisfying the Hermitian condition

Th = T.

Many examples of pairs arise from a real Lie group H with a compact subgroup

L. In this case the Lie algebra h is the complexification of h0 = Lie(H), so we have a

complex structure σ0 on h:

(8.7a) σ0(X + iY ) = X − iY (X,Y ∈ h0).

At the same time L(C) is the complexification of L, and this complexification con-

struction defines the compact real form

(8.7b) σ0 : L(C)→ L(C), L(R, σ0) = L

(Theorem 2.12). These two maps σ0 are a natural real structure for the pair (h, L(C)).

In this setting, a σ0-invariant sesquilinear pairing 〈, 〉 between (h, L(C))-modules V

and W may be characterized by the simple requirements

(8.7c)
〈X · v, w〉 = 〈v,−X · w〉, 〈k · v, w〉 = 〈v, k−1 · w〉

(X ∈ h0, k ∈ L, v ∈ V, w ∈W ).

The reason we did not use this as the definition of an invariant form is that it obscures

the possibility of generalization by changing σ0, which will be crucial for us.

Suppose now that V is an (h, L(C))-module with L(C) reductive. Then

V =
∑

µ∈L̂(C)

V (µ),

with V (µ) the largest sum of copies of µ in V . It will be useful to refine this further.

So fix a model Eµ for each irreducible representation of L(C). Define

(8.8a) V µ = HomL(C)(Eµ, V ).
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Then there is a natural isomorphism

(8.8b) V (µ) ' V µ ⊗ Eµ, T ⊗ e 7→ T (e).

The vector space V µ is called the multiplicity space of µ in V , because of the obvious

relation

(8.8c) dimV µ = multiplicity of µ in V =def multV (µ).

The (h, L(C))-module V is called admissible if multV (µ) <∞ for all µ.

In terms of the multiplicity spaces, we can calculate Hermitian dual spaces:

V (µ)h ' V µ,h ⊗ Ehµ .

We fix now a real structure σ on the pair (Definition 8.1). The real structure σ

on L(C) defines via (8.5c) an algebraic representation σ(µ) on Ehµ . The assumed

surjectivity of σ on L(C) implies that σ(µ) is irreducible. The map µ 7→ σ(µ) of

irreducible representations of L(C) is bijective, and σ2(µ) is naturally isomorphic to

µ. We therefore find

V h =
∑

µ∈L̂(C)

V µ,h ⊗ Eσ(µ).

(This uses the redefinition of Hermitian dual in (8.2c). Without that, we would

instead have the direct product over µ as the Hermitian dual of the direct sum.)

We will often (but not always) be interested in the special case that

(8.8d) σ is a compact real form of L(C)

with (compact) group of real points L. In this special case we fix also an L-invariant

unitary structure—a positive definite L-invariant Hermitian form—on each space Eµ.

This amounts to a choice of isomorphism

Eσ(µ) ' Eµ.

In particular, we must have σ(µ) ' µ whenever (8.8d) holds. Since Eµ and Eσ(µ) are

irreducible, the space of such isomorphisms has complex dimension one. Requiring

the form to be Hermitian defines a real line in that complex line, and the positivity

defines a real half line.

Proposition 8.9. — Suppose (h, L(C)) is a pair with L(C) reductive, and σ is a real

structure. (Definition 8.1).

1. Suppose V is an admissible (h, L(C))-module (see (8.8)). Then the σ-Hermitian

dual module V h,σ is again admissible, with multiplicity spaces

(V h,σ)σ(µ) ' (V µ)h.

2. The space of σ-invariant sesquilinear forms 〈, 〉T on V may be identified (by

(8.5d)) with the space of intertwining operators Homh,L(C)(V, V
h,σ). This com-

plex vector space has a real structure T =def T
h; the subspace of real points

consists of the Hermitian σ-invariant forms.
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3. Suppose J is an admissible irreducible (h, L(C))-module (see (8.8)). Then the

σ-Hermitian dual module Jh,σ is again admissible and irreducible. Consequently

J admits a nonzero invariant sesquilinear form if and only if J ' Jh,σ. In this

case the form is necessarily nondegenerate and unique up to a nonzero complex

scalar multiple.

Assume from now on, as in (8.8d), that σ defines a compact real form of L.

4. Fix a σ-invariant Hermitian form 〈, 〉V on V . The decomposition

V =
∑
µ∈L̂

V µ ⊗ Eµ

(cf. (8.8)) is orthogonal. The chosen unitary structure 〈, 〉µ on each irreducible

representation µ of L gives rise to a natural Hermitian form 〈, 〉µV on each mul-

tiplicity space V µ so that

(V, 〈, 〉V ) =
∑
µ∈L̂

(V µ, 〈, 〉µV )⊗ (Eµ, 〈, 〉µ).

5. Define

posV (µ) = dimension of maximal positive definite subspace of V µ

negV (µ) = dimension of maximal negative definite subspace of V µ

radV (µ) = dimension of radical of V µ.

Then

(posV ,negV , radV ) : L̂→ N× N× N, posV + negV + radV = multV .

Here multV (µ) is the multiplicity of µ in V (cf. (8.8)).

6. Assume again that J is irreducible and that J ' Jh,σ, so that there is a

nondegenerate invariant Hermitian form 〈, 〉J . Multiplying this form by a

negative scalar interchanges posJ and negJ . The unordered pair of functions

{posJ ,negJ} is independent of the choice of form.

All of this is straightforward and elementary.

We call the triple of functions (posV ,negV , radV ) the signature character of

(V, 〈, 〉V ). The form is nondegenerate if and only if radV = 0; in that case we will

often omit it from the notation.

Corollary 8.10. — In the setting of Proposition 8.9, the admissible irreducible

(h, L(C))-module J admits a positive definite σ-invariant Hermitian form if and only

if

1. J is equivalent to the Hermitian dual irreducible Jh,σ, and

2. one of the functions posJ or negJ is identically zero.
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This corollary begins to suggest why one can hope to calculate the unitary dual:

the problem is not whether some matrix is positive definite (which sounds analytic,

difficult, and subject to subtle error analysis) but whether some nonnegative integers

are zero (which sounds combinatorial). In section 15 we will describe techniques from

[47] for reducing further to a computation of finitely many integers.

We will need to consider Hermitian forms invariant under several different real

structures on the same pair. Here is some machinery for doing that.

Definition 8.11. Suppose (h, L(C)) is a pair (Definition 8.1). An automorphism

δ of the pair consists of a complex Lie algebra automorphism

δ : h→ h

and an algebraic group automorphism

δ : L(C)→ L(C),

subject to the requirement that the differential of the group automorphism is

equal to the restriction to l of the Lie algebra automorphism.

If V is a representation of the pair (Definition 8.1), then the twist of V by δ

is the representation V δ on the same vector space V defined by

X ·δ v = δ(X) · v, ` ·δ v = δ(`) · v (X ∈ h, ` ∈ L(C)).

Twisting defines a right action of the group of automorphisms on representa-

tions:

(V δ1)δ2 = V δ1◦δ2 .

A δ-form of V is an isomorphism

D : V → V δ.

That is, D is a linear automorphism of the vector space V satisfying

D(X · v) = δ(X) ·D(v), D(` · v) = δ(`) ·D(v) (X ∈ h, ` ∈ L(C)).

This last definition in particular may look more transparent if we use repre-

sentation notation: writing π for the representations of h and L(C) on V , and

πδ for their twist by δ, the condition is

Dπ = πδD;

that is, that D intertwines the representations π and πδ.

Definition 8.12. Suppose (h, L(C)) is a pair, and δ is an automorphism with

the property that

δm = Ad(λ) (λ ∈ L(C))

is an inner automorphism (Definition 8.11). The corresponding extended group

is the extension

1→ L(C)→ δL(C)→ Z/mZ→ 1
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with a specified generator δ1 mapping to 1 ∈ Z/mZ, and subject to the relations

δ1`δ
−1
1 = δ(`) (` ∈ L(C)),

and

δm1 = λ.

This extended group acts by automorphisms on h, and we call (h, δL(C)) an

extended pair.

It is convenient to abuse notation by writing δ for the distinguished generator

δ1
δL(C) = L(C){e, δ, δ2, . . . , δm−1},

a union of m cosets of L(C).

We write χ for the one-dimensional (h, δL(C))-module Cχ defined by

X · z = 0, ` · z = z, δ · z = e2πi/mz (X ∈ h, ` ∈ L(C), z ∈ Cχ).

Proposition 8.13. — Suppose we are in the setting of Definition 8.12.

1. Twisting by δ defines a permutation of order (dividing) m of the set of irreducible

(h, L(C))-modules. Tensoring with χ defines a permutation of order (dividing)

m of the set of irreducible (h, δL(C))-modules.

Now fix an irreducible (h, L(C))-module V , and write Λ ∈ Aut(V ) for the action of

λ = δm.

2. The module V is fixed by δ if and only if there is a δ-form D of V (Definition

8.11); that is, an intertwining operator from V to V δ.

3. If D exists for V , then it is unique up to multiplication by a complex scalar; and

Dm must be a scalar multiple of Λ.

4. If D exists for V , then we can arrange Dm = Λ. With this constraint, D is

unique up to multiplication by an mth root of 1.

5. The irreducible (h, L(C))-module V extends to (h, δL(C)) if and only if V ' V δ.
In this case there are exactly m extensions, which are cyclically permuted by

tensoring with the character χ of Definition 8.12. The actions of δ are given by

the m δ-forms D described in (4).

6. The irreducible (h, L(C))-module V induces irreducibly to (h, δL(C)) if and only

if the m twists V, V δ, . . . , V δ
m−1

are all inequivalent. In this case

Ind
(h,δL(C))
(h,L(C)) (V ) = V ⊕ V δ ⊕ · · · ⊕ V δ

m−1

is the unique irreducible (h, δL(C))-module containing V . This induced module

is isomorphic to its tensor product with the character χ of Definition 8.12.

This analysis of representations of cyclic group extensions is often referred to as

“Clifford theory” ([9, pages 547–548]), although much of it goes back at least to

Frobenius.
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Definition 8.14. In the setting of Definition 8.12, the modules in (5) are called

type 1, and those in (6) type m, for the multiplicity on restriction to (h, L(C)). In

the same way, we call an irreducible (h, L(C))-module type one if its equivalence

class is fixed by δ, and type m if the orbit under twisting has order m.

There is no difficulty in analyzing the cases when the equivalence class of V

is fixed by some power δm0 (with m0 a proper divisor of m). Since we will be

interested in the case m = 2, we have omitted these type m0 cases.

We turn now to an analysis of invariant forms for extended groups.

Lemma 8.15. — Suppose (h, L(C)) is a pair endowed with a real structure σ (Defi-

nition 8.1); we do not require that σ2 = 1. Suppose also that

a) ε and δ are two automorphisms of the pair (Definition 8.11);

b) V , W , V ′, and W ′ are four (h, L(C))-modules;

c) 〈·, ·〉 : V ×W → C is a σ-invariant sesquilinear pairing ( (8.2)); and

d) D : V ′ → V δ and E : W ′ → W ε are (h, L(C))-maps to the indicated twisted

modules (Definition 8.11).

Then the form

〈·, ·〉′ : V ′ ×W ′ → C, 〈v′, w′〉′ =def 〈Dv′, Ew′〉 (v′ ∈ V ′, w′ ∈W ′)

is an ε−1σδ-invariant sesquilinear pairing.

This is immediate from the definitions.

Proposition 8.16. — Suppose (h, L(C)) is a pair endowed with two real structures

σ1 and σ2 (Definition 8.1); we assume that σ2
i = 1. Suppose V is an admissible

(h, L(C))-module, and that V is endowed with a nondegenerate σ1-invariant Hermitian

form 〈, 〉σ1 that is unique up to real multiple. Then

1. The maps

δ = σ−1
1 σ2, ε = σ2σ

−1
1

define automorphisms of the pair (Definition 8.11).

2. Since σ2
i = 1, δ and ε are inverse to each other. It is also the case that they are

conjugate by σ1: σ1δσ
−1
1 = ε.

3. The σ1- and σ2-hermitian duals of V differ by twisting by δ or ε:

V h,σ2 ' [V h,σ1 ]δ, [V ε]h,σ1 ' V h,σ2 .

(notation (8.5c) and Definition 8.11).

4. The following conditions are equivalent.

(a) There is a nondegenerate σ2-invariant form 〈, 〉σ2 on V . In this case the

form is unique up to a real multiple.

(b) V is equivalent to its twist by δ, by an isomorphism

D : V → V δ
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(cf. Definition 8.11). In this case the isomorphism D is unique up to a

complex multiple.

(c) V is equivalent to its twist by ε, by an isomorphism

E : V → V ε.

In this case the isomorphism E is unique up to a complex multiple. One

candidate for E is D−1.

Assume now that δm = Ad(λ) (λ ∈ L(C)) as in Definition 8.12; equivalently,

that εm = Ad(λ−1) = Ad(σ1(λ)). Write Λ for the action on V of λ, and Λ1 for

the action of σ1(λ). Then conditions (a)–(c) are also equivalent to the following.

(d) The (h, L(C))-module V extends to an (h, δL(C))-module, with δ acting

by an isomorphism

D : V → V δ

as in (b), subject to the additional requirement Dm = Λ. If any such

extension exists then there are exactly m, the operators D differing by

multiplication by an mth root of 1.

(e) The (h, L(C))-module V extends to an (h, εL(C))-module, with ε acting

by an isomorphism

E : V → V ε

as in (b), subject to the additional requirement Em = Λ1. If any such

extension exists then there are exactly m, the operators E differing by

multiplication by an mth root of 1. One candidate for E is the inverse

Hermitian transpose of D (defined using 〈, 〉σ1).

5. If the automorphism δ = Ad(d) is inner (that is, given by the adjoint action of

an element d ∈ L(C) with dm = λ) then the conditions of (4) are automatically

satisfied; the intertwining operator D may be taken as the action of d, and E as

the action of σ1(d).

Assume now that the conditions of (4) are satisfied, that δm = Ad(λ), and that the

operators D and E are chosen as in (4)(d) and (4)(e).

6. There is a nonzero complex number ξ(D,E) so that

E−1 = ξ(D,E)D.

The scalar ξ(D,E) is an mth root of 1.

7. The form

〈v, w〉′ =def 〈Dv,Ew〉σ1

is a σ1-invariant sesquilinear form on V ( (8.5d)), and by hypothesis in (4) is

therefore a multiple of 〈, 〉σ1 :

〈Dv,Ew〉σ1 = ω(D,E)〈v, w〉σ1 .
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Equivalently,

〈Dv,w〉σ1 = ω(D,E)〈v,E−1w〉σ1 = ω(D,E)ξ(D,E)〈v,Dw〉σ1 .

8. The scalar ω(D,E) satisfies

ω(D,E)m = 1, ω(τ1D, τ2E) = τ1τ
−1
2 ω(D,E) (τi ∈ C×, τmi = 1).

9. If ζ is any square root of ω(D,E)ξ(D,E), then

〈v, w〉σ2 =def ζ
−1〈Dv,w〉σ1 = ζ〈v,Dw〉σ1

is a σ2-invariant Hermitian form on V .

Proof. — Parts (1), (2), and (3) are immediate from the definitions. The equivalence

of (a)–(c) in (4) is also easy, and then (d)–(e) is a consequence of Proposition 8.13.

The existence of the scalar in part (6) follows from the description of E in (4)(c).

Raising this equation to the mth power gives

Λ−1
1 = ξ(D,E)mΛ.

The operators Λ and Λ−1
1 are Hermitian transposes of each other with respect to the

form 〈, 〉σ1 . Taking Hermitian transpose of the last equation gives

Λ = ξ(D,E)
m

Λ−1
1 .

Combining these two equations gives |ξ(D,E)|2m = 1, which is the last claim in (6).

Part (7) follows from Lemma 8.15.

For (8), applying the formula in (7) m times gives

〈Dmv, w〉σ1 = ω(D,E)m〈v,E−mw〉σ1 .

Again using the fact that the operators Dm = Λ and E−m = Λ−1
1 are Hermitian

transposes of each other, it follows that ω(D,E)m = 1. The formula with τi is easy.

For (9), that 〈v, w〉σ2 = 〈Dv,w〉σ1 is σ2-invariant and sesquilinear follows from

Lemma 8.15. That the indicated multiple is Hermitian is an easy consequence of the

last formula

ζ−1〈Dv,w〉σ1 = ζ〈v,Dw〉σ1 = ζ−1〈Dw, v〉σ1

in (7). (We need to use that ζ = ζ−1, which follows from (6) and (8).)

9. Interlude: realizing standard modules

We sketched briefly in (6.4) Langlands’ original realization of the standard (g0,K)-

modules using parabolic induction from discrete series representations. From time to

time we are going to need other realizations of the standard modules, notably those

found by Zuckerman and described in [42]. The purpose of this section is to collect

some general facts about these other realizations, which require some time to state

precisely. The reader will probably prefer to pass over this section, and consult it

only as necessary later on.
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The main theorems of this section have their origins in [42, Theorem 6.6.15] (which

is not proven there) and [45, Theorem 1.13] (which considers only integral infinitesimal

character). Results in the generality that we need, with proofs, may be found in

[25, Chapter 11]; but translating the formulation there into what we want is still a

bit of an exercise, most of which is silently left to the reader.

We begin as in (6.4) with a θ-stable Cartan subgroup

(9.1a) H = TA ⊂ G, T = Hθ = H ∩K, A = exp(h0
−θ).

and a weak Langlands parameter (Definition 6.3)

(9.1b) Γ = (H, γ,R+
iR) = (Λ, ν)

Just as in (6.4), we consider the real Levi subgroup

(9.1c) MA = centralizer in G of A ⊃ H.

The roots of H in MA are precisely the imaginary roots (Definition 5.7); so what

is left are the non-imaginary roots. A real parabolic subgroup P = MAN of G is

called type L with respect to Γ (see [25, page 704]) if whenever α is a (necessarily

non-imaginary) root of h in g such that

(9.1d) 〈dγ, α∨〉 ∈ Z>0 and 〈dγ,−θα∨〉 ≥ 0,

then α is a root of H in n. The “L” stands for “Langlands,” since we will use this

hypothesis to make Langlands’ construction of standard modules. Notice that “type

L” is a weaker hypothesis than “Re ν weakly dominant,” which we assumed in (6.4).

Notice also that the parabolic subgroup P = MAN is pointwise fixed by the real form

σ0, and that the Cartan involution θ carries P to the opposite parabolic subgroup

(9.1e) P op = MANop = MAθ(N) = θ(P ).

Theorem 9.2 ([25, Theorem 11.129]). — Suppose Γ = (Λ, ν) is a weak Langlands

parameter, and P = MAN is a parabolic subgroup of type L with respect to Γ ( (9.1)).

Then the standard quotient-type module

Iquo(Γ) = IndGMAN (D(Λ)⊗ ν ⊗ 1)

is independent of the choice of P (of type L). (Here we write D(Λ) for the limit of

discrete series representation of M introduced in (6.4).) It is a direct sum of distinct

Langlands standard quotient-type modules (Theorem 6.1), so its largest completely

reducible quotient J(Γ) is the corresponding direct sum of distinct irreducible modules.

In the same way, the standard sub-type module

Isub(Γ) = IndGMANop D(Λ)⊗ ν ⊗ 1)

is independent of the choice of P (of type L). It is a direct sum of distinct Langlands

standard sub-type modules (Theorem 6.1), so its socle J(Γ) is the corresponding direct

sum of distinct irreducible modules.
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The two keys to making this construction are Mackey’s notion of induction and

Harish-Chandra’s description of the limit of discrete series representation D(Λ) for

M . The representation D(Λ) can be constructed using Zuckerman’s “cohomological

induction” functor for the Borel subalgebra of m determined by R+
iR. (This is a

consequence of Theorem 9.4 specialized to the case when H is compact; the result,

due to Zuckerman, was one of his original motivations for introducing cohomological

induction.)

In an exactly parallel way, still referring to a weak Langlands parameter Γ as above,

we can consider the subgroup

(9.3a) L = centralizer in G of T0 ⊃ H.

The roots of H in L are precisely the real roots (Definition 5.7); so what is left are

the non-real roots. A θ-stable parabolic subalgebra q = l + u of g is called type VZ

with respect to Γ (see [25, page 706]) if (first) every root in R+
iR is a root in u; and

(second) whenever α is a (necessarily non-real) root of h in g such that

(9.3b) 〈dγ, α∨〉 ∈ Z>0 and 〈dγ, θα∨〉 ≥ 0,

then α is a root of H in u. The “VZ” stands for “Zuckerman,” since we will use this

hypothesis to make Zuckerman’s construction of standard modules.

Notice that l is preserved by both the real form σ0 and by θ. The parabolic q is

preserved by θ, but the real form σ0 sends q to the opposite parabolic

(9.3c) qop = l + uop = l + u = q.

These properties are complementary to those of the parabolic P described in (9.1e).

For Zuckerman’s construction, we first construct a weak Langlands parameter

(9.3d) Γq = (H, γq, ∅) = (Λq, ν) ∈ T̂ × a∗

for L with differential

dγq = dγ − ρ(u) ∈ h∗;

here ρ(u) is half the sum of the roots of H in u. We can write

∆(u, H) = R+
iR ∪

⋃
complex pairs in u

{α, θα}.

Recall that γ is a character of the ρiR cover of H, and this is the same as a character

γ ⊗ ρ−1
iR of H. We define

(9.3e) γq|T = γ ⊗ ρ−1
iR −

∑
complex pairs α, θα in u

α|T , γq|A = γ|A = ν;

since the two roots α and θα have the same restriction to T , the formula in (9.3e)

is well defined (independent of the choice of one root in each complex pair) and has

differential dγ − ρ(u).

Now we can form the standard representation Iquo(Γq) of L. Because it is a funda-

mental building block in Zuckerman’s construction, we recall how this representation
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of L is defined. By construction of L, the roots of H in L are all real; so by choosing

a system of positive real roots, we can construct a Borel subgroup

(9.3f) BL = TANL

of L. According to (9.1d), we can and do require that BL be of “type L.” This means

that dγq should be “integrally dominant”: for every real root α of H in g, we require

that if

(9.3g) 〈dγq, α∨〉 = 〈ν, α∨〉 ∈ Z>0,

then α is a root of H in nL. If we have already a parabolic subgroup P of type L with

respect to Γ, then BL = P ∩ L is of type L with respect to Γq.

With such a choice of BL, we have

(9.3h) Iquo(Γq) = IndLTANL(γq|T ⊗ ν ⊗ 1),

an ordinary principal series representation of L. Similarly,

(9.3i) Isub(Γq) = IndLTANop
L

(γq|T ⊗ ν ⊗ 1),

Because of the realization of the standard module Iquo(Γ) in Theorem 9.4, cer-

tain simple properties of this standard module correspond to simple properties of the

minimal principal series representation Iquo(Γq) for the split group L. By induction

by stages, these properties in turn come down to properties of principal series rep-

resentations for the real root SL(2,R) subgroups. For this reason, many statements

(especially around the Kazhdan-Lusztig conjectures) will involve the relationship of

real roots to the parameter Γq of (9.3d) above.

The hypothesis (9.3b) says that Iquo(Γq) is somewhat “dominant” with respect to

the parabolic q, and so somewhat “negative” with respect to q. The modules

Mq,quo(Γ) = U(g)⊗q [Iquo(Γq)⊗ ∧top(u)]

and

Mq,sub(Γ) = Homq(U(g), [Isub(Γq)⊗ ∧top(u)])L ∩K-finite

are (g, L ∩K)-modules of infinitesimal character dγ. (“Somewhat dominant” means

that these modules are trying to be irreducible, like a Verma module with an an-

tidominant highest weight. If the hypothesis (9.3b) were strengthened to

(9.3j) 〈dγ, α∨〉 /∈ Z<0 (α ∈ ∆(u, h))

then Mq,quo(Γ) and Mq,sub(Γ) would be (isomorphic) irreducible modules. The ad-

vantage of (9.3b) is that for any Γ we can choose q of type VZ; but there are many

Γ for which no choice of q satisfies (9.3j).)

The two modules Mq,quo(Γ) and Mq,sub(Γ) have the same restriction to L∩K, and

in fact (as is elementary to see) the same irreducible composition factors.

Here is the realization of the standard modules using Zuckerman’s functors.
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Theorem 9.4 ([25, Theorem 11.129]). — Suppose Γ = (Λ, ν) is a weak Langlands

parameter, and q = l + u is a θ-stable parabolic subalgebra of type V Z with respect to

Γ ( (9.3)). Define s = dim(u∩k). Then the standard quotient-type module of Theorem

9.2 may also be realized by cohomological induction from q:

Iquo(Γ) =
(
Lg,K
q,L∩K

)s
(Iquo(Γq)) =def

(
Πg,K

g,L∩K

)
s
Mq,quo(Γ).

The derived functors vanish in all other degrees. This module is therefore a direct sum

of distinct Langlands standard quotient-type modules (Theorem 6.1), so its largest

completely reducible quotient J(Γ) is the corresponding direct sum of distinct irre-

ducible modules.

In the same way, the standard sub-type module may be realized as

Isub(Γ) =
(
Rg,K

q,L∩K

)s
(Isub(Γq)) =def

(
Γg,K
g,L∩K

)s
Mq,sub(Γ).

The derived functors vanish in all other degrees. This is therefore a direct sum of

distinct Langlands standard sub-type modules (Theorem 6.1), so its socle J(Γ) is the

corresponding direct sum of distinct irreducible modules.

The functor Γg,K
g,L∩K appearing here is Zuckerman’s “largest K-finite submodule”

functor ([42, Definition 6.2.9], or [25, pages 101–107]), and the superscripts are its right

derived functors. The functor Πg,K
g,L∩K is “largest K-finite quotient” ([25, pages 101–

107]), sometimes called a “Bernstein functor” because of lectures given by Bernstein

in 1983 featuring a version of this functor. The subscripts are left derived functors.

The two keys to making this construction are Zuckerman’s cohomological parabolic

induction functors, and (Mackey’s) construction of the ordinary principal series rep-

resentations I(Γq) for L.

In order to describe Kazhdan-Lusztig polynomials in Sections 18 and 19, it will be

helpful to recall one of the technical tools used to prove Theorem 9.4. (Indeed this is

the tool used in [42] to prove Theorem 6.1.) That is Lie algebra cohomology.

Proposition 9.5. — Suppose Γ = (TA, γ,R+
iR) is a weak Langlands parameter, L is

the centralizer in G of T0, and

q = l + u

is a θ-stable parabolic subalgebra of type VZ with respect to Γ (see (9.3b)). Define Γq,

a weak Langlands parameter for L (that is, a character of H) as in (9.3e). Suppose

X is a (g,K)-module of finite length.

1. Each Lie algebra cohomology space Hp(u, X) is an (l, L ∩ K)-module of finite

length.

2. The irreducible (l, L ∩K)-module J(Γq) can appear in Hp(u, X) only if

p ≥ s =def dim u ∩ k.
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3. The occurrence of J(Γq) in Lie algebra cohomology Hs(u, X) corresponds to the

occurrence of X as a quotient of Iquo(Γ):

Homl,L∩K(Jquo(Γq), Hs(u, X)) ' Homg,K(Iquo(Γ), X).

4. The coefficient aX(Γ) of Γ in the numerator of the character formula for X

(5.12) is equal to the alternating sum over p of the multiplicities of J(Γq) in

Hp(u, X). (Here the Weyl denominator function should be chosen using a pos-

itive root system containing the roots of u.)

Sketch of proof. — Part (1) is [42, Corollary 5.2.4]. Part (2) is [42, Theorem 6.5.9(f)

and Corollary 6.4.13]. (To be precise, the references concern u cohomology in degree

m − p, with m = dim u. One can deduce the statements needed here by a Poincaré

duality relating Hp(u, X)h (any of the Hermitian dual functors introduced in Section 8

will do) to Hm−p(u, Xh⊗∧m(u)) ([25, Corollary III.3.6 and page 409]). Alternatively,

one can observe that the proof in [42] can be modified in a very straightforward way

to give (2).) Part (3) is [42, Theorem 6.5.9(g)] (with a parallel caveat about duality).

Part (4) is [44, Theorem 8.1].

Finally, it will be useful (for the unitarity algorithm) to have an explicit descrip-

tion of the lowest K-types of standard modules. We begin as in (9.3) with a weak

Langlands parameter

(9.6a) Γ = (Λ, ν)

for a θ-stable Cartan subgroup H = TA, and the Levi subgroup

(9.6b) L = centralizer in G of T0 ⊃ H,

corresponding to the real roots of H in G. Now we strengthen the hypothesis (9.3b)

to

(9.6c) 〈dΛ, α∨〉 ≥ 0 (α ∈ ∆(u, h));

we say that q is of type VZLKT with respect to Γ, since in Theorem 9.7 below we will

construct the lowest K-types of standard modules using Zuckerman’s cohomological

induction from q. Using this special choice of q, we construct the character

(9.6d) Γq = (Λq, ν) ∈ T̂ × a∗

as in (9.3d) above. The Harish-Chandra modules for L used in the construction of

I(Γ) in Theorem 9.4 satisfy

(9.6e) Iquo(Γq)|L∩K = Isub(Γq)|L∩K = IndL∩KT (Λq).

Choose a maximal (connected) torus

(9.6f) Tf ⊂ L ∩K.
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Necessarily Tf ⊃ T0, and Tf is a maximal torus in K. We will discuss representations

of K in using Tf -highest weights, bearing in mind that K may be disconnected. We

therefore choose a set of positive roots

∆+(l ∩ k, tf ),

and extend it to

∆+(k, tf ) =def ∆+(l ∩ k, tf ) ∪∆(u ∩ k, tf ).

Write

u = (u ∩ k)⊕ (u ∩ s)

for the decomposition of u into the +1 and −1 eigenspaces of θ. We will need the

one-dimensional character

(9.6g) 2ρ(u) ∈ L̂, 2ρ(u)(`) = det (Ad(`)|u) .

The restriction of this character to L ∩K factors as

(9.6h) 2ρ(u)|L∩K = 2ρ(u ∩ k) + 2ρ(u ∩ s).

Theorem 9.7 (Cohomological induction of lowest K-types; [25, Theorem

10.44])

Suppose Γ = (Λ, ν) is a weak Langlands parameter, and q = l + u is a θ-stable

parabolic subalgebra of type VZLKT (see (9.6c)). Use the notation of (9.6) above.

List the lowest L ∩K-types of

I(Γq)|L∩K = IndL∩KT (Λq)

as

µL∩K1 , µL∩K2 , . . . , µL∩Kr ∈ L̂ ∩K.

For each µL∩Ki , choose a highest Tf -weight φL∩Ki ∈ T̂f , and define

φi = φL∩Ki + 2ρ(u ∩ s) ∈ T̂f .

1. For each i, the representation of K

µi =
(
ΠK
L∩K

)
s

[
U(k)⊗q∩k

(
µL∩Ki ⊗ 2ρ(u)

)]
is irreducible or zero, depending on whether or not the weight φi is dominant

for ∆+(k, tf ).

2. In the dominant case, φi is a highest weight of µi, and µi may be characterized

as the unique irreducible representation of K containing u ∩ k-invariant vectors

transforming under the representation

µL∩Ki ⊗ 2ρ(u ∩ s) ∈ L̂ ∩K.

Briefly, we say that µi has “highest weight µL∩Ki ⊗ 2ρ(u ∩ s).”
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3. The irreducible representations µi constructed in (1) exhaust the lowest K-types

of Iquo(Γ), by means of the (K-equivariant) bottom layer map

µi → Iquo(Γ)

evident from the realization in Theorem 9.4.

4. Suppose that Λ is final (Definition 6.5; that is, that Λq(mα) = 1 for every real

root α). Then there is a unique lowest L∩K-type µL∩K1 of IndL∩KT (Λq). It has

dimension one, and may be characterized by the two requirements

µL∩K1 |T = Λq, µL∩K1 |[L0,L0]∩K is trivial.

The (unique) highest weight of µL∩K1 may be characterized by

φL∩K1 |T∩Tf = Λq|T∩Tf , 〈φL∩K1 , α∨〉 = 0 (α ∈ ∆(l, tf )),

Sketch of proof. — Parts (1)–(3) are stated as [25, Theorem 10.44]. Unfortunately

that reference does not provide a complete proof; but what is needed are just the

facts established in [42, §6.5]. For (4), the “final” hypothesis means exactly that Λq

is trivial on [L0, L0] ∩ T , which is generated by the elements mα for real roots α. It

follows that any lowest L ∩K-type must be trivial on [L0, L0] ∩K. Because (as one

easily checks) L ∩K is generated by T and [L0, L0] ∩K, the remaining assertions in

(4) follow immediately.

10. Invariant forms on irreducible representations

Suppose G is the group of real points of a connected complex reductive algebraic

group, K is a maximal compact subgroup of G, and θ is a Cartan involution (notation

as in (3.1) and Theorem 3.4). Write

(10.1a) g = Lie(G)⊗R C,

(10.1b) K(C) = complexification of K,

so that (g,K(C)) is a pair (Definition 8.1). We are interested in two real structures

(Definition 8.1) on this pair: the classical real structure σ0 given by the real form G,

and the real structure σc given by the compact real form

(10.1c) σc = σ0 ◦ θ

(Theorem 3.4). These two structures are the same on K(C) (where they both define

the compact form K), and therefore they agree on k; but they differ (by a factor of

−1) on the −1 eigenspace s of θ on g (see Theorem 3.4). Suppose now that V is a

(g,K(C))-module. Classically, an invariant Hermitian form on V is a Hermitian form

〈, 〉0 on V with the properties

(10.2a)
〈k · v, w〉0 = 〈v, k−1 · w〉0, 〈X · v, w〉0 = −〈v,X · w〉0

(k ∈ K, X ∈ g0, v, w ∈ V ).
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(This is the definition that we left unstated in Theorem 7.1.) The first requirement

is that the compact group K act by “unitary” (that is, preserving the Hermitian

form) operators; and the second is that the real Lie algebra g0 act by skew-Hermitian

operators. This in turn is the differentiated version of the condition that G act

by unitary operators. The assumption that k0 acts by skew-Hermitian operators

guarantees that K0 acts by unitary operators; so we need the first hypothesis only for

a single element k in each connected component of K.

It is equivalent to require either less

(10.2b)
〈k · v, w〉0 = 〈v, k−1 · w〉0, 〈X · v, w〉0 = −〈v,X · w〉0

(k ∈ K, X ∈ s0, v, w ∈ V )

or more

(10.2c)
〈k · v, w〉0 = 〈v, σ0(k)−1 · w〉0, 〈X · v, w〉0 = −〈v, σ0(X) · w〉0

(k ∈ K(C), X ∈ g, v, w ∈ V )

Of course these are precisely the properties defining a σ0-invariant Hermitian form on

V (see (8.7)).

In Section 8 we related the existence of invariant forms to the notion of Hermitian

dual of any (g,K(C))-module. We therefore need to compute Hermitian duals in

terms of the Langlands classification.

Definition 10.3. Suppose Γ = (H, γ,R+
iR) is a Langlands parameter (Theorem

6.1). The Hermitian dual of Γ is

(10.3a) Γh,σ0 = (H,−γ,R+
iR).

As usual the additive notation for characters may be a bit confusing; the character

of the ρabs (equivalently, ρiR cover) H̃ is

(−γ)(h̃) =def γ(h̃−1).

Now write H = TA as in 4.3, and

(10.3b) Γ = (Λ, ν) = (Λ, νre + iνim)

as in 6.5, with Λ a discrete Langlands parameter and ν ∈ a∗. Since γ takes values

in the unit circle on the maximal compact subgroup T̃ of H̃, we find

(10.3c) Γh,σ0 = (Λ,−ν) = (Λ, θν) = (Λ,−νre + iνim).

