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1. Introduction without formulas

This book is about a wonderfully successful example of (if you will forgive some
geometric language) circular reasoning. Here is the short version. Everywhere in
mathematics, we find geometric objects M (like manifolds) that are too complicated
for us to understand. One way to make progress is to introduce a vector space V
of functions on M . The space V may be infinite-dimensional, but linear algebra is
such a powerful tool that we can still say more about the function space V than
about the original geometric space M . (With a liberal interpretation of “vector
space of functions,” one can include things like the de Rham cohomology of M in
this class of ideas.)

Often M comes equipped with a group G of symmetries, but G and M may
be even less comprehensible together than separately. Nevertheless, G will act on
our function space V by change of variables (giving linear transformations), and
so we get a representation of G on V . Our original (and impossible) problem of
understanding all actions of G on geometric spaces M is therefore at least related
to the problem of understanding all representations of G. Because this is a problem
about vector spaces, it sounds a bit less daunting.

The goal of the orbit method is to say something about all representations of a
Lie group G. What it says is that an irreducible representation should correspond
(roughly) to a symplectic manifold X with an action of G. So the circle is complete:
we understand geometric objects with group actions in terms of representations, and
we understand representations in terms of geometric objects with group actions.

That’s the end of the short version. Both the angel and the devil are in the
details, so a longer version is called for. As an eternal optimist, I will begin with
the angel. The geometric object at the end of the circle is a homogeneous symplectic
manifold for G, with a little additional structure called in this book a Poisson G-

manifold. (Kostant’s original terminology Hamiltonian G-space from [Ko] is also
widely used.) Every homogeneous Poisson G-manifold is a covering of an orbit
of the group G on the dual vector space g∗ of its Lie algebra. The conclusion is
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that an irreducible representation of G (something interesting but difficult) should
correspond to an orbit of G on g∗ (something simple). This conclusion is the orbit
method.

Here is an example. Suppose G = GL(n, C), the group of invertible n×n matrices
with complex entries. The dual of the Lie algebra of G may be identified with the
vector space of all n× n matrices, where G acts by conjugation. The orbit method
therefore says that irreducible representations of G should correspond to conjugacy
classes of matrices: something that we teach undergraduates to parametrize, using
Jordan canonical form.

So how is it that Jordan understood conjugacy classes of matrices in 1870, but
that the last irreducible unitary representations of GL(n, C) were found by Stein [St]
only in 1967? With this question the devil enters the story. The difficulty is with
the word “should” in the phrase “a representation should correspond to an orbit.”
In mathematics we expect such a correspondence to arise from a construction: a
procedure to begin with an orbit and produce a representation, or perhaps to go
in the other direction, or (preferably) both. For the orbit method, such procedures
exist only for special groups, or for special orbits in more general groups. Even
when we have a list of orbits, we don’t immediately or in general have a list of
“corresponding” representations.

A second problem is that representations do not correspond precisely to coadjoint
orbits. In the case of GL(n, C), the representations attached to orbits were found by
Bargmann, Gelfand and Naimark, and others in the 1940s and 1950s, using methods
developed by Mackey, Bruhat, and others ([B], [GN1], [GN2]). (This statement is
historically misleading, since the idea of the orbit method appeared only in the
1960s.) These same authors found also the first examples of representations not

attached to orbits: the “complementary series” representations of SL(2). What
Stein accomplished in his 1967 paper was to find the last of the representations not
attached to orbits.

This seems to leave the orbit method as a kind of damaged treasure map, offering
cryptic hints about where to find some (but certainly not all) of the representations
we seek to understand. Why should we continue to consult it? First, parts of the
map are perfect: for some groups (notably simply connected nilpotent Lie groups)
there is a perfect bijection between orbits and irreducible unitary representations,
given by explicit constructions and relating simple geometric properties to subtle
representation-theoretic ones.

Second, the damaged parts of the map are sometimes the least interesting. A
version of the Ramanujan conjecture says that any irreducible representation ap-
pearing in automorphic forms for GL(n) (real or complex this time) must corre-
spond to an orbit. (A kind of converse is implicit in the work of Langlands [La] in
the 1960s: that a dense subset of representations of GL(n) corresponding to orbits
actually appears in automorphic forms.) This means that (conjecturally) the orbit
method provides all the representations needed to study automorphic forms.

