Coherent sheaves on nilpotent cones

David Vogan

Department of Mathematics
Massachusetts Institute of Technology

Taipei Conference in Representation Theory V Academica Sinica January 2016 Coherent sheaves on nilpotent cones

David Vogan

Introduction

Quest

Y-tirleory

K-theory & repns

---- S----

Lusztig conjecture

(-tneory

omplex groups

Lusztig conjecture

Introduction

What are the questions?

Equivariant *K*-theory

K-theory and representations

Complex groups: ∞-diml reps and algebraic geometry

Lusztig's conjecture and generalizations

Slides at http://www-math.mit.edu/~dav/paper.html

understand $\pi \in \widehat{G} \longleftarrow$ understand $\pi|_K$

(nice compact subgroup $K \subset G$).

Get an invariant of a repn $\pi \in \widehat{G}$:

$$m_{\pi} \colon \widehat{K} \to \mathbb{N}, \qquad m_{\pi}(\mu) = \text{mult of } \mu \text{ in } \pi|_{K}.$$

- 1. What's the support of m_{π} ? (subset of \widehat{K})
- 2. What's the rate of growth of m_{π} ?
- 3. What functions on \widehat{K} can be m_{π} ?

Answers ↔ sheaves on nilpotent cones.

Coherent sheaves on nilpotent cones

David Vogan

Introduction

Questio

K-theory

α-tneory & repn

-ti leoi y

t thooly direpho

Luantin applications

1. $G = GL(n, \mathbb{C}), K = U(n)$. Typical restriction to K is

$$\pi|_{\mathcal{K}} = \operatorname{Ind}_{U(1)^n}^{U(n)}(\gamma) = \sum_{\mu \in \widehat{U(n)}} m_{\mu}(\gamma) \gamma \quad (\gamma \in \widehat{U(1)^n}):$$

 $m_{\pi}(\mu) = \text{mult of } \mu \text{ is } m_{\mu}(\gamma) = \text{dim of } \gamma \text{ wt space.}$

2. $G = GL(n, \mathbb{R}), K = O(n)$. Typical restriction to K is $\pi|_K = \operatorname{Ind}_{O(1)^n}^{O(n)}(\gamma) = \sum_{\mu \in \widehat{O(n)}} m_{\mu}(\gamma)$: $m_{\pi}(\mu) = \operatorname{mult} \text{ of } \mu \text{ in } \pi \text{ is } m_{\mu}(\gamma) = \operatorname{mult} \text{ of } \gamma \text{ in } \mu.$

3. *G* split of type E_8 , K = Spin(16). Typical res to K is $\pi|_{Spin(16)} = \operatorname{Ind}_M^{Spin(16)}(\gamma) = \sum_{i=1}^{n} m_{\mu}(\gamma)\gamma;$

here $M \subset Spin(16)$ subgp of order 512, cent ext of $(\mathbb{Z}/2\mathbb{Z})^8$.

 $\mu \in Spin(16)$

Moral: may compute m_{π} using compact groups.

Plan for today

Work with real reductive Lie group $G(\mathbb{R})$.

Describe (old) assoc cycle $\mathcal{AC}(\pi)$ for $\pi \in \widehat{G}(\mathbb{R})$:

 \approx geom shorthand for approximating $\pi|_{\mathcal{K}(\mathbb{R})}$.

Describe (new) algorithm for computing $\mathcal{AC}(\pi)$.

A *real* algorithm is one that's been implemented on a computer. This one has not, but should be possible soon.

Coherent sheaves on nilpotent cones

David Vogan

Introduction

Questio

ι-tneory

K-theory & repns

inplex groups

Lusztig conjecture

N-trieory

Cananday awayna

Lusztig conjecture

 $G(\mathbb{C}) = G = \text{cplx conn reductive alg gp.}$

 $G(\mathbb{R})$ = group of real points for a real form.

Could allow fin cover of open subgp of $G(\mathbb{R})$, so allow nonlinear.

 $\mathcal{K}(\mathbb{R}) \subset G(\mathbb{R})$ max cpt subgp; $\mathcal{K}(\mathbb{R}) = G(\mathbb{R})^{\theta}$.

 $\theta = \text{alg inv of } G$; $K = G^{\theta}$ possibly disconn reductive.

