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In this paper we collect some facts about the topology on the space of irreducible unitary representations
of a real reductive group. The main goal is Theorem 10, which asserts that most of the “cohomological”
unitary representations for real reductive groups (see [VZ]) are isolated. Many of the intermediate results
can be extended to groups over any local field, but we will discuss these generalizations only in remarks.
The foundations of the topological theory of the unitary dual are actually more easily available in the non-
archimedean case, particularly in the work of Tadić [Tad1] and [Tad3]. In the archimedean case the best
results are due to Miličić, but unfortunately only part of this has been published in [Mil] and [Mil3].

Suppose then that G is a real reductive Lie group. Write Ĝ for the unitary dual of G. The Fell
topology on Ĝ is defined as follows. Suppose S ⊂ Ĝ. An irreducible unitary representation π belongs to
the closure of S if and only if every matrix coefficient (equivalently, a single non-zero matrix coefficient) of
π is the uniform limit on compact sets of matrix coefficients of elements of S. A convenient reference for
the definition is [Wal], section 14.7. Write Π(G) for the set of infinitesimal equivalence classes of irreducible

admissible representations of G. We regard Ĝ as a subset of Π(G). It is not difficult to impose on Π(G) a

topology making Ĝ a closed subspace, but we will have no need to do so. If for example G = A is a vector
group, then Â may be identified (topologically) with the real vector space ia∗0 of imaginary-valued linear
functionals on the Lie algebra a0 of A. Similarly, Π(A) may be identified with the complex vector space a∗

of all complex-valued linear functionals on a0. If G = K is compact, then K̂ = Π(K) is a discrete space.

The general situation combines the features of these extreme cases. The unitary dual Ĝ is more or less a
noncompact real polyhedron (some possible local pathologies are explained after Theorem 2), and Π(G) is

more or less a complexification of Ĝ.
It is convenient to impose on G the hypotheses of [Green], 0.1.2: essentially that G be a linear group

with abelian Cartan subgroups. These hypotheses are satisfied if G is the group of real points of a connected
reductive algebraic group defined over R. We fix a maximal compact subgroup K of G, with corresponding
Cartan involution θ. By Harish-Chandra’s subquotient theorem, K is a “large compact subgroup of G” in
the sense that a fixed irreducible representation τ of K occurs in irreducible unitary representations of G
with multiplicity bounded by a constant depending only on τ .

Definition 1. The Hecke algebra of G is the convolution algebra H(G) of compactly supported complex-
valued measures µ on G having the following properties.

a) The measure µ is a smooth multiple of Haar measure on G: µ = f(g)dg for some compactly supported
smooth function f .

b) The measure µ is left and right K-finite; that is, its left and right translates by K span a finite-
dimensional space. (It is equivalent to require this of the function f in (a).)

Suppose (π,Hπ) is an irreducible admissible Hilbert space representation of G and µ ∈ H(G). Define

π(µ) =

∫

G

π(g)dµ(g),

an operator on Hπ. As a consequence of (b), the operator π(µ) is zero on all but finitely many of the
K-isotypic subspaces of Hπ. In particular, it is of finite rank, and therefore certainly of trace class. The
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character of π is the linear functional Θπ ∈ H(G)∗ defined by

Θπ(µ) = tr(π(µ)).

Every continuous function f on G defines an element of H(G)∗ (by sending µ to
∫

G
fdµ). We therefore

refer to elements of H(G)∗ as “generalized functions.” This is a slight abuse of terminology: a generalized
function usually means a continuous linear functional on the larger space of all test densities on G (in
which H(G) is dense). Harish-Chandra showed that characters of irreducible admissible representations are
actually generalized functions in this stronger sense, but we will not make explicit use of this fact.

It is not hard to see that the map from π to Θπ defines an embedding of the unitary dual Ĝ in H(G)∗.

The point of [Mil] is to describe the topology on Ĝ in terms of this embedding. We can give H(G)∗ the
topology of weak convergence: a sequence Θj ∈ H(G)∗ converges to Θ if and only if Θj(µ) converges to Θ(µ)

for every µ ∈ H(G). Now points in Ĝ are closed, and the closure of any subset of Ĝ is the set of all limits of
convergent sequences in the subset. The following theorem therefore provides the desired description of the
topology on Ĝ in terms of characters.

Theorem 2 ([Mil]). Suppose {πn} is a sequence of irreducible unitary representations of G. Assume
that the sequence of characters Θπn

∈ H(G)∗ converges to a non-zero element Θ ∈ H(G)∗. Then

a) The generalized function Θ is a finite sum of characters of irreducible unitary representations. That is,

there are a non-empty finite set S ⊂ Ĝ, and positive integers {nσ|σ ∈ S}, so that

Θ =
∑

σ∈S

nσΘσ.

b) The sequence {πn} is convergent in Ĝ, and S is precisely the set of all its limit points.

Conversely, suppose {πn} has a limit σ0 ∈ Ĝ. Then there is a subsequence {πnj
} with the property that

Θπnj
∈ H(G)∗ converges to a non-zero element Θ ∈ H(G)∗. In this case Θ must be a sum as in (a), and σ0

must belong to S.

The theorem does not directly and completely characterize convergence in Ĝ in terms of characters, but
it provides enough information to describe the topology. Two examples will illustrate what is happening.
Consider G = SL(2, R), and let σ0 be the trivial representation. Let πn be the complementary series
representation ρ(t) with parameter t = 1 − 1/n (say for n ≥ 2). Here we think of the complementary series
as parametrized by the open interval (0, 1). The characters of these representations converge to the character
of a reducible limit representation ρ(1). The character of this limit representation is the sum of the character
of the trivial representation and two discrete series representations D±:

Θρ(1) = Θσ0
+ ΘD+ + ΘD− .

The set S in the theorem therefore consists of three representations, and these are the limits of the sequence.
For a second example, we modify the sequence {πn} by replacing half its terms by σ0. This modified

sequence still converges to σ0; but the sequence of characters no longer converges. Rather, it has two limit
points: Θρ(1), and the character of the trivial representation.

For a more complete discussion of Miličić’ results, we refer to section 1 of [Tad2].

Theorem 3 Suppose σ is an irreducible unitary representation of G, and that σ is not an isolated
point in the unitary dual of G. Let {πn} be a sequence of irreducible unitary representations distinct from
σ but converging to σ. Then there are a subsequence {πnj

}; a parabolic subgroup P = MN of G; an
irreducible admissible representation ρ of M ; and a sequence of one-dimensional characters {χj} of M , with
the following properties.

a) The characters {χj} converge to the trivial character of M .

b) The induced representation IndG
P (ρ ⊗ χj) is infinitesimally equivalent to πnj

.

c) The representation σ is a composition factor of IndG
P (ρ).
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Under these circumstances, the characters Θπnj
converge to the character Θ of the admissible representation

π = IndG
P (ρ). The collection of limit points of the subsequence {πnj

} is therefore the set of composition
factors of π.