Third, the orbit method is the only map we have for representations of general
Lie groups. In the case of reductive groups, the Langlands philosophy (specifi-
cally, Arthur’s refinement of the local Langlands conjecture) suggests that unitary
representations should correspond to certain arithmetic objects. This alternative
treasure map is (like the orbit method) extraordinarily powerful and useful. But it
is more difficult to interpret than the orbit method, and it seems likely to lead in
the end to a slightly smaller set of unitary representations.
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I have so far addressed only the pragmatic question of whether the treasure map
leads to treasure, neglecting entirely the question of why such a map should exist.
Such neglect is natural in the real world, but for mathematicians it is strange.
Kirillov’s book devotes more than two hundred pages to explaining representations
and orbits separately; about a hundred and fifty to explaining how to read the
map between them; and just over three pages to explaining why the orbit method
ought to work. This is by no means an unreasonable distribution. If we actually
knew why the orbit method worked, then a mathematics book on the subject might
tell you only that, leaving the matter of examples and algorithms to the engineers.
Since we don’t know, the only option is to write about examples and algorithms.

So why does the orbit method work? Kirillov offers two answers. The one that
I find more convincing (probably because I understand it less) is due to Kostant
[Ko] and to Souriau [So], and goes something like this. Symplectic geometry is
a reasonable mathematical model for classical mechanics. The collection of all
possible positions and momenta of all particles in a classical mechanical system
(the phase space) is a symplectic manifold. Classical observables are functions
on the phase space. An orbit—that is, a homogeneous Poisson G-manifold—may
therefore be regarded as a classical mechanical system endowed with a group G of
symmetries.

Hilbert space is a reasonable mathematical model for quantum mechanics. The
collection of all (unnormalized) wave functions for a quantum mechanical system
is a Hilbert space. Quantum observables are self-adjoint operators on that space.
An irreducible representation may therefore be regarded as a quantum mechanical
system endowed with a group G of symmetries.

Even though classical and quantum mechanics are different, they can sometimes
be regarded as different descriptions of “the same” physical system. That is, for
each classical mechanical system there should be a corresponding quantum me-
chanical system. This assertion is something less than physics or mathematics, yet
it is not without content. At least sometimes, one can construct from a classical
system the “corresponding” quantum system. In the presence of a group action,
this construction—going from an orbit to an irreducible representation—is exactly
what the orbit method says should exist.

The history of the orbit method is colorful and complicated, and I am not the one
to sort it out properly. My own introduction to the subject came from Bert Kostant,
and that will shape almost everything that I say. Because this is a review of a book
by Kirillov, I will nevertheless try to use much of the language and viewpoint of
the book. I have little doubt that I am going to make some attributions that are
incomplete, incorrect, or even indefensible. For that I apologize. If you tell me
about mistakes, I will try to correct them electronically, and to make the same
mistakes less often in the future.

Finally, I am very grateful for help from Tony Knapp with the relationship of
Kirillov’s book to the work of Harish-Chandra.

2. Introduction with formulas

To be more precise about the orbit method, we need to be more precise about the
objects on each side of the correspondence. Representations are the complicated
side in practice, but their definition is not too complicated; so I will begin there.

Definition 2.1. Suppose G is a topological group. A unitary representation of G
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is a pair (π,Hπ) with Hπ a Hilbert space, and π a homomorphism from G to the
group of unitary operators on Hπ. We assume that the map

G ×Hπ → Hπ, (g, v) 7→ π(g)v

is continuous.
An invariant subspace for π is a closed subspace W ⊂ Hπ with the property that

π(g)W ⊂ W for all g ∈ G. The representation is said to be irreducible if there are
exactly two invariant subspaces (namely Hπ and 0).

It is helpful next to understand the special role of irreducible representations. If
W is an invariant subspace of a unitary representation, then its orthogonal comple-
ment W⊥ is an invariant subspace as well, and we get a Hilbert space direct sum
decomposition

Hπ = W ⊕ W⊥.