Harish-Chandra idea:

 ∞ -diml reps of $G(\mathbb{R}) \longleftrightarrow$ alg gp $K \curvearrowright$ cplx Lie alg \mathfrak{g}

(g, K)-module is vector space V with

- 1. repn π_K of algebraic group K: $V = \sum_{\mu \in \widehat{K}} m_V(\mu)\mu$
- 2. repn π_g of cplx Lie algebra g
- 3. $d\pi_K = \pi_{\mathfrak{g}}|_{\mathfrak{f}}, \qquad \pi_K(k)\pi_{\mathfrak{g}}(X)\pi_K(k^{-1}) = \pi_{\mathfrak{g}}(\operatorname{Ad}(k)X).$

In module notation, cond (3) reads $k \cdot (X \cdot v) = (Ad(k)X) \cdot (k \cdot v)$.

K-theory

K-theory & repns

Lusztia conjectura

 $G(\mathbb{R})$ real reductive, $K(\mathbb{R})$ max cpt, $\mathfrak{g}(\mathbb{R})$ Lie alg

 \sim K cplx reductive alg gp \sim g cplx reduc Lie alg.

 $\mathcal{N}^* = \text{cone of nilpotent elements in } \mathfrak{g}^*.$

 $\mathcal{N}_{\theta}^* = \mathcal{N}^* \cap (\mathfrak{g}/\mathfrak{f})^*$, finite # nilpotent K orbits.

Goal 1: Attach nilp orbits to repns in theory.

Goal 2: Compute them in practice.

"In theory there is no difference between theory and practice. In practice there is." Jan L. A. van de Snepscheut (or not).

V irr (g, K)-module $\downarrow \text{ assoc cycle of gr}$

 $\mathcal{AC}(V)$ closed union of K orbits on \mathcal{N}_{θ}^*

So Goal 1 is completed. Turn to Goal 2...

 $\mathcal{F}(g, K)$ = finite length (g, K)-modules...

noncommutative world we care about.

C(g, K) = f.g. (S(g/f), K)-modules, support $\subset N_{\theta}^*...$ commutative world where geometry can help.

$$\mathcal{F}(\mathfrak{g},K) \stackrel{\mathsf{gr}}{\leadsto} C(\mathfrak{g},K)$$

Prop. gr induces surjection of Grothendieck groups $\mathcal{KF}(\mathfrak{g}, \mathcal{K}) \stackrel{gr}{\longrightarrow} \mathcal{KC}(\mathfrak{g}, \mathcal{K});$

image records restriction to K of HC module.

So restrictions to K of HC modules sit in equivariant coherent sheaves on nilpotent cone in $(\mathfrak{g}/\mathfrak{f})^*$

$$KC(\mathfrak{g},K) =_{\mathrm{def}} K^K(\mathcal{N}_{\theta}^*),$$

equivariant K-theory of the K-nilpotent cone.

Goal 2: compute $K^K(\mathcal{N}_{\theta}^*)$ and the map **Prop.**

K-theory

Complex groups

Lusztig conjecture

Setting: (complex) algebraic group K acts on (complex) algebraic variety X.

 $Coh^K(X) = abelian categ of coh sheaves on X with K action.$

 $K^{\kappa}(X) =_{\text{def}} \text{Grothendieck group of } \text{Coh}^{\kappa}(X).$

Example: $Coh^{K}(pt) = Rep(K)$ (fin-diml reps of K).

 $K^{K}(\mathrm{pt}) = R(K) = \mathrm{rep\ ring\ of\ } K; \mathrm{free\ } \mathbb{Z}\mathrm{-module,\ basis\ } \widehat{K}.$

Example: X = K/H; $Coh^K(K/H) \simeq Rep(H)$

 $E \in \text{Rep}(H) \rightsquigarrow \mathcal{E} =_{\text{def}} K \times_H E$ eqvt vector bdle on K/H

 $K^K(K/H) = R(H).$

Example: X = V vector space (repn of K).

 $E \in \operatorname{Rep}(K) \longrightarrow \operatorname{proj} \operatorname{module} O_V(E) =_{\operatorname{def}} O_V \otimes E \in \operatorname{Coh}^K(X)$

proj resolutions $\implies K^K(V) \simeq R(K)$, basis $\{O_V(\tau)\}$.