This result is almost certainly true exactly as formulated here for reductive groups over any local field.
Proof. Write Z(g) for the center of the universal enveloping algebra of the Lie algebra of G. For z ∈ Z(g),

write σ(z) for the scalar by which z acts on the smooth vectors of σ. By [BD], the sequence πn(z) converges
to σ(z) in C.

Write Pm = MmAmNm for a Langlands decomposition of a minimal parabolic subgroup of G. By Harish-
Chandra’s subquotient theorem, we can find δn ∈ M̂m and νn ∈ Π(A) ' a∗m so that πn is a subquotient of
the principal series representation IndG

Pm
(δn ⊗ νn). Now it is easy to calculate the infinitesimal characters

of the principal series representations in terms of (the highest weight of) δn and νn. From the convergence
of infinitesimal characters explained in the preceding paragraph, we deduce first that there are only finitely
many different δn, and second that the sequence νn is bounded in a∗m. After passing to a subsequence,
we may therefore assume that δn = δ, and that νn converges to ν0 ∈ a∗m. Because each principal series
representation has only finitely many composition factors, we may also assume that νn 6= ν0 for every n.

To go further, we need to understand the reducibility of the induced representations I(ν) = IndG
Pm

(δ⊗ν).
Write ∆m = ∆(g, am) ⊂ a∗m for the set of restricted roots of am in g. For each α ∈ ∆m, let Mα be the
reductive subgroup of G generated by MmAm and the root subgroups for multiples of α. We are interested
in the reducibility of the principal series representation Iα(ν) = IndMα

Pm∩Mα
(δ ⊗ ν). Because the kernel of α

in Am is central in Mα, this reducibility occurs along a discrete set of hyperplanes parallel to the kernel of
α∨ in a∗m. Define the reducibility set for α by

R(α) = {z ∈ C|Iα(ν) is reducible whenever 〈α∨, ν〉 = z}.

(Of course this set depends on δ.) It is a discrete set of rational numbers. We will also need

R(α)+ = R(α) ∪ {0}.

It follows from the Langlands classification that if there is no root α ∈ ∆m with the property that 〈α∨, ν〉 ∈
R(α)+, then I(ν) is irreducible (see [SV], Theorem 3.14). We need a variant of this result.

Lemma 4. In the setting above, there is for every α ∈ ∆m a discrete set R(α)++ of rational numbers
(depending on δ), with the following property. Let P = MN be a parabolic subgroup of G with MmAm ⊂ M .
Suppose that every root α ∈ ∆m with the property that 〈α∨, ν〉 ∈ R(α)++ is actually a root of am in m.
Then induction from P to G carries every irreducible composition factor of IndM

Pm∩M (δ⊗ν) to an irreducible
representation of G.

This is a straightforward consequence of the arguments in [SV], particularly Theorem 1.1 and section 3.
Probably it suffices to take R(α)++ = R(α)+, but this would require a more careful analysis of intertwining
operators. In any case we omit the argument.

After passing to a subsequence, we may assume that each restricted root α satisfies exactly one of the
following conditions: either

〈α∨, νn〉 /∈ R(α)++

for all n, or
〈α∨, νn〉 = rα ∈ R(α)++

for all n. We call such roots good and bad respectively. Let ∆m(m) be the set of all restricted roots in
the rational span of the bad roots. These roots are the restricted root system of a Levi subgroup M of G
containing MmAm; choose a corresponding parabolic subgroup P = MN of G. By the construction of M ,
we have

〈β∨, νn〉 = 〈β∨, ν〉 = rβ

for every root β of am in m. It follows that νn − ν extends from Am uniquely to a one-dimensional character
χn of M trivial on Mm. Since {νn} converges to ν, the characters χn converge to the trivial character of M .
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List the composition factors of IM (ν) = IndM
Pm∩M (δ ⊗ ν) as {ρ1, . . . , ρp}. Then I(νn) has the same

composition factors as IndG
P (IM (ν) ⊗ χn). By Lemma 4, these are IndG

P (ρi ⊗ χn). So one of these must be
πn. After passing to a subsequence and relabelling the ρi, we may assume that

πn = IndG
P (ρ1 ⊗ χn)

for all n. It is easy to check that the characters of these representations converge to the character of IndG
P (ρ1).

Now all the assertions of Theorem 3 follow from Theorem 2. Q.E.D.

Theorem 5. Suppose P = MN is a parabolic subgroup of G, ρ is an irreducible admissible represen-
tation of M , and σ and σ′ are distinct irreducible composition factors of IndG

P (ρ). Then there is a sequence
{σ0, . . . , σn} of irreducible composition factors of IndG

P (ρ), with the following properties.

a) The first representation σ0 is equal to σ, and the last σn is equal to σ′.
b) For i between 1 and n, there is a non-split extension of σi by σi−1.

To understand this result, one should bear in mind that the relation on irreducible admissible represen-
tations “there exists a non-split extension of V by W” is symmetric ([IC1], Lemma 3.18). The theorem would
therefore be clear if IndG

P (ρ) were indecomposable, but in general it may have direct summands (for example
when a unitarily induced representation is reducible). Again the result should extend without change to
groups over other local fields.

This theorem is a routine consequence of a ring-theoretic result of B. J. Müller ([Mu], Theorem 7; I
am grateful to J. T. Stafford for providing this reference.) Once the necessary reduction arguments have
been sketched, however, it is a simple matter to include a version of Müller’s argument (kindly provided by
M. Artin).

Proof. Choose a one-dimensional group of characters {χν |ν ∈ C} of M with the property that π(ν) =
IndG

P (ρ ⊗ χν) is irreducible for small non-zero ν. (Such a line exists because of Lemma 4.) All of these
representations (or rather the underlying (g, K) modules) may be realized on a single space V , with a
single action of K. For any X ∈ g, the linear transformations π(ν)(X) depend in an affine way on ν:
π(ν)(X) = π0(X) + νπ1(X). The entire family of representations may therefore be described using a single
algebra homomorphism

π : U(g) → End(V ) ⊗ C[x];

π(ν) is obtained by composition with the evaluation homomorphism

e(ν) : End(V ) ⊗ C[x] → End(V )

that replaces x by the complex number ν.
If M is any module for C[x], then End(V ) ⊗ C[x] acts on

VM = V ⊗C M

in an obvious way. Composing with π makes VM into a U(g)-module. If we make K act by acting trivially on
M , then VM becomes a (g, K)-module. This defines an exact functor from C[x]-modules to (g, K)-modules.
(In fact VM is also a C[x]-module, and this action commutes with the (g, K)-module action.) For example, if
Cν is the one-dimensional C[x]-module on which x acts by ν, then VCν

is isomorphic to π(ν). We are trying
to prove the existence of certain extensions of (g, K)-modules; they will appear as subquotients of certain
VM .