If Hπ is finite-dimensional, one can continue this process to get a decomposition
of π as a Hilbert space direct sum of irreducible unitary representations. It is not
very difficult to show that the collection of summands is uniquely determined (up
to isomorphism) by the original representation π. That is, every finite-dimensional
unitary representation can be written in just one way as a direct sum of irreducible
unitary representations.

Trying to make a parallel construction in the case of infinite-dimensional rep-
resentations leads to subtle limiting arguments. Many of the subtleties appear
already in the theory of the Fourier transform on the real line. One way to think
of that transform is as a decomposition of L2(R, dx) as a “continuous direct sum”
of the one-dimensional Hilbert spaces Cξ . The line Cξ has as orthonormal basis
the function fξ(x) = exp(ixξ); the difficulties arise because fξ does not belong to
L2(R, dx).

Theorem 2.2. Suppose G is a separable locally compact group, and π is a unitary

representation of G. Then π is equivalent to a direct integral of irreducible unitary

representations of G. If G is type I in the sense of von Neumann, then this direct

integral decomposition is unique up to equivalence.

I will not recall the definitions, except to say that L2(R, dx) is the direct integral
of the one-dimensional representations of R on the spaces Cξ . (Left translation of
fξ by x ∈ R multiplies fξ by the scalar exp(−ixξ).) Many Lie groups are type I,
including all real points of algebraic groups; but many solvable Lie groups are not
type I. It is one of the unexpected successes of the orbit method (first found by
Auslander and Kostant [AK] for simply connected solvable groups) that failure of
G to be type I is sometimes manifest in bad topological behavior of the orbits of G
on g∗.

Theorem 2.2 says that we can learn something about any unitary representa-
tion of G (including those on L2 function spaces on subtle geometric spaces) by
understanding irreducible unitary representations. I have not discussed in more
detail what “understanding” might mean, and doing so would not bring us much
closer to the orbit method. In the case of a Lie group G, one is often interested in
group-invariant systems of differential equations on a manifold where G acts. Such
systems can sometimes be analyzed using a direct integral decomposition from
Theorem 2.2. In this case one needs in the end to understand the action of the
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universal enveloping algebra (or some special elements there) in each irreducible
unitary representation of G.

We turn now to the orbit side of the orbit method. Although this is tradition-
ally framed in the language of symplectic geometry, what arises directly in the
orbit method is not the symplectic structure (a skew-symmetric bilinear form on
tangent vectors) but the Poisson bracket (a Lie algebra structure on functions). I
will therefore speak only about Poisson manifolds. These were introduced by Lie,
and studied in modern language by Hermann [He] and Lichnerowicz [Lz] (where
the name originates). There is an introduction to the deep connections between
symplectic and Poisson geometry in the beautiful article [We] of Weinstein.

Definition 2.3 (see [Ko, pages 176–177]). A Poisson manifold X is a smooth
manifold endowed with a Poisson bracket

{, }: C∞(X) × C∞(X) → C∞(X),

subject to the following conditions.
1. The Poisson bracket makes C∞(X) a Lie algebra. That is, it is bilinear,

skew-symmetric, and satisfies the Jacobi identity

{f, {g, h}} = {{f, g}, h}+ {g, {f, h}} (f, g, h ∈ C∞(X)).

2. For each f ∈ C∞(X), the endomorphism ξf of C∞(X) defined by

ξf · g = {f, g}

is a derivation:

{f, gh} = {f, g}h + g{f, h}.

We call ξf the Hamiltonian vector field of f. If we write Vect(X) for the Lie algebra
of smooth vector fields on X , then the Jacobi identity for the Poisson bracket says
that the map

C∞(X) → Vect(X), f 7→ ξf

is a Lie algebra homomorphism.

For the purposes of the orbit method, the most important example of a Poisson
manifold is the vector space dual of a Lie algebra g. Each element Z ∈ g defines
a smooth (linear) function fZ ∈ C∞(g∗). The Poisson bracket is characterized by
the requirement

(2.4) {fZ , fW } = f[Z,W ] (Z, W ∈ g).

Suppose that the Lie group G acts smoothly on the smooth manifold X . Differ-
entiating the group action gives a Lie algebra homomorphism from the Lie algebra
g of G to Vect(X),

g → Vect(X), Z 7→ ξZ .