The most important feature of this formula is that if the continuous parameter

ν is imaginary (Definition 6.5, corresponding to a unitary character of A) then

Γh,σ0 is equal to Γ. We will see (Proposition 10.4) that this means that the

corresponding representation admits an invariant Hermitian form. These are the

tempered irreducible representations of G, each of which has a natural Hilbert

space realization, and therefore a positive-definite invariant Hermitian form.
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Proposition 10.4 (Knapp-Zuckerman; see [23, Chapter 16])

Suppose Γ = (Λ, ν) is a Langlands parameter for the real reductive group G, and

Γh,σ0 = (Λ,−ν) is the Hermitian dual parameter.

1. The Hermitian dual of the standard representation with a Langlands quotient is

the standard representation with a Langlands submodule:

[Iquo(Γ)]h,σ0 ' Isub(Γh,σ0),

and similarly with quotient and submodule reversed.

2. The Hermitian dual of the irreducible module J(Γ) is

[J(Γ)]h,σ0 ' J(Γh,σ0).

3. The irreducible module J(Γ) admits a nonzero invariant Hermitian form if and

only if the Langlands parameter Γ is equivalent to Γh,σ0 . In this case there is a

nonzero invariant Hermitian form on Iquo(Γ), unique up to a real scalar. This

form has radical equal to the maximal proper submodule I1(Γ), and factors to a

nondegenerate invariant Hermitian form on J(Γ).

4. Write the parameter Γ as

Γ = (Λ, ν)

as in 6.5. Then J(Γ) admits a nonzero invariant Hermitian form if and only if

there is an element w ∈ WΛ (Proposition 6.6) such that w · ν = −ν. (If such

an element w exists, it may be chosen to have order 2.)

5. If J(Γ) admits a nonzero invariant Hermitian form, then this form is unique

up to a nonzero real scalar multiple. Consequently the signature function

(posσ0

J(Γ),negσ0

J(Γ)) : K̂ → N× N

(cf. Proposition 8.9) is well-defined up to interchanging the factors pos and neg.

We will not reproduce the proof in detail, but here is an outline. Recall the de-

scription in (6.4) and Theorem 9.2 of the standard module Iquo(Γ) as induced from

a discrete series representation; that is, as a space of functions fquo on G with val-

ues in the discrete series representation D(Λ), transforming appropriately under right

translation by a parabolic subgroup P . What we have proposed as the Hermitian

dual is a space of functions fsub on G with values in this same discrete series rep-

resentation, having a slightly different transformation law under P . Using the inner

product on the (unitary) discrete series representation gives a complex-valued func-

tion 〈fquo(g), fsub(g)〉, which transforms under P exactly by the modular character

of P . The inner product function may therefore be identified with a measure on the

compact homogeneous space G/P , and integrated; then

〈fquo, fsub〉 =

∫
G/P

〈fquo(g), fsub(g)〉

is the invariant Hermitian pairing we want between Iquo(Γ) and Isub(Γ).
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Having recalled the classical theory of invariant Hermitian forms, we now turn to

our main technical tool: the notion of c-invariant Hermitian forms.

Suppose again that V is a (g,K(C))-module. A c-invariant Hermitian form on V

is a Hermitian form 〈, 〉c on V with the properties

(10.5a)
〈k · v, w〉c = 〈v, k−1 · w〉c, 〈X · v, w〉c = −〈v,X · w〉c

(k ∈ K, X ∈ gσc , v, w ∈ V ).

Just as for a classical Hermitian form, we require first that the compact group K

act by unitary (that is, preserving the Hermitian form) operators. What is new is

that we require not the real Lie algebra g0 = gσ0 , but rather the compact Lie algebra

gσc , to act by skew-Hermitian operators. Because the action of gσc usually does not

exponentiate to the compact real form of G, this new requirement is no longer the

derivative of a unitarity requirement on a group. Nevertheless the definition still

makes sense.

It is equivalent to require either less

(10.5b)
〈k · v, w〉c = 〈v, k−1 · w〉c, 〈X · v, w〉c = −〈v,X · w〉c

(k ∈ K, X ∈ is0, v, w ∈ V )

or more

(10.5c)
〈k · v, w〉c = 〈v, σc(k)−1 · w〉c, 〈X · v, w〉c = −〈v, σc(X) · w〉c

(k ∈ K(C), X ∈ g, v, w ∈ V )

These are precisely the properties defining a σc-invariant Hermitian form on V (see

Definition 8.6).

We need to compute c-Hermitian duals in terms of the Langlands classification.

Definition 10.6. Suppose Γ = (H, γ,R+
iR) is a Langlands parameter (Theorem

6.1). The c-Hermitian dual of Γ is

(10.6a) Γh,σc = (H,−γ ◦ θ,R+
iR).

This is the same as the Hermitian dual, except that we have twisted the character

by the Cartan involution θ. Write H = TA as in 4.3, and

(10.6b) Γ = (Λ, ν) = (Λ, νre + iνim)

as in 6.5, with Λ a discrete Langlands parameter and ν ∈ a∗. Since θ acts by the

identity on T and by inversion on A, comparison with Definition 10.3 shows that

(10.6c) Γh,σc = (Λ, ν) = (Λ, νre − iνim).

In particular, if the continuous parameter of Γ is real (Definition 6.5) then Γh,σc is

equal to Γ. We will see (Proposition 10.7) that this means that the corresponding

representation admits a c-invariant Hermitian form.

Proposition 10.7. — Suppose Γ = (Λ, ν) is a Langlands parameter for the real

reductive group G, and Γh,σc = (Λ, ν) is the c-Hermitian dual parameter.
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1. The c-Hermitian dual of the standard representation with a Langlands quotient

is a standard representation with a Langlands submodule:

[Iquo(Γ)]h,σc ' Isub(Γh,σc),

and similarly with quotient and submodule reversed.

2. The c-Hermitian dual of the irreducible module J(Γ) is

[J(Γ)]h,σc ' J(Γh,σc).

3. The irreducible module J(Γ) admits a nonzero c-invariant Hermitian form if

and only if the Langlands parameter Γ is equivalent to Γh,σc . In this case there

is a nonzero c-invariant Hermitian form on Iquo(Γ), unique up to a real scalar.

This form has radical equal to the maximal proper submodule I1(Γ), and factors

to a nondegenerate c-invariant Hermitian form on J(Γ).

4. Write the parameter Γ as

Γ = (Λ, ν)

as in 6.5. Then J(Γ) admits a nonzero c-invariant Hermitian form if and only if

there is an element w ∈WΛ (Proposition 6.6) such that w ·ν = ν. In particular,

if ν is real, then a c-invariant form always exists.

5. Suppose that the continuous parameter ν is real. Then any c-invariant Hermi-

tian form on J(Γ) has the same sign on every lowest K-type. In particular, the

form may be chosen to be positive definite on every lowest K-type, and is char-

acterized up to a positive real scalar multiple by this requirement. Consequently

the signature function

(poscJ(Γ),negcJ(Γ)) : K̂ → N× N

(cf. Proposition 8.9) is uniquely defined by the characteristic property

(poscJ(Γ)(µ),negcJ(Γ)(µ)) = (1, 0) µ any lowest K-type of J(Γ).

Proof. — We use the proof of Proposition 10.4. Knapp and Zuckerman began with

the realization

Iquo(Γ) = IndGMAN (D(Λ)⊗ ν ⊗ 1)

(with P chosen of type L with respect to Γ) and found a natural isomorphism

[Iquo(Γ)]h,σ0 ' IndGMAN (D(Λ)⊗−ν ⊗ 1).

Because of the minus sign on the right, it is easy to check that P op is of type L

with respect to Γh,σ0 ; so what appears on the right is the realization of Isub(Γh,σ0)

from Theorem 9.2. For the c-Hermitian dual, we are again looking at the (same)

Hermitian dual of the space of the standard module; what has changed is that the

representation of g on this dual space has been twisted by the Cartan involution θ.

Now θ carries P = MAN to P op = MANop, so it is clear that (writing a superscript

for the operation of twisting the Lie algebra action by an automorphism)

[IndGMAN (D(Λ)⊗−ν ⊗ 1)]θ ' IndGMANop(D(Λ)θ ⊗ ν ⊗ 1)
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Harish-Chandra characterized each discrete series representation in terms of its dis-

tribution character on the θ-fixed subgroup K, so D(Λ)θ ' D(Λ) whenever Λ is a

discrete series representation. The construction of limits of discrete series by the

translation principle inherits this property. Assembling all of this, we find

[Iquo(Γ)]h,σc ' IndGMANop(D(Λ)⊗ ν ⊗ 1).

Because the minus sign on ν has disappeared, it is easy to check that P is of type L

with respect to Γh,σc . According to Theorem 9.2, the right side realizes Isub(Γh,σc).

This proves (1).

Parts (2) and (3) are a formal consequence of (1) and the Langlands classification.

Part (4) is a restatement of (3), using Proposition 6.6.

For (5), we will use

Theorem 10.8 (Signature Theorem; [25, Theorem 6.34])

Suppose q = l+u is a θ-stable parabolic subalgebra of g, with Levi subgroup L ⊂ G.

Write s = dim(u∩k), and write Ls for Zuckerman’s cohomological parabolic induction

functor from (l, L ∩K)-modules to (g,K)-modules ([25, pages 327–328]).

1. Suppose that Z is an (l, L ∩K)-module of finite length admitting an invariant

Hermitian form 〈, 〉0L. Then there is an induced invariant Hermitian form 〈, 〉0G
on Ls(Z). The signature of 〈, 〉0G on the bottom layer of K-types matches the

signature of 〈, 〉0L on the corresponding L ∩K-types.

2. Suppose that Z is an (l, L ∩K)-module of finite length admitting a c-invariant

Hermitian form 〈, 〉cL. Then there is an induced c-invariant Hermitian form 〈, 〉cG
on Ls(Z). The signature of 〈, 〉cG on the bottom layer of K-types matches the

signature of 〈, 〉cL on the corresponding L ∩K-types.

Proof. — Part (1) is [25, Theorem 6.34]. Part (2) can be proved by repeating almost

exactly the same words, replacing “invariant Hermitian” by “c-invariant Hermitian.”

We apply Theorem 10.8 to the realization of the standard module I(Γ) in The-

orem 9.4, and to the description of the lowest K-types in Theorem 9.7. What this

accomplishes is a reduction of (5) to the special case

H is split modulo center of G;

that is, that all roots of H are real, so that

P = MAN = TAN

is a Borel subgroup of G, and the standard representations are ordinary principal

series. We assume P is chosen to make ν = Re ν weakly dominant:

〈ν, α∨〉 ≥ 0 (α ∈ ∆(n, h);
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this is a stronger hypothesis than “type L” (9.1d). Consider the parabolic subgroup

P1 = M1A1N1 ⊃ P defined by either of the equivalent requirements

〈ν, α∨〉 = 0 (α ∈ ∆(m1, h) or 〈ν, α∨〉 > 0 (α ∈ ∆(n1, h)).

Define

H1 = M1 ∩H, Γ1 = Γ|H1 , ν1 = ν|A1, I1 = I(Γ1);

this last representation is a tempered unitary principal series representation of M1,

with continuous parameter equal to zero. Induction by stages says

Iquo(Γ) = IndGM1A1N1
(I1 ⊗ ν1 ⊗ 1).

Here finally we have written the standard module precisely as Langlands wrote it in

[28]: as induced from a tempered representation I1 twisted by a character ν with Re ν

strictly positive. Because Γ is assumed to be a Langlands parameter, this standard

module has a unique irreducible quotient J(Γ). It follows that the unitary repre-

sentation I1 must be irreducible. A principal series representation with continuous

parameter equal to zero is irreducible if and only if it has a unique lowest K type; so

we conclude that

I1 is irreducible, with unique lowest M1 ∩K-type µ1.

We may therefore fix a nondegenerate c-invariant Hermitian form 〈, 〉1 on I1 with the

property that

(10.9) 〈, 〉1 is positive definite on the lowest M1 ∩K-type µ1;

this determines the form up to a positive scalar multiple.

The c-hermitian dual of Iquo(Γ) is

[Iquo(Γ)]h,σc = IndGM1A1N
op
1

(Ih,σc1 ⊗ ν1 ⊗ 1) ' IndGM1A1N
op
1

(I1 ⊗ ν1 ⊗ 1).

The last identification here uses the pairing 〈, 〉1 just defined.

A vector in Iquo(Γ) is a function fquo on G with values in I1, transforming in a

certain way under the action of P1 on the right. A vector in the c-Hermitian dual is

a function fsub on G, taking values in I1, and transforming under the action of P op
1

on the right. The pairing between two such functions is∫
K

〈fquo(k), fsub(k)〉1dk.

A c-invariant Hermitian pairing on Iquo(Γ) is therefore the same thing as an inter-

twining operator

L : IndGM1A1N1
(I1 ⊗ ν1 ⊗ 1)→ IndGM1A1N

op
1

(I1 ⊗ ν1 ⊗ 1);

the corresponding c-invariant Hermitian form is

(10.10) 〈fquo, f
′
quo〉L =

∫
K

〈
fquo(k), (Lf ′quo)(k)

〉
1
dk.
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In this formula we can use the integral long intertwining operator

(Lf)(g) =

∫
Nop

1

f(gx)dx;

this integral over Nop
1 is absolutely convergent because Re ν1 is strictly positive on

the roots of A1, just as in [28].

The lowest K-types of Iquo(Γ) are the fine representations of K ([42, Definition

4.3.9]) that contain the (necessarily fine) representation µ1 of M1 ∩K. Each of them

contains µ1 with multiplicity one ([42, Theorem 4.3.16]), so each lowest K-type µ has

multiplicity one in Iquo(Γ). Consequently

L acts by a scalar L(µ) on each lowest K-type µ.

In light of the formula (10.10) for the c-invariant form, and the positivity (10.9), the

proof of (5) comes down to proving

L acts by a strictly positive scalar on each fine

representation µ containing µ1.

In order to compute the scalar L(µ), we use the product formula of Gindikin-

Karpelevič (see Schiffmann [35] or [42, Theorem 4.2.22]) for the intertwining operator

L. What this product formula shows is that the scalar in question is a product

(over the coroots of H taking strictly positive values on ν) of a corresponding scalar

computed in the three-dimensional subgroup φα(SL(2,R)). There are two cases:

the “even case,” in which the character δ is trivial on the element mα of order two

(Definition 5.7); and the “odd case,” in which δ(mα) = −1.

In the even case, the only fine representation of SO(2) containing δ is the trivial

one, so we must begin with the constant function 1 on SO(2) and extend it to an

element of the principal series representation

feven

((
cos θ sin θ

− sin θ cos θ

)(
et 0

0 e−t

)(
1 x

0 1

))
= e−t(v+1).

Here v = 〈ν, α∨〉 is a strictly positive parameter. Necessarily L(feven) is constant on

SO(2). To compute the constant, we can evaluate at 1, getting∫ ∞
−∞

feven

((
1 0

y 1

))
dy =

∫ ∞
−∞

(1 + y2)−(v+1)/2dy.

(Here we have computed the Iwasawa decomposition of the matrix in the integrand,

then used the formula above.) Convergence and positivity of this integral are elemen-

tary. (Explicit evaluation, to π1/2Γ(v/2)/Γ(v/2 + 1/2), is also easy and well known,

but we will not need this.)

In the odd case, there are two fine representations of SO(2) containing δ, corre-

sponding to the functions e±iθ on SO(2). The corresponding functions in the principal
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series are

fodd,±

((
cos θ sin θ

− sin θ cos θ

)(
et 0

0 e−t

)(
1 x

0 1

))
= e±iθe−t(v+1).

Again applying L has to give a multiple of e±iθ on SO(2), and we can calculate the

multiple by evaluating at the identity:∫ ∞
−∞

fodd,±

((
1 0

y 1

))
dy =

∫ ∞
−∞

[(1∓ iy)(1 + y2)−1/2](1 + y2)−(v+1)/2dy

The imaginary part of the integrand is (integrable and) odd, so contributes zero; we

are left with ∫ ∞
−∞

(1 + y2)−(v+2)/2dy,

which is clearly positive. (The value is π1/2Γ(v/2 + 1/2)/Γ(v/2 + 1).)

11. Standard and c-invariant forms in the equal rank case

Our plan (roughly speaking) is (first) to calculate signatures of c-invariant forms,

and (second) to relate these to the signatures of ordinary invariant forms that we care

most about. The first step will occupy most of the rest of the paper. The second step

is in most cases much easier, and we can do it now. But in some cases this easy step

will fail. In order to repair it, we will introduce (in Section 12) a slightly different

category of representations.

Definition 11.1. Suppose that G is a real reductive algebraic group as in (3.1),

and that θ is a Cartan involution as in Theorem 3.4, with K = Gθ. We say that

G is equal rank if G and K have the same rank; equivalently, if the automorphism

θ of G is inner. In this case a strong involution for G is an element x ∈ G such

that

Ad(x) = θ, K = Gx

It follows that x ∈ Z(K), and that

x2 = z ∈ Z(G) ∩K.

Fix x and z as above. For every ζ ∈ C×, define

Ĝζ = {V ∈ Ĝ | z · v = ζv (v ∈ V )},

the irreducible (g,K(C))-modules in which z acts by ζ. Similarly define K̂ζ .

Fix a square root ζ1/2 of ζ. On every µ ∈ K̂ζ , x must act by some square root

of ζ; so there is a sign

ε(µ) ∈ {±1}, µ(x) = ε(µ)ζ1/2 (µ ∈ K̂ζ).

Of course ε(µ) depends on the choice of square root ζ1/2.
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Theorem 11.2. — Suppose G is an equal rank real reductive algebraic group with

strong involution x ∈ Z(K) (Definition 11.1). Write z = x2 ∈ Z(G). Suppose J

is an irreducible (g,K(C))-module admitting a c-invariant Hermitian form 〈, 〉cJ , in

which z acts by the scalar ζ ∈ C×. Fix a square root ζ1/2 of ζ. Then J admits an

invariant Hermitian form 〈, 〉0J defined by the formula

〈v, w〉0J = ζ−1/2〈x · v, w〉cJ .

For each µ ∈ K̂ζ , the forms on the µ multiplicity spaces (Proposition 8.9) are therefore

related by

〈, 〉0Jµ = ε(µ)〈, 〉cJµ ;

the sign ε(µ) = ±1 is defined in Definition 11.1. Consequently the signature functions

are related by

(pos0
J(µ),neg0

J(µ)) =

{
(poscJ(µ),negcJ(µ)) (ε(µ) = +1)

(negcJ(µ),poscJ(µ)) (ε(µ) = −1)

Proof. — The formula for the invariant Hermitian form is a special case of Proposition

8.16; the two automorphisms δ and ε of that proposition are both θ, and we can choose

λ = x. The statements about signatures are immediate.

Theorem 11.2 provides a very complete, explicit, and computable passage from

the signature of a c-invariant Hermitian form to the signature of a classical invariant

Hermitian form, always assuming that G is equal rank. If G is not equal rank, there

is really no parallel result, as one can see by investigating the signatures of invariant

Hermitian forms on finite-dimensional representations of SL(2,C) and SL(3,R). The

difficulty is that there is no element of G whose adjoint action is the Cartan involution

θ. In the next section we will address this problem by enlarging G slightly to an

extended group δG (containing G as a subgroup of index two). The key property

of the extended group is that the Cartan involution is inner, and therefore we get

an analogue of Theorem 11.2. On the other hand, Clifford theory provides a very

close and precise relationship between representation theory for G and for δG. In

particular, information about signatures of invariant Hermitian forms can be passed

between the two groups.

12. Twisting by the Cartan involution

We begin as in Theorem 3.4 with a real reductive algebraic

(12.1a) G = G(R, σ) ⊂ G(C),

and a maximal compact subgroup

(12.1b) K = Gθ.
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Choose a maximal torus (a maximal connected abelian subgroup)

(12.1c) Tf ⊂ K,

and define

Hf = ZG(Tf ),

a fundamental maximal torus in G. It turns out that Hf is the group of real points

of

(12.1d) Hf (C) = ZG(C)(Tf ),

and that this group is a complex maximal torus. Clearly Hf is uniquely defined up

to conjugation by K. Recall from Definition 4.1 the dual lattices

(12.1e) X∗ =def Homalg(Hf (C),C×), X∗ =def Homalg(C×, Hf (C));

the automorphism θ acts on these lattices (as a lattice automorphism of order two).

Recall from Definition 5.2 the finite subsets (in bijection) of roots and coroots

(12.1f) R = R(G,Hf ) ⊂ X∗, R∨ = R∨(G,Hf ) ⊂ X∗;

these subsets are preserved by θ. Because every root has a nontrivial restriction to

Tf (this is equivalent to the assertion already used that ZG(Tf ) is abelian) we can

choose a system R+ of positive roots so that

(12.1g) θ(R+) = R+, θ(Π) = Π;

here Π is the set of simple roots for R+ (Definition 5.2). We define

(12.1h) tRD = action of θ on (X∗,Π, X∗,Π
∨);

the quadruple on the right is the based root datum of G(C) ([41, 16.2.1]).

We need to lift the automorphism tRD to G(C). Of course the Cartan involution θ

is such a lift; but it is convenient to make a simpler and more canonical choice. For

every simple root α ∈ Π, we fix a root vector

(12.2a) Xα ∈ gα (α ∈ Π).

This choice of simple root vectors is called a pinning for the based root datum of

(12.1h). We can (and do) make these choices in such a way that

θ(Xβ) = Xθβ (β 6= θβ ∈ Π).

Since θ2 = 1, we must have

(12.2b) θ(Xγ) = ε(γ)Xγ = ±Xγ (γ = θγ ∈ Π).

These choices then define root vectors X−α by the requirement

[Xα, X−α] = Hα = dα∨(1) = dφα

(
1 0

0 −1

)
(α ∈ Π)
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(notation as in Definition 5.2). Finally, these choices of root vectors may be made

compatibly with the compact real form σc of Theorem 3.4:

σc(Xα) = −X−α (α ∈ Π).

It is a standard fact (see for example [41, Theorem 9.6.2]) that any automorphism

(like tRD) of the based root datum has a unique lift to an automorphism of algebraic

groups

δf : G(C)→ G(C)

preserving Hf , acting by the automorphism tRD on X∗(Hf (C)), and satisfying

δf (Xα) = XtRD(α) (α ∈ Π).

Because of the uniqueness of δf and the explicit formulas given above for θ and σc,

we see that

(12.2c) δ2
f = 1, δfθ = θδf , δfσc = σcδf .

We emphasize that the based root datum automorphism tRD is determined canon-

ically by θ, and in fact just by the inner class of θ (that is, by the Ad(G(C)) coset of

θ in Aut(G)). The lift δf to G(C) is determined by tRD and the choice of pinning.

Definition 12.3. With notation as in (12.2), the extended group for G(C) is the

semidirect product
δG(C) = G(C) o {1, δf}.

According to (12.2), the automorphism δf preserves the subgroups G, K, and

K(C). We can therefore form all of the corresponding extended groups, for

example
δG = Go {1, δf}.

Because of (12.2c), the real forms σ0 and σc both extend to real forms of
δG(C) acting trivially on δf :

δG(R, σ0) = δG, δK(R, σ0) = δK

and so on.

A strong involution for the real form G is an element

x = x0δf ∈ G(C)δf = δG(C)\G(C)

with the property that

Ad(x)|G(C) = θ.

In particular, this implies that

x ∈ δK(C), x2 = z ∈ Z(G(C)).
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By construction of δf , strong involutions for G must exist. In fact, since δf and θ

are automorphisms of G(C) that agree on the Cartan Hf (C), we must have

(12.4a) x0 ∈ Hf (C), x2
0 = x2 = z ∈ Z(G(C)).

More precisely, the construction of δf in (12.2) shows that x0 must satisfy

(12.4b)
β(x0) = 1 (β 6= θ(β) ∈ Π),

γ(x0) = ε(γ) = ±1 (γ = θ(γ) ∈ Π).

Conversely, any solution x0 of these equations determines a strong involution for G.

Evidently we can find such a solution with the additional property

x0 ∈ (Hθ
f )0 has finite order.

The finite order hypothesis implies that σc(x0) = x0 (since σc defines the unique

compact real form of Hf (C)); so x0 is also fixed by σ0 = θ ◦ σc, and therefore

(12.4c) x0 ∈ K ⊂ G.

Definition 12.5. Suppose Γ = (Λ, ν) is a Langlands parameter, written as in

Proposition 6.6. The θ-twist of Γ is

Γθ = (Λ, θν) = (Λ,−ν).

In the case of real infinitesimal character (that is, if ν is real-valued) this is the

same as the Hermitian dual (Definition 10.3):

Γθ = Γh,σ0 (ν = ν).

The next result uses Clifford theory to lift the Langlands classification of irreducible

representations of G (Proposition 6.6) to the extended group δG. Just as for G, it

says that each irreducible module J ′ is the unique irreducible quotient of a “standard

module” I ′.

Proposition 12.6. — In the setting of Definition 12.3, fix a strong involution x =

x0δ for G as in (12.4) (so that x0 ∈ K, and x2 = z ∈ Z(G) ∩K). Fix an irreducible

(g,K)-module J , corresponding to a Langlands parameter Γ = (Λ, ν) (Proposition

6.6); write Iquo for the standard module of which J is the unique irreducible quotient.

1. The twists Jδf and Jθ = Jx (Definition 8.11) are isomorphic (by the linear map

by which x0 ∈ K acts on J). Either twist therefore defines the same action of

{1, δf} on the set Ĝ (Definition 2.9).

2. The twist Jθ corresponds to the Langlands parameter Γθ.

3. If Jθ ' J , then J admits exactly two extensions J± to an irreducible module for
δG, differing by the sign character of δG/G ' {1, δf}. In this case J or J± is

type one (Definition 8.14).

4. If Jθ ' J , then also Iθquo ' Iquo, and this module has exactly two extensions

Iquo,± to a module for δG. Each extension Iquo,± has a unique irreducible quo-

tient J±, one of the two extensions of J .
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5. If Jθ 6' J , then

Jind = Ind
(g,δK)
(g,K) (J) = J ⊕ Jθ

is the unique irreducible (g, δK)-module containing J . In this case J and Jθ

and Jind are type two (Definition 8.14).

6. If Jθ 6' J , then also Iθquo 6' Iquo, and

Iquo,ind = Ind
(g,δK)
(g,K) (Iquo) = Iquo ⊕ Iθquo

has Jind = Jθind as its unique irreducible quotient.

This is essentially a specialization of Proposition 8.13 (Clifford theory) to δG. The

labels ± in (4) and (5) do not have any particular meaning; it may not be the case

that one of the two extensions is preferred.

The modules Iquo,± and Iquo,ind are called standard modules; of course we can in

exactly the same way define Isub,± and Isub,ind.

The only part of the Langlands classification that behaves a little differently for
δG is that in the case Jθ 6' J , the lowest δK-types of Jind and Iind have multiplicity

two (rather than one as in the classical case).

Now Proposition 10.7 lifts easily to the extended group. For brevity we write only

the case of real infinitesimal character.

Proposition 12.7. — Suppose J ′ is an irreducible (g, δK)-module of real infinitesi-

mal character, and I ′quo is the corresponding standard module.

1. The module J ′ admits a nondegenerate c-invariant Hermitian form 〈, 〉c that is

unique up to a real scalar multiple. It may be chosen to be positive definite on

the lowest δK-types of J ′.

2. The module I ′quo admits a nonzero c-invariant form that is unique up to a real

scalar. This form has radical equal to the maximal proper submodule I ′1 of I ′quo,

and factors to a nondegenerate form on J ′.

3. If J ′ restricts to an irreducible J for G (so that also I ′quo = Iquo) then the

c-invariant forms for δG are the forms for G.

4. If J ′ = Ind(J) = J + Jθ, then the c-invariant form on J ′ is equal to the orthog-

onal sum of the form for J on both J and Jθ (using the identification of the

vector spaces for J and Jθ (Definition 8.11). A similar statement holds for I ′.

This is immediate from Proposition 10.7. The result allows us to pass information

about signatures of c-invariant forms back and forth between G and δG with no

difficulty.

There is one possible confusing point. The outer automorphism δf need not act

trivially on Z(g), so the irreducible J ′ may not be annihilated by a maximal ideal m

but only by a product mmδf of two maximal ideals. But the property that a maximal

ideal correspond to real infinitesimal character is preserved by δf , so in this case what
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we mean by “real infinitesimal character” for J ′ is that either of these two maximal

ideals has real infinitesimal character.

Definition 12.8. Suppose that G is a real reductive algebraic group with ex-

tended group δG (Definition 12.3). Fix a strong involution x ∈ δK\K as in

(12.4), so that

θ = Ad(x), x2 = z ∈ Z(δG) ∩K

For every ζ ∈ C×, define

δ̂Gζ = {V ′ ∈ δ̂G | z · v = ζv (v ∈ V ′)},

the set of irreducible (g, δK)-modules in which z acts by ζ. Similarly define K̂ζ .

Fix a square root ζ1/2 of ζ. On every µ′ ∈ δ̂Kζ , x must act by some square

root of ζ; so there is a sign

ε(µ′) ∈ {±1}, µ′(x) = ε(µ′)ζ1/2 (µ′ ∈ δ̂Kζ).

Of course ε(µ′) depends on the choice of square root ζ1/2.

Theorem 12.9. — Suppose G is a real reductive algebraic group with extended group
δG (Definition 12.3). Fix a strong involution x for G, an eigenvalue ζ for the central

element z, and a square root ζ1/2 of ζ as in Definition 12.8.

Suppose J ′ ∈ δ̂Gζ is an irreducible representation of real infinitesimal character.

Write 〈, 〉cJ′ for a c-invariant Hermitian form on J ′ positive on the lowest δK-types

(which exists by Proposition 12.7). Then J ′ admits an invariant Hermitian form 〈, 〉0J′
defined by the formula

〈v, w〉0J′ = ζ−1/2〈x · v, w〉cJ′ = ζ1/2〈v, x · w〉cJ′ .

For each µ′ ∈ δ̂Kζ , the forms on the µ′ multiplicity spaces (Proposition 8.9) are

therefore related by

〈, 〉0
(J′)µ′

= ε(µ′)〈, 〉c
(J′)µ′

;

the sign ε(µ′) = ±1 is defined in Definition 12.8. Consequently the signature functions

are related by

(pos0
J′(µ

′),neg0
J′(µ

′)) =

{
(poscJ′(µ

′),negcJ′(µ
′)) (ε(µ′) = +1)

(negcJ′(µ
′),poscJ′(µ

′)) (ε(µ′) = −1)

Proof. — The formula for the invariant Hermitian form is a special case of Proposi-

tion 8.16; by Cartan’s original construction of the Cartan involution, the two auto-

morphisms δ and ε of that proposition are both θ, and we can choose λ = x. The

statements about signatures are immediate.
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13. Langlands parameters for extended groups

Proposition 12.6 provides a nice abstract description of the irreducible represen-

tations of an extended group. For the unitarity algorithm which is our goal, we will

need something more concrete and precise. This is of the same nature as what we

have already done with the formulation of the Langlands classification in Theorem

6.1, which replaced the “tempered representation of a Levi subgroup” appearing in

[28] with a character of an appropriate cover of a real maximal torus. Proposition

12.6 says that an irreducible representation of G fixed by θ and corresponding to a

Langlands parameter has two extensions to δG. We are going to index these two

extensions by two extensions of the parameter.

Throughout this section we fix an extended group

(13.1a) δG = Go {1, δf}

as in Definition 12.3, and a strong involution

(13.1b) x = x0δf ∈ δK\K, Ad(x) = θ, x2 = z ∈ Z(G) ∩K

as in (12.4). We fix also a θ-stable maximal torus H ⊂ G (Definition 5.7). Evidently

H is normalized by x, so we can consider the extended group

xH = 〈H,x〉,

and try to extend a Langlands parameter to a character of xH. This is almost

always impossible when H is not fundamental (see (12.1)). The reason is that what

is preserved by θ is not the parameter but only its conjugacy class under K.

The point of this section is to find replacements for xH to which Langlands pa-

rameters can usefully extend, and in this way to parametrize representations of δG.

We begin with basic information about the extended Weyl group.

Proposition 13.2. — In the setting of Definition 12.3 and (13.1), write H(C) for

the complexification of the θ-stable real torus H. Fix a maximal torus H(C) and a

system of positive roots

R+
1 ⊂ R(G,H),

with simple roots Π1. Write

S1 = {sα | α ∈ Π1} ⊂W (G(C), H(C)) = W

for the corresponding set of simple reflections (Definition 5.2). Define

δW =def NδG(C)(H(C))/H(C) ⊃W

the extended Weyl group of H(C) in G(C).

1. There is a unique nonidentity class

t1(R+
1 ) = t1 ∈ δW

with the property that t1 ·R+
1 = R+

1 .
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2. Conjugation by t1 permutes the generators S1 of W , and provides a semidirect

product decomposition
δW = W o {1, t1}.

Write T1 for the set of orbits of {1, t1} on S1. We identify T1 with a collection of

elements of order 2 in W , as follows. Suppose

t = {s, s′} s′ = t1(s).

Then we associate the orbit t to an element of W by

t↔ long element of 〈s, s′〉

=


s t = {s = s′}
ss′ t = {s 6= s′}, ss′ = s′s

ss′s = s′ss′ t = {s 6= s′}, ss′ 6= s′s.

Each of these elements has order two and is fixed by t1.

3. The group W t1 of fixed points of the automorphism t1 acts as a reflection group

(in fact a Weyl group) on the lattice (X∗)t1 of t1-fixed characters of H(C). The

set T1 described above is a set of Coxeter generators.

4. Recall from (12.1) the fundamental maximal torus Hf and positive root system

R+
f used to construct the extended group. There is an element g ∈ G(C) with

the property that

Ad(g)(Hf (C)) = H(C), Ad(g)(R+
f ) = R+

1 .

The coset gHf (C) = H(C)g is unique.

5. Conjugation by g defines a canonical isomorphism

δW (G(C), Hf (C))
'−→ δW (G(C), H(C)),

carrying tf to t1 and Sf (the simple reflections for W (G(C), Hf (C))) to S1.

6. Conjugation by g carries the lift δf ∈ δG of tf to a lift

δ1 ∈ NδG(C)(H(C))

of t1. The H(C) conjugacy class of δ1—i.e., the coset δ1[H(C)−t1 ]0—is unique.

We call these the distinguished lifts of t1.

This is an immediate consequence of the corresponding facts about the Weyl group

(see for example [41, Corollary 6.4.12 and Proposition 8.24]).

Definition 13.3. In the setting of Proposition 13.2, a twisted involution in W

is an element w1 ∈W with the property that

w1t1(w1) = 1.

The twisted conjugate of w1 by y ∈W is

w′1 = yw1[t1(y)−1].
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Clearly w1 is a twisted involution if and only if w1t1 is an involution in the

nonidentity coset Wt1 ⊂ δW . In this correspondence, w′1 is a twisted conjugate

of w1 if and only if w′1t1 is a W -conjugate of w1t1.

Lemma 13.4. — Suppose we are in the setting of Proposition 13.2 and Definition

13.3.

1. Each twisted conjugacy class of twisted involutions has a representative

w1 = sβ1sβ2 · · · sβm ,

with {βi} an orthogonal collection of t1-fixed roots.

2. The number m is an invariant of the twisted conjugacy class of w1. We have

m+ dim(−1 eigenspace of t1) = dim(−1 eigenspace of w1t1).

3. The following conditions on an involution t2 ∈Wt1 are equivalent:

i) t2 is conjugate by W to t1;

ii) t2 preserves some system of positive roots R+
2 ;

iii) dim(−1 eigenspace of t2) = dim(−1 eigenspace of t1)

Proof. — Write

h∗Q = X∗ ⊗Z Q

for the rational part of the dual of the Cartan. Decompose this space as

h∗Q = V1(w1t1)⊕ V−1(w1t1)

according to the eigenspaces of w1t1. We prove (1) by induction on the dimension d

of V−1(w1t1). There are no elements for which d = −1, so in that case the assertion

in (1) is empty.

Suppose therefore that d ≥ 0, and that the result is known for d − 1. There are

two cases. Suppose first that there is a root γ1 ∈ V−1(w1t1). Put w2 = sγ1w2, so that

V1(w2t1) = V1(w1t1)⊕Qβ, V−1(w2t1) = ker(β∨) ∩ V−1(w1t1).