Suppose now that the theorem is false. Decompose the set S of irreducible composition factors of π(0) as
a disjoint union of non-empty subsets S1 and S2, in such a way that no representation σ1 ∈ S1 has a non-split
extension with any representation σ2 in S2. For each non-negative integer n, consider the (g, K)-module

V(n) = V ⊗ (C[x]/xn
C[x]).

This is an iterated self-extension of π(0), so it has finite length, and all its composition factors belong to S.
It therefore has a canonical decomposition

V(n) = V 1
(n) ⊕ V 2

(n),
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with all the irreducible composition factors of V i
(n) belonging to Si. Because they are canonical, these

decompositions are compatible with the C[x] action and with the quotient maps V(n) → V(m) (for m ≤ n).
Consequently they pass to the inverse limit and define a decomposition

VC[[x]] = V 1
C[[x]] ⊕ V 2

C[[x]].

as C[[x]]-modules and (g, K)-modules. Finally, write Q for the quotient field of C[[x]]. Tensoring with Q
gives a decomposition

VQ = V 1
Q ⊕ V 2

Q.

We want this decomposition to contradict the generic irreduciblity of the family π(ν).
Fix ν0 ∈ C so that π(ν0) is irreducible. Choose a finite set F of representations of K with the property

that every irreducible composition factor of π(0) contains a K-type from F (as is possible since there are
only finitely many composition factors), and let P (F ) be the K-invariant projection of V on the F -isotypic
subspace V (F ). Choose a basis {v1, . . . , vN} of V (F ). Suppose for simplicity that G is connected, so that
U(g) acts irreducibly on π(ν0). (In general one can use instead an appropriate Hecke algebra built from
U(g) and operators from K.) By the Jacobson density theorem, we can find for each i and j an element
uij ∈ U(g) with the property that

π(ν0)(uij)ej = ei, π(ν0)(uij)ej′ = 0 (j′ 6= j).

That is, P (F )π(ν0)P (F ) is the matrix unit Eij . Define polynomials pij,kl ∈ C[x] so that

P (F )π(uij)P (F ) =
∑

k,l

pij,klEkl.

The determinant of the N2 by N2 matrix (pij,kl) is a polynomial δ ∈ C[x]. The value δ(ν0) is 1, so δ is
not the zero polynomial. Consequently δ is invertible in the quotient field Q of the formal power series
ring. It follows that the Q-span of the operators P (F )π(uij)P (F ) is all of End(VQ(F )). This contradicts
the decomposition of VQ obtained above, and completes the proof. Q.E.D.

One can give a parallel argument using matrix coefficients of the representations π(ν); for fixed elements
of V , the matrix coefficients are holomorphic in ν, and appropriate terms in their power series expansions
at zero will generate the extensions we need (under the left action of G on functions).

Theorem 6. Suppose V and V ′ are distinct irreducible admissible representations of G, and that there
is a non-split extension E of V ′ by V :

0 → V → E → V ′ → 0.

Assume that the lambda norm of (the lowest K-type of) V is less than or equal to the lambda norm of V ′

([Green], Definition 5.4.1):
‖V ‖lambda ≤ ‖V ′‖lambda.

Let I be the standard representation containing V ([Green], Theorem 6.5.12). Then either

a) the inclusion of V in I extends to an embedding of E in I; or
b) V ′ is also a Langlands subrepresentation of I.

Proof. Let µ be a lambda-lowest K-type of V . The hypothesis guarantees that µ is also a lambda-lowest
K-type of the extension E. The construction in Theorem 6.5.12 of [Green] of a non-trivial map from V into
I therefore applies equally well to E, and we get a non-zero map j from E to I. If j is an embedding,
then (a) holds and we are done. If not, then (because the extension is not split) the kernel of j must be V .
Consequently j is an embedding of V ′ in I, and (b) holds. Q.E.D.

Theorem 6 does not make sense for groups over other local fields, because of the hypothesis on lambda
norms (which are defined only over R). It may be reformulated in terms of the Langlands classification as
follows. Suppose V is the Langlands subrepresentation of an induced representation IndG

P (ρ), with P = MN
a parabolic subgroup and ρ a tempered (modulo center) representation of M . Write A for the maximal
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split torus in the center of M , and X∗(A) for its lattice of rational one-parameter subgroups. Write a∗0 =
HomZ(X∗(A), R) for the dual of its real Lie algebra. This real vector space carries a natural positive definite
inner product (arising for example from a fixed representation of G as a matrix group). The group A acts in
ρ by a complex-valued character; the absolute value of this character corresponds to an element ν(V ) ∈ a∗0.
We define

‖V ‖Langlands = ‖ν(V )‖.

This definition makes perfect sense for representations of groups over local fields. In the real case, we have

‖V ‖2
lambda + ‖V ‖2

Langlands = ‖Re γ‖2,

where γ is any weight defining the infinitesimal character ([Green], proof of Lemma 6.6.6). In the setting of
Theorem 6, the representations V and V ′ must have the same infinitesimal character, so we deduce that

‖V ‖2
lambda + ‖V ‖2

Langlands = ‖V ′‖2
lambda + ‖V ′‖2

Langlands.

The hypothesis on lambda norms in the theorem is therefore equivalent to

‖V ′‖Langlands ≤ ‖V ‖Langlands.

Formulated in this way, the result makes sense for groups over any local field, and is probably true. To prove
it, one needs to control the asymptotic expansions of matrix coefficients of an extension like E in terms of
those of V and V ′.

Theorem 7 ([Unit], Theorems 1.2 and 1.3). Let q = l + u be a θ-stable parabolic subalgebra of g. Fix a
Cartan subalgebra h ⊂ l, and a weight λ ∈ h∗. Assume that

Re〈α, λ〉 > 0, all α ∈ ∆(u, h).

Write ρ(u) ∈ h∗ for half the sum of the roots of h in u, and M(l, L∩K)λ−ρ(u) for the category of (l, L∩K)-

modules of generalized infinitesimal character λ − ρ(u). Finally, write R = Rdim u∩k
q for the Zuckerman

cohomological induction functor from M(l, L ∩ K)λ−ρ(u) to M(g, K)λ.
Then the functor R is an exact equivalence of categories onto its image, which is a full subcategory of

M(g, K)λ. It carries irreducible representations to irreducible representations; standard representations to
standard representations; unitary representations to unitary representations; and non-unitary representations
to non-unitary representations. The inverse functor is Hr(u, ·)λ−ρ(u), with r = dim u ∩ p and the subscript
indicating the direct summand of infinitesimal character λ − ρ(u).

For our purposes the interest in this theorem arises from the following connection with “cohomological”
unitary representations.