Coherent sheaves

Suppose $K \sim X$ with finitely many orbits:

$$X = Y_1 \cup \cdots \cup Y_r, \qquad Y_i = K \cdot y_i \simeq K/K^{y_i}.$$

Orbits partially ordered by $Y_i \ge Y_i$ if $Y_i \subset \overline{Y_i}$.

$$(\tau, E) \in \widehat{K^{y_i}} \rightsquigarrow \mathcal{E}(\tau) \in \mathsf{Coh}^K(Y_i).$$

Choose (always possible) K-eqvt coherent extension

$$\widetilde{\mathcal{E}}(\tau) \in \mathsf{Coh}^K(\overline{Y_i}) \rightsquigarrow [\widetilde{\mathcal{E}}] \in K^K(\overline{Y_i}).$$

Class $[\widetilde{\mathcal{E}}]$ on \overline{Y}_i unique modulo $K^K(\partial Y_i)$.

Set of all $[\widetilde{\mathcal{E}}(\tau)]$ (as Y_i and τ vary) is basis of $K^K(X)$.

Suppose $M \in Coh^K(X)$; write class of M in this basis

$$[M] = \sum_{i=1}^{r} \sum_{\tau \in \widehat{\mathcal{K}^{\prime}_{i}}} n_{\tau}(M) [\widetilde{\mathcal{E}}(\tau)].$$

Maxl orbits in Supp(M) = maxl Y_i with some $n_{\tau}(M) \neq 0$.

Coeffs $n_{\tau}(M)$ on maxl Y_i ind of choices of exts $\mathcal{E}(\tau)$.

- 1. homomorphism
 - virt $G(\mathbb{R})$ reps $K\mathcal{F}(\mathfrak{g},K) \stackrel{\mathsf{gr}}{\longrightarrow} K^K(\mathcal{N}^*_{\theta})$ eqvt K-theory
- 2. geometric basis $\{[\widetilde{\mathcal{E}(\tau)}]\}$ for $K^K(\mathcal{N}_{\theta}^*)$, indexed by irr reps of isotropy gps
- 3. expression of $[gr(\pi)]$ in geom basis $\rightsquigarrow \mathcal{AC}(\pi)$.

Problem is computing such expressions...

Teaser for the next section: Kazhdan and Lusztig taught us how to express π using std reps $I(\gamma)$:

$$[\pi] = \sum_{\gamma} m_{\gamma}(\pi)[I(\gamma)], \qquad m_{\gamma}(\pi) \in \mathbb{Z}.$$

 $\{[\operatorname{gr} I(\gamma)]\}\$ is another basis of $K^K(\mathcal{N}_{\theta}^*)$.

Last goal is compute chg of basis matrix: to write

$$[\widetilde{\mathcal{E}}(au)] = \sum_{\gamma} n_{\gamma}(au)[\operatorname{gr} I(\gamma)].$$

Coherent sheaves on nilpotent cones

David Vogan

Introduction

Questions

K-theory

K-theory & repns

Studying cone \mathcal{N}_{θ}^* = nilp lin functionals on g/f.

Found (for free) basis $\left\{ [\widetilde{\mathcal{E}(\tau)}] \right\}$ for $K^K(\mathcal{N}_{\theta}^*)$, indexed by orbit K/K^i and irr rep τ of K^i .

Found (by rep theory) second basis {[gr $I(\gamma)$]}, indexed by (parameters for) std reps of $G(\mathbb{R})$.

To compute associated cycles, enough to write

$$[\operatorname{gr} I(\gamma)] = \sum_{\text{orbits}} \sum_{\substack{\tau \text{ irr for} \\ \text{isotropy}}} N_{\tau}(\gamma) [\widetilde{\mathcal{E}}(\tau)].$$

Equivalent to compute inverse matrix

$$[\widetilde{\mathcal{E}}(au)] = \sum_{\gamma} n_{\gamma}(au)[\operatorname{gr} I(\gamma)].$$

Need to relate

geom of nilp cone ↔ geom of std reps.

Use parabolic subgps and Springer resolution.