Clearly w2t1 is an involution with −1 eigenspace of dimension d− 1, so by induction

w2t1 = y[sβ2
sβ3
· · · sβm ]t1y

−1.

If we define β1 = y−1 · γ1, then it is easy to check that (1) holds for w1.

Next, suppose that there is no root γ ∈ V−1(w1t1). We may therefore choose a

weight ξ2 ∈ V1(w1t1) vanishing on no coroots; for the only coroots γ∨ on which every

element of V1 vanishes are those with γ ∈ V−1. Now define

R+
2 = {α ∈ R | ξ2(α∨) > 0}.

This is a system of positive roots, and

w1t1(R+
2 ) = R+

2
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since w1t1 fixes γ2. Therefore w1t1 must be the unique element t2 ∈ Wt1 fixing R+
2 .

If R+
2 = yR+

1 , then evidently

w1t1 = t2 = yt1y
−1.

This proves (1) (with m = 0).

The remaining assertions in the lemma are elementary consequences of (1).

Definition 13.5. In the setting (13.1), the extended real Weyl group of H is

δW (G,H) = NδG(H)/H ' NδK(H)/(H ∩ δK)

⊂ δW (G(C), H(C))

(notation as in Definition 5.7 and Proposition 13.2). According to (13.1), the

extended real Weyl group always has an element

xH =def θH ,

which is characterized by the two properties

θH /∈W (G(C), H(C)), θH acts on H by the Cartan involution.

Consequently δW (G,H) inherits from δW (G(C), H(C)) the short exact sequence

1→W (G,H)→ δW (G,H)→ {1, δ} → 1;

but the splitting of this sequence by θH is not one of the nice ones described in

Proposition 13.2(2).

An extended maximal torus in δG is a subgroup 1H ⊃ H, subject to the

following conditions.

a) The group 1H is not contained in G, and [1H : H] = 2. Equivalently, we require

that 1H be generated by H and a single element

t1 = w1θH ∈ δW (G,H)\W (G,H),

of order two.

b) There is a set R+
1 ⊂ R = R(G,H) of positive roots preserved by t1.

We do not include a particular choice of R+
1 as part of the definition of 1H.

Typically we will write something like δ1 ∈ 1H ∩ δK for a representative of t1.

The first thing to notice is that the obvious group 〈H, θH〉 (generated by H and

the strong involution x of (12.4)) is not an extended maximal torus unless the set R+
R

of real roots is empty; that is, unless H is fundamental. The reason we impose the

requirement b) above is that representation-theoretic information is typically encoded

not just by a Cartan subalgebra, but rather by a Borel subalgebra containing it. (This

is the central idea in the theory of highest weights.)

Nevertheless, every maximal torus is contained in an extended maximal torus.
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Example 13.6. — Following (9.3), choose q = l + u, so that the roots of H in in

l are precisely the real roots RR of H in g. Fix a set of positive real roots R+
R , and

define

R+
VZ = R+

R ∪ {roots of H in u}.
Write w0,R for the long element of W (RR), which carries R+

R to −R+
R , and σ0,R for

a representative of this Weyl group element in NK(H). Because u is preserved by θ,

we find that

w0,RθH(R+
1 ) = R+

1 .

Therefore H and δVZ = σ0,R · x generate an extended maximal torus VZH, with

tVZ = w0,RθH .

Definition 13.7. Suppose 1H is an extended maximal torus in δG. An extended

Langlands parameter is a triple Γ1 = (1H, γ1, R
+
iR), subject to the following con-

ditions.

a) The group 1H is an extended maximal torus for δG, with distinguished generator

t1 ∈ δW (G,H) (Definition 13.5).

b) The element t1 preserves the positive imaginary roots R+
iR from Γ1.

c) As a consequence of (2), the character 2ρiR of H extends naturally to 1H, and

so defines the ρiR double cover 1̃H (Lemma 5.9). We require that γ1 be a level

one irreducible representation of this cover (and therefore of dimension one or

two).

d) The restriction of γ1 to H̃ is (automatically) a sum of one or two irreducible

characters γ of the ρiR double cover of H; and we require that Γ = (H, γ,R+
iR)

be a Langlands parameter for G (Theorem 6.1).

We say that Γ1 (or Γ) is type one if γ1 is one-dimensional; equivalently, if the

corresponding parameter Γ for G is fixed by t1. We say that Γ1 (or Γ) is type two

if γ1 = γind is two-dimensional (Definition 8.14). In order to guarantee that a

parameter corresponds to an irreducible representation of δG, we need to require

also

e) if Γ1 = Γind is type two, then Γ is not equivalent to Γθ.

Just as in Definition 6.3, we can define continued and weak extended parame-

ters; on these we impose only conditions a)–c), and insert “continued” or “weak”

in d). We do not require anything like e), just as weak Langlands parameters are

not required to be final (condition (5) of Theorem 6.1).

� Of course one of the things that we want is that type one representations of the

extended group (Proposition 12.6) correspond precisely to type one extended

parameters. There is a subtlety here. Under hypotheses a)–d), it will be fairly easy

to see that a type one extended parameter corresponds to a type one representation,

and that a type two representation corresponds to a type two parameter (see the

remarks after Lemma 13.10 below). Proposition 13.12 will provide a converse: that
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any type one representation has a type one parameter. The proof of that proposition

shows first of all that in order to find this type one parameter—that is, to find a

one-dimensional extension of the character γ—we must choose the extended torus

properly. (There is a type two extension, given by induction, for any extended torus

containing H.) The point of condition (e) is to require us to make a proper choice of

extended torus, so that the type of the representation corresponds to the type of the

parameter.

We turn next to the definition of equivalence of extended parameters. The subtlety

here arises entirely from the possibility that a single Langlands parameter may extend

to two distinct extended tori. Before giving the definition, we recall a little about the

stabilizer of a Langlands parameter.

Lemma 13.8. — Suppose Γ = (Λ, ν) is a Langlands parameter decomposed as in

Definition 6.5, with Λ = (λ,R+
iR). Write ρiR for half the sum of the roots in R+

iR, and

λ = dλ, so that [λ− ρiR] is a character of T . Define

R0 = {α ∈ R(g, h) | 〈α∨, λ〉 = 〈α∨, ν〉 = 〈α∨, ρiR〉 = 0},

the set of singular roots for the discrete parameter.

1. The roots R0 are the root system for a real quasisplit Levi subgroup L0 of G.

2. The real Weyl group W (L0, H) is equal to the centralizer of θH in W (l0, h).

3. If α is a real root in R0, then sα ·Λ = Λ, and [λ− ρiR](mα) = 1 (notation as in

Definition 5.7).

4. The stabilizer of Γ in W (G,H) is equal to W (L0, H).

5. The character [λ− ρiR] of T is trivial on the intersection of T with the identity

component of the derived group [L0, L0].

Definition 13.9. Two extended parameters of type two are said to be equivalent

if the underlying Langlands parameters are equivalent.

In the type one case, we need to be concerned about the possibility that the

extended torus to which Γ extends is not unique. Suppose therefore that Γ is a

Langlands parameter on a maximal torus H, and that

1H = 〈H, t1〉, 2H = 〈H, t2〉

are two extended tori to which Γ extends; that is, that

Γt1 = Γt2 = Γ.

Therefore t2 = wt1, with w ∈ W (G,H)Γ = W (L0, H) (Lemma 13.8). Choose

a representative δ1 for t1, and a representative σ for w belonging to the identity

component of the derived group of L0. Then

δ2 = σδ1

is a representative for t2.
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Suppose Γ1 and Γ2 are extensions of Γ to 1H and 2H respectively. We say

that Γ1 is equivalent to Γ2 if

[λ1 − ρiR](δ1) = [λ2 − ρiR](δ2).

According to Lemma 13.8, this condition is independent of the choice of repre-

sentative δ1 above. More generally, we say that a type one extended parameter

Γ1 is equivalent to Γ3 if Γ3 is conjugate by K to some Γ2 as above.

We are going to show (Proposition 13.12 below) that the parameter for a type one

irreducible representation in fact extends to an appropriate extended torus. The next

lemma shows what we need to do.

Lemma 13.10. — Suppose Γ = (H, γ,R+
iR) is a Langlands parameter (Theorem

6.1). Write H = TA and Γ = (Λ, ν), with Λ = (λ,R+
iR) as in Definition 6.5; put

λ = dλ ∈ t∗, so that

(λ, ν) ∈ t∗ + a∗ = h∗

represents the infinitesimal character of J(Γ). Then Γ extends to the extended torus
1H = 〈H, t1 = w1θH〉 if and only if

1. w1λ = λ;

2. w1(R+
iR) = R+

iR; and

3. w1ν = −ν.

These three conditions are equivalent in turn to w1 · Γ = ΓθH .

This is clear from the definitions (since the real Weyl group element w1 must

commute with the action of θH on H). In particular, the lemma implies that a

Langlands parameter Γ on H can extend to some extended torus for H only if ΓθH is

conjugate to Γ by the real Weyl group; that is (Proposition 12.6) only if J(Γ) is type

one.

The converse requires a bit more work, on which we now embark. Assume that

J(Γ) is type one, so that

(13.11a) ΓθH = w · Γ (some w ∈W (G,H)).

Write H = TA and

(13.11b) Γ = (Λ, ν), Λ = (λ,R+
iR)

as in Definition 6.5; put λ = dλ ∈ t∗, so that

(13.11c) (λ, ν) ∈ t∗ + a∗ = h∗

represents the infinitesimal character of J(Γ).

We want to prove that Γ extends to some extended torus 1H, and in fact to

understand all possible extended tori to which Γ extends. The easiest way to construct

an extended torus 〈H, t1〉 is to construct a system of positive roots preserved by t1;

by Proposition 13.2(1), such a system determines t1. Since we want also that t1
should carry Γ to Γ, it is reasonable to use Γ to construct positive roots. To simplify
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the discussion, and because (in light of Theorem 7.1) it is our primary interest, we

consider Γ of real infinitesimal character. This means in particular that

〈α∨, λ〉 ∈ R, 〈α∨, ν〉 ∈ R (α ∈ R(g, h)).

(The first of these conditions is automatically true for any Γ.) If now (λ, ν) is regular,

then we could define a positive root system

R+(Γ) = {α ∈ R(g, h) | 〈α∨, (λ, ν)〉 > 0}.

The only candidate for an extended torus to which Γ extends in this case is the one

generated by the unique t1 ∈WθH preserving R+(Γ). There are two difficulties with

this approach in general. One is that (λ, ν) need not be regular. The second is that

it is not so easy to see whether the element t1 defined in this way belongs to the

extended real Weyl group W (G,H)θH .

We therefore take a slightly different approach. Begin with what is (more or less

obviously) a “triangular” decomposition of the root system, into the roots of the nil

radical of a parabolic subalgebra; the roots of the Levi factor; and the roots of the

opposite nil radical:

(13.11d)

R+(λ) = {α ∈ R(g, h) | 〈α∨, λ〉 > 0}

∪ {α ∈ R(g, h) | 〈α∨, λ〉 = 0, 〈α∨, ρiR〉 > 0}

R0(λ) = {α ∈ R(g, h) | 〈α∨, λ〉 = 0, 〈α∨, ρiR〉 = 0}

R−(λ) = −R+(λ);

here ρiR is half the sum of the roots in R+
iR. The parabolic subalgebra is

(13.11e)
p(λ) = l(λ) + n(λ),

R(n(λ), h) = R+(λ), R(l(λ), h) = R0(λ).

To make a parallel construction for ν, we must fix a system of positive real roots

making ν weakly dominant:

R+
R ⊃ {α ∈ RR | 〈α∨, ν〉 > 0}.

It follows from Lemma 13.8 that such a choice of R+
R is unique up to the action of

W (G,H)Γ. With this choice in hand, we can define

(13.11f)

R+(ν) = {α ∈ R(g, h) | 〈α∨, ν〉 > 0}
∪ {α ∈ R(g, h) | 〈α∨, ν〉 = 0, 〈α∨, ρR〉 > 0}

R0(ν) = {α ∈ R(g, h) | 〈α∨, ν〉 = 0, 〈α∨, ρR〉 = 0}
R−(ν) = −R+(ν);

here ρR is half the sum of the roots in R+
R . The corresponding parabolic is written

(13.11g)
p(ν) = l(ν) + n(ν),

R(n(ν), h) = R+(ν), R(l(ν), h) = R0(ν).
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We now combine these two constructions of parabolic subalgebras, defining

(13.11h)

R+(λ, ν) = R+(λ) ∪
(
R0(λ) ∩R+(ν)

)
R0(λ, ν) = R0(λ) ∩R0(ν)

R−(λ, ν) = −R+(λ, ν);

The corresponding parabolic subalgebra is written

(13.11i)
p(λ, ν) = l(λ, ν) + n(λ, ν),

R(n(λ, ν), h) = R+(λ, ν), R(l(λ, ν), h) = R0(λ, ν).

We could equally well have reversed the roles of λ and ν, obtaining a different parabolic

subalgebra p(ν, λ). The Levi subalgebra l(λ, ν), corresponding to the coroots vanish-

ing on λ, ν, ρiR, and ρR, would be the same. We will see that these two parabolic

subalgebras correspond to two constructions of the standard representation for the

extended group.

Proposition 13.12. — Suppose Γ = (H, γ,R+
iR) is a Langlands parameter (Theorem

6.1). Assume that the conjugacy class of Γ is fixed by twisting by θ (equivalently, by

x ∈ δG); equivalently, that the corresponding irreducible representation J(Γ) extends

to δG. Write H = TA and Γ = (Λ, ν) as in Definition 6.5; put λ = dΛ ∈ t∗, so that

(λ, ν) ∈ t∗ + a∗ = h∗

represents the infinitesimal character of J(Γ). Fix a system of positive real roots R+
R

making ν weakly dominant.

1. The Levi subgroups L(ν) and L(λ) corresponding to R0(ν) and R0(λ) are θ-

stable and defined over R.

2. The parabolic subalgebra p(ν) is defined over R, and so corresponds to a real

parabolic subgroup P (ν) = L(ν)N(ν) of G.

3. The parabolic subalgebra p(λ) is θ-stable.

4. The group L(ν) has no real roots for H, so H is a fundamental Cartan in L(ν).

5. The group L(λ) has no imaginary roots for H, so H is a maximally split torus

in the quasisplit group L(λ).

6. The Levi subgroup L(λ, ν) = L(λ) ∩ L(ν) is real and θ-stable.

7. There are neither real nor imaginary roots of H in L(λ, ν), so L(λ, ν) is locally

isomorphic to a complex reductive group.

8. The real Weyl group W (λ, ν) for H in L(λ, ν) is contained in WΓ.

Choose a real Borel subgroup B = HN ⊂ L(λ) contained in P (ν) ∩ L(λ), and write

w0(λ) = long element of W (L(λ), H).

Because L(λ, ν) is locally isomorphic to a complex reductive group, we can choose a

sum of simple subsystems

RL(λ, ν) ⊂ R(λ, ν)
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in such a way that

R(λ, ν) = RL(λ, ν)
∐
θRL(λ, ν), RR(λ, ν) =def θR

L(λ, ν).

Write

Rx,+(λ, ν) = roots in N (x = L,R).

Because the roots in N are permuted by −θ, we have

θRL,+(λ, ν) = −RR,+(λ, ν) θRR,+(λ, ν) = −RL,+(λ, ν).

We consider now two different positive root systems for h in g:

R+,1 = R+(λ) ∪ [R0(λ) ∩R+(ν)] ∪RL,+(λ, ν) ∪ −RR,+(λ, ν),

R+,2 = R+(λ) ∪ [R0(λ) ∩R+(ν)] ∪RL,+(λ, ν) ∪RR,+(λ, ν),

9. The element w0(λ) fixes Γ.

10. The stabilizer of (Γ, R+
R ) in the coset W (G,H)θH is W (λ, ν)w0(λ)θH .

11. The element t2 =def w0(λ)θH preserves R+,2, and so generates an extended

torus to which Γ extends.

12. The element t1 =def w0(λ, ν)w0(λ)θH preserves R+,1, and so generates an ex-

tended torus to which Γ extends.

13. The action of w0(λ)θH preserves R(λ, ν) and the system of positive roots RL,+∪
RR+ defined by N ; so it defines an involutive automorphism of the correspond-

ing Coxeter system (W (λ, ν), S(λ, ν)). The extended tori to which Γ extends

correspond to certain conjugacy classes of twisted involutions in this Coxeter

system, the correspondence sending a twisted involution x to 〈xw0(λ)θH , H〉.

Example 13.13. — Suppose G = SL(6,C). Choose for H the subgroup of diagonal

matrices, so that

a∗ = {(ν1, . . . , ν6) ∈ C6 |
∑
i

νi = 0}.

The real Weyl group is S6, acting on a∗ by permuting the coordinates. The restrictions

to a of the roots are the thirty elements

{ei − ej | 1 ≤ i 6= j ≤ 6}.

Each of these corresponds to a single pair of roots (α,−θα). We will abuse notation

and call this set R. The upper triangular matrices constitute a Borel subgroup,

corresponding to the positive system

R+ = {ei − ej | 1 ≤ i < j ≤ 6}.

Consider the Langlands parameter

Γ = (1, ν), ν = (1, 1, 0, 0,−1,−1),
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corresponding to a spherical principal series representation. Because Λ is trivial,

L(λ) = G. We have

R0(ν) = {±(e1 − e2),±(e3 − e4),±(e5 − e6)},
R+(ν) = R+ − {e1 − e2, e3 − e4, e5 − e6}.

So

W (λ, ν) = {1, s12} × {1, s34} × {1, s56}.

The element w0(λ) is the long element of S6, which reverses the order of the six

coordinates:

w0(λ)(ν1, . . . , ν6) = (ν6, . . . , ν1).

Conjugation by −w0(λ) (since we are looking only at a, we can think of θH as −1)

interchanges the two generators s12 and s56, and fixes s34. It is easy to check that

there are exactly two conjugacy classes of twisted involutions, namely

{1, s12s56} and {s34s12, s34s56}.

The first class corresponds to t2 in the Proposition, and the second to t1.

Proof of Proposition 13.12. — Recall from Proposition 4.2 that complex conjugation

acts on the roots by −θ. Therefore a Levi subalgebra containing h is real if and only

if it is θ-stable. That the sets R0(ν) and R0(λ) are θ-stable is immediate from the

fact that θν = −ν and θλ = λ. This proves (1).

For (2), the fact that −θν = ν implies that R+(ν) is preserved by complex conju-

gation. Similarly (3) follows from θλ = λ.

For (4), no real coroot can vanish on ρR; and (5) is similar. Part (6) is immediate

from (1).

The first assertion in (7) follows from (4) and (5). That this forces every simple

(real) factor to be a complex group follows either from the classification of real forms,

or from any of the ideas leading to the proof of that classification.

Part (8) is a consequence of the analysis of the Weyl group action on Langlands

parameters made in [46].

The hypothesis on Γ is that there is a w ∈W (G,H) such that wθHΓ = Γ; so

wλ = λ, wR+
iR = R+

iR, wν = −ν.

The first two conditions imply that w ∈ W (L(λ), H), and the last that w ∈
W (λ, ν)w0(λ). Now (10) follows, and the rest of (9)–(13) is elementary.

Section 9 offered two constructions of standard modules from Langlands parame-

ters, using appropriately chosen systems of positive roots. In the same way we will

find two constructions of standard modules for δG from extended parameters. For

a type two parameter, the standard representation is simply induced from a stan-

dard representation for G; we will say nothing more about that case. We continue to
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assume for simplicity that the infinitesimal character is real, and therefore place our-

selves in the situation of (13.11). Here is the first construction, based on Langlands’

construction of the standard representations of G.

Definition 13.13. In the setting (13.11), write

1H = 〈H, δ1〉, t1 = w1θH ∈ δW (G,H)

for the (first) extended maximal torus constructed in Proposition 13.12, and

Γ1 = (Λ1, ν) for an extended Langlands parameter extending Γ, decomposed

as in Definition 6.5. Write R+
iR for the system of positive imaginary roots that

is part of the discrete parameter Λ, and R+
R for a system of positive real roots

making ν weakly dominant and preserved by t1 (such as the one used in the proof

of Proposition 13.12). Then (Lemma 13.10)

t1Λ = Λ, t1ν = ν, t1R
+
iR = R+

iR, t1R
+
R = R+

R .

Define a real parabolic subgroup

P (ν) = L(ν)N(ν), t1(P (ν)) = P (ν)

as in Proposition 13.12(2). (This parabolic subgroup is slightly smaller than the

one in Langlands’ original construction of standard representations, which used

only ν and not also the choice of positive real roots.) We may therefore define

1L(ν) = 〈L(ν), t1〉,

the group generated by L(ν) and (any representative of) t1; we get

1P (ν) = 1L(ν)N(ν),

a parabolic subgroup of δG. Because the imaginary roots are all in L(ν), Γ1 is

still an extended parameter for 1L(ν). We will define

Iquo,G(Γ1) = Ind
δG
1P (ν)(Iquo,L(ν)(Γ1)⊗ 1).

(Here induction is normalized as usual.) So we are reduced to the problem of

defining the extended standard representation on 1L(ν).

The θ-stable parabolic p(λ) of Proposition 13.12(3) clearly meets l(λ) in a

θ-stable parabolic subalgebra

p(λ) ∩ l(ν) =def pl(ν)(λ) = l(λ, ν) + nl(ν)(λ)

with Levi factor L(λ, ν) and preserved by t1. By the particular choice of t1
(among all elements preserving Γ) there is a θ-stable Borel subalgebra b(λ, ν) in

l(λ, ν), containing h, that is also preserved by t1. We therefore have a t1-stable,

θ-stable Borel subalgebra

b(λ, ν) + nl(ν)(λ) =def bl(ν) = h + nl(ν)
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with Levi subgroup H. Recall that Λ1 involves a genuine character λ1 of the ρiR
cover of 1T . Following (9.3e), we define a character

λ1,bl(ν)
= [λ1 − ρiR]− 2ρ(nl(ν) ∩ k) + 2ρc,iR

of 1T . Here the first term in brackets is a character of 1T by Definition 5.1;

the second, thought of as the “sum of the compact positive roots,” means the

character of 1T on the top exterior power of the indicated nilpotent subalgebra;

and the third is the character on the top exterior power of the span of the compact

imaginary roots. (We cannot just say “sum of roots,” because the extended torus
1T may permute the root spaces.)

Following Theorem 9.4, we use cohomological induction to define

Iquo,L(ν)(Γ1) =

(
Ll(ν),1(L(ν)∩K)

bop
l(ν)

,1T

)s
(Γ1,bl(ν)

)

Here s = dim(nl(ν) ∩ k). A little more explicitly, the definition means this.

1. The representation Iquo,L(ν)(Γ1) contains the 1(L(ν)∩K) representation of high-

est 1T -weight (with respect to nl(ν) ∩ k)

µ1(Γ1) = [λ1 + ρiR]− 2ρc,iR.

2. Equivalently, the weight

µ1(Γ1)− 2ρ(nl(ν) ∩ k) = λ1,bl(ν)
+ 2ρ(nl(ν))

appears in Hs

(
nop
l(ν) ∩ k, Iquo,L(ν)(Γ1)

)
.

3. The restriction map

Hs

(
nop
l(ν), Iquo,L(ν)(Γ1)

)
→ Hs

(
nop
l(ν) ∩ k, Iquo,L(ν)(Γ1)

)
is an isomorphism on the 1T -weight space in question; and

4. The extended torus 1H acts on this 1T -weight space by the character Γ1,bl(ν)
+

2ρ(nl(ν)).

Here is the corresponding construction emphasizing cohomological induction.

Definition 13.14. In the setting (13.11), write

2H = 〈H, δ2〉, t2 = w2θH ∈ δW (G,H)

for the (second) extended maximal torus constructed in Proposition 13.12, and

Γ2 = (Λ2, ν) for an extended Langlands parameter extending Γ, decomposed

as in Definition 6.5. Write R+
iR for the system of positive imaginary roots that

is part of the discrete parameter Λ, and R+
R for a system of positive real roots

making ν weakly dominant and preserved by t2 (such as the one used in the proof

of Proposition 13.12). Then (Lemma 13.10)

t1Λ = Λ, t1ν = ν, t1R
+
iR = R+

iR, t1R
+
R = R+

R .
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Define a θ-stable parabolic subalgebra

p(λ) = l(λ) + n(λ), t2(p(λ)) = p(λ)

as in Proposition 13.12(3). (This parabolic subalgebra is slightly smaller than

the one used in [42] to construct standard representations; that one used only λ

and not also the system of positive imaginary roots.) We may therefore define

2L(λ) = 〈L(λ), t2〉,

the group generated by L(λ) and (any representative of) t2.

Just as in (9.3e), the extended parameter Γ2 for G defines an extended param-

eter Γ2,p(λ) for 1L(λ). The cohomological induction construction of the extended

standard module is

Iquo,G(Γ2) =
(
Lg,δK

pop(λ),2L(λ)∩δK

)s
(Iquo,L(λ)(Γ2,p(λ))).

Here s = dim(n(λ) ∩ k), which is different from (generally larger than) the s

appearing in Definition 13.13.

What remains is to construct the standard module Iquo,L(λ)(Γ2,p(λ)) for the

group 2L(λ). But this is easy: we saw in Proposition 13.12(5) that L(λ) is

quasisplit, with a Borel subgroup B = HN making ν weakly dominant. The

element t2 was constructed to satisfy

t2(N) = N,

so we simply define 2B = 2HN , and

Iquo,L(λ)(Γ2,p(λ)) = Ind
2L(λ)
2B (Γ2,p(λ)).

That this representation extends

Iquo,L(λ)(Γp(λ) = Ind
L(λ)
B (Γp(λ))

is immediate.

Theorem 13.15 (Langlands classification for extended groups)

Suppose that G is the group of real points of a connected complex reductive algebraic

group (cf. (3.1)), and that δG is a corresponding extended group (cf. (12.1)). Then

there is a one-to-one correspondence between infinitesimal equivalence classes of irre-

ducible quasisimple representations of δG (Definition 2.9) and equivalence classes of

extended Langlands parameters for δG (Definition 13.7). In this correspondence, type

one representations (those restricting irreducibly to G) correspond to one-dimensional

parameters; and type two representations (those induced irreducibly from G) corre-

spond to two-dimensional parameters.

This is a consequence of the Langlands classification for the connected group (The-

orem 6.1), of Clifford theory (Proposition 8.13), and of the analysis of extended pa-

rameters made in Proposition 13.12 above. Of course one wants to know that the two
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constructions offered above lead to exactly the same standard representations (rather

than that the two extensions to δG are sometimes interchanged). This can be proven

in the same way as the equivalence of the constructions in Theorems 9.2 and 9.4 above

([25, Theorem 11.129]). We omit the details.

14. Jantzen filtrations and Hermitian forms

For the rest of this paper we will need to work with extended groups and their

representations, in order to make use ultimately of the description of invariant Her-

mitian forms in Theorem 12.9. In some cases, as in the present section, the extension

from G to δG is entirely routine and obvious. In such cases we may formulate results

just for G, in order to keep the notation a little simpler.

Character theory for Harish-Chandra modules is based on expressing the (compli-

cated) characters of irreducible modules as (complicated) integer combinations of the

(relatively simple) characters of standard modules. We want to do something par-

allel for signatures of invariant forms: to express the invariant forms on irreducible

modules as integer combinations of forms on standard modules. A fundamental ob-

struction to this plan is part (3) of Propositions 10.4 and 10.7: if the Langlands

quotient is proper, then the standard module I(Γ) cannot admit a nondegenerate

invariant Hermitian form.

Jantzen (in [19, 5.1]) developed tools to deal with this obstruction; what we need

is contained in Definition 14.8 below. The idea is that each Langlands parameter

Γ = (Λ, ν) (Definition 6.5) is part of a natural family of parameters

(14.1) Γt =def (Λ, tν) (0 ≤ t <∞).

For t > 0, it is evident that Γt inherits from Γ the formal defining properties of a

Langlands parameter. At t = 0, all the real roots satisfy 〈dγ, α∨〉 = 0, and condition

5 of Theorem 6.1 can fail; Γ0 may be only a weak Langlands parameter (Definition

6.3). It is a classical idea (originating in the definition of complementary series repre-

sentations for SL(2) by Bargmann and Gelfand-Naimark, and enormously extended

especially by Knapp) that one can study questions of unitarity by deformation argu-

ments in the parameter t. In order to do that, we need to know that the family of

representations indexed by Γt is “nice.” (The parameter t may be allowed to vary

over all of R or C for many of the statements to follow; this causes difficulties only

with references to the “quotient” realization of a standard module, or to invariant

Hermitian forms. In a similar way, we could allow the continuous parameter to vary

over all of a∗, rather than just over the line Rν, with similar caveats.)

Proposition 14.2 (Knapp-Stein [27, Theorem 6.6]). — If Γ = (Λ, ν) is a Lang-

lands parameter, then all of the (weak) standard modules (for t ≥ 0) Iquo(Γt) and
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Isub(Γt) (cf. (14.1)) may be realized on a common space

V (Λ) =def IndKM∩K(D(Λ)|M∩K)

(notation as in (6.4)). In this realization

1. the action of K (and therefore of the Lie algebra k) is independent of t.

2. The action of the Lie algebra g in Iquo(Γt) depends in an affine way on t. That

is, for each X in g there are linear operators Q0(X) and Q1(X) on V (Λ) so

that the action of X in Iquo(Γt) is Q0(X) + tQ1(X). When V (Λ) is interpreted

as a space of functions on K, the operators Q0(X) are first-order differential

operators, and the operators Q1(X) are multiplication operators.

3. The action of the Lie algebra g in Isub(Γt) depends in an affine way on t. That

is, for each X in g there are linear operators S0(X) and S1(X) on V (Λ) so

that the action of X in Iquo(Γt) is S0(X) + tS1(X). When V (Λ) is interpreted

as a space of functions on K, the operators S0(X) are first-order differential

operators, and the operators S1(X) are multiplication operators.

For t > 0, there is a nonzero interwining operator

Lt = Lt(Γ) : Iquo(Γt)→ Isub(Γt),

unique up to a nonzero scalar multiple. Fix a lowest K-type µ of J(Γ) (equivalently,

a lowest K-type of V (Λ)) and normalize Lt by the requirement

Lt|µ = Id .

4. The intertwining operator Lt is a rational function of t (that is, each matrix

entry is a quotient of polynomials) having no poles on [0,∞).

5. The limit operator L0 is a unitary intertwining operator between two unitarily

induced representations.

6. Suppose that J(Γ) admits a nonzero invariant or c-invariant Hermitian form

〈, 〉1. Regard this as a form on Iquo(Γ) with radical equal to the maximal submod-

ule, and therefore as a form on V (Λ). Then this form has a canonical extension

to a rational family of forms 〈, 〉t on V (Λ), characterized by the two requirements

(a) for t > 0, the form 〈, 〉t is invariant for Iquo(Γt); and

(b) the form 〈, 〉t is constant on the fixed lowest K-type µ.

The family of forms also satisfies

(c) the form 〈, 〉t has no poles on [0,∞); and

(d) for t > 0, the radical of 〈, 〉t is the maximal proper submodule, so that the

form descends to a nondegenerate form on the Langlands quotient J(Γt).

Outline of proof. — We will not give a detailed argument; but since the results about

rational dependence on t are so fundamental to our unitarity algorithm, we will recall

briefly the reasoning. Of course the statement about a common space is part of

Theorem 6.1; and the description of that space is a consequence of the decomposition

G = KMAN . (This is closely related to the Iwasawa decomposition of G, but not
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the same, since MAN is not a minimal parabolic subgroup of G. If one begins with

a minimal parabolic subgroup M1A1N1 of M , then M1(A1A)(N1N) is a minimal

parabolic in G, so G = K(A1A)(N1N) is an Iwasawa decomposition. Combining this

with the Iwasawa decomposition M = (M ∩K)A1N1 of M leads to the formulas

G = KMAN, G/MAN ' K/M ∩K

and then to the description of V (Λ).) Part (1) of the theorem is now obvious.

For part (2), write λ and ρ for the actions of g on functions on G by differentiation

on the left or the right respectively. To make an element X ∈ g act on a function

f0 ∈ V (Λ)—that is, a function on K with values in the space of Λ, transforming on

the right under M ∩K—we must first extend f0 to a function fν on all of G, with an

appropriate transformation on the right under MAN . The action of X on fν is on

the left, by λ(X). To calculate it, we use the formula

λ(X)(k) = ρ(Ad(k−1)X)(k).

To compute the action of ρ(Ad(k−1)X) on fν , we compute the (unique) decomposition

Ad(k−1)X = κ(k,X) + µ(k,X) + α(k,X) + β(k,X) ∈ k + m ∩ s + a + n.

Here s is the −1 eigenspace of the Cartan involution. The action of β(k,X) is zero

by definition, and that of κ(k,X) and µ(k,X) is (almost obviously) independent of

ν. The action of α(k,X) is multiplication by the smooth function

(ν + ρ)(α(k,X)),

which depends in an affine way on ν. This proves (2). Part (3) is identical, with N

replaced by Nop.

The existence and uniqueness of the intertwining operator Lt is part of the Lang-

lands classification (Theorem 6.1). Once the normalization is made, we can calculate

Lt in the following way. Fix any representation (µ1, E1) of K, having multiplicity n

in V (Λ). Pick any one-dimensional subspace S1 in E1, and choose a basis {v1, . . . , vn}
for the corresponding subspace of V (Λ). Pick a one-dimensional subspace S0 of the

lowest K-type (µ,E0), and a basis vector v0 for the corresponding line in V (Λ). Be-

cause I(Γ) has a unique irreducible quotient representation J(Γ) that contains µ, the

vector v0 necessarily generates I(Γ) as a module over the Hecke algebra R(g0,K) (see

[25, Chapter 1]). So we can find elements ri ∈ R(g0,K) with

(14.3) ri · v0 = vi (in I(Γ)).

Now write δ0 ∈ R(K) for a projection operator on S0 ⊂ E0 and δ1 for a projection

on S1 ⊂ E1. This means

τ(δ0) =

{
projection on S0 (τ = µ0)

0 (τ 6' µ0),
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(with τ some irreducible representation of K); and similarly for δ1. (Such elements

can be found because the Hecke algebra of K may be identified with the sum of the

endomorphism algebras of all the irreducible representations of K.) Then

δ0 · v0 = v0, δ0 · V (Λ) = 〈v0〉,

δ1 · vi = vi, δ1 · V (Λ) = 〈v1, . . . , vn〉.
For any value of t, the element

r̃j = δ1rjδ0

of R(g0,K) carries v0 to the span of the vi; so we can define an n× n matrix-valued

function Q of t by

r̃j · v0 =

n∑
i=1

Qij(t)vi (in Iquo(Γt)).

(The letter Q refers to the “quotient” standard module.) According to part (2) of

the theorem, the entries Qij are polynomial functions of t, of degree bounded by the

degree of the enveloping algebra elements appearing in rj . According to (14.3), Q(1)

is the identity matrix.

In exactly the same way, we can define an n× n matrix S(t) by

r̃j · v0 =

n∑
i=1

Sij(t)vi (in Isub(Γt).

Again we find that the entries of S are polynomial functions of t.

The intertwining operator L(t) respects the action of K, so preserves the span of

the vi; so we can define an n× n matrix M(t) by

L(t) · vi =

n∑
k=1

Mki(t)vk.

The intertwining property of L(t) means that

L(t) · r̃j · v0 = r̃j · L(t) · v0.

By the normalization of L(t), L(t) · v0 = v0; so this last equation is equivalent to the

matrix equation

M(t)Q(t) = S(t).

Because Q(1) is the identity, Q(t)−1 is a rational matrix-valued function of t, with no

poles near t = 1; so

M(t) = S(t)Q(t)−1

has the same property. This argument proves (4), except for the assertion that there

is no pole at zero.