Theorem 8 ([VZ]). Suppose π is an irreducible unitary (g, K)-module and H∗(g, K, π ⊗ F ) 6= 0 for
some finite-dimensional (g, K)-module F . Then there are a q and λ as in Theorem 7, and a one-dimensional
unitary module πL in M(l, L ∩ K)λ−ρ(u), so that π ' R(πL). We may choose q so that the group L has no
compact (non-abelian) simple factors; in that case q and πL are uniquely determined up to conjugation by
K.

Theorem 8 shows how to construct any cohomological unitary representation from a unitary character.
We are interested in the question of when such a representation is isolated in the unitary dual. It is therefore
natural to begin by examining that question in the special case of unitary characters.

Theorem 9 (see [Mar], Theorem III.5.6). Suppose π is a one-dimensional unitary character of G.
Assume that G has the following properties.
1) The center of G is compact.
2) The group G has no simple factors locally isomorphic to SO(n, 1)(n ≥ 2) or SU(n, 1)(n ≥ 1).

Then π is isolated in the unitary dual of G.
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This result is due mostly to Kazhdan and to Kostant (see [K] and [Ko], page 642). It is relatively easy
to see that conditions (1) and (2) are necessary for Z to be isolated. We will give the argument in the more
general context of our main result, to which we now turn.

Theorem 10. Suppose we are in the setting of Theorem 7, and that πL is a one-dimensional unitary
module in M(l, L ∩ K)λ−ρ(u). Fix a θ-stable Cartan subalgebra h for l as in Theorem 7, and define

∆+(g, h) = {α ∈ ∆(g, h)|Re〈α, λ〉 > 0},

a set of positive roots for h in g. Write ρ = ρ(g) for half the sum of the roots in ∆+, and Π = Π(g) for
the simple roots for h in g. Suppose that λ satisfies the following strengthening of the positivity hypothesis
in Theorem 7:

Re〈α, λ − ρ〉 ≥ 0, all α ∈ ∆+.

Assume that the pair (G, q) has the following properties.

0) The group L has no compact (non-abelian) simple factors.
1) The center of L is compact. (This is automatic if rkG = rk K.)
2) The group L has no simple factors locally isomorphic to SO(n, 1)(n ≥ 2) or SU(n, 1)(n ≥ 1).
3) For every noncompact imaginary root β ∈ Π that is orthogonal to the roots in Π(l), we have

〈β∨, λ〉 6= 1.

Then the representation π = R(πL) is isolated in the unitary dual of G.

The strengthened positivity hypothesis on λ is automatic for cohomological representations (Theorem
8), when λ − ρ is the highest weight of the finite-dimensional representation F . When rkG = rkK it is
a consequence of the linearity assumption on G (and the weaker positivity in Theorem 7). For the (non-
linear) double cover of SL(2, R), the first discrete series representation can be written as R(πL), with all
the hypotheses of Theorem 10 satisfied except the strengthened positivity; but this representation is not
isolated. I do not know whether there are similar examples for linear groups.

Conditions (1) to (3) are easily seen to be necessary for π to be isolated. If (1) fails, then L has
unitary characters converging to the trivial character, and πL may be deformed by tensor product with
these; applying R gives a unitary deformation of π. If (2) fails, then πL is a limit of unitary complementary
series representations from the SO(n, 1) or SU(n, 1) factor of L, and again we may apply R to write π as
a limit point. If (3) fails, consider the θ-stable parabolic q′ = l′ + u′ corresponding to Π(l) ∪ {β}. The
Levi subgroup L′ is locally isomorphic to L × SL(2, R) up to center. The cohomological induction functor
R factors as R′ ◦ R′′, the inner factor going from L to L′ and the outer from L′ to G. By calculation in
SL(2, R), πL′

= R′′(πL) is the first discrete series of SL(2, R) (tensored with a one-dimensional character
on the rest of L′). Consequently πL′

is a limit of unitary complementary series for L′, and we can apply R′

to write π as a limit point.
We also note that condition (1) could be written as “L has no simple factors locally isomorphic to

SO(1, 1),” and so subsumed in (2). As the preceding paragraph indicates, however, it is natural to distinguish
(1) and (2); they correspond to slightly different local structure in the unitary dual of G.

Before beginning the proof of Theorem 10, we make a few remarks on the strategy. If R(πL) is not
isolated in the unitary dual, then it must be a limit point of a sequence {πj} of unitary representations.
The easiest possibility is that these representations are themselves constructed by Theorem 7 from unitary
representations of L. In that case we will show that the unitary character πL is a limit point of a sequence
of unitary representations of L, and apply Theorem 9 to deduce that (1) or (2) must fail. For this we need
a criterion for identifying the image of the functor R; it is provided by the theory of lowest K-types.

The difficult possibility is that the representations {πj} are not themselves in the image of R. In this
case the lowest K-type criterion mentioned above implies that {πj} has several limit points. Theorems 3 and
5 then provide a non-split extension of π by another unitary representation τ . This situation is controlled not
so much by π (and its realization as R(πL)) but by τ . We therefore need to realize τ using Theorem 7 (and a
different θ-stable parabolic subalgebra). Unfortunately it is far from true that every unitary representation
has such a realization; we must use special information about τ .
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Suppose for example that π is a “cohomological” representation as in Theorem 8; in other words, that
Extg,K(F ∗, π) is non-zero for some finite-dimensional F . The existence of the non-split extension of π by τ
means that Ext1g,K(π, τ) 6= 0. The natural “multiplicative” structure

Extp(A, B) ⊗ Extq(B, C) → Extp+q(A, C)

then suggests that Extg,K(F ∗, τ) should be non-zero — that is, that τ should also be “cohomological.”
Theorem 8 would then provide the realization of τ that we want. Unfortunately, these multiplication maps
are often zero; it does not seem easy to prove directly that τ is cohomological. When rkG = rkK, one
can give a short but very deep proof using the Kazhdan-Lusztig conjectures. When G is complex or G =
SL(n, R), Enright and Speh respectively characterized cohomological unitary representations in terms of
infinitesimal character alone, so τ is cohomological in these cases as well. These three special cases cover
most interesting examples; but of course we would like a general argument (covering also the possibility that
π is not cohomological).

For that purpose, we imitate the proof of Theorem 8. From the non-vanishing of Ext1g,K(π, τ) we deduce
some crude information about the restriction of τ to K. (This is analogous to the fact that a cohomological
representation must contain some K-types in F ∗⊗

∧
p.) Applying Parthasarathy’s Dirac operator inequality

as in [Kum] and [VZ], we can sharpen this information. Finally a lowest K-type criterion identifies τ as
Rq′(τL′

) in the setting of Theorem 7 (with τL′

a unitary character) as we wished to show.
To complete the proof of Theorem 10, we realize the extension of π by τ as Rq′ applied to a similar

extension of some unitary representation πL′

by the unitary character τL′

. It follows that πL′

has non-
vanishing relative cohomology in degree one, and is therefore of a very special kind. (Such representations
exist essentially only for SU(n, 1) and SO(n, 1).) This tells us something about π = Rq′(πL′

), and ultimately
contradicts condition (2) or (3) of Theorem 10.