 $g = \mathfrak{k} \oplus \mathfrak{s}$ Cartan decomp, $\mathcal{N}_{\theta}^* \simeq \mathcal{N}_{\theta} =_{\operatorname{def}} \mathcal{N} \cap \mathfrak{s}$ nilp cone in \mathfrak{s} . Kostant-Rallis, Jacobson-Morozov: nilp $X \in \mathfrak{s} \rightsquigarrow Y \in \mathfrak{s}, \ H \in \mathfrak{k}$ $[H,X] = 2X, \quad [H,Y] = -2Y, \quad [X,Y] = H,$ $g[k] = \mathfrak{k}[k] \oplus \mathfrak{s}[k] \qquad (\operatorname{ad}(H) \text{ eigenspace}).$ $\rightsquigarrow g[\geq 0] =_{\operatorname{def}} \mathfrak{g} = \mathfrak{l} + \mathfrak{u} \quad \theta\text{-stable parabolic.}$

Theorem (Kostant-Rallis) Write $O = K \cdot X \subset N_{\theta}$.

- 1. $\mu: O_Q =_{\operatorname{def}} K \times_{Q \cap K} \mathfrak{s}[\geq 2] \to \overline{O}, \quad (k, Z) \mapsto \operatorname{Ad}(k)Z$ is proper birational map onto \overline{O} .
- 2. $K^X = (Q \cap K)^X = (L \cap K)^X (U \cap K)^X$ is a Levi decomp; so $\widehat{K^X} = [(L \cap K)^X]^{\frown}$.

So have resolution of singularities of \overline{O} :

Use it (*i.e.*, copy McGovern, Achar) to calculate equivariant *K*-theory...

 $X \in \mathcal{N}_{\theta}$ represents $O = K \cdot X$.

 $\mu: O_O =_{\operatorname{def}} K \times_{O \cap K} \mathfrak{s}[\geq 2] \to \overline{O}$ Springer resolution.

Theorem Recall $\widehat{K^X} = [(L \cap K)^X]^{\widehat{}}$.

1. $K^K(O_Q)$ has basis of eqvt vec bdles:

$$(\sigma, F) \in \text{Rep}(L \cap K) \rightsquigarrow \mathcal{F}(\sigma).$$

2. Get extension of $\mathcal{E}(\sigma|_{(L\cap K)^X})$ from O to \overline{O}

$$[\overline{\mathcal{F}}(\sigma)] =_{\mathrm{def}} \sum_{i} (-1)^{i} [R^{i}_{\mu_{*}}(\mathcal{F}(\sigma))] \in K^{K}(\overline{O}).$$

- 3. Compute (very easily) $[\overline{\mathcal{F}}(\sigma)] = \sum_{\gamma} n_{\gamma}(\sigma) [\operatorname{gr} I(\gamma)].$
- 4. Each irr $\tau \in [(L \cap K)^X]^{\frown}$ extends to (virtual) rep $\sigma(\tau)$ of $L \cap K$; can choose $\overline{\mathcal{F}(\sigma(\tau))}$ as extension of $\mathcal{E}(\tau)$.

Recall $X \in \mathcal{N}_{\theta} \rightsquigarrow O = K \cdot X$; $\tau \in [(L \cap K)^X]^{\frown}$. We now have explicitly computable formulas

$$[\widetilde{\mathcal{E}}(au)] = [\overline{\mathcal{F}(\sigma(au))}] = \sum_{\gamma} n_{\gamma}(au)[\operatorname{gr} I(\gamma)].$$

Here's why this does what we want:

- 1. inverting matrix $n_{\gamma}(\tau) \rightsquigarrow \text{matrix } N_{\tau}(\gamma) \text{ writing [gr } I(\gamma)]$ in terms of $[\mathcal{E}(\tau)]$.
- 2. multiplying $N_{\tau}(\gamma)$ by Kazhdan-Lusztig matrix $m_{\gamma}(\pi)$ \longrightarrow matrix $n_{\tau}(\pi)$ writing $[\operatorname{gr} \pi]$ in terms of $[\mathcal{E}(\tau)]$.
- 3. Nonzero entries $n_{\tau}(\pi) \rightsquigarrow \mathcal{H}C(\pi)$.

Side benefit: algorithm for $G(\mathbb{R})$ cplx also computes a bijection (conj Lusztig, proof Bezrukavnikov)

$$(dom wts) \leftrightarrow (pairs (O, \tau))...$$

Coherent sheaves on nilpotent cones

David Vogan

K-theory & repns

. . . .

K-theory & repns

Complex groups

 $G_1 = \text{cplx conn reductive alg gp} \leftrightarrow \text{old } G(\mathbb{R})$.