To deal with the possible pole at zero, and to prove (5), it is helpful to vary the

continuous parameter not just along the line Rν but in all of a∗. The (normalized)

intertwining operator L(ν′) is a rational function of ν′, with no poles in some positive



90 J. D. ADAMS, M. VAN LEEUWEN, P. E. TRAPA & D. A. VOGAN, JR.

open cone: the matrix entries are quotients of polynomial functions of ν′. We fix a

real-valued and regular linear functional ρ, and we let ν′ approach not zero but the

small purely imaginary character iερ. In this case the limit representation I(Λ, iερ)

is unitary and irreducible, so the limiting intertwining operator L(iερ) must act by a

positive real scalar times a unitary operator. Since L was normalized to be one on a

fixed lowest K-type, this scalar must be equal to one: so L(iερ) is unitary. Taking

the limit as ε→ 0 gives (5). The absence of the pole at zero follows as well.

Part (6) is a formal consequence of these facts about L(t) and the description of

invariant forms in Propositions 10.4 and 10.7.

We are going to use the rational family of intertwining operators L(t) to analyze

the submodule structure of Iquo(Γ). We have already seen that defining

(14.4a) Iquo(Γ)0 =def Iquo(Γ), Iquo(Γ)1 =def ker(L(1))

has the consequence

Iquo(Γ)0/Iquo(Γ)1 ' J(Γ).

Once we decide to consider the family of operators L(t), it is natural to try to define

Iquo(Γ)2 ?
={v ∈ V (Λ) | L(t)v vanishes to order two at t = 1} ⊂ Iquo(Γ)1.

The difficulty is that this space need not be a submodule. Here is why. Suppose that

L(t)v vanishes to second order, and x is in the Hecke algebra R(g0,K). Write ·t for

the action in Iquo(Γt). We would like to show that L(t)[x ·1 v] vanishes to second

order at t = 1. The natural way to do that would be to interchange x and L(t). But

this we are not permitted to do: the correct intertwining relation is rather

L(t)[x ·t v] = x ·t [L(t)v].

The correct definition of the Jantzen filtration is

(14.4b) Iquo(Γ)r =

{
v ∈ V (Λ)

∣∣∣∣ for some rational function fv(t) with fv(1) = v,

L(t)fv(t) vanishes to order r at t = 1.

}
It is easy to check that fv can be taken to be a polynomial of degree at most r − 1

without changing the space defined. Another way to write the definition is

(14.4c) Iquo(Γ)r =

{
v ∈ V (Λ)

∣∣∣∣ for some rational function fv(t) with fv(1) = v,

(t− 1)−rL(t)fv(t) is finite at t = 1.

}
Now the invariance of Iquo(Γ)r under the Hecke algebra is easy: if fv is the rational

function of t certifying the membership of v in Iquo(Γ)r, and x belongs to the Hecke

algebra, then we can define

fx·1v(t) =def x ·t fv(t),

which is a rational function of t taking the value x ·1 v at t = 1. Furthermore

L(t)[fx·1v(t)] = L(t)[x ·t fv(t)] = x ·t [L(t)fv(t)].
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The function [L(t)fv(t)] is assumed to vanish to order r at t = 1, so this is true after

we apply the operator-valued polynomial function x·t. That is, the function fx·1v
certifies that x ·1 v also belongs to Iquo(Γ)r.

The Jantzen filtration is the decreasing filtration by submodules

(14.4d) Iquo(Γ) = Iquo(Γ)0 ⊃ Iquo(Γ)1 ⊃ Iquo(Γ)2 ⊃ · · ·

Because the image of the intertwining operator is the Langlands quotient, we get

Iquo(Γ)1 = kerL(1), Iquo(Γ)0/Iquo(Γ)1 ' J(Γ).

Since we are talking about rational functions, (14.4b) could formally be extended

to negative values of k, using order of pole rather than order of vanishing. Since L(t)

has no poles for t > 0, such a definition adds nothing for Iquo(Γ). But it is perfectly

reasonable to consider the inverse intertwining operator

L(t)−1 : Isub(Γt)→ Iquo(Γt),

(always on our fixed space V (Λ).) Again the matrix coefficients are rational functions

of t, but now there can be lots of poles in (0,∞). For r ≥ 0, we define

(14.4e)

Isub(Γ)−r =

{
v ∈ V (Λ)

∣∣∣∣ for some polynomial function gv(t) with gv(1) = v,

(t− 1)rL(t)−1gv(t) is finite at t = 1.

}
On this side the Jantzen filtration is

(14.4f) 0 = Isub(Γ)1 ⊂ Isub(Γ)0 ⊂ Isub(Γ)−1 ⊂ · · · ⊂ Isub(Γ).

The Langlands subrepresentation is

Isub(Γ)0 = imL(1), Isub(Γ)0/Isub(Γ)1 ' J(Γ).

Lemma 14.5 (Jantzen [19, Lemma 5.1]). — Suppose E and F are vector spaces of

finte dimension over a field k, and

L ∈ k(t)⊗k Homk(E,F ) ' Homk(t)(k(t)⊗k E, k(t)⊗k F ).

is a rational family of linear maps from E to F . Assume that L is invertible over

k(t); equivalently, that dimk E = dimk F , and that in any bases for E and F , the rep-

resentation of L as a matrix of rational functions has determinant a nonzero rational

function. Define

Er(1) = Er =

{
v ∈ E

∣∣∣∣ for some rational function fv(t) with fv(1) = v,

(t− 1)−rL(t)fv(t) is finite at t = 1.

}
F q(1) = F q =

{
w ∈ F

∣∣∣∣ for some rational function gw(t) with gw(1) = w,

(t− 1)−qL(t)−1gw(t) is finite at t = 1.

}
1. These are finite decreasing filtrations of E and F , with

ER = 0, E−R = E, all R sufficiently large,

and similarly for F .
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2. Taking residues defines natural isomorphisms

L[r](1) = L[r] : Er/Er+1 ∼→ F−r/F−r+1, L[r]v = (t− 1)−rL(t)fv(t)

with fv as in the definition of Er. The inverse is (L−1)[−r].

3. Define an integer D by

det(L) = (t− 1)D(rational function finite and nonzero at t = 1).

Then

D =

∞∑
r=−∞

r dimEr/Er+1.

4. Suppose that L is finite at t = 1. Then E−r = E for all r ≥ 0, and

D =

∞∑
r=1

dimEr.

We will have no occasion to make use of (3), but Jantzen made it a powerful tool,

so we include the statement. In fact Jantzen looked only at the case when L is finite

at t = 1, and wrote the result in the form (4); so we include that version as well.

Sketch of proof. — We can multiply L by a power of (t−1)c to ensure that L is finite

at t = 1. (This shifts all the filtrations by c, and multiplies detL by (t−1)c·dimE , and

so shifts D by c ·dimE. All the conclusions of the theorem are essentially unchanged.)

Now consider the local ring A of rational functions finite at t = 1. The ring A is a

unique factorization PID, and t− 1 is the unique prime element. Look at the free A

modules

M = A⊗k E, M ′ = A⊗k F.
The operator L amounts to an injective module map

L : M ↪→M ′.

The module M ′/LM is finitely generated, so the elementary divisor theorem provides

a basis {m′1, . . . ,m′n} of M ′ and nonnegative integers

d1 ≤ d2 ≤ · · · ≤ dn,

so that

{(t− 1)d1m′1, . . . , (t− 1)dnm′n}
is a basis of LM . Since L is injective, the elements

mi =def L
−1((t− 1)dim′i)

are automatically a basis of M . Working in these bases, it is easy to show that

Er = span of values at 1 of {mi | di ≥ r},

and

detL = (t− 1)
∑n
i=1 di(unit in A).
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The assertions of the lemma are now easy to check. (For example, in the bases {mi}
and {m′i}, L is diagonal with the entry (t− 1)d appearing dim(Ed/Ed+1) times.)

Proposition 14.6 ([47, Theorem 3.8]). — Suppose Γ = (Λ, ν) is a Langlands pa-

rameter, and Γt = (Λ, tν) (0 < t <∞). Write

Lt : Iquo(Γt)→ Isub(Γt)

for the rational family of Knapp-Stein intertwining operators constructed in Theorem

14.2. Define Jantzen filtrations (of submodules)

Iquo(Γ) = Iquo(Γ)0 ⊃ Iquo(Γ)1 ⊃ Iquo(Γ)2 ⊃ · · · ,

and

0 = Isub(Γ)1 ⊂ Isub(Γ)0 ⊂ Isub(Γ)−1 ⊂ · · ·
as in (14.4).

1. Each Jantzen filtration is finite: for R sufficiently large, Iquo(Γ)R = 0, and

Isub(Γ)−R = Isub(Γ).

2. The Langlands quotient is

Iquo(Γ)/ ker(L1) = Iquo(Γ)0/Iquo(Γ)1 ' J(Γ)

' Isub(Γ)0/Isub(Γ)1 = imL1/{0}.

3. The residual operators (Lemma 14.5(2)) define (g0,K)-module isomorphisms

L[r] : Iquo(Γ)r/Iquo(Γ)r+1 ∼−→ Isub(Γ)−r/Isub(Γ)−r+1.

4. Suppose that J(Γ) admits a nonzero invariant or c-invariant Hermitian form

〈, 〉1. Extend this to a rational family of invariant forms 〈, 〉t as in Proposition

14.2. Then there are nondegenerate invariant forms

〈, 〉[r] on Iquo(Γ)r/Iquo(Γ)r+1,

defined by

〈v, w〉[r] = lim
s→1

(s− 1)−r〈fv(s), fw(s)〉s (v, w ∈ Iquo(Γ)r, fv, fw as in (14.4b).)

Sketch of proof. — For the finiteness of the filtrations, recall that I(Γ) has a finite

number N of irreducible composition factors. Choose some irreducible representation

µi of K (1 ≤ i ≤ N) appearing in each of these composition factors, and let E ⊂ V (Λ)

be the sum of the µi-isotypic subspaces, a finite-dimensional space. By the choice of

the µi,

(14.7) each nonzero (g0,K)-submodule of Iquo(Γ) has nonzero intersection with E.

Because they respect the action of K, the intertwining operators Lt must preserve

E. If we apply Lemma 14.5 to the restrictions of Lt to E, we conclude that (for

large R), Iquo(Γ)R ∩ E = 0. By (14.7), it follows that Iquo(Γ)R = 0. The rest of

(1) is similar. Part (2) is part of the Langlands classification Theorem 6.1. Part
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(3) is immediate from Lemma 14.5, applied separately to each (finite-dimensional)

K-isotypic subspace.

For part (4), invariant forms are described in Definition 8.6 in terms of intertwining

operators with Hermitian dual representations. Propositions 10.4 and 10.7 compute

the Hermitian duals of standard quotient-type modules as standard sub-type modules.

In the presence of (for example) a c-invariant form on J(Γ), the conclusion is that

Iquo(Γt)
h,σc ' Isub(Γt).

The invariant pairings defining this isomorphism were constructed from a fixed iso-

morphism for the underlying spaces

J : V (Λ)h ' V (Λ).

Now it follows from the definitions that(
[Iquo(Γ)r]h,σc

)⊥ ' Isub(Γ)−r+1,

so that we get isomorphisms

[Iquo(Γ)r/Iquo(Γ)r+1]h,σc ' Isub(Γ)−r/Isub(Γ)−r+1.

The isomorphism J ◦ L[r] from Iquo(Γ)r/Iquo(Γ)r+1 to its Hermitian dual is the in-

variant Hermitian form in (4).

Definition 14.8. Suppose Γ is a Langlands parameter, and that the Langlands

quotient J(Γ) admits a nonzero invariant or c-invariant Hermitian form 〈, 〉. De-

fine nondegenerate invariant forms

〈, 〉[r] on Iquo(Γ)r/Iquo(Γ)r+1

as in Proposition 14.6. Write

(pos[r],neg[r]) : K̂ → N× N

for the signatures of these forms (Proposition 8.9). The Jantzen form for Iquo(Γ)

is the nondegenerate form

∞∑
r=0

〈, 〉[r] on gr Iquo(Γ) =def

∞∑
r=0

Iquo(Γ)r/Iquo(Γ)r+1.

Write

(posI(Γ),negI(Γ)) =

∞∑
r=0

(pos[r],neg[r])

for the signature of this form.

This is all that we need for the next few sections. Eventually, however, we will be

studying these forms by deformation in t, and we will want to know how the signatures

change with t.
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Corollary 14.9 ([47, Theorem 3.8]). — Suppose Γ is a Langlands parameter, and

that the Langlands quotient J(Γ) admits a nonzero invariant or c-invariant Hermitian

form 〈, 〉1. Consider the family of standard representations Iquo(Γt) (for t ≥ 0) and

the family of invariant forms 〈, 〉t extending 〈, 〉1 as in Proposition 14.6. For every

t ≥ 0, define forms

〈, 〉[r]t on Iquo(Γt)
r/Iquo(Γt)

r+1

with signatures

(pos
[r]
t ,neg

[r]
t ) : K̂ → N× N

as in Definition 14.8. Write

(post,negt) =

∞∑
r=0

(pos
[r]
t ,neg

[r]
t )

for the signature of the (nondegenerate) Jantzen form on gr Iquo(Γt).

1. The subspace Iquo(Γt)
1 = kerLt is zero unless Iquo(Γt) is reducible. This can

happen only if either

a) there is a real root α such that

〈tν, α∨〉 ∈ Z\{0}, Λq(mα) = (−1)〈tν,α
∨〉+1

(notation as in (9.3d)); or

b) there is a complex root δ such that 〈(dλ, tν), δ∨〉 ∈ Z, and

〈tν, δ∨〉 > |〈dλ, δ∨〉|.

These conditions define a discrete set of values of t—in fact a subset of a lattice

in R. On the complement of this discrete set, the form 〈, 〉t is nondegenerate

and of locally constant signature

(post,negt) = (pos
[0]
t ,neg

[0]
t ).

2. Choose ε so small that I(Γt) is irreducible for t ∈ [1− ε, 1 + ε]\{1}. Then

(pos1+ε,neg1+ε) = (pos1,neg1) =

∞∑
r=0

(pos
[r]
1 ,neg

[r]
1 ),

(pos1−ε,neg1−ε) =
∑
r even

(pos
[r]
1 ,neg

[r]
1 ) +

∑
r′ odd

(neg
[r′]
1 ,pos

[r′]
1 ).

Equivalently,

pos1+ε = pos1−ε +
∑
r odd

(
pos

[r]
1 −neg

[r]
1

)
, neg1+ε = neg1−ε +

∑
r odd

(
neg

[r]
1 −pos

[r]
1

)
.

That is, the signature of the form changes at reducible points according to the

signature on the odd levels of the Jantzen filtration.

We will not reproduce the (elementary) proof from [47]. The main point is the

limit formula at the end of Proposition 14.6; the factor (s− 1)−r is positive unless r

is odd and s < 1.
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15. Signature characters for c-invariant forms

In this section we will begin to explain what it means to “calculate” the signature

of a c-invariant Hermitian form on an irreducible representation. We have already

seen in Theorem 12.9 how to relate this to calculating the signature of a classical

invariant Hermitian form. Just as in Section 14, the extension to δG is relatively

easy; so to keep the notation simple we discuss only G.

The idea is that the (Jantzen) Hermitian forms on standard modules (Definition

14.8) are taken as building blocks, and we seek to express the forms on irreducible

modules in terms of these building blocks. In order to set the stage, we begin with

the classical and simpler case of character theory.

Recall from (2.1) the center of the enveloping algebra Z(g). Fix an algebra homo-

morphism (“infinitesimal character”)

χ : Z(g)→ C

By Harish-Chandra’s theorem, χ corresponds to a single Weyl group orbit Oh(χ) in

h∗, for every Cartan subalgebra h in g. We will write

ξλ : Z(g)→ C (λ ∈ h∗)

for the homomorphism defined by W · λ (Theorem 5.4). Define

(15.1a) B(χ) = equiv. classes of Langlands parameters of infl. character χ;

(cf. Theorem 6.1). Sometimes it will be convenient to index the infinitesimal character

by some particular weight λ ∈ h∗, and to write

(15.1b) B(λ) = classes of parameters of infinitesimal character ξλ = B(ξλ).

We will occasionally need

(15.1c) Bweak(λ) = weak parameters of infinitesimal character ξλ = Bweak(ξλ)

(Definition 6.3).

In the notation of Theorem 6.1, Γ ∈ B(χ) if and only if dγ ∈ Oh(χ); equivalently,

if and only if χ = ξdγ . The set B(χ) is finite, of cardinality bounded by the sum over

conjugacy classes of real Cartan subgroups H of

[H : H0][W (g, h) : W (G,H)].

Define

(15.1d)
mΞ,Γ = (multiplicity of J(Ξ) as composition factor of I(Γ))

=def mI(Γ)(J(Ξ)) ∈ N.

In the Grothendieck group of virtual (g0,K)-modules, this is the same as

[I(Γ)] =
∑

Ξ

mΞ,Γ[J(Ξ)].
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(The brackets denote the image in the Grothendieck group, and serve as a reminder

that this equality need not be true on the level of modules.) Because the center of

the enveloping algebra acts by scalars on the standard module I(Γ), the multiplicity

mΞ,Γ can be nonzero only if Ξ and Γ belong to the same set B(χ). So we can regard

m as a finite matrix of nonnegative integers, with entries indexed by the finite set

B(χ). Theorem 6.1 says that the diagonal entries are equal to one:

mΓ,Γ = 1.

We can impose a preorder ≤RP on B(χ) by the length of the real part of the continuous

parameter. (In Definition 18.4 below, we will introduce the Bruhat order, which is

a partial order on B(χ) with fewer relations than this one, but still satisfying the

analogue of (15.1e). The point of using ≤RP is simply to get quickly a weak version

of upper triangularity, so that we know certain matrices are invertible.) Langlands’

proof of Theorem 6.1 shows that

(15.1e) mΞ,Γ 6= 0 =⇒ Ξ ≤RP Γ;

and that if “equality holds” (that is, if the real parts of the continuous parameters

have the same length) then Ξ = Γ. Therefore the matrix m is upper triangular with

integer entries and ones on the diagonal. Accordingly it has an inverse with these

same properties: we can define MΓ,Ψ ∈ Z by the requirement∑
Γ

mΞ,ΓMΓ,Ψ = δΞ,Ψ (Ξ,Ψ,Γ ∈ B(χ)).

This is equivalent to an equation in the Grothendieck group of virtual (g0,K)-modules,

(15.1f) [J(Ψ)] =
∑

Γ

MΓ,Ψ[I(Γ)].

We can also write this as an equation for distribution characters (Theorem 5.12):

ΘJ(Ψ) =
∑

Γ

MΓ,ΨΘI(Γ).

Since the characters of the standard modules I(Γ) were (in principle) computed by

Harish-Chandra, this formula expresses the character of an irreducible representation

J(Ξ) in terms of known distributions ΘI(Γ), and a matrix of integers MΓ,Ψ. The

integers MΓ,Ψ are computed by the Kazhdan-Lusztig conjectures (to which we will

return in Sections 18 and 19).

All of this discussion takes place in the Grothendieck group of finite length (g0,K)-

modules. To make a parallel discussion of invariant forms, we need something like a

“Grothendieck group of modules with a nondegenerate invariant form.” The difficulty

with this idea is that the restriction of a nondegenerate form to a submodule may

be degenerate; so the category of modules with a nondegenerate form is not abelian,

and it is not so clear how to define a Grothendieck group. This issue is addressed by
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Lemma 3.9 in [47]; we repeat the argument (phrasing it a little more formally and

generally) in the next few results, culminating in Proposition 15.10.

Lemma 15.2. — In the setting of Proposition 8.9, suppose M is an admissible (h, L)

module of finite length, admitting a nondegenerate σ-invariant form 〈, 〉M .

1. The form 〈, 〉M defines an isomorphism M 'Mh,σ (Definition 8.6).

2. Forming orthogonal complement

N⊥ =def {m ∈M | 〈m,n〉 = 0, all n ∈ N}

is inclusion-reversing on submodules of M , and (N⊥)⊥ = N .

3. The isomorphism of (1) restricts to

Nh,σ 'M/N⊥.

4. The radical of the invariant form

〈, 〉N =def restriction of 〈, 〉M to N

is equal to N ∩N⊥.

5. If N1 and N2 are submodules, then

(N1 ∩N2)⊥ = N⊥1 +N⊥2 , (N1 +N2)⊥ = N⊥1 ∩N⊥2 .

This is entirely elementary; the admissibility hypothesis allows us to focus on the

finite-dimensional multiplicity spaces M δ defined in (8.8).

Proposition 15.3. — In the setting of Proposition 8.9, suppose M is an admissible

(h, L) module of finite length, with a nondegenerate σ-invariant form 〈, 〉M . Suppose

S is an (h, L)-submodule of M . Use the notation of Lemma 15.2. Define

R = S ∩ S⊥ = radical of form restricted to S.

1. The form 〈, 〉S+S⊥ has radical equal to R, and so descends to a nondegenerate

form on (S + S⊥)/R.

2. There is an orthogonal direct sum decomposition

(S + S⊥)/R = (S/R)⊕ (S⊥/R).

3. The form 〈, 〉M provides a natural identification

Rh,σ 'M/R⊥ = M/(S + S⊥).

4. The signature

(posM ,negM ) : K̂ → N× N
is given by

posM = posS/R + posS⊥/R + multR,

negM = negS/R + negS⊥/R + multR .

Here multR is the multiplicity function for the module R.



UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS 99

The proof is immediate from the lemma.

If A is any admissible (h, L)-module, then the direct sum A⊕Ah,σ carries a natural

nondegenerate form vanishing on both summands; the formula is

(15.4) 〈(a, ξ), (a′, ξ′)〉hyp = ξ(a′) + ξ′(a).

This is called the hyperbolic form. Its signature is easily computed to be

posA⊕Ah,σ = multA, negA⊕Ah,σ = multA .

The proposition says that, in terms of signatures of invariant forms, the module M

looks like

(R⊕Rh,σ)⊕ (S/R)⊕ (S⊥/R).

It need not be the case that M has this decomposition as a module. For us such

modules will arise from “wall-crossing” translation functors. For example, there is

a representation of SL(2,R) carrying a nondegenerate invariant Hermitian form and

three irreducible composition factors: a discrete series representation with SO(2)-

types indexed by {2, 4, 6, . . .}, appearing twice, and the trivial representation (having

only the SO(2)-type indexed by zero). The form has signature (1, 1) on each of the

nontrivial SO(2)-types. There is a submodule S containing the trivial representation

and one copy of the discrete series. On this submodule the radical R is the discrete

series representation, S⊥ is equal to R, and S + S⊥ = S.

Definition 15.5. Suppose (as in Proposition 8.9) that (h, L(C)) is a pair with

L(C) reductive, and that σ is a real structure defining a compact form L (Defi-

nition 8.1). The Grothendieck group of finite length admissible (h, L(C))-modules

with nondegenerate σ-invariant Hermitian forms (briefly, the Hermitian Grothen-

dieck group) is the abelian group G(h, L(C))σ generated by such (M, 〈, 〉M ), sub-

ject to the following relations. Write [M, 〈, 〉M ] for the class in the Grothendieck

group. Whenever S is a submodule of M , and R is the radical of the restricted

form 〈, 〉S , then we impose the relation

[M, 〈, 〉M ] = [R⊕Rh,σ, 〈, 〉hyp] + [S/R, 〈, 〉S/R] + [S⊥/R, 〈, 〉S⊥/R].

The motivation for the definition is Proposition 15.3, which gives exact sequences

0→ R⊥ →M → Rh,σ → 0, 0→ R→ R⊥ → S/R⊕ S⊥/R→ 0,

and therefore an equality

(15.6a) [M ] = [R⊕Rh,σ] + [S/R] + [S⊥/R]

in the ordinary Grothendieck group G(h, L(C)) of admissible finite-length (h, L(C))-

modules. From this we conclude that there is a natural homomorphism of abelian

groups

(15.6b) G(h, L(C))σ → G(h, L(C)), [M, 〈, 〉M ] 7→ [M ]



100 J. D. ADAMS, M. VAN LEEUWEN, P. E. TRAPA & D. A. VOGAN, JR.

defined by forgetting the form. Proposition 15.3 also implies that there is a well-

defined signature homomorphism

(15.6c) (pos•,neg•) : G(h, L(C))σ → Map(L̂,Z× Z), [M, 〈, 〉M ] 7→ (posM ,negM ).

The fundamental fact about the ordinary Grothendieck group is

Proposition 15.7. — Suppose that (h, L(C)) is a pair with L(C) reductive (Defini-

tion 8.1). The Grothendieck group of admissible (h, L(C))-modules of finite length is

a free abelian group (that is, a free Z-module) with generators the (equivalence classes

of) irreducible admissible (h, L(C))-modules. There is a well-defined multiplicity ho-

momorphism

mult• : G(h, L(C))→ Map(L̂,Z), [M ] 7→ (multM ).

We want a corresponding statement about the Hermitian Grothendieck group. In

the preceding proposition, the ring of ordinary integers appears as the Grothendieck

group of complex vector spaces. Roughly speaking, the integers appearing are dimen-

sions of “multiplicity spaces” Homh,L(C)(J,M), with J an irreducible module. (Of

course this statement is not precisely correct: the indicated Hom is too small to cap-

ture the full multiplicity of J in M .) For the Hermitian case, the role of Z is played

by the Grothendieck group of vector spaces with nondegenerate forms.

Definition 15.8. The signature ring is the Hermitian Grothendieck group W of

finite-dimensional vector spaces with nondegenerate Hermitian forms. (This is

the Hermitian Grothendieck group

W = G(0, {1})σ

of Definition 15.5 in the case when the Lie algebra h is zero and the group L(C)

is trivial.) The ring structure is defined by tensor product of Hermitian forms.

The ordinary Grothendieck group of this category is Z, so we get as in (15.6) an

algebra homomorphism

for : W→ Z

by forgetting the form.

The identity element of W is the class of the one-dimensional space C with its

standard (positive) Hermitian form 〈z, w〉 = zw:

1 = [C, 〈, 〉].

We also use the element

s = [C,−〈, 〉].

Taking the tensor square of this form eliminates the minus sign, so

s2 = 1.
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Using Sylvester’s law of inertia for Hermitian forms, we find that any finite-

dimensional vector space V with a nondegenerate form 〈, 〉V is isomorphic to a

sum of copies of these two cases:

[V, 〈, 〉V ] = p · 1 + q · s, (p, q ∈ N).

Furthermore
W = {p · 1 + q · s | p, q ∈ Z}

' Z[s]/〈s2 − 1〉.

The reduction map (forgetting the form) is

for : W→ Z, for(p+ qs) = p+ q.

The ring W allows us to make a small consolidation of notation. In the setting

of Proposition 8.9, suppose (V, 〈, 〉V ) is an admissible (h, L(C))-module with a σ-

invariant Hermitian form. We can define the signature character of V to be the

function

(15.9) sigV : K̂ →W, sigV (δ) = [V δ/(radical), 〈, 〉δV ] = posV (δ) + negV (δ)s

(notation as in Proposition 8.9(4).)

Proposition 15.10. — In the setting of Definition 15.5 and Definition 15.8, form-

ing the tensor product of vector spaces with (h, L(C))-modules (each endowed with a

nondegenerate Hermitian form) defines the structure of a W-module on the Hermitian

Grothendieck group G(h, L(C))σ.

1. This Grothendieck group has the following set of generators as a W-module:

(a) For each irreducible admissible (h, L(C))-module J such that J ' Jh,σ,

fix a “base” choice of nondegenerate σ-invariant form 〈, 〉J,b. Then the

generator is [J, 〈, 〉J,b]; the subscript b stands for “base.”

(b) For each inequivalent (unordered) pair of irreducible admissible (h, L(C))-

modules J ′ and J ′h,σ, the generator is [J ′⊕J ′h,σ, 〈, 〉hyp] (cf. (15.4)). This

generator satisfies the relation

s · [J ′ ⊕ J ′h,σ, 〈, 〉hyp] = [J ′ ⊕ J ′h,σ, 〈, 〉hyp].

2. The Hermitian Grothendieck group is a free W-module over these generators,

except for the relations indicated in 1(b).

3. Any admissible (h, L(C))-module M with a nondegenerate σ-invariant form

〈, 〉M may be written uniquely as

[M, 〈, 〉M ] =
∑

J'Jh,σ
(pJ(M) + qJ(M)s)[J, 〈, 〉J,b] +

∑
J′ 6'J′h,σ

mJ′(M)[J ′ ⊕ J ′h,σ, 〈, 〉hyp]

=
∑

J'Jh,σ
wJ(M)[J, 〈, 〉J,b] +

∑
J′ 6'J′h,σ

mJ′(M)[J ′ ⊕ J ′h,σ, 〈, 〉hyp].
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Here all the pJ(M), qJ(M), and mJ′(M) are nonnegative integers; mJ′(M) is the

multiplicity of J ′ as a composition factor of M ; and

pJ(M) + qJ(M) = mJ(M),

the multiplicity of J as a composition factor of M . The elements

wJ(M) =def pJ(M) + qJ(M)s

are in W; in the formula mJ′(M) could be replaced by any element w′ of W with

for(w′) = mJ′(M).

4. The signature character of M may be computed from those of the irreducible

composition factors and the coefficients in (3):

sigM =
∑

J'Jh,σ
wJ(M) sigJ,b +

∑
J′ 6'J′h,σ

mJ′(M) multJ′(1 + s).

Proof. — We begin by proving the existence of the indicated decomposition of M , by

induction on the length (the number of irreducible composition factors) of M . If the

length is zero, then M = 0, and we can take all the coefficients pJ(M), qJ(M), and

mJ′(M) to be zero. So suppose that the length is ` > 0, and that the decomposition

is available for modules of length at most `− 1. Since M has positive (finite) length,

it admits an irreducible submodule S. Now there are two cases.

Case 1: 〈, 〉S = 0. In the notation of Proposition 15.3, this means that S = R ⊂
S⊥, and that M/S⊥ ' Rh,σ. The module M0 = S⊥/R inherits a nondegenerate form

〈, 〉M0
, and has length `−2 (since the two irreducible composition factors R and Rh,σ

have been removed). By Definition 15.5, we have

[M, 〈, 〉M ] = [R⊕Rh,σ, 〈, 〉hyp] + [M0, 〈, 〉M0
].

By inductive hypothesis, M0 has an expression of the desired form.

If R 6' Rh,σ, then (R,Rh,σ) is one of the pairs in the second sum. So we get the

expression for M just by adding 1 to the coefficient mR in that sum.

If R ' Rh,σ, then R is one of the J in the first sum. It is elementary that

(R⊕Rh,σ, 〈, 〉hyp) ' (R, 〈, 〉R)⊕ (R,−〈, 〉R).

So we get the expression for M by adding 1+s to the coefficient of R in the first sum.

Case 2: 〈, 〉S 6= 0. Because S was chosen irreducible, this means that

(S, 〈, 〉S) ' (S,±〈, 〉S,b).

In particular, this form is nondegenerate. In the notation of Proposition 15.3, this

means that R = 0, and

(M, 〈, 〉M ) = (S, 〈, 〉S)⊕ (S⊥, 〈, 〉S⊥).

By Definition 15.5, the corresponding relation is true also in the Hermitian Grothen-

dieck group. Now the module M0 = S⊥ has length ` − 1 (since the irreducible
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composition factor S has been removed). By inductive hypothesis, M0 has an expres-

sion of the desired form. We get the expression for M by adding 1 to pS(M0) (in the

case of a plus sign) or to qS(M0) (in the case of a minus sign). This completes the

inductive proof of the existence of the expression for M ; the proof also shows that the

coefficients are nonnegative integers, with the indicated relationship to composition

series multiplicity.

The existence of these expressions proves that the indicated elements generate the

Hermitian Grothendieck group.

The statement about signature characters in (4) is a consequence of Proposition

15.3(4) and the definition of W. We will make no use of the statement about (the

absence of) relations in the Hermitian Grothendieck group, so we omit the proof.

Using the description of the Hermitian Grothendieck group in Proposition 15.10, we

can extend the discussion in (15.1) to invariant forms. Partly to avoid small technical

difficulties (like the possible nonexistence of invariant forms), and partly because it is

what we need first, we will consider a real infinitesimal character (Definition 5.5)

χ : Z(g)→ C.

This means that the parameter set

B(χ) = Langlands parameters of infinitesimal character χ

consists of parameters with real continuous part (see the discussion after Theorem

7.1). We take the real structure σc as in (10.1), and consider the Grothendieck group

(15.11a) G(g,K)c

of finite-length (g,K) modules with nondegenerate c-invariant Hermitian forms. By

Proposition 10.7, there is for each Γ ∈ B(χ) a canonical nonzero c-invariant form

〈, 〉cJ(Γ),b

characterized (up to a positive multiple) by being positive on every lowest K-type.

According to Proposition 15.10, the elements

[J(Γ), 〈, 〉cJ(Γ),b]

constitute a basis for (the infinitesimal character χ part of) G(g,K)c.

Definition 14.8 explains how to pass from 〈, 〉cJ(Γ),b to a nondegenerate form

〈, 〉cI(Γ) on gr Iquo(Γ).

Then Proposition 15.10 allows us to write this Jantzen form in the Hermitian Grothen-

dieck group as a W-linear combination of the basis of irreducibles:

(15.11b) [I(Γ), 〈, 〉cI(Γ)] =
∑

Ξ

wcΞ,Γ[J(Ξ), 〈, 〉cJ(Ξ),b].

Each coefficient

(15.11c) wcΞ,Γ = pcΞ,Γ + qcΞ,Γs ∈W
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has nonnegative pc and qc, and

for(wcΞ,Γ) =def p
c
Ξ,Γ + qcΞ,Γ = mΞ,Γ.

These facts imply that

(15.11d) wcΞ,Γ 6= 0 if and only if mΞ,Γ 6= 0.

It follows that, just as for the multiplicity matrix, the coefficient wcΞ,Γ can be nonzero

only if Ξ and Γ belong to the same set B(χ). So we can regard wc as a finite matrix

of elements of the commutative ring W, with entries indexed by the finite set B(χ).

Proposition 14.6(2) says that the diagonal entries are equal to one:

wcΓ,Γ = 1.

Since the multiplicity matrix is upper triangular ((15.1e)), (15.11d) implies

wcΞ,Γ 6= 0 =⇒ Ξ ≤RP Γ;

and that if “equality holds” (that is, if the real parts of the continuous parameters

have the same length) then Ξ = Γ. Therefore the matrix wc is upper triangular with

entries in W and ones on the diagonal. Accordingly it has an inverse with these same

properties: we can define W c
Γ,Ψ ∈W by the requirement∑

Γ

wcΞ,ΓW
c
Γ,Ψ = δΞ,Ψ (Ξ,Ψ,Γ ∈ B(χ)).

This is equivalent to an equation in the Hermitian Grothendieck group

(15.11e)
[
J(Ψ), 〈, 〉cJ(Ψ),b

]
=
∑

Γ

W c
Γ,Ψ

[
I(Γ), 〈, 〉cI(Γ)

]
.

We can also write this as an equation for signature functions (see (15.9))

(15.11f) sigcJ(Ψ) =
∑

Γ

W c
Γ,Ψ sigcI(Γ) .

Formally this equation appears to calculate signatures (for c-invariant forms) for

the irreducible modules J(Ψ) in terms of the finite matrix W c, each entry of which

is a pair of integers. This sounds very good for the problem of computing signatures

explicitly. Nevertheless this formula is less satisfactory than (15.1) for two reasons.

First, there is no Kazhdan-Lusztig conjecture to compute the coefficient matrix W c
Γ,Ψ.

We will address this in Section 20. Second, we do not understand the signature

functions sigcI(Γ) for the standard modules I(Γ). We will address this in Section 21.

We conclude this section by rewriting Corollary 14.9 in our new notation.

