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Gelfand’s abstract harmonic analysis
Lie group G acts on manifold X , have questions about X .

Step 1. Attach to X Hilbert space H(X ) (e.g. L2(X )).
Questions about X  questions about H(X ).

Step 2. Find finest G-invt decomp H = ⊕αHα. Questions
about H(X ) questions about each Hα.

Each Hα is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.

Step 3. Understand Ĝu = all irreducible unitary
representations of G: unitary dual problem.

Step 4. Answers about irr reps answers about X .

Today: technical problems in Steps 1 and 3. . .

Say Question! eigenfns of G-invt diff op ∆X .

Problem with Step 1: eigenfunctions not in L2(X ).

Problem with Step 3: try Hα =def eigenspace of ∆X .
But no Hilbert space structure.
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How to address these problems

Problems arise because eigenspace

Vλ = {f ∈ C−∞(X ) | ∆X f = λf}

is inconveniently large.
For example, can’t complete Vλ to Hilbert space without
imposing addl growth conditions on f .

Solution: consider instead dual space

Vλ = C∞c (X )/(∆X − λ)C∞c (X ).

Wasn’t that easy?
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One concrete example
G = U(p,q) group of Herm form 〈, 〉p,q on Cn.

Y n = Y = {complete flags in Cn}
(
dimC(Y n) = (n

2)
)

= {0 = E0 ⊂ E1 ⊂ · · · ⊂ En = Cn | dim Ei = i}
Open orbits of U(p,q) on Y ↔

{(pi ,qi ) | pi + qi = i , pi incr,qi incr} ↔
{S ⊂ {1,2, . . . ,n} | |S| = p}

XS = open orbit corr to S ⊂ {1, . . . ,n}.
Complex mfld XS has cplx K = U(p)× U(q) orbit
ZS = {(Ei ) ∈ XS | Ei = (Ei ∩ Cp)⊕ (Ei ∩ Cq)} ' Y p × Y q .

Orbit method: L → XS
?
 unitary reps of G.

Problem. Cpt cplx ZS ⊂ XS =⇒ XS not Stein; not
enough holom secs of L.
Soln: Dolbeault cohom H0,s(XS,L), s = dimC(ZS).
Problem. Dolbeault cohom too big for invt Herm form.
Soln: see below, we hope.
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Classical Fourier analysis
G = R acts on R by translation, H = L2(R), ∆X = d

dt .
Eigenspace representation

Vλ = {T ∈ C−∞(R) | dT
dt

= λT}

Of course Vλ is one-diml, basis eλt ; never in L2(R).
Consider instead dual space

Vλ = C∞c (R)/

{
dφ
dt
− λφ | φ ∈ C∞c (R)

}
.

Subspace by which we divide is equal to{
ψ ∈ C∞c (R) |

∫
R
ψ(t)etλ dt = 0

}
,

so closed; so topology on Vλ Hausdorff.
First advantage: have trivially quotient map

(̂λ) : C∞c (R)→ Vλ, φ 7→ φ̂(λ) :

this is Fourier trans at λ on dense C∞c ⊂ L2.
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Unitary structure

Vλ = C∞c (R)/

{
dφ
dt
− λφ | φ ∈ C∞c (R)

}
(pre)Unitary structure is R-invt Hermitian form

〈, 〉λ : Vλ × Vλ → C.

Schwartz kernel theorem: such pairing (lifted to
C∞c × C∞c ) given by distn kernel

Kλ ∈ C−∞(R× R), 〈φ, ψ〉λ =

∫
R×R

Kλ(s, t)φ(s)ψ(t).

Form descends to Vλ ⇐⇒ ∂Kλ
∂s = λK , ∂Kλ

∂t = λK .
Soln is Kλ(s, t) = Ceλseλt ds dt , but we don’t care.

Form transl invt ⇐⇒ Kλ(s + x , t + x) = Kλ(s, t).
Transl invt compatible with diff eqn ⇐⇒ λ+ λ = 0;
then it’s consequence of diff eqn.
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Plancherel theorem

Vλ = C∞c (R)/

{
dφ
dt
− λφ | φ ∈ C∞c (R)

}
(λ ∈ C)

Fourier transform (̂λ) : C∞c (R)→ Vλ.
If λ ∈ iR there’s invt Herm form 〈, 〉λ on Vλ;
normalize kernel to be ds dt near identity.
Plancherel theorem:∫

R
|φ(t)|2 dt = c

∫
iR
〈φ̂(λ), φ̂(λ)〉dλ.
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Laplacian on H2

X = {z ∈ C | |z|2 < 1}, ds2 = (1− |z|2)−2(dx2 + dy2)

unit disk model of two-diml hyperbolic space.

