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Gelfand’s abstract harmonic analysis

Topological grp G acts on X , have questions about X .
Step 1. Attach to X Hilbert space H (e.g. L2(X )).
Questions about X  questions about H.
Step 2. Find finest G-eqvt decomp H = ⊕αHα.
Questions about H questions about each Hα.
Each Hα is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.
Step 3. Understand Ĝu = all irreducible unitary
representations of G: unitary dual problem.
Step 4. Answers about irr reps answers about X .
Topic today: what’s an irreducible unitary
representation look like?
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Representations of GL(V (k))

Concentrate on group G(k) = GL(V (k)) invertible
linear transformations of n-diml vector space V (k).
Stay vague about (locally compact) ground field k :
mostly R or C, but Fq, p-adic fields also interesting.
G(k) acts on (n − 1)-diml (over k ) proj alg variety

X1,n−1(k) = {1-diml subspaces of V (k)}
Hilbert space

H1,n−1(k) = {L2 half-densities on X1,n−1(k)}

k = R, C, p-adic: G(k) acts by irr rep ρ(1,n − 1).
Question for today: how big is this Hilbert space?
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Size of L2(proj space)

Want “dimension” for inf-diml Hilbert space

H1,n−1(k) = {L2 half-densities on X1,n−1(k)}

For guidance, look at fin-diml analogue: take base
field k = Fq; then #V (Fq) = qn,
G(Fq) = GL(V (Fq)) = finite group of linear
transformations of V (Fq).
G(Fq) acts on

X1,n−1(Fq) = {1-diml subspaces of V (Fq)};
#X1,n−1(Fq) = (qn−1)/(q−1) = qn−1+qn−2+· · ·+1.

H1,n−1(Fq) = {functions on X1,n−1(Fq)}

dimH1,n−1(Fq) = #X1,n−1(Fq) = qn−1 + · · ·+ 1
= poly in q, degree = dim(X1,n−1).
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About GL(V (Fq))

To understand size of repns of GL(V ), need size of
GL(V ). . .

The “q-analogue” of m is the polynomial

qm−1 + qm−2 + · · ·+ q + 1 =
qm − 1
q − 1

;
value at q = 1 is m.

(m!)q = (qm−1 + qm−2 · · ·+ 1)(qm−2 + · · ·+ 1) · · · (q + 1) · 1

=
qm − 1
q − 1

· qm−1 − 1
q − 1

· · · q
2 − 1

q − 1
· q − 1

q − 1
.

(q-analogue of m!; poly in q, deg =
(m

2

)
, val at 1 = m!)

Geometric meaning: number of complete flags in an
m-dimensional vector space over Fq.

Cardinality of GL(V (Fq)) is (n!)q(q − 1)nq(n
2).

GL(V (Fq)) is “q-analogue” of symmetric group.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

About GL(V (Fq))

To understand size of repns of GL(V ), need size of
GL(V ). . .

The “q-analogue” of m is the polynomial

qm−1 + qm−2 + · · ·+ q + 1 =
qm − 1
q − 1

;
value at q = 1 is m.

(m!)q = (qm−1 + qm−2 · · ·+ 1)(qm−2 + · · ·+ 1) · · · (q + 1) · 1

=
qm − 1
q − 1

· qm−1 − 1
q − 1

· · · q
2 − 1

q − 1
· q − 1

q − 1
.

(q-analogue of m!; poly in q, deg =
(m

2

)
, val at 1 = m!)

Geometric meaning: number of complete flags in an
m-dimensional vector space over Fq.

Cardinality of GL(V (Fq)) is (n!)q(q − 1)nq(n
2).

GL(V (Fq)) is “q-analogue” of symmetric group.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

About GL(V (Fq))

To understand size of repns of GL(V ), need size of
GL(V ). . .

The “q-analogue” of m is the polynomial

qm−1 + qm−2 + · · ·+ q + 1 =
qm − 1
q − 1

;
value at q = 1 is m.

(m!)q = (qm−1 + qm−2 · · ·+ 1)(qm−2 + · · ·+ 1) · · · (q + 1) · 1

=
qm − 1
q − 1

· qm−1 − 1
q − 1

· · · q
2 − 1

q − 1
· q − 1

q − 1
.

(q-analogue of m!; poly in q, deg =
(m

2

)
, val at 1 = m!)

Geometric meaning: number of complete flags in an
m-dimensional vector space over Fq.

Cardinality of GL(V (Fq)) is (n!)q(q − 1)nq(n
2).