Corollary 15.12 ([47, Theorem 3.8]). — Suppose Γ is a Langlands parameter, and

that the Langlands quotient J(Γ) admits a nonzero invariant or c-invariant Hermitian

form 〈, 〉1. Consider the family of standard representations Iquo(Γt) (for t ≥ 0) defined
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in (14.1), and the family of invariant or c-invariant forms 〈, 〉t extending 〈, 〉1 as in

Proposition 14.6. For every t ≥ 0, define forms

〈, 〉[r]t on Iquo(Γt)
r/Iquo(Γt)

r+1

with signatures

sig
[r]
I(Γt)

= (pos
[r]
t +sneg

[r]
t ) : K̂ →W

as in Definition 15.8. Write

sigt = sigI(Γt) =

∞∑
r=0

sig
[r]
I(Γt)

for the signature of the (nondegenerate) Jantzen form on gr Iquo(Γt). Consider a

finite subset

0 < tr < tr−1 < · · · < t1 ≤ 1 ⊂ (0, 1].

so that I(Γt) is irreducible for t ∈ (0, 1] \ {ti}.
1. On the complement of {ti}, 〈, 〉t is nondegenerate of locally constant signature

sigt = sig
[0]
t .

2. In terms of the “signature matrix” defined in (15.11b),

sig1 =
∑

Ξ∈B(χ)

wcΞ,Γ sigJ(Ξ) .

3. Choose ε so small that I(Γt) is irreducible for t ∈ [1− ε, 1 + ε]\{1}. Then

sig1+ε = sig1 =

∞∑
r=0

sig
[r]
1 , sig1−ε =

∑
r even

sig
[r]
1 +

∑
r′ odd

s · sig[r′]
1 .

Equivalently,

sig1+ε = sig1−ε +(1− s)
∑
r odd

sig
[r]
1 .

That is, the signature of the form changes at reducible points according to the

signature on the odd levels of the Jantzen filtration.

16. Translation functors: first facts

Our next serious goal is to introduce the Kazhdan-Lusztig “q-analogues” of the

multiplicities and signatures defined in Section 15. The powers of q appearing will

come from a grading on the set B(χ) of Langlands parameters with a fixed infinites-

imal character (see (15.1)). This grading is combinatorially understandable only in

the case of regular infinitesimal character χ. We will define it for singular χ by some

kind of “collapsing” from the regular case, which makes sense because of the Jantzen-

Zuckerman translation principle. Our purpose in this section is to say enough about

the translation functors to explain these definitions.
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Translation functors are defined using finite-dimensional representations of G, and

in particular by thoroughly understanding their weights. These matters extend to δG

only with care and effort. We will therefore present the theory for G in this section,

and discuss the extension to δG in Section 17.

Recall from (3.1) that G is assumed to be the group of real points of a connected

complex reductive algebraic group G(C). So far we have made serious use of only

two aspects of this hypothesis. The first is that G is in the Harish-Chandra class,

meaning that the automorphism Ad(g) of the complexified Lie algebra g is inner.

This requirement means that Ad(G) acts trivially on the center Z(g) of U(g), which

in turn implies that Z(g) must act by scalars on any irreducible (g,K)-module.

The second aspect is that the Cartan subgroups of G (the centralizers in G of

Cartan subalgebras of g that are defined over R) are all abelian. One effect of this is to

simplify slightly the statement of the Langlands classification, because the character

(of a double cover of a Cartan subgroup) appearing in a Langlands parameter is

necessarily one-dimensional. A more subtle consequence is that the lowest K-types

have multiplicity one (Proposition 6.6).

A third aspect of our category of groups is that G is isomorphic to a group of

matrices. So far we have not made serious use of this hypothesis. In the theory

of translation functors it is necessary for the simple formulation below of Theorem

16.6(2) (the behavior of Langlands parameters under translation functors).

Even to formulate a theory of translation functors we will make use of the first two

properties again, through the following two propositions.

Proposition 16.1. — Suppose G is a real reductive group as in (3.1). Fix a real

Cartan subgroup H of G, and a set R+ ⊂ R(G,H) of positive roots (Definition 5.2).

1. Suppose that F is a finite-dimensional irreducible representation of G. Then the

R+-highest weight space of F is a one-dimensional irreducible representation

φ = φ(F ) ∈ Ĥ.

2. Write dψ ∈ h∗ for the differential of any character ψ of H. The set

∆(F,H) ⊂ Ĥ

of weights of the finite-dimensional irreducible representation F is (if we write

〈S〉 for the convex hull of a subset S of a vector space)

∆(F,H) = {ψ ∈ Ĥ | φ− ψ ∈ ZR(G,H), dψ ∈ 〈W (g, h) · dφ〉}.

Define Λfin(G,H) ⊂ Ĥ to be the group of weights of finite-dimensional representations

of G.

3. The dominant weights in Λfin(G,H) are the highest weights of finite-dimensional

representations of G.

4. A weight ψ ∈ Ĥ belongs to Λfin(G,H) if and only if we have both

a) dψ(β∨) ∈ Z for every coroot β∨ ∈ R∨(g, h), and
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b) ψ(mα) = (−1)ψ(α∨) for every real coroot α∨ (Definition 5.7).

Proposition 16.2. — Suppose G is a real reductive group as in (3.1). Fix a max-

imally split real Cartan subgroup Hs of G, preserved by the Cartan involution θ.

Write Hs = TsAs for the Cartan decomposition of Hs (Proposition 4.3). That Hs is

maximally split is equivalent to either of the conditions

a) as,0 is a maximal abelian subalgebra of the −1 eigenspace s0 of θ; or

b) every imaginary root of hs in g is compact (Definition 5.7).

Fix a set of positive roots R+
s for R(g, hs).

1. The group Hs meets every component of G: i.e., G = G0 ·Hs.

2. Suppose F is a finite-dimensional irreducible representation of G, and φs =

φs(F ) ∈ Ĥs is the R+
s -highest weight of F . Then φs(F ) determines F up to

isomorphism.

3. Suppose H is any other real Cartan subgroup of G, and R+ is any set of positive

roots for R(g, h). Write

i(R+
s , R

+) : h∗s → h∗

for the unique isomorphism implemented by an element of G(C) and carrying

R+
s to R+. Then there is surjective group homomorphism

I(R+
s , R

+) : Λfin(Hs)→ Λfin(H)

characterized by

a) for every finite-dimensional representation F of G, I(R+
s , R

+) carries

∆(F,Hs) bijectively to ∆(F,H), and

b) the differential of I(R+
s , R

+) is i(R+
s , R

+).

4. The kernel of the homomorphism I(R+
s , R

+) consists of the characters of Hs

trivial on Hs ∩ [G0 ·H].

For the proofs, we refer to [42, §0.4]. (The description in Proposition 16.1(4) of

Λfin(G,H) is not proved in [42], but we will make no use of it.)

Definition 16.3 ([42, Definition 7.2.5]). Suppose H is a Cartan subgroup of G,

Λfin(G,H) ⊂ Ĥ is the group of weights of finite-dimensional representations, and

λ ∈ h∗ is any weight. Write

λ+ Λfin(G,H) = {λ+ ψ | ψ ∈ Λfin(G,H)},

(a set of formal symbols), called the translate of Λfin(G,H) by λ. A coherent

family of virtual (g,K)-modules based on λ+ Λfin(G,H) is a map

Φ: λ+ Λfin(G,H)→ G(g,K)

(notation as in Proposition 15.7) satisfying

a) Φ(λ+ ψ) has infinitesimal character λ+ dψ ∈ h∗; and
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b) for every finite-dimensional representation F of G,

F ⊗ Φ(λ+ ψ) =
∑

µ∈∆(F,H)

Φ(λ+ (ψ + µ)).

In this last formula we regard ∆(F,H) as a multiset, in which µ occurs with

multiplicity equal to the dimension of the µ weight space of F .

Definition 16.4. Suppose h ⊂ g is a Cartan subalgebra of a complex reductive

Lie algebra, and ξ ∈ h∗. The set of integral roots for ξ is

(16.4a) R(ξ) = {α ∈ R(g, h) | ξ(α∨) ∈ Z}.

Fix a positive root system R+(ξ) ⊂ R(ξ). We say that ξ is integrally dominant if

(16.4b) ξ(α∨) ≥ 0, (α ∈ R+(ξ)).

If R+(ξ) is extended to a positive system R+ for R(g, h), then integral dominance

is equivalent to

ξ(β∨) is not a strictly negative integer (β ∈ R+).

Occasionally we will need to make use of a stronger condition. We say that ξ

is real dominant for R+ if

(16.4c) ξ(β∨) ∈ R≥0 (β ∈ R+).

The integral Weyl group for ξ is

(16.4d) W (ξ) =def W (R(ξ)) ⊂W (g, h).

An equivalent definition (by Chevalley’s theorem for the affine Weyl group) is

W (ξ) = {w ∈W (g, h) | wξ − ξ ∈ ZR(g, h)}

(see [7, Exercice VI.2.1, page 227] or [42, Lemma 7.2.17]).

It is useful also to define the set of singular roots for ξ

(16.4e) Rξ = {α ∈ R(g, h) | ξ(α∨) = 0} ⊂ R(ξ).

Notice that the choice of a system of positive integral roots making ξ integrally

dominant is precisely the same as the choice of an (arbitrary) system of positive

singular roots Rξ,+. The correspondence is

R+(ξ) = {α ∈ R(ξ) | ξ(α∨) > 0} ∪Rξ,+,

Rξ,+ = R+(ξ) ∩Rξ.

The singular Weyl group for ξ is

W ξ =def W (Rξ) ⊂W (R(ξ)) ⊂W (g, h).

An equivalent definition (by Chevalley’s theorem for W ) is

W ξ = {w ∈W (g, h) | wξ = ξ}.
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In terms of the notion of integral roots, we can recast Proposition 16.2 in a way

that is often useful. So fix two Cartan subalgebras and weights

(16.5a) hi ⊂ g, λi ∈ h∗i (i = 1, 2).

Assume that they define the same infinitesimal character

ξλ1
= ξλ2

.

Equivalently, assume that there is an isomorphism h∗1 ' h∗2 implemented by an element

of G(C) and carrying λ1 to λ2:

i : h∗1 → h2
∗, i(λ1) = λ2.

This isomorphism is unique only up to (multiplication on the right by) the stabilizer

Wλ1 of λ1. But if we fix also systems of positive singular roots

Rλ1,+, Rλ2,+,

then we can specify a unique isomorphism by requiring

(16.5b) i(λ1, R
λ1,+, λ2, R

λ2,+) : h∗1 → h2
∗, λ1 7→ λ2, Rλ1,+ 7→ Rλ2,+.

Equivalently, if we require that λi is integrally dominant for R+(λi), then we can

specify a unique isomorphism

(16.5c) i(λ1, R
+(λ1), λ2, R

+(λ2)) : h∗1 → h2
∗, λ1 7→ λ2, R+(λ1) 7→ R+(λ2).

These isomorphisms can take the place of i(R+
s , R

+) in Proposition 16.2.

Theorem 16.6 ([42, Corollary 7.3.23]). — Suppose Γ = (H, γ,R+
iR) is a Langlands

parameter for G, and J(Γ) the corresponding irreducible representation (Theorem

6.1). Write dγ ∈ h∗ for the differential of γ, which is the infinitesimal character

of J(Γ). Write R(dγ) for the set of integral roots (Definition 16.4). Then R(dγ) is

automatically preserved by the action of the Cartan involution θ.

Fix a set R+(dγ) of positive integral roots, subject to the following requirements:

a) if dγ(α∨) is a positive integer, then α ∈ R+(dγ);

b) if dγ(α∨) = 0, but dγ(θα∨) > 0, then α ∈ R+(dγ); and

c) R+(dγ) ⊃ R+
iR.

Fix a set R+ of positive roots for H in G containing R+(dγ). Suppose finally that

Hs is a maximally split Cartan, with any positive root system R+
s , as in Proposition

16.2; we will use the maps i(R+
s , R

+) and I(R+
s , R

+) defined in that proposition. Set

dγs = i(R+
s , R

+)−1(dγ) ∈ h∗s, R+(dγs) = i(R+
s , R

+)−1(R+(dγ)).

Then there is a unique coherent family Φ of virtual (g,K)-modules based on dγs +

Λfin(G,Hs), with the following characteristic properties:

a) Φ(dγs) = [J(Γ)]; and

b) whenever dγs+dψs is integrally dominant (with respect to R+(dγs)), Φ(dγ+ψ)

is (the class in the Grothendieck group of) an irreducible representation or zero.
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Write Π(dγ) for the set of simple roots of R+(dγ), and define a subset τ(Γ) ⊂ Π(dγ)

by

a) if α ∈ Π(dγ) is real, (Definition 5.7), then α ∈ τ(Γ) if and only if γq(mα) =

(−1)dγ(α∨)+1 (notation (9.3d));

b) if β ∈ Π(dγ) is imaginary, (Definition 5.7), then β ∈ τ(Γ) if and only if β is

compact; and

c) if δ ∈ Π(dγ) is complex, (Definition 5.7), then δ ∈ τ(Γ) if and only if θδ is a

negative root.

Write

τs(Γ) = i(R+
s , R

+)−1(τ(Γ)) ⊂ Π(dγs)

for the corresponding integral simple roots for Hs. The coherent family Φ has the

following additional properties.

1. If dγs + dψs is integrally dominant, then Φ(dγs +ψs) = 0 if and only if there is

a simple root αs ∈ τs(Γ) with (dγ + dψ)(α∨s ) = 0.

2. Suppose that dγs + dψs is integrally dominant, and does not vanish on any root

in τs(Γ). Write

ψ = I(R+
s , R

+)(ψs) ∈ Λfin(H).

Then

Γ + ψ =def (H, γ + ψ,R+
iR)

is a Langlands parameter; and

Φ(dγs + ψs) = [J(Γ + ψ)].

3. The set of all the irreducible constituents of the various virtual representations

Φ(dγs+ψs) is equal to the set of irreducible constituents of all the tensor products

F ⊗ J(Γ), with F a finite-dimensional representation of G.

Definition 16.7. In the setting of Theorem 16.6, the subset

τs(Γ) ⊂ Π(dγs)

of the simple integral roots is called the τ -invariant of the irreducible represen-

tation J(Γ), or the τ -invariant of Γ. (Because of the canonical isomorphism

i(R+
s , R

+), we may also refer to τ(Γ) ⊂ Π(dγ) as the τ -invariant.)

Return for a moment to the abstract language of (15.1). So we fix a maximally

split Cartan Hs of G, and a weight λ0 ∈ h∗s corresponding to a (possibly singular)

infinitesimal character

ξλ0
: Z(g)→ C.

Write R(λ0) for the integral roots (Definition 16.4), and choose a set of positive roots

(16.8a) R+(λ0) ⊂ R(λ0) ⊂ R(g, hs)
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making λ0 integrally dominant. When we study signatures of invariant forms, we will

assume that the infinitesimal character is real (Definition 5.5). In that case we can

extend R+(λ0) uniquely to a positive system

(16.8b) R+
s ⊃ R+(λ0)

making λ0 real dominant (16.4c).

It will be useful to have notation for the simple roots

Π(λ0) ⊂ R+(λ0),

and for the subset

{α ∈ Π(λ0) | λ0(α∨) = 0} =def Πλ0

of simple roots orthogonal to λ0. Finally, we fix a weight

φ ∈ Λfin(G,Hs)

of a finite-dimensional representation of G, subject to the additional condition

(16.8c) λ0 + dφ is dominant and regular for R+(λ0).

In connection with signatures of invariant forms, we will want also to assume that

(16.8d) λ0 + dφ is dominant and regular for R+
s .

One way to achieve this is to take φ to be the sum of the roots in R+
s . We need also

Fφ = finite-dimensional irreducible of extremal weight φ.

In order to define the Jantzen-Zuckerman translation functors, we need the functor

(on g-modules)

Pλ0(M) =
largest submodule of M on which z−ξλ0

(z)

acts nilpotently, all z ∈ Z(g)

If M is a (g,K) module, so is Pλ0(M). On the category of Z(g)-finite modules (for

example, on (g,K)-modules of finite length) the functor Pλ0
is exact. The translation

functors we want are

(16.8e) Tλ0+φ
λ0

(M) =def Pλ0+dφ (Fφ ⊗ Pλ0
(M)) ,

(“translation away from the wall”) and

(16.8f) Tλ0

λ0+φ(N) =def Pλ0

(
F ∗φ ⊗ Pλ0+dφ(N)

)
(“translation to the wall.”) These are clearly exact functors on the category of finite-

length (g,K)-modules, so they also define group endomorphisms of the Grothendieck

group G(g,K).

Corollary 16.9 (Jantzen [19], Zuckerman [51]; see [42, Proposition 7.2.22])

Suppose we are in the setting of (16.8).
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1. The functors Tλ0

λ0+φ and Tλ0+φ
λ0

are left and right adjoint to each other:

Homg,K(N,Tλ0+φ
λ0

(M)) ' Homg,K(Tλ0

λ0+φ(N),M),

and similarly with the two functors interchanged.

2. For a coherent family Φ of virtual (g,K)-modules on λ0 + Λfin(G,Hs),

Tλ0

λ0+φ(Φ(λ0 + φ)) = Φ(λ0).

3. The translation functor Tλ0

λ0+φ (translation to the wall) carries every irreducible

(g,K)-module of infinitesimal character λ0+dφ to an irreducible of infinitesimal

character λ0, or to zero. The irreducible representations mapped to zero are

exactly those containing some root of Πλ0 in the τ -invariant (Definition 16.7).

4. The (inverse of the) translation functor of (3) defines an injective correspon-

dence of Langlands parameters (and therefore of irreducible representations)

tλ0+φ
λ0

: B(λ0) ↪→ B(λ0 + dφ).

The image consists of all irreducible representations (of infinitesimal character

λ0 + dφ) having no root of Πλ0 in the τ -invariant.

5. Suppose Γ0 = (H, γ0, R
+
iR) ∈ B(λ0) is a Langlands parameter (at the possibly

singular infinitesimal character λ0). Choose positive integral roots R+(dγ0) as

in Theorem 16.6, so that we have an isomorphism

i(λ0, R
+(λ0), dγ0, R

+(dγ0)) : h∗s → h∗

as in (16.5). Define

φ(Γ0) = I(λ0, R
+(λ0), dγ0, R

+(dγ0))(φ),

an H-weight of a finite-dimensional representation of G (Proposition 16.2).

Then the correspondence of Langlands parameters in (4) is

tλ0+φ
λ0

(Γ0) = Γ0 + φ(Γ0)

(notation as in Theorem 16.6(2)).

6. Suppose Γ1 = (H, γ1, R
+
iR) ∈ B(λ0+dφ) is a Langlands parameter (at the regular

infinitesimal character λ0 + dφ). Write R+(dγ1) for the unique set of positive

integral roots making dγ1 integrally dominant, so that we have an isomorphism

i(λ0 + dφ,R+(λ0), dγ1, R
+(dγ1)) : h∗s → h∗

as in (16.5). Define

φ(Γ1) = I(λ0, R
+(λ0), dγ0, R

+(dγ0))(φ),

an H-weight of a finite-dimensional representation of G (Proposition 16.2).

Then

tλ0

λ0+φ(Γ1) =def (H, γ1 − φ(Γ1), R+
iR) =def Γ1 − φ(Γ1)
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is a weak Langlands parameter (Definition 6.3). This correspondence is a left

inverse to the injection of (4):

tλ0

λ0+φ ◦ t
λ0+φ
λ0

(Γ0) = Γ0.

7. Translation to the wall carries standard representations to weak standard repre-

sentations:

Tλ0

λ0+φ(Iquo(Γ1)) = Iquo(Γ1 − φ(Γ1)).

In particular,

Tλ0

λ0+φ(Iquo(Γ0 + φ(Γ0)) = Iquo(Γ0).

8. Translation to the wall carries irreducibles to irreducibles or to zero:

Tλ0

λ0+φ(J(Γ1)) =

{
J(Γ1 − φ(Γ1)) (τ(J(Γ1)) ∩Πλ0 = ∅),
0 (τ(J(Γ1)) ∩Πλ0 6= ∅).

In particular,

Tλ0

λ0+φ(J(Γ0 + φ(Γ0)) = J(Γ0).

Corollary 16.9 allows us to “reduce” the computation of the multiplicity matrix

mΞ,Γ defined in (15.1) to the case of regular infinitesimal character. Given a possibly

singular infinitesimal character λ0, we choose a weight of a finite-dimensional repre-

sentation φ as in (16.8), so that λ0 +dφ is regular. The (possibly singular) Langlands

parameters Ξ and Γ in B(λ0) correspond to regular Langlands parameters Ξ + φ(Ξ)

and Γ + φ(Γ) in B(λ0 + dφ), and

(16.10) mΞ,Γ = mΞ+φ(Ξ),Γ+φ(Γ).

A little more precisely, we can start with the decomposition into irreducibles

[I(Γ + φ(Γ))] =
∑

Ξ1∈B(λ0+dφ)

mΞ1,Γ+φ(Γ) [J(Ξ1)]

and apply the exact translation functor Tλ0

λ0+φ. On the left we get [I(Γ)], by Corollary

16.9(7). On the right we get∑
Ξ1∈B(λ0+dφ)

τ(Ξ1)∩Πλ0=∅

mΞ1,Γ+φ(Γ) [J(Ξ1 − φ(Ξ1))] .

The irreducibles appearing on the right are all distinct (this is part of the unique-

ness assertion for the coherent family in Theorem 16.6), so the coefficients are the

multiplicities of irreducibles in I(Γ).

To say this another way: the index set of Langlands parameters at the possibly

singular infinitesimal character λ0 is naturally a subset of the index set at the regular

infinitesimal character λ0 + dφ. The multiplicity matrix at λ0 is the corresponding

submatrix of the one at λ0 + dφ.

We call this fact a “reduction” in quotes, because the multiplicity problem at

regular infinitesimal character is much more complicated than at singular infinitesimal
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character: we have “reduced” a less complicated problem to a more complicated one.

But the gain is real. At regular infinitesimal character we have the Kazhdan-Lusztig

algorithm (see Section 18) to solve the problem, and this algorithm cannot (as far as

we now understand) be applied directly to the case of singular infinitesimal character.

Finally, let us consider the problem of relating the character matrix MΞ,Γ to regular

infinitesimal character. Since this problem concerns the inverse of the multiplicity

matrix, we might suspect that there are difficulties: there is not usually a nice way

to find the inverse of a submatrix from the inverse of the larger matrix. Since our

matrices are upper triangular, one could hope that the submatrix we are considering

is a corner; but that turns out not to be the case. In order to see what happens, we

begin with a careful statement of what happens to standard modules under translation

to singular infinitesimal character.

Theorem 16.11. — Suppose we are in the setting of (16.8). Write

tλ0

λ0+φ : B(λ0 + dφ)→ Bweak(λ0)

(notation (15.1)) as in Corollary 16.9(7). Fix a Langlands parameter Ξ1 ∈ B(λ0+dφ).

Write

Ξ0 = tλ0

λ0+φ(Ξ1) ∈ Bweak(λ0),

so that

Tλ0

λ0+φ(Iquo(Ξ1)) = Iquo(Ξ0).

1. There is a unique subset Csing(Ξ0) ⊂ B(λ0) with the property that

Iquo(Ξ0) =
∑

Ξ′∈Csing(Ξ0)

Iquo(Ξ′).

2. The set Csing(Ξ0) has cardinality either zero (if some simple compact imaginary

root for Ξ0 vanishes on λ0, so that I(Ξ0) = 0) or a power of two.

For each Langlands parameter Ξ ∈ B(λ0), define

Creg(Ξ) = {Ξ1 ∈ B(λ0 + dφ) | Ξ ∈ Csing(Ξ0)} ⊂ B(λ0 + dφ);

here Ξ0 = tλ0

λ0+dφ(Ξ1) as above.

3. Suppose the Langlands parameter Γ ∈ B(λ0) corresponds to

Γ + φ(Γ) ∈ B(λ0 + dφ).

Then the character formula (15.1) is

J(Γ) =
∑

Ξ∈B(λ0)

∑
Ξ1∈Creg(Ξ)

MΞ1,Γ+φ(Γ)[I(Ξ)].

Equivalently,

MΞ,Γ =
∑

Ξ1∈Creg(Ξ)

MΞ1,Γ+φ(Γ).
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Sketch of proof. — That Ξ0 must be a weak Langlands parameter is Corollary

16.9(6), and the statement about translation of standard modules is Corollary

16.9(7). As is explained in (6.4), the weak standard module I(Ξ0) of infinitesimal

character λ0 is either equal to zero (in case the parameter vanishes on some simple

compact imaginary root) or can be written (by a simple algorithm) as a direct sum

I(Ξ0) =
∑

Ξ′∈Csing(Ξ0)⊂B(λ0)

I(Ξ′).

The letter C stands for “Cayley.” The fundamental example is writing a nonspherical

principal series for SL(2,R) (with continuous parameter zero) as a direct sum of two

limits of discrete series; the general case is just a repeated application of this one.)

The construction of this decomposition takes place inside the subgroup of G generated

by the Cartan subgroup H1 for the parameter Ξ0, and the real roots in Πξ0 . It turns

out that the parameters appearing in Csing(Ξ0) are all attached to a single Cartan

subgroup, and that the number of them is a power of 2. Since we will not use these

last two facts, we omit the proof. This is (2).

For the character formula in (3), we begin with the character formula at infinites-

imal character λ0 + dφ:

[J(Γ + φ(Γ))] =
∑

Ξ1∈B(λ0+dφ)

MΞ1,Γ+φ(Γ) [I(Ξ1)]

Now apply the exact translation functor Tλ0

λ0+φ. On the left we get [J(Γ)], by Corollary

16.9(8). On the right we get a sum of weak standard modules∑
Ξ1∈B(λ0+dφ)

MΞ1,Γ+φ(Γ) [I(Ξ1 − φ(Ξ1))] =
∑

Ξ1∈B(λ0+dφ)

MΞ1,Γ+φ(Γ) [I(Ξ0)] .

Using (2), we may therefore rewrite our character formula as

[J(Γ)] =
∑

Ξ∈B(λ0)

∑
Ξ1∈B(λ0+dφ)
Ξ∈Csing(Ξ0)

MΞ1,Γ+φ(Γ) [I(Ξ)]

=
∑

Ξ∈B(λ0)

∑
Ξ1∈Creg(Ξ)

MΞ1,Γ+φ(Γ) [I(Ξ)] .

Equivalently,

MΞ,Γ =
∑

Ξ1∈Creg(Ξ)

MΞ1,Γ+φ(Γ).

It is natural to ask about a corresponding use of the translation functors to relate

the signature formulas (15.11) at two different infinitesimal characters. More or less

this is exactly parallel to the discussion above, but there is a subtlety about the choice

of invariant form: the translation functor will carry one nondegenerate invariant form
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to another, but the new form may not share the characteristic positivity property of

the old one. We therefore postpone a careful analysis to Section 20.

17. Translation functors for extended groups

In this section we fix an extended group

(17.1a) δG = Go {1, δf}

as in Definition 12.3. Suppose

(17.1b) 1H = 〈H, δ1〉, t1(R+
1 ) = R+

1

is an extended maximal torus preserving a positive root system R+
1 , with δ1 ∈ K a

representative for the element t1 of the extended Weyl group. According to Clifford

theory (Proposition 8.13),

(17.1c)

• each γ = γt1 ∈ Ĥ has two one-dimensional extensions γ± in 1̂H,
on which the scalar actions of δ1 differ by sign;

• each γ 6= γt1 ∈ Ĥ induces to γind = γt1ind ∈ 1̂H; and

• these types exhaust 1̂H.

Of course it also makes sense to induce a t1-fixed character γ; in that case we get

γind = γ+ + γ− (γ = γt1).

Despite the notation, there is no way to prefer one of the two extensions γ+ and γ−
without making a further choice: that of a square root of the scalar by which δ2

1 ∈ H
acts in γ.

There is a parallel description of the finite-dimensional representations of δG:

(17.1d)

• each t1-fixed (equivalently, θ-fixed) finite-dimensional irreducible
representation F of G has two extensions F± to δG, distinguished
by the action of δ1 on the R+

1 -highest weight space;

• each member of a two-element orbit {F, F t1} of irreducible finite-
dimensional representations of G induces to an irreducible repre-
sentation Find = F t1ind of δG; and

• these two types exhaust the irreducible finite-dimensional repre-
sentations of δG.

Inducing a θ-fixed finite-dimensional irreducible to δG gives

Find = F+ + F− (F = F t1).

Again the notation obscures that fact that there is no way to prefer F+ over F−
without choosing a square root of the action of δ2

1 on the highest weight space.
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� There is a possibly unexpected subtlety about highest weight theory for δG:

the highest weight of an irreducible finite-dimensional representation need not

be an irreducible representation of 1H, and need not determine the representation of
δG. For us, the most important aspect of this problem is that the highest weight of

F may be t1-fixed even if F is not θ-fixed. Examples appear in Example 17.3 below.

As in Proposition 16.1, for each finite-dimensional representation F1 of δG, define

∆(F1,
1H) ⊂ 1̂H

to be the collection of irreducible representations of 1H appearing in the restriction

of F1. Sometimes it will be convenient to regard ∆(F1,
1H) as a multiset. We define

Λfin(δG, 1H) ⊂ 1̂H

to be the set of irreducible representations of 1H appearing in the restrictions of finite-

dimensional representations of δG. Using finite-dimensional representations induced

from G to δG, it is very easy to see that

Λfin(δG, 1H) = {φ1 ∈ 1̂H | φ1|H ⊂ Λfin(G,H)};

here ⊂ indicates that the restriction is a sum of characters which are weights of

finite-dimensional representations of G. We write

(17.1e) Gfin(1H) = subgroup of G(1H) generated by Λfin(δG, 1H).

Finally, for any finite-dimensional representation of F1 of δG, define

φ1(F1) = representation of 1H on R+
1 -highest weight vectors.

Even if F1 is irreducible, it turns out that φ1(F1) need not be irreducible; this is

related again to the phenomenon in Example 17.3.

Proposition 17.2. — In the setting of Proposition 16.2, suppose that R+
s is chosen

compatible with an extended maximal torus 1Hs, and that ts is the corresponding

automorphism of Hs.

1. The surjection

I(R+
s , R

+
1 ) : Λfin(Hs) � Λfin(H)

carries the action of ts to that of t1.

2. The surjection induces a homomorphism of Grothendieck groups

δI(R+
s , R

+
1 ) : Gfin(1Hs)→ Gfin(1H)

preserving dimensions and satisfying

(a) For every finite-dimensional representation F1 of δG, δI(R+
s , R

+
1 ) carries

the restriction of F1 to 1Hs to the restriction of F1 to 1H.

(b) For every weight λs ∈ Λfin(δG, 1Hs), write λ = I(R+
s , R

+
1 )(µs). Then

δI(R+
s , R

+
1 )(λs,ind) = λind.
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(c) If in addition λs ∈ Λtsfin(δG, 1Hs) is fixed by ts, then automatically λ is

fixed by t1; and

δI(R+
s , R

+
1 )(λs,±) = λ±.

3. A ts-fixed dominant weight λs ∈ Λtsfin(G,Hs) is automatically the highest weight

of unique a finite-dimensional irreducible representation F (λs) ' F (λs)
θ.

4. A t1-fixed dominant weight λ ∈ Λt1fin(G,H) is the highest weight of a θ-fixed

finite-dimensional representation of G if and only if

λ = I(R+
s , R

+
1 )(λs) (λs ∈ Λtsfin(G,Hs)).

It is important to note in (4) that there can exist t1-fixed weights of finite-

dimensional representations that are not highest weights of θ-fixed finite-dimensional

representations of G.

Example 17.3. — Suppose G = GL(2,R). We take for H the Cartan subgroup

H ' C× = {reiφ | r > 0, φ ∈ R},

coming from the multiplicative action on C ' R2. The Cartan involution (inverse

transpose) acts by θ(z) = z−1, so this is also the action of t1:

t1(reiφ) = r−1eiφ.

The characters of H appearing in finite-dimensional representations are

λν,m(reiφ) = r2νeimφ (m ∈ Z, ν ∈ C).

That is,

Λfin(G,H) ' C× Z, t1(ν,m) = (−ν,m).

The t1-fixed weights are

Λt1fin(G,H) = {(0,m) | m ∈ Z}.

For a maximally split Cartan we choose the diagonal subgroup

Hs ' R× × R× = {(d1, d2) | di ∈ R×.

The action of ts is

ts(d1, d2) = (d−1
2 , d−1

1 ).

The characters appearing in finite-dimensional representations are

λν,m,δ(d1, d2) = |d1|ν+m/2|d2|ν−m/2(sgn d1)δ(sgn d2)m+δ (ν ∈ C,m ∈ Z, δ ∈ Z/2Z).

Therefore

Λfin(G,Hs) ' C× Z× Z/2Z, ts(ν,m, δ) = (−ν,m,m+ δ).

The ts-fixed weights are

Λtsfin(G,Hs) = {(0,m, δ) | m ∈ 2Z}.
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The map of the proposition is

I(R+
s , R

+
1 )(ν,m, δ) = (ν,m).

This is indeed surjective (it is exactly two to one), and it intertwines the actions of

ts and t1; but it does not carry ts-fixed weights onto t1-fixed weights.

If for example we take m = 1, we see that the character reiφ 7→ eiφ of H, which is

fixed by t1, is not the highest weight of any θ-fixed finite-dimensional representation

of G. It is actually the highest weight of two different representations of G, namely

C2 ⊗ | det |−1/2, C2 ⊗ | det |−1/2 ⊗ (sgn(det)).

These two representations are interchanged by θ (since they are Hermitian dual to

each other).

In order to avoid difficulties like those appearing in this example, we will use for

extended groups only coherent families based on a maximally split Cartan. The

definition makes sense more generally, however.

Definition 17.4 ([42, Definition 7.2.5]). Suppose we are in the setting of (17.1),

and λ ∈ h∗,t1 is any t1-fixed weight. Write

λ+ Λfin(δG, 1H) = {λ+ ψ | ψ ∈ Λfin(δG, 1H)},

(a set of formal symbols), the translate of Λfin(δG, 1H) by λ. Similarly, write

λ+ Gfin(1H) = {λ+ ψ | ψ ∈ Gfin(1H)},

(notation as in (17.1e)—another set of formal symbols, but with the abelian

group structure from the Grothendieck group) called the translate of Gfin(1H) by

λ. A coherent family of virtual (g, δK)-modules based on λ + Λfin(δG, 1H) is a

map

Φ1 : λ+ Λfin(δG, 1H)→ G(g, δK)

(notation as in Proposition 15.7) satisfying two conditions we will write below.

Since the irreducible modules are a Z-basis of the Grothendieck group, it is

equivalent to give a Z-linear map

(17.5) Φ1 : λ+ Gfin(1H)→ G(g, δK).

Here are the conditions.

a) Φ1(λ+ ψ) has infinitesimal character λ+ dψ ∈ h∗; and

b) for every finite-dimensional algebraic representation F1 of δG,

F1 ⊗ Φ1(λ+ ψ1) = Φ1(λ+ [F ⊗ ψ1]).

In (a), if ψ is two-dimensional, then the statement means that each irreducible

constituent of the restriction to G of this virtual representation has infinitesimal

character given by one of the two summands of the Lie algebra representation

λ+dψ. The brackets in (b) denote the class in Gfin(1H), and we are using there

the second formulation (17.5) of the notion of coherent family.
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The reader should verify that this formulation in the case of G is precisely equiv-

alent to the classical formulation in Definition 16.3. The language here avoids a

tiresome enumeration of the various possible decompositions of tensor products

of irreducible representations of 1H.

There is an easy construction of some coherent families for δG.

Example 17.6. — In the setting of Definition 17.4, suppose Φ is a coherent family

based on λ+ Λfin(G,H). Extend Φ to a Z-linear map

Φ: λ+ Gfin(H)→ G(g,K)

as in (17.5). Define

Φind(λ+ ψ1) = Ind
(g,δK)
(g,K) (Φ(λ+ ψ1|H)).

That is, we restrict ψ1 to H, getting one or two characters of H; we add the values

of the coherent family for G at those characters; then we induce from G to δG.