Comparing this definition with Definition 2.3 suggests
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Definition 2.5. A Poisson G-manifold is a Poisson manifold X endowed with
1. a smooth action of G, preserving the Poisson bracket, and
2. a G-equivariant Lie algebra homomorphism

g → C∞(X), Z 7→ fZ ,

with the property that ξZ = ξfZ
(Definition 2.3 and (2.4)).

For any finite-dimensional vector space V and any manifold X , a linear map
from V to C∞(X) is exactly the same thing as a smooth map from X to V ∗. The
mapping Z 7→ fZ is therefore exactly the same thing as a smooth G-equivariant
map of Poisson manifolds

µX : X → g∗.

The map µX is called the moment map for the Poisson G-manifold X .

Using the moment map, it is easy to deduce a classification for homogeneous
Poisson G-manifolds. The result seems to be due independently to Kostant and to
Kirillov; it appears as Lemma 1.4.6 of the book under review.

Theorem 2.6 ([Ki2, 15.2], and [Ko, Theorem 5.4.1]). Suppose X is a homogeneous

Poisson G-manifold. Then the moment map µX of Definition 2.5 is a G-equivariant

covering map onto a single orbit of G on g∗.

Conversely, if X is any homogeneous space for G, and µ: X → g∗ is any G-

equivariant immersion, then X carries a unique structure of Poisson G-manifold

with moment map µ.

To repeat the main point: the orbit method suggests that (at least some) ho-
mogeneous Poisson G-manifolds should correspond to (at least some) irreducible
unitary representations of G. The next question is which orbits correspond to which
representations.

3. Which orbits count?

As quantum mechanics was being developed, a fundamental notion was the in-
tegrality of certain numerical invariants. This integrality was imposed at first by
hand, as a way to recover some behavior seen in experiments. In later formula-
tions the integrality appeared as discreteness of the spectrum of some Hilbert space
operators, and so imposed by nature (or at least by the mathematical model).

In Kirillov’s original application [Ki1] of the orbit method to a simply connected
nilpotent Lie group, it happens that no discrete spectra arise in unitary repre-
sentation theory. (This accident depends both on the simple connectivity and on
the nilpotence of the group.) Consequently all orbits (of G on g∗) correspond to
irreducible unitary representations.

As soon as one looks at more general Lie groups, operators with discrete spectrum
appear, and unitary representations correspond only to orbits satisfying some sort
of integrality condition. Making this integrality condition precise is a fundamental
task, required even to read the orbit method as a treasure map. There are two
schools of thought on how to do this, which I will label (to avoid the perils of
engaging in history) “geometric” and “metaplectic.” For nilpotent groups the two
schools agree. For almost all other classes of groups they do not. I will explain
roughly what the two methods say in a well-understood example, then say a few
words about general definitions. Kirillov’s book may be read as making the case



REVIEW OF “LECTURES ON THE ORBIT METHOD,” BY A. A. KIRILLOV 7

for the geometric school; I will conclude this section with a few words from the
metaplectic side.

Suppose that K is a compact connected Lie group with maximal torus T and
Weyl group W = W (K, T ) (a finite group acting by automorphisms on T ). Ele-
mentary structure theory for K provides a bijection

(3.1) orbits of K on k∗ ↔ orbits of W on t∗.

So the question is which W orbits on t∗ should correspond to irreducible repre-
sentations of K. (From here on I will make use of a choice of positive roots of
T in kC, but it will mostly remain in the background.) Every irreducible unitary
representation τ of K has a “highest weight,” which is a one-dimensional character

µ(τ) ∈ T̂ . The character µ(τ) is determined by its differential, which is a linear
map

(3.2)(a) dµ(τ): t → iR.

Dividing by 2πi, we get a linear functional

(3.2)(b) `(τ) =
dµ(τ)

2πi
∈ t∗.

The linear functional `(τ) may reasonably still be called the highest weight of τ .
Explicitly,

(3.2)(c) µ(τ)(exp Z) = exp(2πi`(τ)(Z)) (Z ∈ t).