G = SU(1,1) =

{(
α β

β α

)
| |α|2 − |β|2 = 1

}
⊂ SL(2,C)

acts on X by linear fractional transformations:

g · z =
αz + β

βz + α

(
z ∈ X , g =

(
α β

β α

)
∈ G

)
.

Laplace-Beltrami operator commutes with action of G:

∆X = (1− |z|2)2
(
∂2

∂x2 +
∂2

∂y2

)
(z = x + iy ∈ X )

Long tradition of studying eigenspaces

Vλ = {T ∈ C−∞(X ) | (∆X − λ)T = 0} (λ ∈ C).

E.g. V0 = harm fns on X . Always Vλ = repn of G.
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Traditional boundary values

Alg homog space X = G/H  proj alg X = X ∪ ∂X .
(noncpt analysis on X ) (easier cpt analyis on X ).

Our X '

{
lines

0B@z
1

1CA | |z|2 − 1 < 0

}
compactifies to

X '

{
lines

0B@z
1

1CA | |z|2 − 1 ≤ 0

}
, ∂X '

{0B@eiθ

1

1CA
}

.

Idea of bdry value map: eigenfn φ(z) ∈ Vλ on X  

φ∞(eiθ) = lim
r→1

cλ(r)φ(reiθ).

Problem: limit is terrible (hyperfunction); certainly
doesn’t exist pointwise, except under strong addl
hyps on eigenfn φ.
Eigenspace too big.
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Traditional harmonic analysis. . .

Describe eigenspaces like V0 = harmonic fns on disk

Poisson kernel P0(z,eiθ) = 1−|z|2
|z−eiθ|2 writes harmonic

φ(z) in terms of bdry value φ∞(θ):

φ(z) =

∫ 2π

0
P0(z,eiθ)φ∞(θ) dθ.

Reason: P0(·,eiθ) is harmonic with bdry value δeiθ .

Fourier analysis (using radially symm eigenfn φλ)

f̂ (λ,hK ) =

∫
X

f (gK )φλ(g−1h) d(gK ) ∈ Vλ

extracts from nice f on X its “λ-eigenvalue part.”
Fourier synthesis reassembles (using Plancherel
measure dµ(λ)):

f (gK ) =

∫
some λ

f̂ (λ,gK )dµ(λ).
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Casting out eigenspaces
Replace eigenspace Vλ by (smaller!) dual space

Vλ = C∞c (X ,dx)/(∆X − λ)C∞c (X ,dx).

1st gain: Fourier analysis is trivial:
φ̂(λ, ·) = φ+ (∆X − λ)C∞c (X ,dx) (φ ∈ C∞c (X ,dx)).

2nd gain: Vλ has G-invt sesq form. Reason. . .
Any sesq pairing lifts to C∞c (X ,dx)× C∞c (X ,dx);
comes from Schwartz distribution kernel:

〈φ, ψ〉λ =

∫
(s,t)∈X×X

Kλ(s, t)φ(s)ψ(t).

Condition for pairing to descend to Vλ:

(∆X (s)− λ)Kλ(s, t) = 0, (∆X (t)− λ)Kλ(s, t) = 0.

Cond for G-invariance of pairing: Kλ(g · s,g · t) = Kλ(s, t).

THM. Vλ has invt sesq form iff λ = λ; normalize
K λ(gK ,hK ) = φλ(g−1h) by K λ(0,0) = 1.
Again φλ is unique radial eigenfn with φλ(0) = 1.
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Holomorphic line bundles on X
Isotropy at 0 for g · z = αz+β

βz+α
action on unit disk is

K =

„
α 0
0 α

«
| |α|2 = 1

ff
⊂ G =

„
α β

β α

«
| |α|2 − |β|2 = 1

ff
.

So X = {z ∈ C | |z|2 < 1} ' G/K .
For n ∈ Z, eqvt line bundle
Ln → X , C∞(X ,Ln) ' {f ∈ C∞(G) | f (gk) = α−nf (g)}.