That this construction gives a coherent family for δG is elementary. The reason

it is not so interesting is this. We saw in Theorem 16.6 that interesting information

is encoded by a coherent family many of whose values are irreducible. The values of

the coherent family Φind are all induced; so the values can never include the type one

irreducible modules for δG (Definition 8.14), arising by extension of θ-fixed irreducible

modules for G.

Here is a description of more interesting coherent families.

Theorem 17.7. — Suppose Γ1 = (1H, γ1, R
+
iR) is a Langlands parameter for an ir-

reducible representation J(Γ1) of δG, with t1-fixed differential

dγ1 = (dγ1)t1 ∈ h∗

representing the infinitesimal character of J(Γ1). Just as in Theorem 16.6, we write

R(dγ1) for the set of integral roots (Definition 16.4), and fix a set R+(dγ1) of positive

integral roots, subject to the requirements:

a) if dγ1(α∨) is a positive integer, then α ∈ R+(dγ1);

b) if dγ1(α∨) = 0, but dγ1(θα∨) > 0, then α ∈ R+(dγ1);

c) R+(dγ1) ⊃ R+
iR; and

d) t1(R+(dγ1)) = R+(dγ1).

(Such a system always exists.) Fix a set R+ = t1(R+) of positive roots for H in G

containing R+(dγ1). Suppose finally that Hs is a maximally split Cartan, with any

positive root system R+
s , as in Proposition 16.2; we will use the maps i(R+

s , R
+) and

I(R+
s , R

+) defined in that proposition. Set

dγ1,s = i(R+
s , R

+)−1(dγ1) ∈ h∗s, R+(dγ1,s) = i(R+
s , R

+)−1(R+(dγ1)).

There is a unique coherent family Φ1 of virtual (g,K)-modules based on dγ1,s +

Λfin(G, 1Hs), with the following characteristic properties:
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a) Φ1(dγ1,s) = [J(Γ1)]; and

b) whenever

i) dγ1,s + dψs is integrally dominant (with respect to R+(dγ1,s)), and

ii) Γ1 is type one, and

iii) ψs is type one,

then Φ1(dγ1,s + ψs) is (the class Grothendieck group of) an irreducible repre-

sentation or zero.

Let Γ be an irreducible constituent of Γ1|H (of which there are one or two, depending

on the type of Γ1). Write Φ for the coherent family for G based on dγ1,s+Λfin(G,Hs)

constructed in Theorem 16.6.

1. If Γ1 = Γind is type two (equivalently, if Γ is not fixed by t1) then Ψ1 = Ψind

(Example 17.6). In particular,

Φ1(dγ1,s + ψ1)|G =
∑

ψ⊂ψ1|H

Φ(dγ1,s + ψ) + Φ(dγ1,s + ψ)t1 .

Henceforth assume that Γ1 is type one; equivalently, that Γ is fixed by t1. Write Π(dγ1)

for the set of simple roots of R+(dγ1), and define the τ -invariant of Γ1 τs(Γ1) =def

τs(Γ) ⊂ Πs(dγ1) as in Theorem 16.6.

2.

Φ1(dγ1,s + ψ1)|G =
∑

ψ⊂ψ1|H

Φ(dγ1,s + ψ).

3. The τ -invariant is preserved by ts.

4. If dγs + dψs is integrally dominant, then Φ(dγs +ψs) = 0 if and only if there is

a simple root αs ∈ τs(Γ) with (dγ + dψ)(α∨s ) = 0.

5. Suppose that dγs + dψs is integrally dominant, and does not vanish on any root

in τs(Γ1). Write

ψ = I(R+
s , R

+)(ψs) ∈ Λfin(1H).

Then

Γ1 + ψ =def (1H, γ + ψ,R+
iR)

is a Langlands parameter; and

Φ(dγs + ψs) = [J(Γ + ψ)].

6. The set of all the irreducible constituents of the various virtual representations

Ψ1(dγs + ψs) is equal to the set of irreducible constituents of all the tensor

products F1 ⊗ J(Γ1), with F1 a finite-dimensional representation of δG.

Proof. — The first issue is the existence of a t1-stable set of positive integral roots.

Recall from (17.1) the t1-stable set of positive roots R+
1 containing R+

iR. Using these,
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we can construct the desired set of positive integral roots by

R+(dγ1) = {α ∈R(G,H) | dγ1(α∨) ∈ Z>0, or

dγ1(α∨) = 0, and dγ1(θα∨) > 0, or

dγ1(α∨) = dγ1(θα∨) = 0, and α ∈ R+
1 }.

Conditions (a) and (b) from the theorem are obviously satisfied. Condition (c) follows

from the requirement that dγ1 is weakly dominant for R+
iR (Theorem 6.1), and the

hypothesis that R+
iR ⊂ R+

1 (Definition 13.7. For (d), since t1 fixes both dγ1 and R+
1 ,

and t1 commutes with the action of θ on H, it follows that t1 preserves R+(dγ1).

For the coherent family, suppose first that Γ1 = Γind is of type two, so that

J(Γ1) = J(Γind) = J(Γ)ind.

Let Φ be the coherent family for J(Γ) based on dγs + Λfin(G,Hs) (Theorem 16.6),

and form the induced coherent family Φ1 = Φind as in Example 17.6. Then the

characteristic properties (a) and (b) are immediate, assertion (1) is true by definition,

and the rest of the theorem does not apply.

Next suppose that Γ1 is type one, so that it is one-dimensional and extends the

Langlands parameter Γ for G. There are two of these extensions Γ+ and Γ−, to each

of which we would like to attach a coherent family Φ±. What is easy is that

Φ+ + Φ− = Φind,

in the sense that the induced coherent family behaves as the theorem says that the

sum ought to; what is harder is to find the two summands individually. For this

we return to the proof of Theorem 16.6 in [42]. Because parabolic and cohomological

induction behave well with respect to translation functors, we can use either Definition

13.13 or Definition 13.14 to construct a coherent family Φstd
1 for δG (based on 1H)

satisfying

Φstd
1 (dγ1) = Iquo(Γ1).

Using these building blocks (and taking Z-linear combinations) we can use the proof

of Corollary 7.3.23 in [42] to construct the coherent family Φ1 that we seek.

The construction makes clear the description in (2) of the restriction to G. The

statement in (3) means that the corresponding set of simple roots for R+(dγ1) is

preserved by t1. This is obvious from the description of τ in Theorem 16.6. The

statement in (4) about vanishing reduces at once to G, where it is part of Theorem

16.6. The calculation in (5) of Langlands parameters follows from the construction of

Φ1. Part (6) is a formal consequence of the definition of coherent family.

In order to discuss translation functors for extended groups, we need the language

of (15.1) and (16.8) explicitly extended to δG. So we fix a maximally split Cartan

and a minimal parabolic subgroup

(17.8a) Hs = TsAs, Ms = KAs , Ps = MsAsNs



UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS 123

of G, and positive imaginary roots R+
s,iR for M . These define a positive system

R+
s = R+

s,iR ∪ (roots of Hs in Ns) = R+
s,iR ∪R(Ns, Hs)

for G. Define a Weyl group element ws by the requirement

θ(R+
s ) = R+

s,iR ∪ −R(Ns, Hs) = w−1
s (R+

s ).

This is the long element of the “little Weyl group” of As in G, so in particular it

belongs to W (G,Hs). Setting

ts = wsθHs , ts(R
+
s ) = R+

s

we find that a representative δs for ts generates with Hs an extended torus 1Hs.

Fix also a weight

λ0 ∈ h∗s

corresponding to a (possibly singular) infinitesimal character

ξλ0 : Z(g)→ C.

To simplify the discussion slightly (although it is not necessary) we assume that λ0 is

real ([42, Definition 5.4.11]). We need (for the abstract theory of translation functors)

to assume that λ0 is integrally dominant for R+
s ; and we assume also that λ0 is real

dominant ((16.4c)):

(17.8b) λ0(α∨) ≥ 0, (α ∈ R+
s ).

This requirement determines λ0 uniquely in its Weyl group orbit. Because ts preserves

R+
s , the weight ts(λ0) shares the dominance property (17.8b). As a consequence,

(17.8c)
ts(λ0) = λ0 ⇐⇒ ts(λ0) ∈W · λ0

⇐⇒ infinitesimal character ξλ0
fixed by θ

Define

(17.8d) δB(λ0) = equiv. classes of extended parameters of infl. character λ0;

as usual for the extended group, “infinitesimal character λ0” means “annihilated by

[ker ξλ0
][ker ξtsλ0

].”

If λ0 6= ts(λ0), then by (17.8c) the infinitesimal character ξλ0
is not fixed by θ, so

no representation of G of infinitesimal character ξλ0
is fixed by θ. By Clifford theory

(Proposition 8.13), in this case all representations of infinitesimal character λ0 are

induced from G. Once all the representations are induced, then any question about

character theory can be reduced at once to G. (We will recall in detail how this works

in Section 19.)

We therefore only need to analyze the case

ts(λ0) = λ0.

Write R(λ0) for the integral roots (Definition 16.4), and write

R+(λ0) =def R(λ0) ∩R+
s ,
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which we have assumed makes λ0 integrally dominant. Write

Π(λ0) ⊂ R+(λ0),

and

{α ∈ Π(λ0) | λ0(α∨) = 0} =def Πλ0

for the subset of simple roots orthogonal to λ0. Since ts(λ0) = λ0, the sets Πλ0 ⊂
Π(λ0) are preserved by ts. If X1 ∈ δB(λ0) is a type one irreducible, extending a type

one irreducible X for G, we have defined the τ -invariant

(17.8e) τ(X1) = τ(X) ⊂ Π(λ0)

in Theorem 17.7. If Y1 = Yind is type two, then we define

(17.8f) τ(Yind) =def (τ(Y ), τ(Y ts)) = (τ(Y ), ts(τ(Y )),

an unordered pair of subsets of Π(λ0). (In order to unify the notation, we may

sometimes regard τ(X1) as the unordered pair (τ(X), τ(X)).)

Finally, we fix a type one weight

(17.8g) φ ∈ Λfin(G,Hs)
ts

of a finite-dimensional representation of G, dominant for R+
s , and such that

λ0 + dφ is dominant and regular for R+(λ0).

Just as in (16.8d), for the purpose of studying signatures we will want to assume in

addition

(17.8h) λ0 + dφ is dominant and regular for R+
s .

(One way to achieve this is to take φ to be the sum of the roots in R+
s .) Write

φ± ∈ Λfin(δG, 1Hs)

for the two extensions of φ to 1Hs. Now we can write

Fφ± = finite-dimensional irreducible for δG of highest weight φ±.

In order to define the Jantzen-Zuckerman translation functors, we need the functor

(on g-modules)

Pλ0(M) =
largest submodule of M on which z − ξλ0

(z) acts

nilpotently, all z ∈ Z(g)

If M is a (g, δK) module, so is Pλ0(M). On the category of Z(g)-finite modules (for

example, on (g, δK)-modules of finite length) the functor Pλ0
is exact. The translation

functors we want are

(17.8i) T
λ0+φ+

λ0
(M) =def Pλ0+dφ

(
Fφ+
⊗ Pλ0

(M)
)
,

(“translation away from the wall”) and

(17.8j) Tλ0

λ0+φ+
(N) =def Pλ0

(
F ∗φ+
⊗ Pλ0+dφ(N)

)
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(“translation to the wall.”) These are clearly exact functors on the category of finite-

length (g, δK)-modules, so they also define group endomorphisms of the Grothendieck

group G(g, δK).

These translation functors are quite special, in the sense that both the domain and

the range infinitesimal characters are assumed to be represented by a ts-fixed weight.

There are some reasonable statements to be made in more generality; but most of

those statements concern type two representations, which are induced from G; so they

can be deduced easily from (for example) Corollary 16.9. We are concerned here only

with the more delicate situation for type one representations.

Corollary 17.9 (Jantzen [19], Zuckerman [51]; see [42, Proposition 7.2.22])

Suppose we are in the setting of (17.8), so that in particular ξλ0
(possibly singular)

and ξλ0+φ (regular) are infinitesimal characters fixed by twisting by θ.

1. The functors Tλ0

λ0+φ+
and T

λ0+φ+

λ0
are left and right adjoint to each other:

Homg,δK(N,T
λ0+φ+

λ0
(M)) ' Homg,δK(Tλ0

λ0+φ+
(N),M),

and similarly with the two functors interchanged.

2. If Φ1 is a coherent family (Definition 17.4) on λ0 + Λfin(G, 1Hs),

Tλ0

λ0+φ+
(Φ1(λ0 + φ+)) = Φ1(λ0).

3. The translation functor Tλ0

λ0+φ+
(translation to the wall) carries every irreducible

(g, δK)-module of infinitesimal character λ0 + dφ to an irreducible of infinites-

imal character λ0, or to zero. The irreducible representations mapped to zero

are those with some root of Πλ0 in the τ -invariant (Definition 16.7, (17.8f)).

4. The (inverse of the) translation functor of (3) defines an injective correspon-

dence of Langlands parameters (and therefore of irreducible representations)

t
λ0+φ+

λ0
: δB(λ0) ↪→ δB(λ0 + dφ).

The image consists of all irreducible representations (of infinitesimal character

λ0 + dφ) having no root of Πλ0 in the τ -invariant.

5. Suppose Γ2 = (2H, γ2, R
+
iR) ∈ δB(λ0) is a Langlands parameter (at the possibly

singular infinitesimal character λ0) for an irreducible representation J(Γ2) of
δG. Choose positive integral roots R+(dγ2) as in Theorem 17.7, so that

i(λ0, R
+(λ0), dγ2, R

+(dγ2)) : h∗s → h∗

is an isomorphism as in (16.5), and a map of virtual representations

δI(λ0, R
+(λ0), dγ2, R

+(dγ2)) : Gfin(1Hs)→ Gfin(1H)

as in Proposition 17.2(2). Define

φ(Γ2)+ = δI(λ0, R
+(λ0), dγ2, R

+(dγ2))(φ+),
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a (type one) 2H-weight of a finite-dimensional representation of δG (Proposition

17.2). Then the correspondence of Langlands parameters in (4) is

t
λ0+φ+

λ0
(Γ2) = Γ2 + φ(Γ2)+

(notation as in Theorem 17.7(5)).

6. Suppose Γ1 = (2H, γ1, R
+
iR) ∈ δB(λ0 + dφ) is a Langlands parameter (at the

regular infinitesimal character λ0 + dφ). Write R+(dγ1) for the unique set of

positive integral roots making dγ1 integrally dominant, so that

i(λ0 + dφ,R+(λ0), dγ1, R
+(dγ1)) : h∗s → h∗

is an isomorphism as in (16.5). Define

φ(Γ1)+ = δI(λ0, R
+(λ0), dγ0, R

+(dγ0))(φ+),

a (type one) 2H-weight of a finite-dimensional representation of δG (Proposition

17.2). Then

tλ0

λ0+φ+
(Γ1) =def (H, γ1 − φ(Γ1)+, R

+
iR) =def Γ1 − φ(Γ1)+

is a weak extended Langlands parameter (Definition 13.7). This correspondence

is a left inverse to the injection of (4):

tλ0

λ0+φ+
◦ tλ0+φ+

λ0
(Γ0) = Γ0.

7. Translation to the wall carries standard representations to weak standard repre-

sentations:

Tλ0

λ0+φ+
(Iquo(Γ1)) = Iquo(Γ1 − φ(Γ1)+).

In particular,

Tλ0

λ0+φ+
(Iquo(Γ0 + φ(Γ0)+) = Iquo(Γ0).

8. Translation to the wall carries irreducibles to irreducibles or to zero:

Tλ0

λ0+φ+
(J(Γ1)) =

{
J(Γ1 − φ(Γ1)+) (τ(J(Γ1)) ∩Πλ0 = ∅),
0 (τ(J(Γ1)) ∩Πλ0 6= ∅).

In particular,

Tλ0

λ0+φ+
(J(Γ0 + φ(Γ0)+) = J(Γ0).

Corollary 17.9 allows us to “reduce” the computation of the multiplicity matrix

mΞ,Γ defined in (15.1) to the case of regular infinitesimal character. Given a possibly

singular infinitesimal character λ0, we choose a type one weight of a finite-dimensional

representation φ+ as in (17.8), so that λ0 + dφ is regular. The (possibly singular)

Langlands parameters Ξ and Γ in δB(λ0) correspond to regular Langlands parameters

Ξ + φ(Ξ)+ and Γ + φ(Γ)+ in δB(λ0 + dφ), and

(17.10) mΞ,Γ = mΞ+φ(Ξ)+,Γ+φ(Γ)+
.
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A little more precisely, we can start with the decomposition into irreducibles

[I(Γ + φ(Γ)+)] =
∑

Ξ1∈δB(λ0+dφ)

mΞ1,Γ+φ(Γ)+
[J(Ξ1)]

and apply the exact translation functor Tλ0

λ0+φ. On the left we get [I(Γ)], by Corollary

17.9(7). On the right we get∑
Ξ1∈B(λ0+dφ)

τ(Ξ1)∩Πλ0=∅

mΞ1,Γ+φ(Γ)+
[J(Ξ1 − φ(Ξ1)+)] .

The irreducibles appearing on the right are all distinct (this is part of the unique-

ness assertion for the coherent family in Theorem 16.6), so the coefficients are the

multiplicities of irreducibles in I(Γ).

To say this another way: the index set of extended Langlands parameters at the

possibly singular infinitesimal character λ0 is naturally a subset of the index set at

the regular infinitesimal character λ0 + dφ. The multiplicity matrix at λ0 is the

corresponding submatrix of the one at λ0 + dφ.

Finally, we record the reduction to regular infinitesimal character of the character

matrix MΞ,Γ.

Theorem 17.11. — Suppose we are in the setting of (17.8); in particular, we as-

sume that the infinitesimal characters λ0 and λ0 + dφ are both fixed by θ. Write

tλ0

λ0+φ+
: δB(λ0 + dφ)→ δBweak(λ0)

(notation (15.1)) for the map of Corollary 17.9(6). Fix an extended Langlands pa-

rameter Ξ1 ∈ δB(λ0 + dφ). Write

Ξ0 = tλ0

λ0+φ+
(Ξ1) ∈ δBweak(λ0),

so that

Tλ0

λ0+φ+
(Iquo(Ξ1)) = Iquo(Ξ0).

1. There is a unique subset Csing(Ξ0) ⊂ δB(λ0) with the property that

Iquo(Ξ0) =
∑

Ξ′∈Csing(Ξ0)

Iquo(Ξ′).

2. The set Csing(Ξ0) has cardinality either equal to zero (in case some simple com-

pact imaginary root for Ξ0 vanishes on λ0, so that I(Ξ0) = 0) or a power of

two.

For each Langlands parameter Ξ ∈ δB(λ0), define

Creg(Ξ) = {Ξ1 ∈ δB(λ0 + dφ) | Ξ ∈ Csing(Ξ0)} ⊂ δB(λ0 + dφ);

here Ξ0 = tλ0

λ0+φ+
(Ξ1) as above.
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3. Suppose Γ ∈ δB(λ0) is any Langlands parameter, corresponding to Γ + φ(Γ) ∈
δB(λ0). Then the character formula (15.1) is

J(Γ) =
∑

Ξ∈δB(λ0)

∑
Ξ1∈Creg(Ξ)

MΞ1,Γ+φ(Γ)[I(Ξ)].

Equivalently,

MΞ,Γ =
∑

Ξ1∈Creg(Ξ)

MΞ1,Γ+φ(Γ).

The proof is identical to that of Theorem 16.11.

18. Kazhdan-Lusztig polynomials for characters

We have seen in (15.1) how to define finite matrices over Z

(MΓ,Ψ) , (mΞ,Γ) (Ξ,Γ,Ψ ∈ B(χ))

describing the characters of irreducible representations. In the present section we will

recall how Kazhdan and Lusztig computed the character matrices. Carrying this out

for the extended group δG requires significant effort (most of which is carried out in

[31]); we will therefore discuss that case separately in Section 19. However, a number

of the preliminary definitions given here extend easily to the extended group case; we

will try to note that explicitly as they arise.

A q-analogue of an integer n is a polynomial N ∈ Z[q] with the property that

N(1) = n. To be an interesting q-analogue, the coefficients of N should carry refined

information about some question to which n is an answer.

The first step in the Kazhdan-Lusztig idea is to form q-analogues of the multiplic-

ities and signatures. The matrices over Z are then replaced by matrices over Z[q].

The polynomial entries satisfy recursion relations that are not visible at q = 1, so

they can be computed.

Kazhdan and Lusztig in [20, 21] introduced the q-analogues in a way that is quite

subtle and complicated (transforming the problem first into algebraic geometry, then

into finite characteristic, and finally studying eigenvalues of a Frobenius operator).

The advantage of their approach was that Deligne and others ([5]) had proven deep

facts about these eigenvalues. We use an approach that is much simpler to explain,

but apparently much harder to prove anything about. Fortunately Beilinson and

Bernstein in [4] have already proven the equivalence of the two approaches.

In [20,21], the definitions of q-analogues are mostly geometric, but with modifica-

tions by powers of q given by lengths of Weyl group elements (which played the role

of Langlands parameters). We need to make such modifications in our setting as well,

so we need a notion of length for Langlands parameters.

Definition 18.1 ([42, Definition 8.1.4]). Suppose Γ = (H, γ,R+
iR) is a Lang-

lands parameter for G (Theorem 6.1). Choose a system of positive integral
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roots R+(dγ) subject to the requirements in Theorem 16.6. Let Lreal be a split

semisimple real group with root system the set RR(dγ) of integral real roots, and

Kreal a maximal compact subgroup of Lreal. Define

creal =def #{positive roots for Lreal} −#{positive roots for Kreal}.
= dimension of a Borel subgroup of Kreal(C).

(The reason for the equality is that the Iwasawa decomposition for the split group

Lreal implies that

dimKreal = #{positive roots for Lreal}.)

The (integral) length of Γ is

`(Γ) = #{pairs (α,−θ(α)) of complex roots in R+(dγ)}+ creal.

Because this definition of length is natural, it is unchanged by twisting Γ by

any automorphism commuting with θ. In particular, it extends immediately to

parameters for the extended group: the length of a parameter for δG is just the

length of any constituent of its restriction to G.

Proposition 18.2 ([42, Proposition 8.6.19]). — Suppose that Ξ and Γ are Lang-

lands parameters, and that J(Ξ) occurs as a composition factor in the standard module

I(Γ). Then

`(Ξ) ≤ `(Γ).

Equality holds if and only if Ξ is equivalent to Γ (so that J(Ξ) is equal to the Langlands

subquotient J(Γ)).

Exactly the same statement holds for the extended group δG.

This Proposition provides another proof of the upper triangularity of the multi-

plicity matrix proved in (15.1e):

Corollary 18.3. — Suppose that mΞ,Γ 6= 0. Then

`(Ξ) ≤ `(Γ).

Equality holds if and only if Ξ is equivalent to Γ. Consequently the multiplicity matrix

mΞ,Γ is upper triangular with respect to any ordering of the Langlands parameters

consistent with length.

This Corollary is all that we really need about the upper triangular nature of the

multiplicity matrix; but having come so far, we will pause to include a more precise

statement.

Definition 18.4. Suppose H is a Cartan subgroup of G, and λ1 ∈ h∗ is a reg-

ular weight. Recall from (15.1) the finite set B(λ1) of (equivalence classes of)

Langlands parameters of infinitesimal character λ1. The Bruhat order on B(λ1)

is the transitive closure of the relation

Ξ < Γ if J(Ξ) is a composition factor of I(Γ).
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This definition makes sense for δG.

� This definition makes perfectly good sense for singular infinitesimal character,

but we choose not to use it in that case. The reason is that the order with

this definition is easy to compute (for G) in the case of regular infinitesimal character

(see the remarks after Proposition 18.6 below), but would not be easy to compute for

singular infinitesimal character. Instead we use

Definition 18.5. Suppose Hs is a maximally split Cartan subgroup of G, and

λ0 ∈ h∗s is a a possibly singular weight. Choose a weight φ ∈ Λfin(G,Hs) as in

(16.8), so that (among other things)

λ1 = λ0 + dφ

is a regular weight, and there is an inclusion of Langlands parameters

tλ0+φ
λ0

: B(λ0) ↪→ B(λ1)

(Corollary 16.9). The Bruhat order on B(λ0) is the Bruhat order on B(λ1),

pulled back by tλ0+φ
λ0

.

The preservation of multiplicities explained in (16.10) shows first of all that if λ0

is regular, then this definition agrees with Definition 18.4 (even if we use a nonzero

φ). It also follows that

J(Ξ0) a composition factor of I(Γ0) =⇒ Ξ0 ≤ Γ0.

What is different in the singular case is that there may be additional relations in the

Bruhat order not generated by these “composition factor” relations.

Proposition 18.6. — Fix a regular weight λ1 ∈ h∗. The Bruhat order on B(λ1)

(Definition 18.4) is graded by the length function of Definition 18.1: if `(Γ) = p, then

every immediate predecessor Ξ of Γ has `(Ξ) = p− 1.

The statement and proof of this proposition carry over to the extended group δG

with little change. In the case of G, the proof also provides a recursion (on `(Γ))

for computing the Bruhat order; but this recursion does not carry over in a simple

fashion to δG. A short version of the difficulty is that “complex cross actions for the

extended group may be double-valued.”) We do not need this computation, so we

have not pursued the matter.

The recursive computation of the Bruhat order is implemented by the command

blockorder in the software atlas written by Fokko du Cloux and Marc van Leeuwen

([10]).

Proof. — This is nearly a consequence of the proof of Prop 8.6.19 of [42]. The ar-

gument given there for “Case I” (or in fact also for “Case II”) serves perfectly as an

inductive step in the proof of the stronger statement given in this proposition. The



UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS 131

difficulty arises only in “Case III” of that proof. So we may assume that Case I does

not arise for any simple root: that is, that

θα ∈ R+(dγ), (α ∈ Π(dγ) complex).

According to [42, Lemma 8.6.1], this is equivalent to

θ(R+(dγ))−R+
R (dγ)) = R+(dγ)−R+

R (dγ) :

the Cartan involution θ preserves the set of non-real positive integral roots. Just as

in (9.3), we define

L = centralizer in G of T0,

the reductive subgroup generated by H and its real roots. Define a Langlands pa-

rameter Γq for L as in (9.3); the corresponding standard representation I(Γq) is an

ordinary principal series representation of L. What is important here is that if Ξq

is any Langlands parameter for L of infinitesimal character dγq, then Zuckerman’s

cohomological induction functor carries the irreducible for L to the irreducible for G(
Lg,K
q,L∩K

)s
(J(Ξq)) = J(Ξ)

and correspondingly for standard modules(
Lg,K
q,L∩K

)s
(I(Ξq)) = I(Ξ).

These facts show that the inclusion of Langlands parameters

BL(dγq) ↪→ BG(dγ), Ξq 7→ Ξ

respects Bruhat orders, and in fact carries the Bruhat interval below Γq isomorphically

onto the Bruhat interval below Γ. It is easy to see that the inclusion preserves lengths.

So the inductive step at Γ in the proof of our proposition may be reduced to the case

G = L: that is, to the case that I(Γ) is an ordinary principal series representation for

the split group L. We assume this for the rest of the proof. To simplify the notation,

we will assume also that all the odd roots are “type II”. (If this assumption fails and

there is a “type I” root, then as remarked at the beginning of the proof, we can just

apply the argument in [42].) In this setting there is a Z/2Z grading

(18.7a) R(dγ)∨ = R(dγ)∨even ∪R(dγ)∨odd

on the integral coroots R(dγ)∨ ([42, Lemma 8.6.3]); the odd coroots in this grading

(and also the corresponding roots) are said to satisfy the parity condition. Attached

to every odd positive root β there is a “Cayley transformed parameter”

(18.7b) Γβ = (Hβ ,Γβ , {β̃}) (β ∈ R+(dγ)odd).

Here Hβ ⊂ φβ(SL(2,R)) · H (Definition 5.2) corresponds to the Cartan subgroup

SO(2) of SL(2,R); its only imaginary roots are the two ±β̃ in φβ(sl(2,C)). This is

essentially the Langlands parameter of the discrete series representation of SL(2,R)
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appearing inside a reducible principal series representation. (The “type II” assump-

tion, which concerns the disconnectedness of H, means that this discrete series repre-

sentation is unique, rather than being one of a pair; that is the “simplified notation”

of which we are taking advantage.)

Because H is assumed to be split, the Cartan involution θ of h is −1 on the span of

the roots. The Cartan involution θβ on hβ is therefore −sβ̃ on the span of the roots.

The long intertwining operator for I(Γ) has a factorization in which each factor

corresponds to a real root. The factors for the nonintegral roots, and for the integral

roots of even grading, are all isomorphisms, and so do not contribute to the kernel of

the long intertwining operator. The conclusion is that the composition factors of the

kernel—that is, the composition factors of I(Γ) other than J(Γ)—all appear in I(Γβ)

for some (odd positive integral real) β.

In terms of the Bruhat order, this means

Ξ < Γ ⇐⇒ Ξ ≤ Γβ (some β ∈ R+(dγ)odd)

It is easy to compute

`(Γβ) = `(Γ)− [`(sβ) + 1]/2,

where the length function in brackets is the one for the integral Weyl group W (R(dγ)).

The only elements of a Weyl group of length one are the simple reflections; so

`(Γβ) ≤ `(Γ)− 1,

with equality if and only if β is simple in R+(dγ).

The conclusion is that the only possible immediate predecessors of Γ are the various

Γβ , with β odd positive integral. To complete the proof of the proposition, we must

show that if β is not simple, then Γβ is not an immediate predecessor. To prove this,

we will show

(18.7c) if β is odd positive, there is a simple odd α with Γβ ≤ Γα.

This we prove by induction on the height of β. If β is simple, then we can take α = β;

so suppose β is not simple. What we need to prove is

if β is odd positive not simple, there is an odd positive β′ with Γβ < Γβ′ .

It is convenient to prove the stronger statement

(18.7d)
if β is odd positive not simple, there is an

odd positive β′ with Γβ 6' Γβ′ , J(Γβ) ⊂ I(Γβ′).

Here ⊂ is abused to mean “is a composition factor of.” Choose a simple root δ so

〈β, δ∨〉 = m > 0.

Since β is not simple, δ 6= β; so

sδ(β) = β −mδ = β′′
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is a positive root of lower height than β. By a similar calculation, the root δ̃ for Hβ

corresponding to δ is complex, and θβ(δ̃) is negative. Consequently δ /∈ τ(Γβ) (see

Theorem 16.6). The Kazhdan-Lusztig algorithm (in fact the more elementary results

proved in [43]) shows that J(Γβ) is a composition factor of I(sδ × Γβ), so that

(18.7e) J(Γβ) ⊂ I(sδ × Γβ), `(Γβ) = `(sδ × Γβ)− 1.

On the other hand, an elementary calculation shows that

sδ × Γβ ' (sδ × Γ)β′′ .

(The notation is slightly imprecise. As a representative for the equivalence class sδ×Γ,

we choose the one having the same differential as Γ; that is, we apply some shift by

a multiple of δ, then conjugate by the real Weyl group reflection in δ.)

We now consider two cases. If δ is even, then sδ × Γ = Γ, and so we have shown

J(Γβ) ⊂ I(sδ × Γβ) = I(Γβ′′).

This is (18.7d), with β′ = β′′.

Next suppose δ is odd. In order to prove (18.7d), we can consider the (semisimple)

rank two reductive subgroup L of G generated by the rational span of the roots δ and

β and the split Cartan H. This is a Levi subgroup of a real parabolic (not necessarily

containing our fixed Borel). By induction by stages, one sees that it suffices to prove

(18.7d) for G = L. The setting is therefore that G is split and simple of rank two, Γ

is attached to the split Cartan, the simple root δ is odd, and the non-simple root β

is also odd.

In types A2 and G2, and in the block for B2 with no finite-dimensional representa-

tions, every non-discrete series block element of length at most `(Γ)− 2 (like J(Γβ))

is a composition factor of every I(Ξ) with `(Ξ) = `(Γ)− 1 (like I(Γδ)). So (18.7d) is

true with β′ = δ.

We may therefore assume that L is of type B2, and that the block contains finite-

dimensional representations. Since δ is assumed to be odd, there are just two possi-

bilities.

a) The simple root δ is long, the other simple root δ′ is short, β = δ + δ′ is short,

and β∨ = 2δ∨ + (δ′)∨.

b) The simple root δ is short, β = 2δ + δ′ is long, and β∨ = δ∨ + (δ′)∨.

In case (a), since β is assumed to be odd, δ′ must also be odd; so both simple roots

are odd for Γ. In this case it turns out that in fact sδ × Γβ may not precede Γ in the

Bruhat order; so (18.7e) is of no help to us. Instead one can compute that J(Γβ) is

a composition factor of I(Γδ); so we get (18.7d) with β′ = δ.

In case (b), since β and δ are assumed to be odd, δ′ must be even. Again it

turns out that sδ × Γβ may not precede Γ in the Bruhat order, but that J(Γβ) is a

composition factor of I(Γδ).



134 J. D. ADAMS, M. VAN LEEUWEN, P. E. TRAPA & D. A. VOGAN, JR.

By (18.7c), the only candidates for immediate predecessors of Γ are the Γα, with

α odd and simple. These have length one less, as the Proposition requires.

What we are looking for is a “q-analogue” of the multiplicity of J(Ξ) in I(Γ); that

is, a collection of (meaningful!) integers that sum to the multiplicity. The Jantzen

filtration of I(Γ) is perfectly designed for this.

Definition 18.8. Suppose Γ and Ξ are Langlands parameters. Recall from

(14.4b) the finite decreasing filtration

Iquo(Γ) = Iquo(Γ)0 ⊃ Iquo(Γ)1 ⊃ Iquo(Γ)2 · · ·

We define the multiplicity polynomial so that the coefficients record the multi-

plicities in the subquotients of this filtration: by

QΞ,Γ =

∞∑
r=0

mIquo(Γ)r/Iquo(Γ)r+1(J(Ξ))q(`(Γ)−`(Ξ)−r)/2.

This is a finite Laurent polynomial in the formal variable q1/2. The value at

q1/2 = 1 of this Laurent polynomial is the multiplicity of J(Ξ) in I(Γ):

QΞ,Γ(1) = mIquo(Γ)(J(Ξ)) = mΞ,Γ

(see (15.1d)).

This definition is normalized to make QΞ,Γ a polynomial in q. It would be

more natural to consider

(q−1/2)(`(Γ)−`(Ξ))QΞ,Γ =

∞∑
r=0

mIquo(Γ)r/Iquo(Γ)r+1(J(Ξ))q−r/2.

This definition carries over to the extended group δG without change.

Although the multiplicity polynomial is the one we are most interested in, it seems

aesthetically satisfactory to include the dual definition.

Definition 18.9. Suppose Γ and Ψ are Langlands parameters of regular in-

finitesimal character. Write H = TA for the Cartan subgroup attached to Γ.

Choose as in (9.3) a θ-stable parabolic subalgebra

q = l + u

of g, with L the centralizer in G of T0, of type VZ with respect to Γ (see (9.3b)).

Finally recall (still from (9.3)) the Langlands parameter Γq for L. We define the

character polynomial by

PΓ,Ψ =

∞∑
r=0

[multiplicity of J(Γq) in Hs+r(u, (J(Ψ))](−q1/2)(`(Ψ)−`(Γ)−r),

a finite Laurent polynomial in the formal variable q1/2.
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The preceding definition is normalized to make PΓ,Ψ a polynomial with non-

negative coefficients. It would be more natural to consider

(−q−1/2)`(Ψ)−`(Γ)PΓ,Ψ =

∞∑
r=0

(−1)r[mult. J(Γq) in Hs+r(u, (J(Ψ))]q−r/2.

This definition carries over unchanged to the extended group δG.

We turn now to the theorems about computing the polynomials P and Q. These

do not extend painlessly to δG.