GL(V (Fq)) is “q-analogue” of symmetric group.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

About GL(V (Fq))

To understand size of repns of GL(V ), need size of
GL(V ). . .

The “q-analogue” of m is the polynomial

qm−1 + qm−2 + · · ·+ q + 1 =
qm − 1
q − 1

;
value at q = 1 is m.

(m!)q = (qm−1 + qm−2 · · ·+ 1)(qm−2 + · · ·+ 1) · · · (q + 1) · 1

=
qm − 1
q − 1

· qm−1 − 1
q − 1

· · · q
2 − 1

q − 1
· q − 1

q − 1
.

(q-analogue of m!; poly in q, deg =
(m

2

)
, val at 1 = m!)

Geometric meaning: number of complete flags in an
m-dimensional vector space over Fq.

Cardinality of GL(V (Fq)) is (n!)q(q − 1)nq(n
2).

GL(V (Fq)) is “q-analogue” of symmetric group.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

About GL(V (Fq))

To understand size of repns of GL(V ), need size of
GL(V ). . .

The “q-analogue” of m is the polynomial

qm−1 + qm−2 + · · ·+ q + 1 =
qm − 1
q − 1

;
value at q = 1 is m.

(m!)q = (qm−1 + qm−2 · · ·+ 1)(qm−2 + · · ·+ 1) · · · (q + 1) · 1

=
qm − 1
q − 1

· qm−1 − 1
q − 1

· · · q
2 − 1

q − 1
· q − 1

q − 1
.

(q-analogue of m!; poly in q, deg =
(m

2

)
, val at 1 = m!)

Geometric meaning: number of complete flags in an
m-dimensional vector space over Fq.

Cardinality of GL(V (Fq)) is (n!)q(q − 1)nq(n
2).

GL(V (Fq)) is “q-analogue” of symmetric group.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

More representations over Fq

Continue with k = Fq, G(Fq) = GL(V (Fq)).
π = (p1, . . . ,pm),

∑
j pj = n; G(Fq) acts on

Xπ(Fq) = {0 = S0 ⊂ S1 ⊂ · · ·Sm = V (Fq),

subspace chains, dim(Sj/Sj−1 = pj};
Fq-variety of dimension

d(π) =def
(n

2

)
−
∑

j
(pj

2

)
.

#Xπ(Fq) =
(n!)q

(p1!)q(p2!)q · · · (pm!)q
.

Hπ(Fq) = {functions on Xπ(Fq)}

dimHπ(Fq) = #Xπ(Fq) = poly in q of deg d(π).

Repn space ' cplx fns on Fq-variety of dim d(π)
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Moral of the Fq story

G(Fq) = GL(V (Fq)) = q-analogue of symm group Sn

irr rep of G(Fq) partition π of n Xπ = flags of type π

irr rep ≈ functions on Xπ(Fq)

dim(irr rep) = poly in q of degree dim Xπ
Problem: what partition is attached to each irr rep?
Dimension of representation provides a clue.
big reps! partitions with small parts.
Note: partition π! irreducible rep of Sn.
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About p-adic GL(V (k))

k p-adic field ⊃ O ring of integers ⊃ p maximal ideal
O/p = Fq residue field
V (k) n-diml vec space; fix basis V (k) ' kn.
Basis V (O) ' On ⊂ kn ' V (k)

G(k) = GL(V (k)) ' GL(n, k).
For r ≥ 0, have open subgroups (nbhd base at I)

Gr = {g ∈ GL(n,O) | g ≡ I mod pr}
= subgp of G(O) acting triv on V (O)/V (pr ) .

Note G0 = G(O) ' GL(n,O).
G0/Gr ' GL(V (D/pr )) finite group, extension of
G(Fq) by nilp gp of order qn2r .
Gr  decompose G(k)-spaces, reps.
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Flag varieties over p-adic k
G(k) = GL(V (k)) ⊃ compact open G0 ⊃ G1 ⊃ · · ·
π = (p1, . . . ,pm),

∑
j pj = n; G(k) acts on

Xπ(k) = {0 = S0 ⊂ S1 ⊂ · · ·Sm = V (k),

subspace chains, dim(Sj/Sj−1 = pj}
↓'

Xπ(O) = {0 = L0 ⊂ L1 ⊂ · · ·Lm = V (O),

lattice chains, rk(Lj/Lj−1) = pj}
↓ πr

Xπ(O/pr ) = {0 = `0 ⊂ `1 ⊂ · · · `m = V (O/pr ),

submodule chains, rk(`j/`j−1) = pj}
πr fibers = Gr orbits on Xπ(k); number of orbits is