The geometric school attaches to τ the orbit of `(τ). Geometrically “integral orbits”
correspond to those ` ∈ t∗ such that 2πi` exponentiates to a character of T . This
is a lattice in the vector space t∗.

On the other hand, every irreducible unitary representation τ of K is determined
by its character Θ(τ), which is a class function on K:

(3.3)(a) Θ(τ)(k) = tr τ(k).

A class function on K is determined by its restriction to T , which is a W -invariant
function on T . Hermann Weyl gave a formula on T for the function Θ(τ). Weyl’s
formula involves a “Weyl denominator” ∆ (which is independent of τ). The formula
involves a linear functional λ(τ) ∈ t∗, and looks like

(3.3)(b) Θ(τ)(exp(Z)) =

∑
w∈W sgn(w) exp(2πiw · λ(τ)(Z))

∆(exp(Z))
(Z ∈ t).

The metaplectic school attaches to τ the orbit of λ(τ). This differs from `(τ) by a
certain translation ρ that is independent of τ :

λ(τ) = `(τ) + ρ.

Here ρ is half the sum of the positive roots of T in kC (divided by 2πi, like everything
else). “Admissible orbits” in the metaplectic sense include all regular λ such that
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λ− ρ exponentiates to a character of T . (There are additional singular λ which are
also admissible in the metaplectic sense.)

This is a reasonable summary of the difference between the geometric and meta-
plectic approaches: whether a representation of a compact group should correspond
to its highest weight, or to an exponent in the Weyl character formula.

Here is how this idea is made precise for general Lie groups. In each case the idea
is that a representation should correspond to an orbit together with some additional
structure, and that this additional structure can exist only when the orbit has some
integrality property. Here is the geometric version as it appears in Kirillov’s book.
(One can find a beautiful justification for the term “geometric” in [Ko, Corollary 1
to Theorem 5.7.1].)

Definition 3.4 (see the book, page 123). Suppose G is a Lie group and F ∈ g∗.
Write GF ⊂ G for the stabilizer of F in the action on g∗, so that the orbit of F
may be identified with the homogeneous space G/GF . Write gF ⊂ g for the Lie
algebra of the stabilizer of F . It turns out that the restricted linear functional

F : gF → R

is automatically a one-dimensional Lie algebra representation. This Lie algebra rep-
resentation may or may not exponentiate to the identity component of the group
GF . A rigged momentum at F is by definition an irreducible unitary group repre-
sentation (φ,Hφ) of GF , with the property that

dφ(Z) = 2πiF (Z) · Iφ (Z ∈ gF ).

Here Iφ is the identity operator on Hφ. The existence of rigged momenta at F is an
integrality constraint on F , and their uniqueness is controlled by the disconnected-
ness of GF . A rigged coadjoint orbit is an orbit of G on rigged momenta.

The geometric version of the orbit method is that each rigged coadjoint orbit
should correspond to an irreducible unitary representation of G. This is exactly
correct for simply connected nilpotent groups (where all the groups GF are con-
nected and simply connected, so that a rigged coadjoint orbit is the same thing as
a coadjoint orbit). It is true for simply connected type I solvable groups, by the
results of Auslander and Kostant in [AK]. It is true for compact Lie groups (even
disconnected ones) by the Cartan-Weyl highest weight theory.

Here is the metaplectic version. I will not try to trace its history; in this form it
is due to Duflo.

Definition 3.5 (see for example [GV], Definition 6.2). Suppose G is a Lie group
and F ∈ g∗. The Poisson structure on the orbit of F defines a symplectic structure
ωF on the vector space TF = g/gF (the tangent space at F to the orbit). Write
Sp(TF ) for the group of linear transformations of TF preserving ωF . The adjoint
action defines a map

GF → Sp(TF ).

The symplectic group Sp(TF ) has a double cover (the metaplectic group)

1 → {1, ε} → Mp(TF ) → Sp(TF ) → 1,
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arising from the interpretation of Sp(TF ) as acting on the canonical commutation
relations (see [GV]). Pulling this covering back to GF gives

1 → {1, ε} → G̃F → GF → 1.

An admissible orbit datum at F is by definition an irreducible unitary group

representation (φ,Hφ) of G̃F , with the property that

dφ(Z) = 2πiF (Z) · Iφ (Z ∈ gF ), and φ(ε) = −Iφ.