Proof of Theorem 10. Suppose that condition (0) holds, but that π is not isolated in the unitary dual of
G. We must show that one of the conditions (1), (2), or (3) must fail. Choose P = MN , ρ, and {χj} as in

Theorem 3. We consider three cases: first, that IndG
P (ρ) is irreducible; second, that IndG

P (ρ) is reducible, but
that π contains a lambda-lowest K-type of the induced representation; and third, that π does not contain
a lambda-lowest K-type of the induced representation. We will show (roughly) that each of these cases
corresponds to the failure of the corresponding hypothesis in the theorem.

Suppose first that IndG
P (ρ) is irreducible. At least for large j the characters χj must be trivial on M ∩K;

for such j the induced representation πj = IndG
P (ρ ⊗ χj) must satisfy

πj |K ' π|K .

In particular, πj and π share the same lambda-lowest K-types. In order to take advantage of this, we need
a long digression involving the classification theorem in [Green], which we now recall.

Theorem 11 (see [Green], section 6.5). Suppose µ is an irreducible representation of K. Write Π(G)(µ)
for the set of equivalence classes of irreducible (g, K)-modules containing µ as a lambda-lowest K-type.
Attached to µ is a pair (q1, µ

L1) (the “classification data”) consisting of a θ-stable parabolic subalgebra q1 =
l1 +u1 and an irreducible representation µL1 of L1∩K, having the following properties. Put s1 = dim u1∩ k.
Suppose πL1 is an irreducible (l1, L1 ∩ K)-module containing the L1 ∩ K-type µL1 .

a) The representation µL1 is a lambda-lowest L1 ∩ K-type; so it has multiplicity one, and πL1 belongs to
Π(L1)(µ

L1).
b) The representation µ has multiplicity one in Rs1

q1
(πL1), and is a lambda-lowest K-type. Consequently

Rs1
q1

(πL1) has a unique irreducible composition factor Jq1
(πL1) in Π(G)(µ).

c) The correspondence Jq1
of (b) defines a bijection

Π(L1)(µ
L1) → Π(G)(µ).

Suppose that q = l + u is another θ-stable parabolic subalgebra containing q1. Then there is a unique
irreducible representation µL of L ∩ K with the property that (q1 ∩ l, µL1) is the set of classification data
attached to L and µL. Put s = dim(u ∩ k), s0 = dim(u1 ∩ l ∩ k). Suppose πL ∈ Π(L)(µL).
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d) The cohomological induction functor Rs1
q1

is naturally equivalent to the composite Rs
q ◦ Rs0

q1∩l.

e) The representation µ has multiplicity one in Rs
q(π

L), and is a lambda-lowest K-type. Consequently

Rs
q(π

L) has a unique irreducible composition factor Jq(π
L) in Π(G)(µ).

f) The correspondence Jq of (e) defines the top row in a commutative diagram

Π(L)(µL)
Jq

−→ Π(G)(µ)
Jq1∩l ↖ ↗ Jq1

Π(L1)(µ
L1)

in which all maps are bijections. (The other two arrows arise from (b) applied to (L, µL) and to (G, µ).)

The main classification theorem in [Green] includes essentially parts (a)–(c) of this theorem. The
remainder is a consequence of induction by stages (see [Green], Proposition 6.3.6; one needs also Proposition
6.3.21 to control the spectral sequence). In order to apply this result in our setting, we need to know that
the functor of Theorem 7 is a special case of the correspondence in (e) of Theorem 11. This is the content
of the following lemma.

Lemma 12. In the setting of Theorem 7, suppose πL is an irreducible (l, L∩K)-module of infinitesimal
character λ − ρ(u), and µL is a lambda-lowest L ∩ K-type of πL. Write (q0, µ

L1) for a set of classification
data for µL (Theorem 11), with q0 = l1 + u0. Define q1 = q0 + u, a θ-stable parabolic subalgebra of g. Then
there is a lambda-lowest K-type µ of R(πL) for which (q1, µ

L1) is a set of classification data.

Proof. Choose a maximal torus T c
0 in L ∩ K, and write Hc = T cAc for the Cartan decomposition of

its centralizer in L. This is a fundamental Cartan subgroup of L and of G. Fix also a set of positive roots
for tc in l ∩ k. We may then speak of the highest weights of a representation of L ∩ K; these are characters
of T c. By abuse of notation, we also write µL ∈ (tc)∗ for the differential of a highest weight of µL. The
proof of Theorem 11 ([Green], Proposition 5.3.3) attaches to µL another weight λL

1 ∈ (tc)∗. The parabolic
subalgebra q0 in the classification data may be chosen to contain hc, and is then defined by

∆(u0, h
c) = {α ∈ ∆(l, hc)|〈α, λL

1 〉 > 0}

([Green], Definition 5.3.22). The construction of λL
1 provides also a set {βi} of orthogonal imaginary roots

of hc in l1. A fundamental property of this set is that the infinitesimal character of any representation of L
of lowest L ∩ K-type µL is represented by a weight of the form

(λL
1 +

∑
νiβi, ν) ∈ (tc)∗ × (ac)∗

([Green], Corollary 5.4.10). After replacing the Cartan subalgebra and weight in Theorem 7 by conjugates
(under Ad(l)), we may therefore assume that

h = hc, λ = (λL
1 +

∑
νiβi, ν) + ρ(u).

Write θL for the automorphism of hc defined by

θL = θ ·
∏

i

sβi
.

This is an automorphism of order two (since the βi are orthogonal and imaginary) preserving the roots of
hc in u (since θ does, and the other factor belongs to the Weyl group of l). In particular, θL fixes ρ(u). The
action of θL on λ may now be computed explicitly. It fixes λL

1 (since θ does, and the roots βi are orthogonal
to λL

1 ). It acts by −1 on
∑

νiβi (since θ acts by +1 because the βi are imaginary). It acts by −1 on ν
(because θ does, and the βi are orthogonal to ν). Therefore

θL

(
(λL

1 +
∑

νiβi, ν) + ρ(u)
)

= (λL
1 −

∑
νiβi,−ν) + ρ(u).
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If α is any root of hc in u, it follows from the positivity hypothesis in Theorem 7 that

0 < 〈α + θLα, λ〉

= 〈α, λ + θLλ〉

= 2〈α, λL
1 + ρ(u)〉

by the calculation of θL in the preceding paragraph. This inequality includes the main hypothesis of Lemma
6.3.23 of [Green]. The conclusion of that lemma is that there is an irreducible representation µ of K of
highest weight µL +2ρ(u∩p). (The ρ-shift is by the representation of L∩K on the top exterior power of the
−1 eigenspace of θ on u.) That µ is a lambda-lowest K-type of R(πL) is [Unitariz], Proposition 6.16. That
(q1, µ

L1) is a set of classification data for µ (more precisely, that λL
1 + ρ(u) is the weight associated to µ by

Proposition 5.3.3 of [Green]) follows as in Lemma 6.5.4 of [Green] from the positivity property of λL
1 + ρ(u)

established above. Q.E.D.