#Xπ(O/pr ) =
(n!)q

(p1!)q(p2!)q · · · (pm!)q
· qrd(π).
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General representations over p-adic k

π = (p1, . . . ,pm),
∑

j pj = n

Xπ(k) = subspace chains of type π

Hπ(k) = {L2 half-densities on Xπ(k)}

dim(Hπ(k)Gr ) =
(n!)q

(p1!)q(p2!)q · · · (pm!)q
· qrd(π)

Theorem (Shalika germs)
If (ρ,H) arb irr rep of G(k), then for every partition π of n
there is an integer aπ(ρ) so that for r ≥ r(ρ)

H '
∑
π

aπHπ(k)

as (virtual) representations of Gr .
Corollary

dimHGr = poly in qr of deg d(π(ρ)),

some partition π(ρ), and all r ≥ r(ρ).
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Moral of the p-adic story

G(k) = GL(V (k)) has neighborhood base at 1 of
compact open subgroups G0 ⊃ G1 ⊃ · · · ⊃ Gr ⊃ · · ·
irr rep of G(k) partition π(ρ) of n Xπ = flags of type π

irr rep on H ≈ functions on Xπ(k)

dim(HGr ) = poly in qr of deg d(π) = dim Xπ (large r )
Problem: what partition is attached to each irr rep?
Rate of growth of chain of subspaces

HG0
π ⊂ HG1

π ⊂ · · ·HGr
π ⊂ · · ·

provides a clue.
big reps! partitions with small parts.
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Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Representations of GL(V (R))

G(R) = GL(V (R)) ' GL(n,R).
G(R) acts on (n − 1)-diml compact manifold

X1,n−1(R) = {1-diml subspaces of V (R)} ' RPn−1

H1,n−1(R) = {L2 half-densities on RPn−1}
Hilbert space carrying irr unitary rep of G(R).
Question for today: how big is this Hilbert space?
Can we extract n − 1 from it?
Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C∞(RPn−1) ' C∞(RPm−1) as topological vec space
C[x1, . . . , xn−1] ' C[y1, . . . , ym−1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Lessons from real analysis
X compact d-diml Riemannian, ∆X Laplacian

H = L2(X ), Hλ = λ-eigenspace of ∆X .

Theorem (Weyl)
If H(N) =

∑
λ≤N2 Hλ, then dimH(N) ∼ cX Nd .

Conclude: dim X ! asymp distn of ∆X eigenvalues

Example: X = RPn−1, C∞(X ) = homog even fns on Rn.
H2k(2k+(n−1)) ' deg 2k pols mod r2 · (deg 2(k − 1) pols)

dimH2k(2k+(n−1)) = [(2k+1)(2k+2)···(2k+n−3)][4k+n−2]
(n−2)! ,

polynomial in k of degree n − 2.

H
(

2k
√

1 + n−1
2k

)
' S2k (Rn)

dimH
(

2k
√

1 + n−1
2k

)
=

(
n + 2k − 1

n − 1

)
,

polynomial in k of degree n − 1.
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More representations over R
Choice of basis defines compact subgroup

O(n) ⊂ G(R) = GL(V (R)) ' GL(n,R).

Casimir ΩO(n) = −
∑

X 2
i , {Xi} orth basis of Lie O(n).

π = (p1, . . . ,pm),
∑

j pj = n; G(R) acts on cpt Riemannian

Xπ(R) = subspace chains of type π

d(π) =def
(n

2

)
−
∑

m

(pm
2

)
= dim Xπ

O(n) transitive on Xπ(R), ∆Xπ
= action of ΩO(n); isotropy

O(π) =def O(p1)× · · ·O(pm) ⊂ O(n).

Unitary rep ρ(π) on Hπ(R) = L2(Xπ(R)); res to O(n) is

IndO(n)
O(π)(C) =

∑
µ∈Ô(n)

(dimµO(π))µ

Therefore compute Laplacian eigenvalue distribution

Hπ(N) =
∑
µ(Ω)≤N2 (dimµO(π))µ.

dimHπ(N) ∼ a(π)Nd(π): res to O(n) computes d(π).
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General representations over R

(ρ,H) arbitrary irr rep of G(R) ' GL(n,R).
Restriction to cpt subgp O(n) decomposes

H '
∑

µ∈Ô(n)
mρ(µ)µ (mρ(µ) non-neg integer).