Right action of complexified Lie algebra element

E =

(
0 1
0 0

)
defines Cauchy-Riemann operator

∂ : C∞(X ,Ln)→ C∞(X ,Ln+2).

Get rep of G on holomorphic sections of Ln

Wn = {T ∈ C−∞(X ,Ln) | ∂T = 0}.
Wn  discrete spectrum of Laplacian on Ln+2k .
For that, need (pre)Hilbert space structure on Wn. . .
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Traditional holomorphic discrete series
X '

{
lines C

0BB@z
1

1CCA
}
⊂ CP1, Ln(z) =

[
C

0BB@z
1

1CCA
]⊗n

.

Ln has nowhere zero holom sec τn(z) =
0B@z
1

1CA
⊗n

.

So holom secs of Ln = (holom fns)·τn: Wn 'W0 · τn.

(g · τn)(z) =def g · (τn(g−1 · z))

= g ·
0BBB@
γz−δ
−δz+γ

1

1CCCA
⊗n

(g =

0BB@γ δ

δ γ

1CCA)

= (−δz + γ)−n · g ·
0BB@ γz − δ
−δz + γ

1CCA
⊗n

= (−δz + γ)−n ·
0BB@z
1

1CCA
⊗n

= (−δz + γ)−n · τn(z).

Wn 'W0 · τn  (rep on Wn) ' (multiplier rep on W0):

(g ·n f )(z) = (−δz + γ)−nf (g−1 · z) (f holom on X ).
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Unitary structure on Wn

Seeking unitary representation of G related to Wn.

G-invt Herm str on Ln,
∥∥∥∥0BB@z

1

1CCA
⊗n∥∥∥∥2

= (1− |z|2)n.

Unitary structure on Wn (?):

‖τ‖2 ?
=

∫
X
‖τ(z)‖2 dz dz

(1− |z|2)2 (τ ∈Wn).

Using Wn 'W0 · τn, rewrite as

‖f τn‖2 ?
=

∫
X
|f (z)|2(1− |z|2)n−2 dz dz (f holomorphic).

Polar coords 
∫ 1

0 (1− r)n−2 dr .

Problem: if n ≤ 1, converges only for f = 0.
Problem: never converges for all f .
Solution: (Hermitian) DUAL SPACE. . .

W n = C∞c (X ,Ln)/∂(C∞c (X ,Ln+2)).

Denominator is densities vanishing on hol secs of Ln; ∃
lots because of Cauchy integral formula, etc.
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Unitary structure on W n

W n = C∞c (X ,Ln)/∂(C∞c (X ,Ln+2)).

Sesq pairing on W n ! Schwartz distn kernel
K n(s, t) ∈ C−∞(X × X ,L−n × Ln)

〈φ, ψ〉n =

∫
X×X

K n(s, t)φ(s)ψ(t) ds dt .

Pairing ↓W n ⇐⇒ K n antiholom in s, holom in t .
Pairing G-invt ⇐⇒ K n(g · s,g · t) = K n(s, t).
 fn κ on G! hol sec of Ln on right and left.
Unique soln corrs to nowhere zero sec τn:

κn
(
α β

β α

)
= α−n

THM. W n has invt sesq form; K n(gK ,hK ) = τn(g−1k).
Form is pos def if n > 0; semidef if n ≥ 0.
Unitary rep W n  disc spec of Ln → X ⇐⇒ n > 1.
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Where can you go from here?
G reductive Lie ⊃ L = GT , cpt torus T .
X = G/L cplx mfld; Cauchy-Riemann eqns!

u = pos eigspaces of T ⊂ gC.

Holom bdle E → X ! smooth rep E of L.
Traditional rep of G: Dolbeault cohom of E :

WE = H0,p(X , E) = Hp(u,C−∞(G,E)L)

Often unitary E for L “ought-to-be-unitary” WE .
Problem: WE too big to carry invt sesq form.
Solution: (Hermitian) DUAL SPACE. . .

W Eh
= Hn,n−p

cpt (X , Eh) = Hp(u,C∞c (G,Eh)L)

Easy: unitary E  invt Herm form on W E . OPEN:
Geometric proof of UNITARITY of W E .

FOURIER TRANSFORM: C∞c (G/H)
?→W E .

HARMONIC ANALYSIS: e.g., W E ?
↪→ L2(G))
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