We return now to the proof of Theorem 10. Assume that we are in one of the first two cases, so that
µ is a lowest K-type of π and of (all but finitely many of) the induced representations πj . Write µL for
the restriction of πL to L ∩ K (which is automatically a lambda-lowest L ∩ K-type of πL). Construct q0

and q1 as in Lemma 12. Theorem 11(e) now applies, and provides unique representations πL
j in Π(L)(µL)

with the property that πj is the unique irreducible subquotient of R(πL
j ) containing µ. Let us parametrize

representations using “regular characters” of Cartan subgroups (see for example section 6.6 of [Green]).
These parameters may be separated into a “discrete” part (essentially a character of a compact part of a
Cartan subgroup) and a “continuous” part (a character of the vector part). Because the representations
πL

j share the lambda-lowest L ∩ K-type µL, the parameters may be taken on the same Cartan subgroup
H = TA of L, with a common discrete part. As in Theorem 3, the convergence of infinitesimal characters
guarantees that the sequence of continuous parameters νj of πL

j is bounded. After passing to a subsequence,

we may therefore assume that the νj converge to some ν0; write πL
0 for the corresponding representation of

L.

The parameters for the representations πj may be computed from those for πL
j (cf. [Green], Proposition

8.2.15). They are all associated to the same Cartan subgroup H , with a common discrete part, and continuous
part νj . The continuous part of the parameter for the limit representation π is therefore ν0. (This is very
plausible, but not quite trivial to prove. One way to see it is to interpret the Langlands classification in terms
of global characters. Roughly speaking, the classification says that a certain term involving exp(νj) appears
in the character of πj . Because the character of a parabolically induced representation depends continuously

on that of the inducing representation, it follows that exp(ν0) appears in the character of IndG
P (ρ). Such a

large exponential can come only from the character of a Langlands subquotient of the induced representation;
so exp(ν0) appears in the character of π. Now it follows that ν0 is the continuous part of the parameter for
π. We omit the details.)

Now that we know its parameters in the classification, Proposition 8.2.15 of [Green] allows us to conclude
that π corresponds under the bijection of Theorem 11(e) to the representation πL

0 . Consequently πL
0 = πL.

The positivity hypothesis in Theorem 7 on the infinitesimal character of πL is open, and so is satisfied by all
but finitely many of the πL

j . After passage to a subsequence, we may assume it is satisfied by all of them.

Now Theorem 7 guarantees that all of the representations πL
j are unitary; so πL is not isolated in the unitary

dual of L. Theorem 9 therefore says that either condition (1) or condition (2) of Theorem 10 must fail, as
we wished to show. (One can be a little more precise. Section 6 of [Unitariz] shows that the restriction
to K of πj is determined precisely by the restriction to L ∩ K of πL

j . If π = IndG
P (ρ), it follows that all

the πL
j are one-dimensional, and therefore that the center of L is noncompact. If π is a proper subquotient

of IndG
P (ρ), it follows that the πL

j are not one-dimensional, and therefore that the trivial character of L is
a limit of infinite-dimensional irreducible unitary representations. In this case L must have simple factors
locally isomorphic to SU(n, 1) or SO(n, 1).)

Finally, suppose that π does not contain a lambda-lowest K-type of IndG
P (ρ). We may as well assume

that the center of L is compact (since what we are trying to do is establish that either (1), (2), or (3)
of Theorem 10 fails). Theorem 5 provides a distinct irreducible composition factor τ of IndG

P (ρ) with the
property that there is a non-split extension E of π by τ . Let us assume that the lambda-norm of π is greater
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than or equal to that of τ . (The other case is similar but much easier; it leads quickly to the conclusion that
condition (2) of Theorem 10 fails.) The main difficulty is establishing

Lemma 13. Suppose we are in the setting of Theorem 10; that λ satisfies the strengthened positivity
hypothesis there; and that L has compact center. Assume that π = R(πL) admits a non-split extension by a
unitary representation τ . Then we can find q′, λ′ as in Theorem 7 and a one-dimensional unitary character
τL′

in M(l′, L′ ∩ K)λ′−ρ(u′) so that τ = R′(τL′

).

We also need

Lemma 14. Suppose that q, λ and q′, λ′ satisfy the hypotheses of Theorem 7, that πL is a one-
dimensional unitary module in M(l, L ∩ K)λ−ρ(u), and that πL′

is a one-dimensional unitary module in
M(l′, L′ ∩ K)λ′−ρ(u′). Assume that

0) The groups L and L′ have no compact (non-abelian) simple factors.
1) The representations Rq(π

L) and Rq′(πL′

) are equivalent.

Then the pairs (q, πL) and (q′, πL′

) are conjugate by K.

We postpone the proofs of these lemmas for a moment, and continue with the argument for Theorem
10. Fix q′ and τL′

as in Lemma 13. Write IL′

for the standard representation of L′ containing τL′

. Theorem
7 says that the standard representation containing τ is I = R′(IL′

). By Theorem 6, the existence of the
extension E implies that π is also a subquotient of I. Now Theorem 7 allows us to write π = R′(πL′

), with
πL′

an irreducible unitary representation of L′. The extension E is the image of a non-split extension EL′

of πL′

by τL′

. Recall that τL′

is a one-dimensional character. The extension EL′

represents a non-trivial
class in the 1-cohomology of L′ with coefficients in πL′

⊗ (τL′

)∗. Non-vanishing 1-cohomology for unitary
representations is quite rare; in fact it can happen in only two ways (see [BW], Theorem V.6.1). One
possibility is that L′ has noncompact center, and that πL′

= τL′

. In this case L is equal to L′, so it fails to
satisfy condition (1) of Theorem 10. The more interesting possibility is that L′ has a simple factor of type
SO(n, 1) (n ≥ 2) or SU(n, 1) (n ≥ 1), and that πL′

is an infinite-dimensional representation differing from
τL′

only on this simple factor.
Applying Theorem 8 to πL′

, we find q′′0 (a θ-stable parabolic in the SO or SU factor, added to all
the other simple factors of l′) and a one-dimensional unitary character πL′′

so that πL′

' Rs0

q′′

0

(πL′′

). The

non-vanishing of the first cohomology means that the part of L′′ in the SO or SU factor of L′ must be
SO(n− 2, 1)×SO(2) or S(U(n− 1, 1)×U(1)) respectively. Applying R′ to this provides another realization
of π from a unitary character in the setting of Theorem 7, this time with Levi subgroup L′′. By Lemma
14, L is conjugate to L′′ by K. (Here the assumption that L has no compact factors is finally used.) The
description just given of L′′ shows that L fails to satisfy condition (2) of Theorem 10, unless n = 2 or 3 in
the SO case, or n = 1 in the SU case. If n = 3 in the SO case, then L has a simple factor of type SO(1, 1),
and so has noncompact center (in violation of condition (1) of Theorem 10).