Example of Hπ = L2(Xπ) suggests defining

H(N) =def
∑

µ(Ω)≤N2 mρ(µ)µ.
Theorem
There is partition π(ρ) of n, pos integer c(ρ) so that

dimH(N) ∼ c(ρ)a(π(ρ))Nd(π(ρ)).

Recall that dimHπ(N) ∼ a(π)Nd(π).

Definition
For ρ irr rep of G(R), the Gelfand-Kirillov dimension of ρ is
the non-neg integer Dim(ρ) = d(π(ρ)); measures asymp
distn of eigenvalues of Casimir ΩO(n) in ρ.
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H '
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Example of Hπ = L2(Xπ) suggests defining

H(N) =def
∑
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Theorem
There is partition π(ρ) of n, pos integer c(ρ) so that

dimH(N) ∼ c(ρ)a(π(ρ))Nd(π(ρ)).

Recall that dimHπ(N) ∼ a(π)Nd(π).

Definition
For ρ irr rep of G(R), the Gelfand-Kirillov dimension of ρ is
the non-neg integer Dim(ρ) = d(π(ρ)); measures asymp
distn of eigenvalues of Casimir ΩO(n) in ρ.
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(First) moral of the real story

G(R) = GL(V (R)) has compact subgroup O(n).
irr rep of G(R) partition π(ρ) of n Xπ = flags of type π

irr rep on H ≈ functions on Xπ(R), cpt homog space
for G(R) and for O(n). Precisely:
asymp distn of eigenvalues of Casimir ΩO(n) in ρ 
eigenvals of Laplacian on Xπ(R).
Problems: what partition is attached to each irr rep?
what else does partition tell you about irr rep?
To address these questions, use characters of
reps. . .
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Distribution characters

Idea of Gelfand-Kirillov dimension began with
dimension for fin-diml irr rep (ρ,H) of G.
Can write dim ρ = tr IdH = tr ρ(1).
Useful to consider character of ρ, function on G:

Θρ(g) =def tr ρ(g),

because character of ρ determines ρ up to equiv.
Inf-diml irr (ρ,H): ρ(g) never trace class. Regularize. . .

G(R) = GL(V (R)), δ cptly supp test density on G(R),

ρ(δ) =

∫
G(R)

ρ(g)δ(g) ∈ End(H)

is trace class operator (Harish-Chandra).
Map Θρ(δ) = tr ρ(δ) is generalized function on G(R).
GK dim of ρ! singularity of Θρ at 1 ∈ G(R).
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More lessons from real analysis

f smooth on vec space W (R), ft (w) = f (tw);
Taylor
 

ft ∼
∑∞

k=0 tkPk , (t →∞),Pk homog deg k poly.

Seek analogous expansion for non-smooth gen fns.

Theorem (Barbasch-V)
Θρ distn char of irr rep ρ of G(R),

exp
 gen fn θρ on

g(R) = Lie(G(R)) = n × n real matrices

Then θρ has asymptotic expansion
θρ,t ∼

∑∞
k=−d(ρ) tkTk (ρ),

Tk (ρ) tempered gen fn homog of deg k.
Leading terms match: T−d(ρ)(ρ) = c(ρ)T−d(π)(ρ(π(ρ)).

Conclusion: char Θρ near 1 ∈ G(R) equal to
c(ρ) ·Θρ(π) modulo lower order terms.
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More about character leading terms

Looked at expansion θρ,t ∼
∑∞

k=−d(ρ) tkTk (ρ).
Fin-diml rep: d(ρ) = 0, leading term T0(ρ) = dim ρ.
Leading term T−d(ρ) ! analogue of dimension
Example: G(R) action on Xπ(R) moment map

µπ : T ∗Xπ(R)→ g(R)∗.

µπ is birational onto closure of nilpotent conj class
Oπt ⊂ g(R)∗ ' n × n real matrices;

Natural measure on T ∗Xπ(R)
µπ measure on Oπt

Fourier
 generalized function on g(R).

Leading term T−d(π)(ρ(π)) is Fourier transform Ôπt .
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Leading term T−d(ρ) ! analogue of dimension
Example: G(R) action on Xπ(R) moment map

µπ : T ∗Xπ(R)→ g(R)∗.

µπ is birational onto closure of nilpotent conj class
Oπt ⊂ g(R)∗ ' n × n real matrices;

Natural measure on T ∗Xπ(R)
µπ measure on Oπt

Fourier
 generalized function on g(R).