The existence of admissible orbit data at F is a kind of “half-integrality” constraint
on F , and their uniqueness is controlled by the disconnectedness of GF .

The metaplectic version of the orbit method is that each admissible orbit datum
should correspond to an irreducible unitary representation of G. This is precisely
correct for simply connected nilpotent groups, where again there is a unique admis-
sible orbit datum on each orbit. It is true for compact Lie groups, even disconnected
ones, if one substitutes “irreducible or zero” for “irreducible”; but several different
admissible orbit data may correspond to the same representation. (For example,
the trivial representation corresponds both to the singular orbit {0} and to the reg-
ular orbit of ρ.) Duflo’s definition is designed to work better than rigged momenta
for solvable groups that are not simply connected, but I do not know whether the
“admissible data” version of [AK] holds in that generality.

For me there is compelling evidence for the metaplectic approach in the case
of an elliptic coadjoint orbit for a reductive group G (see for example [V, Lecture
3]). For such an orbit, there is a natural construction of a (possibly reducible)
unitary representation attached to each admissible orbit datum. Harish-Chandra’s
description of the discrete series may be interpreted to say that the discrete series
of G is parametrized by admissible orbit data on regular elliptic orbits.

Suppose we now consider the restriction of a discrete series representation to a
maximal compact subgroup K of G. On the level of representations this restriction
is computed by the Blattner conjecture, proved by Hecht and Schmid. On the level
of orbits there is a geometric prediction in Kirillov’s Rule 3 (from the introduction
to his book). In the language of admissible orbit data the representations and
the geometry correspond perfectly; indeed, Duflo, Heckman, and Vergne gave in
[DHV] a proof of Blattner’s conjecture based on the orbit geometry and Kirillov’s
“universal character formula.”

The notions of admissible and rigged orbit are quite different for elliptic orbits.
I believe it is a straightforward exercise to make examples (based on the Blattner
formula) showing that Kirillov’s prediction of restriction to K—Rule 3 of the in-
troduction to the book under review—cannot be realized for discrete series using
rigged elliptic orbits.

4. Kirillov’s book

Kirillov’s book seeks to introduce young mathematicians to the orbit method. It
is aimed at beginning graduate students in the US. Two hundred pages of appen-
dices recall or introduce the notions of smooth manifold, Lie group, category, and
much more. There are hundreds of examples, well chosen to illustrate the ideas.
The orbit method itself is introduced slowly and carefully: first on nilpotent groups,
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(where it works perfectly); then on solvable groups (where the difficulties are care-
fully explained in the simplest possible examples); and then on compact groups.
Readers already familiar with (say) representation theory for compact groups will
have an easier time, but those who are not will find all the explanations they need.
The philosophical underpinnings of this text are perfect: this is the way everyone
should try to write graduate texts.

But . . . I have a serious problem with the way the text was refereed and edited.
A fundamental characteristic of mathematics is that it can make statements that
are exactly and completely correct. This is a wonderful tool for learning a subject:
if you find the smallest formal inconsistency between two things that the text seems
to say, then you know that you have missed something. You can read theorems
about differential operators in a functional analysis text, and know that they apply
to the differential operators you use for representation theory.

You can do all of that if the book is carefully put together. This book is not.
The results about representations and coadjoint orbits are mostly true, but the
more general mathematical statements from which they are derived are often false.
One example is on page 225, where it is asserted that H0(X, Z) = π0(X) for any
topological space X . For anyone who has taken an algebraic topology course, this
is easy to fix; but the formula is given exactly for readers who have not taken such a
course. A more serious example appears in Proposition 2 on page 229. This asserts
that if G acts smoothly on a manifold M , and all orbits are of the same dimension,
then M/G is a manifold. This is false: a dull example is the action of Z/2Z on
the circle by turning it over, but there are more subtle ones (with G connected, for
example).

Since I support the goal of attracting young mathematicians to the orbit method,
and this book could contribute to that, I have made a list of corrections (along with
a few philosophical objections). It is available at

http://www-math.mit.edu/∼dav/CORR.pdf.

I welcome additions and corrections, and will try to update the list accordingly.
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