Since SO(2, 1) and SU(1, 1) are both locally isomorphic to SL(2, R), we are left with the possibility that
L′ has a simple factor locally isomorphic to SL(2, R), and that L′′ ' L is obtained from L′ by replacing that
factor by its compact torus. This factor of L′ corresponds to a noncompact imaginary root β ∈ Π orthogonal
to the roots in Π(l). Since τL′

is a one-dimensional character, its infinitesimal character must take the value
±1 on a coroot for the SL(2, R) factor. Therefore 〈β∨, λ〉 = 1, in violation of condition (3) of Theorem 10.
This completes the proof of the theorem.

Proof of Lemma 13. The assumption on τ means that

Ext1g,K(Rs
q(π

L), τ) 6= 0.

By Lemma 3.18 of [IC1], we may interchange the arguments of Ext. The Ext group is then the limit of a
spectral sequence with E2 term

Extp
l,L∩K(Hr−q(u, τ), πL)

([Green], Corollary 6.3.4; here r = dim u∩p). Since the limit is non-zero in degree 1, there are two possibilities:
either

Ext1l,L∩K(Hr(u, τ), πL) 6= 0, (15)(a)
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or
Homl,L∩K(Hr−1(u, τ), πL) 6= 0. (15)(b)

(Actually we need also to know that the spectral sequence is first quadrant. This fact becomes clear in the
course of the proof of Theorem 7; we will not stop here to give the argument.)

In case (a), write τL = Hr(u, τ)λ−ρ(u), a non-zero representation of L. (Recall that the subscript
indicates the direct summand of the cohomology on which Z(l) acts by the infinitesimal character λ− ρ(u).)
Theorem 7 says that τ is isomorphic to Rs

q(τ
L), and therefore that τL is irreducible and unitary (since τ is).

The hypothesis (15)(a) says that τL is “cohomological” (recall that πL is a unitary character). By Theorem
8, we can find a θ-stable parabolic q′0 = l′ + u′0 ⊂ l and so on, and a one-dimensional unitary character τL′

,

so that τL = R
s′

0

q′

0

(τL′

). Set q′ = q′0 + u, a θ-stable parabolic subalgebra in g. By induction by stages, we get

τ = Rs
q(R

s′

0

q′

0

(τL′

)) = Rs′

q′(τL′

),

as we wished to show; the positivity condition on the weight λ′ is also easy to verify. (In the application to
Theorem 10, case (a) corresponds to the easy case that the lambda-norm of τ exceeds that of π.)

Suppose then that (15)(b) holds. Choose T c and Hc = T cAc as in the proof of Lemma 12. We may
assume that the weight λ of Theorem 7 belongs to (hc)∗. Now πL is one-dimensional and has infinitesimal
character λ − ρ(u). It follows that the differential of πL is

dπL = λ − ρ. (16)(a)

Consequently the restriction of λ to hc∩[l, l] must be equal to the half sum ρ(l) of ∆+(l, hc). After replacing λ
by an Ad(l) conjugate, we may assume that ∆+(l, hc) is preserved by θ. Because of the positivity hypothesis
on λ in Theorem 7, the positive system ∆+ defined in Theorem 10 is

∆+(g, hc) = ∆+(l, hc) ∪ ∆+(u, hc). (16)(b)

This is preserved by θ, so
ρ|ac = ρ(l)|ac = 0. (16)(c)

Since L is assumed to have compact center, dπL must also vanish on ac, so (16)(a) gives

λ|ac = 0. (16)(d)

After restriction to T c, these roots include a positive system

∆+(k, tc) = ∆+(l ∩ k, tc) ∪ ∆+(u ∩ k, tc).

We may therefore speak of highest weights of representations of K or L ∩ K. Write ρc for half the sum of
the roots in ∆+(k, tc), and ρn = ρ − ρc.

These definitions allow us to formulate Parthasarathy’s Dirac operator inequality. Here is the statement.

Lemma 17 ([P], (2.26); [BW], Lemma II.6.11; or [VZ], Lemma 4.2). Suppose ∆+(g, hc) is a θ-stable
system of positive roots for the fundamental Cartan subgroup Hc = T cAc of G; define ∆+(k, tc), ρc, and ρn

as above. Suppose τ is an irreducible unitary representation of G, and µ ∈ (tc)∗ is an extremal weight of
a representation of K occurring in π. Let w be an element of the Weyl group of K with the property that
µ − ρn is dominant for w∆+(k, tc). Finally let c0 denote the eigenvalue of the Casimir operator of G in τ .
Then

‖µ − ρn + wρc‖
2 ≥ c0 + ‖ρ‖2.

Generally one requires not only that µ be an extremal weight, but also that it be dominant for ∆(k, tc). But
replacing µ by the conjugate dominant weight can only decrease the left side of the inequality we want ([VZ],
Lemma 4.3); so this version of the inequality follows.
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The representation πL contains a unique representation πL∩K of L∩K, of highest weight dπL = λ− ρ.
(Equations (16)(c) and (d) allow us to regard λ and ρ as weights in (tc)∗.) Equation (15)(b) says that this
representation of L∩K must appear in Hr−1(u, τ). A Hochschild-Serre spectral sequence ([Green], Theorem
5.2.2) then produces an irreducible representation τK of K appearing in τ , and non-negative integers x and
y with the properties that πL∩K occurs in

∧r−x(u ∩ p) ⊗ Hy(u ∩ k, τK),

and that x − y = 1. We can analyze this condition as in the proof of Proposition 5.4.2 in [Green]. The
conclusion is that there are

—a highest weight µ′ of τK ;
—x distinct weights {β1, . . . , βx} of T c in u ∩ p;
—an element σ ∈ W 1

k of length y;

with the property that

σ(µ′ + ρc) − ρc − 2ρ(u ∩ p) +
∑

βi = λ − ρ. (18)(a)

Here W 1
k is Kostant’s cross section for the cosets of the Weyl group Wl∩k (of tc in l∩ k) in Wk, and the right

side is just the differential of the weight πL∩K . (It is at this point that the hypothesis that L has compact
center is used: it guarantees that λ vanishes on ac. In the general case we would have to put λ|tc in (18)(a).
In the Dirac operator inequality ((18)(d) below) it would still be λ appearing on the right, and we would no
longer be able to draw strong conclusions from the inequality.) We want to apply Lemma 17 to τ and the
extremal weight σµ′. For this purpose we define an element w ∈ Wk by the requirement that

w∆+(k, tc) = {α ∈ ∆(k, tc)|〈α, σµ′ − ρn〉 < 0} ∪ {α ∈ −∆+(k, tc)|〈α, σµ′ − ρn〉 = 0}.