Leading term T−d(π)(ρ(π)) is Fourier transform Ôπt .
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(Second) moral of the real story

G(R) = GL(V (R))

irr rep ρ of G(R)

trace−−−→ distribution character Θρ (gen fn on G(R))
exp−−→ generalized function θρ on g(R)

asymp
expansion−−−−−→ T−d(ρ)(ρ) temp, deg −d(ρ) gen fn on g(R)

Fourier−−−−→ tempered degree [−dim(g(R)) + d(ρ)]
distribution on g(R)∗ ' n × n real matrices

support−−−−→ conjugacy class Oπt of real nilp matrices
Jordan−−−−→ partition π(ρ) of n

That finds the partition attached to each irr rep.
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Other real reductive groups
G(R) real reductive group, K (R) maximal compact
subgroup, ΩK (R) Casimir operator for K (R).
Example: Sp(2n,R), R-linear transf of Cn preserving
symplectic form

ω(v ,w) = Im〈v ,w〉
(imag part of std Herm form); K (R) = U(n).
Example: O(p,q) linear transf of R× Rq preserving
symmetric form

〈(v1, v2), (w1,w2)〉p,q = 〈v1,w1〉 − 〈v2,w2〉;
K (R) = O(p)×O(q).
(Al)most general example: G(R) ⊂ GL(N,R) closed
subgp preserved by transpose, K (R) = G(R)∩O(N).
Big idea:

G(R) rep “size”! restriction to K (R) asymptotics



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Other real reductive groups
G(R) real reductive group, K (R) maximal compact
subgroup, ΩK (R) Casimir operator for K (R).
Example: Sp(2n,R), R-linear transf of Cn preserving
symplectic form

ω(v ,w) = Im〈v ,w〉
(imag part of std Herm form); K (R) = U(n).
Example: O(p,q) linear transf of R× Rq preserving
symmetric form

〈(v1, v2), (w1,w2)〉p,q = 〈v1,w1〉 − 〈v2,w2〉;
K (R) = O(p)×O(q).
(Al)most general example: G(R) ⊂ GL(N,R) closed
subgp preserved by transpose, K (R) = G(R)∩O(N).
Big idea:

G(R) rep “size”! restriction to K (R) asymptotics



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Other real reductive groups
G(R) real reductive group, K (R) maximal compact
subgroup, ΩK (R) Casimir operator for K (R).
Example: Sp(2n,R), R-linear transf of Cn preserving
symplectic form

ω(v ,w) = Im〈v ,w〉
(imag part of std Herm form); K (R) = U(n).
Example: O(p,q) linear transf of R× Rq preserving
symmetric form

〈(v1, v2), (w1,w2)〉p,q = 〈v1,w1〉 − 〈v2,w2〉;
K (R) = O(p)×O(q).
(Al)most general example: G(R) ⊂ GL(N,R) closed
subgp preserved by transpose, K (R) = G(R)∩O(N).
Big idea:

G(R) rep “size”! restriction to K (R) asymptotics



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Other real reductive groups
G(R) real reductive group, K (R) maximal compact
subgroup, ΩK (R) Casimir operator for K (R).
Example: Sp(2n,R), R-linear transf of Cn preserving
symplectic form

ω(v ,w) = Im〈v ,w〉
(imag part of std Herm form); K (R) = U(n).
Example: O(p,q) linear transf of R× Rq preserving
symmetric form

〈(v1, v2), (w1,w2)〉p,q = 〈v1,w1〉 − 〈v2,w2〉;
K (R) = O(p)×O(q).
(Al)most general example: G(R) ⊂ GL(N,R) closed
subgp preserved by transpose, K (R) = G(R)∩O(N).
Big idea:

G(R) rep “size”! restriction to K (R) asymptotics



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Other real reductive groups
G(R) real reductive group, K (R) maximal compact
subgroup, ΩK (R) Casimir operator for K (R).
Example: Sp(2n,R), R-linear transf of Cn preserving
symplectic form

ω(v ,w) = Im〈v ,w〉
(imag part of std Herm form); K (R) = U(n).
Example: O(p,q) linear transf of R× Rq preserving
symmetric form

〈(v1, v2), (w1,w2)〉p,q = 〈v1,w1〉 − 〈v2,w2〉;
K (R) = O(p)×O(q).
(Al)most general example: G(R) ⊂ GL(N,R) closed
subgp preserved by transpose, K (R) = G(R)∩O(N).
Big idea:

G(R) rep “size”! restriction to K (R) asymptotics



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

GK dimension for other real reductive

G(R) real reductive group, K (R) maximal compact
subgroup, ΩK (R) Casimir operator for K (R).
(ρ,H) irr rep of G(R); then (Harish-Chandra)

H '
∑

µ∈K̂ (R)
mρ(µ)µ, (mρ(µ) non-neg integer).