Theorem 18.10 (Lusztig-Vogan [45]). — Suppose Γ and Ψ are Langlands param-

eters of regular infinitesimal character. Then the character polynomial PΓ,Ψ of Def-

inition 18.9 is equal to the Kazhdan-Lusztig character polynomial (see [45]). In par-

ticular, it is a polynomial in q. Therefore

1. J(Γq) can occur as a composition factor in Hs+r(u, J(Ψ)) only if

(a) Γ ≤ Ψ in the Bruhat order (Definition 18.4); and

(b) `(Ψ)− `(Γ) is congruent to r modulo 2; and

(c) 0 ≤ [(`(Ψ)− `(Γ))− r]/2 ≤ [`(Ψ)− `(Γ)]/2.

2. Equality can hold in the second inequality of 1(c) only if Ψ = Γ. Equivalently,

degPΓ,Ψ ≤ [`(Ψ)− `(Γ)− 1]/2, all Γ < Ψ.

Here is the corresponding result about the cohomology of standard modules. Write a

subscript Γ to denote projection on the summand of infinitesimal character equal to

that of J(Γq).

3.

Hs+r(u, Isub(Ψ))Γ '

{
Isub(Γq) Γ = Ψ, r = 0,

0 otherwise.

4. In the Grothendieck group of virtual (g0,K)-modules (cf. (15.1)),

[J(Ψ)] =
∑

Γ

(−1)`(Ψ)−`(Γ)PΓ,Ψ(1)[I(Γ)].

Theorem 18.11 (Beilinson-Bernstein [4]). — Suppose Γ and Ξ are Langlands

parameters of regular infinitesimal character. Then the multiplicity polynomial QΞ,Γ

of Definition 18.8 is equal to the Kazhdan-Lusztig “multiplicity polynomial” obtained

by inverting the Kazhdan-Lusztig matrix (PΓ,Ψ) ([46, §§1 and 12]). In particular, it

is a polynomial in q. Therefore

1. J(Ξ) can occur as a composition factor in Iquo(Γ)r/Iquo(Γ)r+1 only if

(a) Ξ ≤ Γ in the Bruhat order (Definition 18.4); and

(b) `(Γ)− `(Ξ) is congruent to r modulo 2; and

(c) 0 ≤ [(`(Γ)− `(Ξ))− r]/2 ≤ [`(Γ)− `(Ξ)]/2.

2. Equality can hold in the second inequality of 1(c) only if Γ = Ξ. Equivalently,

degQΞ,Γ ≤ [`(Γ)− `(Ξ)− 1]/2, all Ξ < Γ.
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3. In the Grothendieck group of virtual (g0,K)-modules (cf. (15.1)),

[I(Γ)] =
∑

Ξ

QΞ,Γ(1)J(Ξ).

We conclude this section with the corresponding results for singular infinitesimal

character.

Corollary 18.12. — Suppose λ0 is a possibly singular infinitesimal character, and

φ is a weight of a finite-dimensional representation of G chosen as in (16.8), so that

in particular the infinitesimal character λ1 = λ0 + φ is regular. Write

tλ0+φ
λ0

: B(λ0) ↪→ B(λ0 + dφ).

as in Corollary 16.9 for the corresponding inclusion of Langlands parameters. Fix

Langlands parameters

Γ0,Ξ0 ∈ B(λ0),

and write

Γ = tλ0+φ
λ0

(Γ0), Ξ = tλ0+φ
λ0

(Ξ0)

for the corresponding regular parameters in B(λ0 + φ). Then the multiplicity polyno-

mials of Definition 18.8 satisfy

QΞ0,Γ0
= QΞ,Γ.

That is, the multiplicity polynomials at singular infinitesimal character are a subset

of the (Kazhdan-Lusztig) multiplicity polynomials at regular infinitesimal character;

the subset is where both indices have no root of Πλ0 (notation (16.8); that is, no root

singular on λ0) in the τ -invariant (Definition 16.7).

19. Kazhdan-Lusztig polynomials for extended groups

In this section we fix again an extended group

δG = Go {1, δf}

as in Definition 12.3. Fix a maximally split extended torus 1Hs as in (17.8), and

a weight λ0 ∈ h∗s satisfying the dominance condition (17.8b). We want informa-

tion about representations of δG—precisely, about irreducible (g, δK)-modules—

annihilated by [ker ξλ0 ][ker ξtsλ0 ]; these are parametrized by the extended Langlands

parameters from (17.8d)

(19.1a) δB(λ0) = δB(λ0)1 ∐ δB(λ0)2,

where the (coproduct) notation indicates the disjoint union into type one and type

two parameters (Definition 13.7).

A word about notation: we prefer to write a type two parameter for δG as Γind

(with Γ a type two parameter for G, and a type one parameter as Γ+ or Γ−. When
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we are discussing “generic” parameters for δG (not specified to be type one or type

two) we will use Roman letters x, y, z . . ..

We will use the corresponding sets of Langlands parameters for G corresponding

to δB(λ0), namely

(19.1b) B(λ0) = B(λ0)1 ∐ B(λ0)2;

recall that a type one representation of G is one fixed by twisting by θ, and a type

one Langlands parameter is one equivalent (that is, conjugate by a real Weyl group

element) to its twist by θ.

Definition 18.8 for multiplicity polynomials makes it clear how tensoring with the

character ξ (Definition 8.12) (or by any other one-dimensional character of (g, δK))

affects them:

(19.1c) Qξ⊗x,ξ⊗y = Qx,y (x, y ∈ δB(λ0)).

For the character polynomials of Definition 18.9 the result is

(19.1d) Pξ⊗y,ξ⊗z = Py,z (y, z ∈ δB(λ0), λ0 regular).

There are corresponding assertions about twisting by θ (or by any other automor-

phism of (g,K)) on G:

(19.1e) QΞθ,Γθ = QΞ,Γ (Ξ,Γ ∈ B(λ0)),

(19.1f) PΓθ,Ψθ = PΓ,Ψ (Γ,Ψ ∈ B(λ0), λ0 regular).

We first say a few words about the (essentially trivial) case

ts(λ0) 6= λ0,

or equivalently ξλ0
6= ξθλ0

. In this case twisting by θ defines a bijection

θ : B(λ0)
∼−→ B(tsλ0)

between the disjoint sets B(λ0) and B(tsλ0). Therefore induction of parameters is a

bijection

ind: B(λ0)
∼−→ δB(λ0)2 = δB(λ0), Γ 7→ Γind.

In this case (by Clifford theory) all standard representations and all irreducible rep-

resentations are induced from G to δG. It is very easy to check from the definition of

the Jantzen filtration that the filtration is also induced:

Iquo(Γind)r = Ind
(g,δK)
(g,K) (Iquo(Γ)r).

From this it follows immediately that

QΞind,Γind
= QΞ,Γ +QΞθ,Γ (Ξ,Γ ∈ B(λ0))

Since Ξθ has the wrong infinitesimal character to appear in I(Γ), the second term on

the right is zero, and we get

(19.1g) QΞind,Γind
= QΞ,Γ (Ξ,Γ ∈ B(λ0), λ0 6= tsλ0).
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By a slightly more technical but equally easy computation with Lie algebra cohomol-

ogy, we find

(19.1h) PΓind,Ψind
= PΓ,Ψ (Γ,Ψ ∈ B(λ0), λ0 6= tsλ0 regular).

Having disposed of this easy case, we will assume for the rest of this section that

ts(λ0) = λ0.

What Clifford theory says is that

ind: B(λ0)2 → δB(λ0)2 is a two-to-one surjection,

and

res : δB(λ0)1 → B(λ0)1 is a two-to-one surjection.

The fibers of the first surjection are the orbits of the twisting action by θ, and the

fibers of the second surjection are the orbits of tensoring with the nontrivial character

ξ of δG/G (Definition 8.12).

We will also make use of a type one weight as in (17.8g):

φ ∈ Λfin(G,Hs)
ts

of a finite-dimensional representation of G, dominant for R+
s , and such that

λ0 + dφ is dominant and regular for R+(λ0).

Parallel to Corollary 16.9(4), we get from Corollary 17.9(4) an inclusion

t
λ0+φ+

λ0
: δB(λ0) ↪→ δB(λ0 + dφ),

allowing us (parallel to Theorem 18.11) to compute the Kazhdan-Lusztig multiplicity

polynomials Q at the (possibly singular) infinitesimal character λ0 as a subset of those

at the (regular) infinitesimal character λ0 + dφ.

With notation established, we turn to computation of the Kazhdan-Lusztig charac-

ter polynomials Px,y for δG at regular infinitesimal character. Recall (Definition 18.9)

that such a polynomial describes certain constituents of the Lie algebra cohomology

of the irreducible representation J(y); the constituents are related to the standard

representation I(x). We consider four cases separately, according to the types of x

and y. First, assume that y = Ψind is type two, so that the irreducible representation

J(y) is induced from J(Ψ) on G. The Lie algebra cohomology of this induced repre-

sentation is easy to compute, and we get just as in (19.1g) above (always assuming

λ0 regular)

(19.2a) PΓind,Ψind
= PΓ,Ψ + PΓ,Ψθ = PΓθ,Ψ + PΓθ,Ψθ (Γ ∈ B(λ0)2,Ψ ∈ B(λ0)2),

(19.2b) PΓ±,Ψind
= PΓ,Ψ = PΓ,Ψθ (Γ ∈ B(λ0)1,Ψ ∈ B(λ0)2),

the last equality is a consequence of (19.1f), and the hypothesis Γθ ' Γ. Next, assume

that y = Ψ± is type one, so that J(Ψ±) is an extension to δG of the irreducible

representation J(Ψ). If x = Γind is type two, then PΨ±,Γind
counts multiplicities of a
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certain induced representation in the Lie algebra cohomology of J(Ψ±). By Frobenius

reciprocity, such a multiplicity can be computed after restriction to G (still assuming

λ0 regular):

(19.2c) PΓind,Ψ± = PΓ,Ψ = PΓθ,Ψ (Γ ∈ B(λ0)2,Ψ ∈ B(λ0)1).

We record also the more elementary analogues for the multiplicity polynomials Q,

which do not require the hypothesis of regular infinitesimal character:

QΞind,Γind
= QΞ,Γ +QΞ,Γθ = QΞθ,Γ +QΞθ,Γθ (Ξ ∈ B(λ0)2,Γ ∈ B(λ0)2);

QΞ±,Γind
= QΞ,Γ = QΞ,Γθ (Ξ ∈ B(λ0)1,Γ ∈ B(λ0)2);

QΞind,Γ± = QΞ,Γ = QΞθ,Γ (Ξ ∈ B(λ0)2,Γ ∈ B(λ0)1).

In all of these cases—that is, whenever one of the indices is type two—the Kazhdan-

Lusztig polynomials for δG are given by extremely simple formulas in terms of the

Kazhdan-Lusztig polynomials for G. The remaining case is when both indices are

type one. We will therefore be considering parameters

(19.3a) Ξ,Γ,Ψ ∈ B(λ0)1,

and their extensions

(19.3b) Ξ±,Γ±,Ψ± ∈ δB(λ0)1.

These pairs (and the corresponding representations) are interchanged by tensoring

with ξ (Definition 8.12):

ξ ⊗ J(Ξ+) = J(Ξ−), ξ ⊗ J(Ξ−) = J(Ξ+).

Using (19.1d), we deduce

PΓ±,Ψ− = PΓ∓,Ψ+
(Γ,Ψ ∈ B(λ0)1, λ0 regular),

and similarly

QΞ±,Γ− = QΞ∓,Γ+ (Ξ,Γ ∈ B(λ0)1).

So it is enough to compute all of the polynomials P and Q with the second index

labeled +. (The same statement would be true with all four variations on “first” and

“second,” but this is the one we prefer.)

The polynomials PΓ±,Ψ+
describe the occurrence of certain representations of an

extended group δL (depending on Γ) in the Lie algebra cohomology of J(Ψ+). By

restriction to G, we see that

PΓ+,Ψ+ + PΓ−,Ψ+ = PΓ,Ψ (Γ,Ψ ∈ B(λ0)1, λ0 regular),

That is, the sum of these two character polynomials for δG that we wish to compute is

a (known) character polynomial for G. It is therefore natural to consider the difference

(19.3c) P δΓ,Ψ =def PΓ+,Ψ+ − PΓ−,Ψ+ (Γ,Ψ ∈ B(λ0)1, λ0 regular).
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The polynomial P δΓ,Ψ is called a twisted character polynomial. What the preceding

formulas say is that if we can compute the twisted character polynomials P δΓ,Ψ, we will

know the character polynomials for δG.

In exactly the same way, the polynomials QΞ±,Γ+
describe the occurrence of the the

irreducible representations J(Ξ±) in the Jantzen filtration of of I(Γ+). By restriction

to G, we see that

QΞ+,Γ+ +QΞ−Γ+
= QΞ,Γ (Ξ,Γ ∈ B(λ0)1),

That is, the sum of these two multiplicity polynomials for δG that we wish to compute

is a (known) multiplicity polynomial for G. It is therefore natural to consider the

difference

(19.3d) QδΞ,Γ =def QΞ+Γ+
−QΞ−Γ+

(Γ,Ψ ∈ B(λ0)1),

a twisted multiplicity polynomial. Again what is true is if we can compute the twisted

multiplicity polynomials QδΓ,Ψ, we will know the multiplicity polynomials for δG.

Here is the main theorem of this section.

Theorem 19.4 (Lusztig-Vogan [31]). — Suppose Γ,Ψ ∈ B(λ0)1 are type one

Langlands parameters of regular θ-stable infinitesimal character λ0. Then the twisted

character polynomial P δΓ,Ψ of (19.3c) is equal to the polynomial defined in [31].

In particular, it is a polynomial in q with integer coefficients. Each coefficient is

bounded in absolute value by the corresponding coefficient of PΓ,Ψ, and congruent to

that coefficient modulo two.

What is actually written in [31] is a statement about equivariant perverse sheaves

on a flag variety in finite characteristic. By standard base change results, this is

equivalent to a statement about δK(C)-equivariant perverse sheaves on the flag va-

riety of Borel subalgebras of g. By the Beilinson-Bernstein localization theory, with

appropriate minor modifications as in [45], this becomes a statement about twisted

character polynomials for (g, δK(C))-modules, which is precisely the theorem above

in case λ0 = ρ, the half sum of a full set of positive roots.

The case of non-integral infinitesimal character can be treated just as for connected

groups, using the ideas of Beilinson, Bernstein, Brylinski, Kashiwara, and Lusztig as

sketched in Chapter 17 of [1]. (As far as we know, the ideas have been written down by

their originators only in [29, Chapter 1], which explains the case of Verma modules.)

20. Kazhdan-Lusztig polynomials for c-invariant forms

In this section we fix a weight λ0 ∈ h∗s representing a real infinitesimal character

(that is, belonging to the real span of the algebraic weight lattice X∗) as in Definition

16.7. In (15.11), we wrote finite matrices over W (Definition 15.8)

(20.1)
(
W c

Γ,Ψ

)
, (wΞ,Γ) (Γ,Ψ ∈ B(λ0))
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describing the signatures of c-invariant forms on irreducible representations in terms

of those on standard representations. The ring W = Z + sZ comes equipped with a

homomorphism (Definition 15.8

for : W→ Z, p+ qs 7→ p+ q,

and these signature matrices are related to the multiplicity matrices by

for(wΞ,Γ) = mΞ,Γ, for(W c
Γ,Ψ) = MΓ,Ψ.

In sections 18 and 19 we recalled the ideas of Kazhdan and Lusztig that led to com-

putations of the multiplicity matrices m and M : introducing appropriate q-analogues

Q and P , and then computing those q-analogues using recursion relations that do not

make sense at q = 1. In the present section we will extend this to a computation of

the signature matrices. We will need all this for extended groups. We will write only

about G to keep the notation under control, making comments as we go about the

case of δG.

The first issue is to find q-analogues of w and W . The first is easy.

Definition 20.2. In the setting of (20.1), suppose Γ and Ξ are Langlands pa-

rameters in B(λ0). Recall from (14.4b) the finite decreasing filtration

Iquo(Γ) = Iquo(Γ)0 ⊃ Iquo(Γ)1 ⊃ Iquo(Γ)2 · · · ,

and the nondegenerate Jantzen forms 〈, 〉[r] on the subquotients of the filtration.

Using Proposition 15.10, write in the Hermitian Grothendieck group

[Iquo(Γ)r/Iquo(Γ)r+1, 〈, 〉[r]] =
∑

Ξ∈B(λ0)

wc,rΞ,Γ[J(Ξ), 〈, 〉cJ(Ξ),b],

with wc,rΞ,Γ ∈W. We define the signature multiplicity polynomial

QcΞ,Γ = q(`(Γ)−`(Ξ)/2
∞∑
r=0

wc,rΞ,Γq
−r/2 ∈W[q1/2, q−1/2].

The value at q1/2 = 1 of this Laurent polynomial is the signature multiplicity of

J(Ξ) in I(Γ) defined in (15.11):

QcΞ,Γ(1) = wcΞ,Γ.

Applying the natural forgetful homomorphism

for : W[q1/2, q−1/2]→ Z[q1/2, q−1/2]

clearly (by Definition 18.8) gives

for(QcΞ,Γ) = QΞ,Γ.

This definition applies to the extended group δG without change.

Proposition 20.3. — Suppose we are in the setting of Definition 20.2.
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1. The signature multiplicity polynomial QcΞ,Γ is a polynomial in W[q] of degree less

than or equal to `(Γ) − `(Ξ)]/2. Its coefficients are nonnegative, in the sense

that if p+ qs is a coefficient, then p and q belong to N.

2. The diagonal entries of the matrix Qc are equal to one: QcΓ,Γ = 1.

3. The polynomial QcΞ,Γ can be nonzero only if Ξ ≤ Γ in the Bruhat order of

Definition 18.5.

4. Equality can hold in the degree estimate of (1) only if Γ = Ξ. Equivalently,

degQcΞ,Γ ≤ [`(Γ)− `(Ξ)− 1]/2, all Ξ < Γ.

5. The matrix Qc is upper triangular with diagonal entries 1, and so is invertible.

Parallel results hold for δG.

Proof. — The nonnegativity of the coefficients is clear from the definition. Because of

the nonnegativity and the last formula of Definition 20.2, QcΞ,Γ and QΞ,Γ have exactly

the same set of nonvanishing coefficients. Because QΞ,Γ is known (by Beilinson-

Bernstein’s Theorem 18.11) to be a polynomial with a degree bound, the same con-

clusion follows for QcΞ,Γ.

Definition 20.4. In the setting of (20.1) and Definition 20.2, consider the ma-

trix Qc (with entries indexed by B(λ0)) of polynomials in W[q]. The signature

character polynomial is

P cΓ,Ψ = (−1)`(Ψ)−`(Γ)[(Γ,Ψ) entry of (Qc)−1].

By Proposition 20.3, P cΓ,Ψ is a polynomial in q (with coefficients in W) of degree

at most [`(Ψ)− `(Γ)]/2, with equality only if Ψ = Γ. The value at q = 1 of this

polynomial is the signature coefficient of I(Γ) in the irreducible J(Ψ) defined in

(15.11e):

P cΓ,Ψ(1) = (−1)`(Ψ)−`(Γ)W c
Γ,Ψ.

Applying the natural forgetful homomorphism

for : W[q]→ Z[q]

gives

for(P cΓ,Ψ) = PΓ,Ψ.

This definition applies to the extended group δG without change.

It would certainly be good to find a direct definition of P cΓ,Ψ parallel to the definition

of PΓ,Ψ in Definition 18.9, perhaps in terms of some natural invariant form on Lie

algebra cohomology. But we do not know how to do that.

With q-analogues of the signature matrices in hand, we can ask how the ideas of

Kazhdan and Lusztig help in computing them. Kazhdan-Lusztig theory involves in a

fundamental way the notion of length recalled in Definition 18.1, which involves only

the integral roots. The behavior of invariant forms is also affected by roots which
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“were” integral at some deformed value of a continuous parameter. The following

version of length looks at those “previously integral” nonintegral roots.

Definition 20.5. Suppose Γ = (Λ, ν) is a Langlands parameter (6.5). Write

γ for the differential of Γ, a weight defining the infinitesimal character. The

orientation number `o(Γ) is equal to the sum of

a) the number of pairs (α,−θα) of complex nonintegral roots such that

〈γ, α∨〉 > 0, 〈γ,−θα∨〉 > 0;

and

b) the number of real nonintegral roots β such that 〈γ, β∨〉 > 0, and the integral

part [〈γ, β∨〉] is even if Λq(mα) = +1, or odd if Λq(mα) = −1 (notation (9.3d)).

Theorem 20.6. — Suppose Γ and Ξ are Langlands parameters of (real) infinitesimal

character χ. Then the signature multiplicity polynomial (Definition 20.2) is

QcΞ,Γ = s(`o(Ξ)−`o(Γ))/2QΞ,Γ(sq).

In particular

1. if Ξ and Γ belong to a common block, then `o(Ξ) ≡ `o(Γ) (mod 2);

2. if J(Ξ) appears in level r of the Jantzen filtration of Iquo(Γ), then

(a) r ≡ `(Γ)− `(Ξ) (mod 2); and

(b) the rth Jantzen form restricted to J(Ξ) is

(−1)[(`(Γ)−`(Ξ))+(`o(Γ)−`o(Ξ))]/2〈, 〉J(Ξ),b;

3. if `o(Γ) − `o(Ξ) ≡ 0 (mod 4), then the signature multiplicity coefficient of

(15.11b) is

wcΞ,Γ = (sum of even coeffs of QΞ,Γ) + s(sum of odd coeffs of QΞ,Γ);

4. if `o(Γ)− `o(Ξ) ≡ 2 (mod 4), then the signature multiplicity coefficient is

wcΞ,Γ = (sum of odd coeffs of QΞ,Γ) + s(sum of even coeffs of QΞ,Γ).

Exactly the same results hold for the extended group δG.

Sketch of proof. — Of course the proof is modeled on the proof of the Kazhdan-

Lusztig conjectures in [45] and [30]. Part (1) is a fairly easy combinatorial statement.

Part 2(a) is a restatement of Theorem 18.11 1(b), recorded here only as a reminder

that the powers of −1 appearing below are integer powers. Parts 3 and 4 are just

restatements of 2(b); so what requires proof is 2(b).

The first step is to reduce to the case of regular infinitesimal character. For this,

fix a weight λ0 ∈ h∗s representing ξ as in (17.8). Choose φ± as in (17.8).
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Lemma 20.7. — In the setting of (17.8), the finite-dimensional representation Fφ+

admits a positive-definite c-invariant Hermitian forms that is unique up to positive

scalar multiple. Consequently the translation functors

T
λ0+φ+

λ0
, Tλ0

λ0+φ+

of (17.8i) carry (nondegenerate) c-invariant Hermitian forms to (nondegenerate) c-

invariant Hermitian forms.

Suppose in addition that the real dominance hypotheses of (17.8b) and (17.8h) are

satisfied. Suppose Γ0 ∈ δB(λ0) is any (singular) Langlands parameter, and

Γ1 = tλ0+dφ
λ0

(Γ0)δB(λ0 + dφ)

is the corresponding (regular) parameter (Theorem 17.9(4)). Then

1. Tλ0

λ0+φ+
carries the canonical c-invariant Hermitian form on Iquo(Γ1) to a pos-

itive multiple of the canonical c-invariant Hermitian form on Iquo(Γ0);

2. Tλ0

λ0+φ+
carries the canonical c-invariant Hermitian form on J(Γ1) to a positive

multiple of the canonical c-invariant Hermitian form on J(Γ0);

3. Tλ0

λ0+φ+
carries the Jantzen filtration on Iquo(Γ1) to that on Iquo(Γ0); and

4. Tλ0

λ0+φ+
carries the Jantzen form on each level of Iquo(Γ1) (Definition 14.8 to a

positive multiple of the Jantzen form on the corresponding level of Iquo(Γ0).

Sketch of proof. — The first assertion of the lemma is just Weyl’s “unitary trick:”

the c-invariant form on Fφ+
is by definition preserved by a compact form of G, and

therefore must be definite. The computation of the sign in (1) trivially reduces to

the case of G. There (in light of Proposition 10.7) it depends on looking carefully

at how lowest K-types are affected by translation functors. (This is where the “real

dominance” hypotheses are needed.) Part (2) follows immediately.

For (3), recall how the Jantzen filtration is defined in Proposition 14.6. When the

regular parameter Γ1 = (Λ1, ν1) is modified by a small dilation of the continuous

parameter, all the real dominance hypotheses are preserved. Write ν1,s ∈ h∗s for the

weight corresponding to ν1 identification i(R+
s , R

+) of Proposition 16.2. The one-

parameter family of translation functors

T
(λ0+εν1,s)

(λ0+εν1,s)+φ+

(all of which use the same finite-dimensional representation; only the infinitesimal

character projection changes) all carry irreducibles to irreducibles or zero for small

ε. These functors carry Iquo(Λ1, (1 + ε)ν1)—the one-parameter family defining the

Jantzen filtration of Iquo(Γ1)—to Iquo(Λ0, ν0 + εν1). Although this second family is

not precisely the one used to define the Jantzen filtration for Iquo(Γ0), it is close

enough that one can show that the filtration is the same. This proves (3).

Parts (1) and (3) immediately imply (4).
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The lemma allows us to deduce all of the assertions of the theorem at possibly

singular infinitesimal character λ0 by applying the translation functor Tλ0

λ0+φ+
to the

assertions at the regular infinitesimal character λ0 + dφ. Just as in the proof of (1) of

the lemma, all the assertions about signature reduce immediately from the extended

group to the case of G; so we will make no further mention of δG.

So we may assume henceforth that

the infinitesimal character λ0 is regular.

Writing H for the maximal torus underlying the Langlands parameter Γ = (Λ, ν), we

get a unique positive system

R+
full(Γ) = R+(g, h)full(Γ)

making (dΛ, ν) real dominant, and therefore a corresponding Borel subalgebra b(Γ)

(Definition 5.3). We proceed by increasing induction on the dimension of the K(C)

orbit of b(Γ). (The original Kazhdan-Lusztig conjecture Theorem 18.10, in the case

of integral infinitesimal character, concerns the intersection cohomology complex on

the closure of K(C) · b(Γ), coming from a local system corresponding to Γ. The proof

in that case proceeds by induction on the dimension of this orbit, along exactly the

lines we are now following.)

Suppose first that there is a complex simple root αΓ for R+
full(Γ), such that

(20.8) θαΓ /∈ R+
full(Γ), αΓ /∈ R(Γ).

That is, αΓ is assumed to be nonintegral. Write α for the corresponding simple root

in R+
s (Proposition 16.2). In the setting of (16.8), we choose the weight φ not to

make λ0 + dφ real dominant as in (16.8d), but instead to put it in the adjacent Weyl

chamber:

(20.9) λ0 + dφ is regular and real dominant for sα(R+
s ).

Translation across this nonintegral wall is an equivalence of categories by Corol-

lary 16.9. The translated Langlands parameter Γ′ = tλ0+φ
λ0

(Γ) is real dominant for

sαΓ
(R+

full(Γ), and therefore (by (20.8)) the corresponding orbit of Borel subalgebras

has dimension one less; so the statements of 2(b) are available by inductive hypothe-

sis for Γ′. In order to use them, we need to know how the translation functor Tλ0+φ
λ0

affects orientation numbers and canonical Hermitian forms.

The effect on the orientation number of Ξ (Definition 20.5) is fairly easy. If the

simple root αΞ is complex, then `o(Ξ) increases by one if θαΞ > 0, and decreases by

one if θαΞ < 0. If αΞ is real, then `0(Ξ) increases by one if

(−1)[〈λ0,α
∨
s 〉] = Ξq(mαΞ

),

and decreases by one otherwise. (The point for this second fact is that if t ∈ R−Z, then

the integer parts [t] and [−t] (meaning “greatest integer not exceeding”) have opposite

parity. In order to use the inductive hypothesis, we need to verify (still assuming that
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we are crossing a single nonintegral wall as in (20.9)) that the translation functor

Tλ0+φ
λ0

does not change the sign of the canonical c-invariant form in case the orientation

number increases by one, and does change the sign in case the orientation number

decreases by one. This is another version of the lowest K-type calculation used for

Lemma 20.7(1). The most difficult case is that of real αΞ, but that case can be

reduced fairly easily to SL(2,R).

Suppose next that there is a complex simple root αΓ for R+
full(Γ), such that

(20.10) θα /∈ R+
full(Γ), α ∈ R(Γ).

That is, αΓ is assumed to be integral. Write α for the corresponding simple root in

R+
s . (This case is the most serious one.) Write

m = 〈dγ, α∨Γ〉,

a strictly positive integer. There is a Langlands parameter

Γ′ = Γ−mαΓ

corresponding to the positive root system

sαΓ
(R+

full(Γ)) = R+
full(Γ)− {αΓ} ∪ {−αΓ}.

The K(C)-orbit of the corresponding Borel subalgebra has dimension one less than

that for Γ, so the inductive hypothesis applies to Γ′.

We will not recall all of the machinery of wall-crossing translation functors devel-

oped in [43, 44]. The central idea is to use these functors to construct from J(Γ′) a

new module

Uα(J(Γ′)).

The composition factors of Uα(J(Γ′)) consist of J(Γ) (with multiplicity one) and

certain composition factors of Iquo(Γ′). The construction provides a nondegenerate

c-invariant form on Uα(J(Γ′)), and what we need to do is understand that form. The

key calculation is that when we apply translation across the wall to the standard

module Iquo(Γ′), obtaining a module M with a short exact sequence

0→ Iquo(Γ)→M → Iquo(Γ′)→ 0,

then the induced form on M restricts to a positive multiple of the canonical form on

Iquo(Γ). (Just as for Lemma 20.7(1), this amounts to a careful examination of lowest

K-types.) From this it follows that the nondegenerate form on Uα(J(Γ′)) restricts to

a positive multiple of the canonical form on J(Γ).

Essentially [30] uses the decomposition theorem to deduce that Uα(J(Γ′)) is com-

pletely reducible. Using this complete reducibility, everything else about the form on

Uα(J(Γ′)) follows by relating Uα to the first level of the Jantzen filtration of Iquo(Γ′),

and applying the inductive hypothesis.
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The remaining possibility is that for every complex simple root αΓ, θαΓ is also

positive. From this it follows that

(20.11) the set of nonreal roots in R+
full(Γ) is θ-stable.

Writing u = u(Γ) for the span of the root spaces of these nonreal positive roots, we

get as in (9.3) a θ-stable parabolic subalgebra

q = l + u = l(Γ) + u(Γ)

satisfying the (very strong) positivity condition

〈dγ, β∨〉 > 0 (β ∈ ∆(u, h)).

This condition guarantees that cohomological induction from L by q is an exact func-

tor carrying irreducibles to irreducibles, and respecting c-invariant Hermitian forms

(Theorem 10.9). Because Langlands parameters behave in a simple way under this

induction, we see that length and orientation number are preserved; so the assertions

in 2(b) of the theorem are reduced to the subgroup L. That is, we may assume that

the Cartan subgroup H for Γ is split;

that is, that Iquo(Γ) is a minimal principal series representation for a split group. If

there are no real roots satisfying the parity condition (18.7) then I(Γ) is irreducible,

and the assertions are easy. So suppose that there are real roots satisfying the parity

condition. We proceed by induction on the smallest height of such a root. If the

height is equal to one, there is a simple root (necessarily integral) satisfying the

parity condition. In this case we argue essentially as in the case (20.10) above. If the

height is greater than one, we can choose a nonintegral simple root αΓ such that the

simple reflection sαΓ
decreases the height. In this case we can translate across the

nonintegral wall for αΓ as in the case (20.8) above.

Corollary 20.12. — Suppose Γ and Ψ are Langlands parameters of (real) infinites-

imal character χ. Then the signature character polynomial (Definition 20.4) is

P cΓ,Ψ = s(`o(Ψ)−`o(Γ))/2PΓ,Ψ(sq).

In particular

1. if `o(Ψ)− `o(Γ) ≡ 0 (mod 4), the signature character coefficient of (15.11e) is

W c
Γ,Ψ = (sum of even coeffs of PΓ,Ψ) + s(sum of odd coeffs of PΓ,Ψ);

2. if `o(Ψ)− `o(Γ) ≡ 2 (mod 4), the signature character coefficient is

W c
Γ,Ψ = (sum of odd coeffs of PΓ,Ψ) + s(sum of even coeffs of PΓ,Ψ).

The same result holds for the extended group δG.

Here are representation-theoretic translations of these results.
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Corollary 20.13. — Suppose Γ and Ψ are Langlands parameters of (real) infinites-

imal character χ.

1. The signature function for the c-invariant form on the irreducible representation

J(Ψ) (see (15.9)) is

sigcJ(Ψ) =
∑

Γ∈B(χ)

s(`o(Ψ)−`o(Γ))/2PΓ,Ψ(s) sigcI(Γ) .

2. The signature function for the Jantzen c-invariant form (Proposition 14.6 on

the standard representation I(Γ) is

sigcI(Γ) =
∑

Ξ∈B(χ)

s`o(Ξ)−`o(Γ)QΞ,Γ(s) sigcJ(Ξ) .

The same results hold for the extended group δG.

Proof. — Part (1) is (15.11f), together with the formula in Corollary 20.12 for the

signature character matrix. Part (2) is Corollary 15.12(2), together with the formula

in Theorem 20.6.

21. Deformation to ν = 0

Fix a (possibly singular) real infinitesimal character χ, and the finite set B(χ)

of Langlands parameters of infinitesimal character χ as in (15.1). What we have

achieved in Corollary 20.13 is the computability of the formulas (15.11f) expressing

the signature character of each irreducible representation J(Ψ) as a W-combination

of signature characters of standard representations:

sigcJ(Ψ) =
∑

Γ∈B(χ)

W c
Γ,Ψ sigcI(Γ) .

That is, we have computed the coefficients W c
Γ,Ψ in terms of the (known) Kazhdan-

Lusztig polynomials for G.

In this section we will describe how to compute the signature of each standard

representation I(Γ) appearing on the right side. As in Section 6, we write

(21.1a) H = TA, GA = MA

for the Langlands decomposition of the Cartan subgroup and for the centralizer of its

vector part, and

(21.1b) Γ = (Λ, ν)

for the corresponding decomposition of the parameter; Λ determines a limit of discrete

series IM (Λ) for M , and ν may be identified with a character eν of A. We also write

(21.1c) dγ = (dΛ, ν) = (λ, ν) ∈ t∗ + a∗ = h∗

as in Theorem 16.6; the weight dγ is a representative of the infinitesimal character χ.

We will also need the parameters Γt introduced in (14.1).
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What makes the signature of I(Γ) complicated is the fact that ν is not zero. Here

is how to fix that.

Theorem 21.2. — For each Langlands parameter Γ = (Λ, ν) as above, there is a

computable and unique finite formula

sigcI(Γ) = sigcI(Λ,0) +(s− 1)
∑

Λ′∈Πfin,disc(G)

MΛ′,Γ sigcI(Λ′,0) (MΛ′,Γ ∈ Z).

Here final discrete parameters are defined in Definition 6.5. Every Λ′ appearing in

the sum satisfies the bound

|dΛ′|2 < |(dΛ, ν)|2.
This bound determines a finite subset of Πfin,disc.

An exactly parallel result holds for the extended group δG.

The term I(Λ, 0) on the right need not be final, but one can always use Hecht-

Schmid character identities to write it in terms of final parameters. If the set of

lowest K-types is

L(Λ) = {µ1, . . . , µr} ⊂ K̂,
and

µi = µ(Λi) (Λi ∈ Πfin,disc(G))

(Proposition 6.6), then

I(Λ, 0) =

r∑
i=1

I(Λi, 0).

This identity is true also for the natural c-invariant Hermitian forms (which were all

normalized to be positive on the lowest K-types). In this way we get a signature

formula entirely in terms of final discrete parameters.

Before proving Theorem 21.2, we record what it tells us about signature formulas.

Corollary 21.3. — Suppose Ψ = (Λ, ν) is a Langlands parameter of real infinitesi-

mal character as in (21.1). Then there is a computable and unique finite formula

sigcJ(Ψ) = sigcI(Λ,0) +
∑

Λ′∈Πfin,disc(G)

AΛ′,Ψ sigcI(Λ′,0) .