From (18)(a) we calculate

σµ′ − ρn + wρc = (λ − ρ) + ρ −
∑

βi − 2ρn(l) + (wρc − σρc). (18)(b)

The last term in parentheses is minus the sum of the roots {αj} of tc in k that are positive for σ∆+(k, tc)
but negative for w∆+(k, tc). It is an easy consequence of the definition of w that these roots must all belong
to ∆+(k, tc). Therefore

σµ′ − ρn + wρc = (λ − ρ) + ρ − [
∑

βi + 2ρn(l) +
∑

αj ]. (18)(c)

The last term in brackets is a sum of distinct positive roots of tc in g.
Now the eigenvalue of the Casimir operator for G in π (and therefore also in τ , by the assumed existence

of the extension of π by τ) is
c0 = 〈λ, λ〉 − 〈ρ, ρ〉.

Lemma 17 and (18)(c) therefore imply that

‖(λ − ρ) + ρ − [
∑

βi + 2ρn(l) +
∑

αj ]‖
2 ≥ ‖λ‖2. (18)(d)

This inequality can be analyzed as in [VZ], proof of Lemma 4.5. One sees that the left side is actually
less than or equal to the right, with equality only if there is an element w′ ∈ W (g, h) with the following
properties:

—w′ commutes with θ;
—w′ fixes λ − ρ; and
—w′ρ = ρ − [

∑
βi + 2ρn(l) +

∑
αj ].

The third condition is equivalent to

{γ ∈ ∆+|γ /∈ w′∆+} = {βi} ∪ ∆+(l ∩ p, tc) ∪ {αj}, (19)(a)
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as well as to the two equations

w′ρc = ρc −
∑

αj , w′ρn = ρn −
∑

βi − 2ρn(l). (19)(b)

We can rewrite (18)(c) as
σµ′ − ρn + wρc = (λ − ρ) + w′ρc + w′ρn. (19)(c)

The left side here is dominant and regular for w∆+(k, tc), and the right side for w′∆+(k, tc). These two
positive systems therefore coincide: wρc = w′ρc. Combining this with the first equation in (19)(b) and the
formula wρc = σρc −

∑
αj used earlier, we find that σρc = ρc. Therefore σ = 1. Now (19)(c) can be written

as
µ′ = (λ − ρ) + ρn + w′ρn. (19)(d)

(We could also conclude for example that x = 1, so that {βi} consists of a single root β1. I do not see how to
use this to simplify the rest of the argument, however.) This is precisely the hypothesis for Proposition 5.16
of [VZ] (which is a mild generalization of Kumaresan’s second main result in [Kum]). That result provides
the θ-stable parabolic q′ required by Lemma 13. The rest of Lemma 13 follows from Proposition 6.1 in [VZ].
Q.E.D.

Proof of Lemma 14. We need to show how to recover q and πL (up to conjugation by K) from π =
Rq(π

L). One way to do this is using the classification of representations by characters of Cartan subgroups
([Green], Definition 6.6.1). We will first describe how to extract the Cartan subgroup and character from q

and πL. Let H = TA be a maximally split Cartan subgroup of L, with L = (L ∩ K)ANL a corresponding
Iwasawa decomposition. Write ρ(NL) ∈ a∗ for half the sum of the restricted roots with multiplicities. Let
ML be the centralizer of A in L ∩ K, and write ρ(ML) ∈ t∗ for half the sum of a set ∆+(mL, t) of positive
roots of t in mL. Let ∆+(l, h) be the “Iwasawa positive system” containing ∆+(mL, t) and compatible with
NL. The corresponding half sum of positive roots is

ρ(l) = (ρ(ML), ρ(NL)) ∈ t∗ × a∗. (20)(a)

After replacing the Cartan subalgebra of Theorem 10 by an Ad(l)-conjugate, we may assume that it is the
one just described. Similarly, we may assume that the positive system ∆+ of Theorem 10 contains the
Iwasawa positive system just chosen. Therefore

ρ = (ρ(u) + ρ(ML), ρ(NL)) ∈ t∗ × a∗. (20)(b)

As in (16), we conclude that the differential of πL is λ − ρ. As the differential of a unitary character, this
satisfies

(λ − ρ)|a ∈ ia∗0, (20)(c)

which has purely imaginary inner product with any root. With this notation, the representation π is attached
to the Cartan subgroup H , and to a character with differential λ. (This is implicit in Theorem 11 above,
and explicit in [VZ], Theorem 6.16.) In particular,

λ|a = (λ − ρ)|a + ρ(NL). (20)(d)

Since the data of the classification are determined up to conjugation by K, we must show how to reverse
this calculation to recover q and πL from H and the character with differential λ. Now q must contain the
“classification parabolic” q1 of Theorem 11, and this is just the parabolic defined by λ|t:

∆(q1, h) = {α ∈ ∆(g, h)|〈α, λ|t〉 ≥ 0}. (21)(a)

([Green], Proposition 6.6.2). The classification also provides a representation πL1 of L1 corresponding to
π (Theorem 11). So we only have to recover the Levi subalgebra l; πL will be the representation of L
corresponding to πL1 (Theorem 11 again).

We claim next that

∆(nL, h) = {α ∈ ∆(g, h)|Re〈α, λ〉 and Re〈θα, λ〉 have opposite signs}. (21)(b)

14



To see this, notice first that the positivity hypothesis on λ in Theorem 7 guarantees that the roots on the
right must all be roots in l. Such a root is orthogonal to λ − ρ and to ρ(u); so the set on the right is

{α ∈ ∆(l, h)|〈α, ρ(l)〉 and 〈α, θρ(l)〉 have opposite signs}.

This in turn is equal to ∆+(l) ∩ (−θ∆+(l), which is obviously ∆(nL, h).
We have shown how to recover the roots ∆(nL, h) from the classification data. Because l has no compact

simple factors, its root system is spanned by ∆(nL, h). That is,

∆(l, h) = Z∆(nL, h) ∩ ∆(g, h). (21)(c)

As we remarked earlier, q is generated by the classification parabolic q1 and l:

∆(q, h) = ∆(q1, h) ∪ ∆(l, h). (21)(d)

This completes the proof of Lemma 14. Q.E.D.
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