As for GL(n), can define
H(N) =def

∑
µ(ΩK (R))≤N2 mρ(µ)µ.

Theorem
There is a non-negative integer d(ρ) and a positive
constant b(ρ) so that

dimH(N) ∼ b(ρ)Nd(ρ).

Call d(ρ) the Gelfand-Kirillov dimension of ρ.
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What’s wrong with GK dimension for other G

Case of GL(n): have special homog spaces Xπ(R)
(partial flag variety) so that reps L2(Xπ(R))
“approximately model” any irr rep.
Other G(R): have analogues of Xπ (real flag
varieties); but they no longer model all irr reps.
Example: G(R) = Mp(4,R) nonlinear double cover of
symplectic group. Four possible spaces “Xπ”:

point X∅ (dim = 0)
(isotropic) lines X1 = {L1 ⊂ R4} = RP3 (dim 3)
Lagrangian planes X2 = {L2 ⊂ R4} ' U(2)/O(2) (dim 3)
isotr. flags X12 = {L1 ⊂ L2 ⊂ R4} ' U(2)/O(1)×O(1) (dim 4)

Get GK dims 0, 3, 4; metaplectic repn has GK dim 2.

But asymptotic expansion of characters still works. . .
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symplectic group. Four possible spaces “Xπ”:

point X∅ (dim = 0)
(isotropic) lines X1 = {L1 ⊂ R4} = RP3 (dim 3)
Lagrangian planes X2 = {L2 ⊂ R4} ' U(2)/O(2) (dim 3)
isotr. flags X12 = {L1 ⊂ L2 ⊂ R4} ' U(2)/O(1)×O(1) (dim 4)

Get GK dims 0, 3, 4; metaplectic repn has GK dim 2.

But asymptotic expansion of characters still works. . .
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Character expansions for real groups

G(R) real reductive group, (ρ,H) irr rep
δ cptly supp test density on G(R) trace class op

ρ(δ) =

∫
G(R)

ρ(g)δ(g) ∈ End(H)

Map Θρ(δ) = tr ρ(δ) is generalized function on G(R).
Lift via exp to gen fn θρ on g(R) = Lie(G(R))

Theorem (Barbasch-V)
θρ has asymptotic expansion θρ,t ∼

∑∞
k=−d(ρ) tk Tk (ρ),

Tk (ρ) tempered gen fn homog of deg k.
Leading term T−d(ρ) is finite linear comb of Fourier
transforms of invt measures on nilp orbits in g(R)∗:

T−d(ρ) =
∑

dimO=2d(ρ) c(ρ,O)Ô.
(Schmid-Vilonen) Coeffs c(ρ,O) are non-neg ints.
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(Schmid-Vilonen) Coeffs c(ρ,O) are non-neg ints.



The size of infinite-
dimensional

representations

David Vogan

Introduction

Lessons from finite
fields

Lessons from
p-adic fields

Repns over R, C

GK dimension and
characters

Other real
reductive groups

Character expansions for real groups

G(R) real reductive group, (ρ,H) irr rep
δ cptly supp test density on G(R) trace class op

ρ(δ) =

∫
G(R)

ρ(g)δ(g) ∈ End(H)

Map Θρ(δ) = tr ρ(δ) is generalized function on G(R).
Lift via exp to gen fn θρ on g(R) = Lie(G(R))

Theorem (Barbasch-V)
θρ has asymptotic expansion θρ,t ∼

∑∞
k=−d(ρ) tk Tk (ρ),

Tk (ρ) tempered gen fn homog of deg k.
Leading term T−d(ρ) is finite linear comb of Fourier
transforms of invt measures on nilp orbits in g(R)∗:

T−d(ρ) =
∑

dimO=2d(ρ) c(ρ,O)Ô.
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(Third) moral of the real story

G(R) real reductive

irr rep ρ of G(R)
trace. . . support−−−−−−−−−→ non-neg integer comb

T−d(ρ) =
∑

dimO=2d(ρ) c(ρ,O)Ô.
of several nilpotent orbits of G(R) on g(R)∗

More to do. . .
Can (approx) describe ρ|K (R) with orbits O.
Relate unitarity of ρ to expansion; not understood.
Seek to compute constants c(ρ,O) using KL
calculation of character Θρ; not understood.
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