The coefficients AΛ′,Ψ belong to the signature ring W of Definition 15.8. Final discrete

parameters are defined in Definition 6.5. Every Λ′ appearing in the sum satisfies the

bound

|dΛ′|2 < |(dΛ, ν)|2.
This bound determines a finite subset of Πfin,disc.

An exactly parallel result holds for the extended group δG.

Proof. — We begin with the formula of Corollary 20.13(1) (one large Kazhdan-

Lusztig computation), and then apply Theorem 21.2 to each term on the right (a

long chain of nested Kazhdan-Lusztig computations).
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Now we can apply Theorem 12.9 and get a statement about signatures of invariant

Hermitian forms.

Corollary 21.4. — Suppose G is a real reductive group with extended group δG

(Definition 12.3). Fix a strong involution x for G, an eigenvalue ζ for the central

element z = x2, and a square root ζ1/2 for ζ as in Definition 12.8.

Suppose Ψ = (Λ, ν) is a Langlands parameter for δG of real infinitesimal character,

in which the central element z acts by the scalar ζ.

1. There is a computable and unique finite formula

sigcJ(Ψ) =
∑

Λ′∈Πfin,disc(δG)

BΛ′,Ψ sigcI(Λ′,0),

with coefficients BΛ′,Ψ ∈W (Definition 15.8).

2. The representation J(Ψ) admits an invariant Hermitian form

〈v, w〉0J(Ψ) = ζ−1/2〈x · v, w〉cJ(Ψ) = ζ1/2〈v, x · w〉cJ(Ψ).

3. For each Λ′ appearing in the formula of (1), the central element z must act by

ζ. Consequently the central element x ∈ δK must act by a scalar

(−1)ε(Λ
′)ζ1/2

on the unique lowest δK-type µ(Λ′) of I(Λ′, 0); here the parity

ε(Λ′) ∈ Z/2Z

changes if we change our (fixed global) choice of square root ζ1/2.

4. There is a computable and unique finite formula

sig0
J(Ψ) =

∑
Λ′∈Πfin,disc(δG)

sε(Λ
′)BΛ′,Ψ sig0

I(Λ′,0) .

Here the signatures on the right are the positive-definite invariant Hermitian

forms on the irreducible tempered representations I(Λ′, 0).

As a consequence, J(Ψ) is unitary if and only if one of the following conditions is

satisfied:

a) For every Λ′, the coefficient BΛ′,Ψ is an integer multiple of sε(Λ
′); or

b) For every Λ′, the coefficient BΛ′,Ψ is an integer multiple of sε(Λ
′)+1.

The corollary says that to test whether J(Ψ) is unitary, we must first write down

a formula as in Corollary 21.3 for the c-invariant form on the extended group δG.

(The first term sigcI(Λ,0) must be rewritten as a sum over the lowest δK-types as

explained after Theorem 21.2.) If any coefficient in that expression is of the form

a + bs with a and b both nonzero, then J(Ψ) cannot be unitary. If every coefficient

is either an integer or an integer multiple of s, then we must compare this behavior

with the action of the element x on the lowest δK-type of the corresponding standard
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representation. If they either agree everywhere or disagree everywhere, then J(Ψ) is

unitary; otherwise it is not.

The proof of Theorem 21.2 will occupy the rest of this section. The idea is to deform

the continuous parameter ν to zero, and to compute the changes in the signature along

the way. Mathematically the simplest way to perform this deformation is in a straight

line. We will first describe how to do that, and then return to a more circuitous but

(perhaps) computationally preferable path. The main step is Corollary 15.12. Here is

a reformulation of that result using the detailed information about Jantzen filtrations

and forms contained in Theorem 20.6.

Theorem 21.5. — Suppose Γ is a Langlands parameter of real infinitesimal charac-

ter, so that the Langlands quotient J(Γ) admits a nonzero c-invariant Hermitian form

〈, 〉c1. Consider the family of standard representations Iquo(Γt) (for t ≥ 0) defined in

(14.1), and the family of c-invariant forms 〈, 〉ct extending 〈, 〉c1 as in Proposition 14.6.

For every t ≥ 0, define forms

〈, 〉c,[r]t on Iquo(Γt)
r/Iquo(Γt)

r+1

with signatures

sig
c,[r]
I(Γt)

= pos
[r]
t +sneg

[r]
t : K̂ →W

as in Definition 15.8. Write

sigct = sigcI(Γt) =

∞∑
r=0

sig
c,[r]
I(Γt)

for the signature of the (nondegenerate) Jantzen form on gr Iquo(Γt). Consider a

finite subset

0 < tr < tr−1 < · · · < t1 ≤ 1 ⊂ (0, 1].

so that I(Γt) is irreducible for t ∈ (0, 1] \ {ti}.

1. On the complement of {ti}, the form 〈, 〉ct is nondegenerate and of locally con-

stant signature

sigct = sig
c,[0]
t .

2. Choose ε so small that I(Γt) is irreducible for t ∈ [1− ε, 1 + ε]\{1}. Then

sigc1+ε = sigc1 = sigc1−ε

+ (1− s)
∑

Ξ∈B(χ), Ξ<Γ
`(Ξ)−`(Γ) odd

s(`o(Ξ)−`o(Γ))/2QΞ,Γ(s) sigcJ(Ξ) .
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3. Under the same hypotheses as in (2),

sigcI(Γ1+ε)
= sigcI(Γ1) = sigcI(Γ(1−ε))

+ (1− s)
∑

Φ,Ξ∈B(χ)
Φ≤Ξ<Γ

`(Ξ)−`(Γ) odd

s(`o(Φ)−`o(Γ))/2PΦ,Ξ(s)QΞ,Γ(s) sigcI(Φ)

= sigcI(Γ1) = sigcI(Γ(1−ε))

+ (1− s)
∑

(−1)(`o(Φ)−`o(Γ))/2PΦ,Ξ(−1)QΞ,Γ(−1) sigcI(Φ) .

Proof. — Part (1) is exactly Corollary 15.12(1). Part (2) is Corollary 15.12(3), with

the explicit formulas from Theorem 20.6. The first formula in (3) plugs Corollary

20.13 into (2). The second is a consequence of the first because of the identity in W

(s− 1)s = (s− 1)(−1).

Proof of Theorem 21.2. — We fix an invariant symmetric bilinear form on g that is

negative definite on the compact form g(R, σc) (Theorem 3.4). This form gives rise

to a W (g, h)-invariant form 〈, 〉 on the dual h∗ of any Cartan subalgebra, which is

positive definite on the canonical real weights (the real span of the differentials of

algebraic characters). We can arrange for this form to take rational values on the

lattice X∗(H(C)); the denominators appearing are then necessarily bounded by some

positive integer N . In this case the form also takes rational values on the differentials

of discrete Langlands parameters, this time with denominators bounded by 4N . (We

may gain one 2 from the ρ shift in the parameter, and one from the operation (1+θ)/2

of restricting to the compact part.)

To prove the theorem, we fix a bound M on the size of infinitesimal characters,

and prove the theorem for all Langlands parameters

Γ′ = (Λ′, ν′), 〈dΛ′, ν′〉 ≤M.

The proof proceeds by downward induction on 〈dΛ′, dΛ′〉 = k. For k > M there are

no such Langlands parameters, and the theorem is vacuously true; so we assume that

the theorem is known for Γ′ with

〈dΛ′, dΛ′〉 > 〈dΛ, dΛ〉.

We apply the deformation formulas of Theorem 21.5 r times, at the points t1, t2,. . . ,

tr. We get in the end a (computable) formula

(21.6) sigcI(Γ) = sigcI(Λ,0) +(s− 1)
∑

Φ∈B(χtj )

MΦ,Γ sigcI(Φ) .

Here every Langlands parameter Φ appearing has infinitesimal character of the form

χtj ↔ (dΛ, tjν),
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Table 1. Rank one M for type A

type diagram L[φ] MA

A1
c GL(2,R) GL(1,R)×GL(1,R)

A1 ×A1
c c SL(2,C) GL(1,C)

A2
s c GL(3,R) GL(2,R)×GL(1,R)

A2
c s GL(3,R) GL(1,R)×GL(2,R)

A3
s c s GL(4,R) GL(2,R)×GL(2,R)

A3
s c s GL(2,H) GL(1,H)×GL(1,H)

An
c s. . . s c U(p, q), p, q ≥ 1,

p+ q = n− 1 GL(1,C)× U(p− 1, q − 1)

which has size less than or equal to the size of χ, and so is bounded by M . The

condition in Theorem 21.5(5) Φ < Γtj implies in particular that the discrete part

Λ(Φ) satisfies

〈dΛ(Φ), dΛ(Φ)〉 > 〈dΛ, dΛ〉.
By the inductive hypothesis, each sigcI(Φ) has a formula

(21.7) sigcI(Φ) = sigcI(Λ(Φ),0) +(s− 1)
∑

Λ′∈Πfin,disc(G)

MΛ′,Φ sigcI(Λ′,0) (MΛ′,Φ ∈ Z).

By the remarks after the statement of Theorem 21.2, the first term on the right

can be rewritten as a sum (over the lowest K-types of I(Φ)) of standard final discrete

representations. Now if we insert all these inductively known formulas (21.7) in (21.6),

we get the conclusion of the theorem.

To implement this computation, one needs to compute (among other things) all the

Kazhdan-Lusztig polynomials at various infinitesimal characters like that of any Γt =

(Λ, tν). When such an infinitesimal character is (nearly) integral, the computation is

long and difficult. We would like therefore to outline another way to proceed, involving

only more restricted families of Kazhdan-Lusztig polynomials. The restricted cases to

which we will reduce are enumerated in three tables below; the meaning of the tables

arises from Theorem 21.13 below. The formulas of Theorem 21.13 require explicit

calculations in the groups L[φ] corresponding to a single line of restricted roots (see

(21.8) below). The tables enumerate the pairs L[φ] ⊃ MA. This was done in the

(unpublished) work announced in [3].

What is shown in the tables is the Dynkin diagram of L[φ]. The roots of the Levi

subgroup MA are black.
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Table 2. Rank one M for types BCD

type diagram L[φ] MA

Bn
s c s. . . s s>

SO(2p, 2q + 1),

p, q ≥ 1, p+q = n GL(2,R)× SO(2p− 2, 2q − 1)

Bn
c s s. . . s s>

SO(2p, 2q + 1),

p, q ≥ 1, p+q = n GL(1,R)× SO(2p− 1, 2q)

Cn s c s. . . s s< Sp(2n,R) GL(2,R)× Sp(2n− 4,R)

Cn
s c s. . . s s<

Sp(p, q), p, q ≥ 1,

p+ q = n GL(2,R)× Sp(p− 1, q − 1)

Cn c s s. . . s s< Sp(2n,R) GL(1,R)× Sp(2n− 2,R)

Dn
s c s. . . s ss��QQ SO(2p, 2q), p, q ≥ 1,

p+ q = n GL(2,R)× SO(2p− 2, 2q − 2)

Dn
s c s. . . s ss��QQ SO∗(2n) U(2)× SO∗(2n− 4)

Dn
c s s. . . s ss��QQ SO(2p+1, 2q−1),

p, q ≥ 1, p+ q = n SO(2p, 2q − 2)

We begin by setting up the bookkeeping.

The decompositions

h = a + t, h∗ = a∗ + t∗

are into the −1 and +1 eigenspaces of the Cartan involution θ. Applied to any ξ ∈ h,

they are therefore given by

(21.8a) ξ = ξa + ξt, ξa = (ξ − θξ)/2, ξt = (ξ + θξ)/2,

and similarly for h∗. For any coroot α∨ ∈ h, this means in particular that the value

on the infinitesimal character γ is

〈γ, α∨〉 = 〈(λ, ν), α∨〉 = 〈ν, α∨a 〉+ 〈λ, α∨t 〉.

Here we will think of

(21.8b) 〈λ, α∨t 〉 = (〈λ, α∨〉+ 〈λ, θα∨〉)/2 =def `α ∈ 1
2Z

as a constant, and

(21.8c) 〈ν, α∨a 〉 = (〈ν, α∨〉+ 〈ν,−θα∨〉)/2 =def yα ∈ R
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Table 3. Rank one M for exceptional G

type diagram L[φ] MA

G2
c s> G2 GL(2,R)short

G2
s c> G2 GL(2,R)long

F4
c >s s s F4 C3 × R×

F4
c>s s s F4 B3 × R×

E6

cs s s s s E6 A5 × R×

E7 cs s s s ss
E7 D6 × R×

E8 c s s s s s ss
E8 E7 × R×

as variable. For example, if α is not imaginary and n is an integer, then the collection

of ν ∈ a∗0 for which 〈γ, α∨〉 = n is

(21.8d) {ν ∈ a∗0 | 〈ν, α∨a 〉 = n− `α},

an affine hyperplane in a∗0. (The point is that α∨a is a nonzero linear functional on a∗0
since α is not imaginary; so the set where it assumes the specified value n− `α is an

affine hyperplane.)

Definition 21.9. In the setting of Proposition 6.6, and with the notation of

(21.8), the restricted roots of A in G are

R(G,A) = {φ = αa | α ∈ R(G,H)−RiR(G,H)} ⊂ a∗ − {0}.

(Definition 5.7, and notation (21.8)). Considering only nonimaginary roots guar-

antees that these restrictions to a are all nonzero. The set of restricted roots is

often not a root system. In [22] one can find a description of a large subset which

is a root system, but we will have no need for this.

Even though the restricted roots R(G,A) do not constitute a root system, it

is convenient to make formal use of “coroots.” We define the restricted coroots

of A in G to be

R∨(G,A) = {φ∨ = α∨a | α∨ ∈ R∨(G,H)−R∨iR(G,H)} ⊂ a− {0}.
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We are particularly interested in the lines

[φ] = Qφ ⊂ a∗,

R(G,A)[φ] = R(G,A) ∩ [φ];

the set of restricted roots is the disjoint union of these finitely many lines. To

each line of roots correspond the hyperplane and line

a[φ] = kerφ ⊂ a, a[φ] = Cφ∨, a = a[φ] ⊕ a[φ],

with φ∨ a restricted coroot for some root restricting in [φ]. (We will show in

Lemma 21.10 below that the line through φ∨ is independent of the choice of this

root.) Dually, we have

(a∗)[φ∨] = kerφ∨ ⊂ a∗, a∗[φ∨] = Cφ, a∗ = (a∗)[φ∨] ⊕ a∗[φ∨].

Attached to each restricted root line [φ] there is a Levi subgroup (for a real

parabolic)

L[φ]A[φ] = Ga[φ]

⊃MA.

This Levi subgroup is characterized by

R(L[φ]A[φ], H) = {α ∈ R(G,H) | αa ∈ [φ]} =def R(G,H)[φ].

Each R(G,H)[φ] contains all the imaginary roots. We have

H ∩ L[φ] = TA[φ];

the restriction of ν ∈ a∗ to the line a∗[φ] is given by 〈ν, φ∨〉.
The Weyl group of A in G is

W (G,A) = NG(A)/ZG(A) 'W (G,H)/WiR(G,H)

The last quotient is by the subgroup of the real Weyl group acting trivially on

A; that is the same as

WiR(G,H) = W (G,H) ∩W (RiR, H),

the subgroup contained in the Weyl group of the imaginary roots. We will need

the subgroup stabilizing the discrete parameter Λ:

W (G,A)Λ 'W (G,H)Λ/WiR(G,H)Λ.

Lemma 21.10. — In the setting of Definition 21.9, suppose that α and β are non-

imaginary roots such that αa ∈ Qβa; that is, that the lines [αa] and [βa] of restricted

roots coincide. Then α∨a ∈ Qβ∨a ; that is, the lines [α∨a ] and [β∨a ] of restricted coroots

also coincide.
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Proof. — Choose an Ad(G)-invariant symmetric bilinear form 〈, 〉 on g that is nega-

tive definite on k0, positive definite on s0, and making these spaces orthogonal (nota-

tion as in Theorem 3.4). Then the induced forms on h and h∗ are positive definite on

the spans of the coroots and roots, and

λ(α∨) = 2〈λ, α〉/〈α, α〉.

That is, the identification of h with h∗ defined by the bilinear form identifies the

coroot α∨ with 2α/〈α, α〉. Orthogonal projection on a ' a∗ gives

α∨a = 2αa/〈α, α〉.

Now the conclusion of the lemma is clear.

We are interested in certain affine hyperplanes in a∗0 based on (that is, translates

of) the codimension one real subspaces (a∗0)[φ∨] introduced in Definition 21.9.

Definition 21.11. An affine hyperplane

{ν ∈ a∗0 | 〈ν, φ∨〉 = q}

is called a potential reducibility hyperplane for Λ if it is one of those described in

Proposition 6.6: that is, if there is a nonimaginary root α ∈ R(G,H) such that

φ∨ = α∨a , and (for every ν in the hyperplane, so that γ = (λ, ν) as in (21.1))

either

a) α is complex, 〈γ, α∨〉 and 〈γ,−θα∨〉 are both strictly positive integers (equiva-

lently, in the notation of (21.8), q = n− `α with n > |`α| an integer); or

b) α is real, 〈γ, α∨〉 is a strictly positive integer, and

Λq(mα) = (−1)〈ν,α
∨〉+1

(notation (9.3d)); equivalently, q = n is a strictly positive integer of parity

opposite to that of Λq(mα).

The hyperplane is called reorienting for Λ if the orientation number of Definition

20.5 changes on crossing the hyperplane: that is, if there is a nonimaginary root

α ∈ R(G,H) such that φ∨ = α∨a , and (for every ν in the hyperplane, so that

γ = (λ, ν) as in (21.1)) either

a) α is complex, 〈γ, α∨〉 = 0 and 〈γ,−θα∨〉 > 0 (equivalently, in the notation of

(21.8), q = −`α < 0); or

b) α is real, 〈γ, α∨〉 is a strictly positive integer, and

Λq(mα) = (−1)〈ν,α
∨〉

(equivalently, q = n is a strictly positive integer of the same parity as Λq(mα));

or

c) α is real, 〈γ, α∨〉 is a strictly positive integer, and

Λq(mα) = (−1)〈ν,α
∨〉+1
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(equivalently, q = n is a strictly positive integer of parity opposite to that of

Λq(mα)).

The third case is just the real root reducibility hyperplane. Crossing a hyper-

plane of one of the first two kinds in the direction of increasing φ∨ increases

the orientation number by one, so we call them positively reorienting. Crossing

a hyperplane of the third kind in the direction of increasing φ∨ decreases the

orientation number by one, so we call these negatively reorienting.

Here is the picture. For our fixed discrete parameter Λ, the real vector space

a∗0 has a hyperplane arrangement given by the potential reducibility and reorienting

hyperplanes of Definition 21.11. For every complex root α of H, we get the family of

equally spaced parallel hyperplanes

(21.12a) 〈ν, α∨a 〉 = n− `α, (n ∈ Z, n ≥ |`α|)

(notation (21.8)); if `α = 0, then the case n = 0 is excluded. For every real root α,

we have the family of equally spaced parallel hyperplanes

(21.12b) 〈ν, α∨a 〉 = n, (n ∈ Z, n > 0).

Within each open region defined by this arrangement, the c-invariant Hermitian

form has a constant signature. Because none of the hyperplanes passes through the

origin, the signature is constant near ν = 0. More explicitly,

(21.12c) sigcI(Γ) = sigcI(Λ,0), (ν ∈ a∗0 small).

More explicitly, the conditions on ν are

(21.12d) 〈ν, α∨a 〉 < |`α| (α complex, `α 6= 0);

and

(21.12e) 〈ν, α∨a 〉 < 1 (α complex or real, `α = 0).

In order to prove Theorem 21.2, we need to see what happens to the signature

when we cross a single hyperplane in the arrangement.

Theorem 21.13. — Suppose Γ = (Λ, ν) is a Langlands parameter as in (21.1). Fix

a potential reducibility hyperplane

H(φ∨, q) = {ν ∈ a∗0 | 〈ν, φ∨〉 = q}

as in Definition 21.11. This means in particular that φ∨ is a restricted coroot: there

is a nonimaginary root α with φ∨ = α∨a (Definition 21.9). Let φ = αa be the cor-

responding restricted root (which according to Lemma 21.10) is well defined up to a

positive rational multiple. Therefore the Levi subgroup

L[φ]A[φ] ⊃MA
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(corresponding to all roots restricting to multiples of φ; cf. Definition 21.9) is well

defined. Fix a parabolic subgroup

Q[φ] = L[φ]A[φ]N [φ].

1. Suppose H1 ⊂ L[φ]A[φ] is any θ-stable Cartan subgroup. Then weak Langlands

parameters for G based on H1 (Definition 6.3) may be identified with weak

Langlands parameters for L[φ]A[φ] based on H1.

2. The correspondence of (1) is implemented on the level of standard representa-

tions by parabolic induction:

[IG(Γ1)] = [IndGQ[φ](I
LA[φ]

(Γ1)⊗ 1N
[φ]

)].

Here the brackets indicate equality in the Grothendieck group.

Assume now that ν belongs to the potential reducibility hyperplane H(φ∨, q) and to no

other potential reducibility hyperplane.

3. The equality in (2) is true on the level of standard representations endowed with

Jantzen filtrations (Proposition 14.6):

(IG)rquo(Γ) = IndGQ[φ]((I
L[φ]A[φ]

)rquo(Γ)⊗ 1N
[φ]

),

and similarly for the submodule filtrations.

4. Suppose Ξ is a Langlands parameter for L[φ]A[φ]. Then the multiplicity of JG(Ξ)

in the rth level of the Jantzen filtration of I(Γ) is equal to the coefficient of

q(`(Γ)−`(Ξ)−r)/2 in the Kazhdan-Lusztig multiplicity polynomial QΞ,Γ, which may

be computed inside the subgroup L[φ].

5. The signature of the invariant form on the induced representation changes across

the hyperplane H(φ∨, q) as follows: for ε > 0 sufficiently small,

sigcI(Λ,(1+ε)ν) = sigcI(Γ) = sigcI(Λ,ν) = sigcI(Λ,(1−ε)ν)

+ (s− 1)
∑

Ξ∈B(ξ)
`(Ξ)−`(Γ) odd

s(`o(Ξ)−`o(Γ))/2QΞ,Γ(s) sigcJ(Ξ)

Recall from Definition 6.3 that Langlands parameters are weak parameters subject

to two additional conditions (5) and (6). The condition (6) is the same for G and for

the Levi subgroup, since it involves only imaginary roots. But condition (5), called

“final,” is stronger for G, which may have additional real roots not present in the

Levi subgroup.

The calculation in (5) of the theorem cannot quite be done in the Levi subgroup,

because the orientation numbers appearing can involve roots outside the Levi.

The change of signature formula in (5) can be rewritten in various ways, exactly

as in Theorem 21.5. Indeed this entire theorem is a special case of that one. The

point of this formulation is that if one moves the continuous parameter ν in such a

way as to cross only one hyperplane at a time, then the Kazhdan-Lusztig calculations

required can be done inside the Levi subgroups L[φ].
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The question of how much one gains in this fashion is a complicated one. Consider

for example the split real group of type E8. In order to deform invariant Hermitian

forms related to the trivial representation using Theorem 21.5, one has to calculate the

Kazhdan-Lusztig polynomials for the largest block in E8, which has 453,060 elements.

To use Theorem 21.13, the only calculation which must be done in E8 is for that

portion of the block which lies below some parameter Γ attached to the (unique)

Cartan subgroup with one-dimensional split part. We have not calculated exactly

how large that portion of the block is, but there is an upper bound of 191,411. The

atlas software can calculate these polynomials (more precisely, the upper left corner

of the Kazhdan-Lusztig matrix of size 191,411 by 191,411) in about one-fiftieth the

time and one-fifteenth the memory needed to compute the entire matrix.

On the other hand, a complete analysis of invariant forms on irreducible represen-

tations requires not only this deformation analysis but also the explicit expression

for an irreducible in terms of standard modules in (15.11f); and this is calculated in

Corollary 20.13 using all the Kazhdan-Lusztig polynomials.

It may be that the idea in Theorem 21.13 still provides a useful improvement in

the deformation part of the calculation. The only way that we can see to make a

convincing test is to implement both algorithms and compare performance.

22. Example: Hermitian forms for SL(2,C)

In this section we will carry out the algorithm of this paper to calculate the

signatures of the invariant Hermitian forms on the irreducible representations of

G = SL(2,C), and in particular to find the unitary representations of SL(2,C).

Of course these results go back to Gelfand and Naimark in the 1940s; the point is

just to indicate as explicitly as possible the structure of our algorithm.

We follow the notation for complex groups (regarded as real groups) explained in

[42, §7.1]. The complex Lie group with which we begin is

(22.1a) G(C) = SL(2,C)× SL(2,C) = GL ×GR;

the labels L and R stand for “left” and “right.” Here is some of the notation intro-

duced in Section 3. The standard compact real form of G(C) is

(22.1b) σc(g, h) = ((g∗)−1, (h∗)−1), G(R, σc) = SU(2)× SU(2);

here g∗ = tg is the usual Hermitian transpose on matrices. The real form we are

considering is

(22.1c) σ(g, h) = ((h∗)−1, (g∗)−1);

the corresponding real group is

G(R, σ) = {(g, (g∗)−1) | g ∈ SL(2,C)} ' SL(2,C).



UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS 161

Then the Cartan involution and complexified maximal compact subgroup are

(22.1d) θ = σσc, θ(g, h) = (h, g), K(C) = SL(2,C)∆ ⊂ SL(2,C)× SL(2,C).

If we choose the same pinning (see (12.2)) on each of the two simple factors of G(C),

then θ preserves the pinning; so the distinguished automorphism δf is

δf (g, h) = θ(g, h) = (h, g).

The extended group is therefore

(22.1e) δG(C) = G(C) o {1, δf},

and we can choose x = δf as a strong involution representing G. (There are four legal

choices of x: we can multiply δf by any of the central elements of G.)

The maximal compact subgroup is

K = Gθ = SU(2).

We will index irreducible representations µn ∈ K̂ by nonnegative integers n (highest

weights). Of course dimµn = n+ 1.

Up to conjugation by G, there is a unique maximal torus defined over R. We choose

as a representative the diagonal one

(22.2a) H(C) =

{((
z 0

0 z−1

)
,

(
w 0

0 w−1

))
| z, w ∈ C×

}
.

We will write h(z, w) for this element of the torus. The algebraic characters of H(C)

send h(z, w) to zpwq (for p and q integers. The four roots are

±αL(h(z, w)) = z±2, ±αR(h(z, w)) = w±2,

and the corresponding coroots are

±(αL)∨(s) = h(s±1, 1), ±(αR)∨(t) = h(1, t±1).

The complex Weyl group is W (G(C), H(C)) = {±1} × {±1}, acting by inversion on

each coordinate separately. Identifying the Lie algebra of C× with C identifies

h(C) ' C2, ±(αL)∨ = (±1, 0),

h(C)∗ ' C2, ±αL = (±2, 0).

The real torus is

(22.2b)
H = {h(z, z−1) | z ∈ C×

= {h(reiθ, r−1eiθ) | θ ∈ R, r > 0}.

Evidently the roots are all complex (Definition 5.7), with θ(αL) = αR. The characters

of this torus are

(22.2c) γn,ν(h(reiθ, r−1eiθ)) = rνeinθ (n ∈ Z, ν ∈ C).

The real Weyl group is the diagonal subgroup

W (G,H) = {±1}∆ ⊂ {±1} × {±1},
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acting by inversion on each coordinate. (This is consistent with Knapp’s general result

in Proposition 5.8, but of course this case is much older and entirely elementary.) The

action of the real Weyl group on characters sends γn,ν to γ−n,−ν . The Hermitian dual

and c-Hermitian dual parameters (Definitions 10.3 and 10.6) are

(22.2d) γh,σ0
n,ν = γn,−ν , γh,σcn,ν = γn,ν .

The differential of the character γn,ν is

(22.2e) dγn,ν = ((n+ ν)/2, (n− ν)/2) ∈ h∗.

A root α is integral for γ if and only if dγ takes an integer value on α∨ (Definition

16.4). Therefore

(22.2f) R(γn,ν) =

{
R (ν ∈ 2Z + n)

∅ (ν /∈ 2Z + n).

That is, the only “integrality condition” is that the continuous parameter ν should

be an integer congruent to n modulo 2. The “integral length” (Definition 18.1) is

(22.2g) `(γn,ν) =

{
1 (ν ∈ 2Z + n, |ν| > |n|)
0 (otherwise).

Similarly, the “orientation number” (Definition 20.5) is

(22.2h) `o(γn,ν) =

{
1 (ν /∈ 2Z + n, |ν| > |n|)
0 (otherwise).

A Langlands parameter for G (Definition 6.2) is the same thing (since there are

no imaginary roots) as a character of H. Equivalence classes of parameters under

conjugation by G are the same thing as W (R) orbits of characters. The standard

representations are principal series (see Theorem 6.1)

(22.3a) Iquo(γn,ν) =def Iquo(n, ν), I(n, ν)|K =

∞∑
p=0

µ|n|+2p.

Each of these has a Langlands quotient representation (Theorem 6.1)

(22.3b) J(γn,ν) =def J(n, ν), J(n, ν) ' J(n′, ν′) ⇐⇒ (n′, ν′) = ±(n, ν).

According to Theorem 7.1,

J(n, ν) is Hermitian if and only if either ν ∈ iR, or n = 0 and ν ∈ R.

The first class of representations J(n, iσ) = I(n, is) ' I(−n,−is) is the unitary

principal series; these representations are all unitary. It is the second family J(0, t) '
J(0,−t) that requires study. We do this by comparing the invariant Hermitian form

to the invariant c-Hermitian form. According to Proposition 10.7,

J(n, ν) is c-Hermitian if and only if either ν ∈ R, or n = 0 and ν ∈ iR.



UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS 163

To continue, we need to discuss parameters and representations of the extended

group δG. We have

(22.4a)
γθn,ν = γn,−ν ,

γθn,ν ' γn,ν ⇐⇒ ν = 0 or n = 0.

The second assertion amounts to

γn,ν is type one if and only if ν = 0 or n = 0.

Up to conjugation by G, there are exactly two classes of extended maximal tori

(Definition 13.5):

(22.4b) fH = 〈H, δf 〉, sH = 〈H, δs〉;

here f and s stand for “fundamental” and “split.” The second generator for fH is

the involution δf exchanging the two factors of G(C). The generator for sH is

(22.4c) δs =

((
0 1

−1 0

)
,

(
0 −1

1 0

))
δf

The element δs is the conjugate of δf by

((
0 1

−1 0

)
, I

)
. That is one of many ways

to see that δ2
s = δ2

f = 1.

The type one extended Langlands parameters attached to fH are the two exten-

sions of the characters γn,0:

(22.4d) fγεn,0 ∈ f̂H, fγεn,0(δf ) = ε (ε = ±1).

The character fγεn,0 is conjugate (by the normalizer in K of fH) to fγε−n,0 (no change

of sign in the superscript).

In the same way, the type one extended Langlands parameters attached to sH are

the two extensions of the characters γ0,ν :

(22.4e) sγε0,ν ∈ ŝH, sγε0,ν(δs) = ε (ε = ±1).

The character sγε0,ν is conjugate (by the normalizer in K of sH) to sγε0,−ν (no change

of sign in the superscript). The only other equivalence for extended parameters is

(22.4f) fγε0,0 ' sγε0,0

(no change of sign in the superscript); this is explained in Definition 13.9.

In order to make the deformation in ν described in Section 21, we need to find the

hyperplanes described in Definition 21.11. We will do this only for n = 0, since that

is the only case arising in the analysis of unitary representations. That is, we are

considering the one-dimensional real vector space

{ν ∈ R} ↔ {sγ+1
0,ν}.
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(It is enough to consider only the extended parameters with superscript +1 because

signatures of forms on irreducibles are unchanged by switching +1 and −1.) The

“potential reducibility hyperplanes” (see also Proposition 6.6) are

ν = ±2,±4, . . .

There are no reorienting hyperplanes. The signature of the c-invariant form on I(0, ν)

can change only when ν = 2p is a nonzero even integer. For definiteness we take p > 0.

The infinitesimal character ξ is represented by the Weyl group orbit (±p,±p). Up to

equivalence, the extended Langlands parameters with this infinitesimal character are

B(ξ) = {fγ±1
2p,0,

sγ±1
0,2p},

having length 0 and 1 respectively. The non-diagonal Kazhdan-Lusztig multiplicity

polynomials are

Qfγ
(−1)p

2p,0 ,sγ+
0,2p

= 1.

(Deciding what sign to put in the superscript of sγ0,2p is not trivial. There is an

explanation in [2, §9]; it is one of the main points of that paper.) According to

Theorem 21.5, it follows that

sigc
I(sγ+1

0,2p+ε)
= sigc

I(sγ+1
0,2p)

= sigc
I(sγ+1

0,2p+ε)
+(1− s) sigc

I(fγ
(−1)p

2p,0 )
.

Applying such formulas at each of the reducibility points, as in the proof of Theorem

21.2, we find

sigc
I(sγ+

0,t)
= sigc

I(sγ+
0,0)

+(1− s)
p∑
j=1

sigc
I(fγ

(−1)j

2j,0 )
(0 ≤ 2p ≤ t < 2p+ 2).

For t not a positive integer, this principal series representation is irreducible, so we

have computed the signature of the c-invariant form on the Langlands quotient. For

t = 2p, the calculation in Corollary 21.4 is very short:

sigc
J(sγ+

0,2p)
= sigc

I(sγ+
0,0)

+(1− s)

p−1∑
j=1

sigc
I(fγ

(−1)j

2j,0 )

− s sigc
I(fγ

(−1)p

2p,0 )
.

Now we convert these formulas to formulas for the ordinary invariant Hermitian

forms 〈, 〉0 as in Corollary 21.4. Recall that we chose x = δf in (22.1) for our strong

involution; so z = x2 = 1 acts by ζ = 1 in all of our representations. We choose the

square root ζ1/2 = 1. Almost by definition of the Langlands parameters, x acts by

the scalar ε = ±1 on the lowest K-type of the standard representation I(fγε2p,0). In

light of (22.4f), x also acts by ε on the lowest K-type of I(sγε0,0). By Corollary 21.4

(22.5a) sig0
I(sγ+1

0,t )
= sig0

I(sγ+1
0,0)

+(1− s)
p∑
j=1

sj sig0

I(fγ
(−1)j

2j,0 )
(0 ≤ 2p ≤ t < 2p+ 2),
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(22.5b) sig0
J(sγ+1

0,2p)
= sig0

I(sγ+1
0,0)

+(1− s)

p−1∑
j=1

sj sig0

I(fγ
(−1)j

2j,0 )

− sp+1 sig0

I(fγ
(−1)p

2p,0 )
.

As explained in Corollary 21.4(4), such a formula is the signature of a unitary repre-

sentation if and only if s never appears. We therefore find (for t ≥ 0)

(22.5c) J(sγ+
0,t) is unitary ⇐⇒ 0 ≤ t ≤ 2.

The reason is that for t > 2, the term (s−1)I(fγ−1
2,0) in the signature formula guaran-

tees that the three-dimensional representation of K contributes to the negative part

of the invariant Hermitian form.

A little more precisely, the formula (22.5b) says that in the spherical finite-

dimensional representation of SL(2,C) of infinitesimal character (p, p) (which has

dimension p2), the K representations µ0, µ2, . . . , µ2p−2 appear with alternating signs

in the invariant Hermitian form.

Of course these facts about SL(2,C) are classical and easy to prove directly.
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[21] , Schubert varieties and Poincaré duality, Geometry of the Laplace Oper-

ator, 1980, pp. 185–203.

[22] Anthony W. Knapp, Weyl group of a cuspidal parabolic, Ann. Sci. Ecole Norm.

Sup. 8 (1975), 275–294.

[23] , Representation Theory of Semisimple Groups: An Overview Based on

Examples, Princeton University Press, Princeton, New Jersey, 1986.

[24] , Lie Groups Beyond an Introduction, Second Edition, Progress in Math-
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