 $\sigma_1 = \text{cplx conj for compact real form of } G_1.$

 $G = G_1 \times G_1$ complexification of $G_1 \dots$

1. $\sigma(x,y) = (\sigma_1(y), \sigma_1(x))$ cplx conj for real form G_1 : $G(\mathbb{R}) = G^{\sigma} = \{(x, \sigma_1(x) \mid x \in G_1\} \simeq G_1.$

2. $\theta(x,y) = (y,x)$ Cartan inv: $K = G^{\theta} = (G_1)_{\Delta}$.

K-nilp cone $\mathcal{N}_{\theta}^* \subset \mathfrak{g}^* \simeq G_1$ -nilp cone $\mathcal{N}_1^* \subset \mathfrak{g}_1^*$.

 $H_1 \subset G_1, H = H_1 \times H_1 \subset G, T = (H_1)_{\Delta} \subset K$ max tori.

 $\mathfrak{a}=\mathfrak{h}^{-\theta}=\{(Z,-Z)\mid Z\in\mathfrak{h}_1\}$ Cartan subspace.

Param for princ series rep is $\gamma = (\lambda, \nu) \in X^*(T) \times \mathfrak{a}^*$:

- 1. $I(\lambda, \nu)|_{\mathcal{K}} \simeq \operatorname{Ind}_{\mathcal{T}}^{\mathcal{K}}(\lambda);$
- 2. virt rep $[I(w_1 \cdot \lambda, w_1 \cdot \nu)]$ indep of $w_1 \in W_1$;
- 3. $[\operatorname{gr} I(\lambda, \nu)] \in K^K(\mathcal{N}_{\theta}^*) \simeq K^{G_1}(\mathcal{N}_1^*)$ indep of ν .

Conclusion: the set of all $[\operatorname{gr} I(\lambda)] \simeq \operatorname{Ind}_T^K(\lambda)$ $(\lambda \in X^*(T) \text{ dom})$ is basis for (virt HC-mods of G_1) $|_K$.

Asserted " $\{\operatorname{Ind}_{T}^{K}(\lambda)\}$ basis for (virt HC-mods of G_{1}) $|_{K}$."

What's that mean or tell you?

Fix $(F,\mu) \in \widehat{K}$ of highest weight $\mu \in X^{\text{dom}}(T)$.

 (F,μ) also irr (fin diml) HC-mod for G_1 ; $(F,\mu)|_K=(F,\mu)$.

Assertion means $F = \sum_{\gamma \in X^{\text{dom}}(T)} m_{\gamma}(F) \operatorname{Ind}_{T}^{K}(\gamma)$.

Such a formula is a version of Weyl char formula:

$$\begin{split} (F,\mu) &= \sum_{w \in W(K,T)} (-1)^{\ell(w)} \mathrm{Ind}_T^K (\mu + \rho - w\rho) \\ &= \sum_{B \subset \Delta^+(\mathfrak{t},\mathfrak{t})} (-1)^{|\Delta^+| - |B|} \mathrm{Ind}_T^K (\mu + 2\rho - 2\rho(B)). \end{split}$$

One meaning: if $(E, \gamma) \in \widehat{K}$, then

$$\sum_{w\in W} (-1)^{\ell(w)} m_{E,\gamma}(\mu+\rho-w\cdot\rho) = \begin{cases} 1 & (\gamma=\mu) \\ 0 & (\gamma\neq\mu). \end{cases}$$

Coherent sheaves on nilpotent cones

David Vogan

ntroduction

Question

v-meory

Complex groups

usztig conjecture

K-theory & repn

Complex groups

Lusztig conjecture

 $G \supset B \supset H$ complex reductive algebraic.

 $X^*(H) \supset X^{\text{dom}}(H)$ dominant weights.

 $\mathcal{N}^* = \text{cone of nilpotent elements in } \mathfrak{g}^*.$

Lusztig conjecture: there's a bijection

 $X^{\text{dom}} \longleftrightarrow \text{pairs } (\xi, \tau)/G \text{ conjugation};$

 $\xi \in \mathcal{N}^*, \, \tau \in \widehat{G^{\xi}} \iff \text{eqvt vec bdle } \mathcal{E}(\tau) = G \times_{G^{\xi}} \tau$

Thm (Bezrukavnikov). There is a preferred virt extension $\widetilde{\mathcal{E}}(\tau)$ to $\overline{G \cdot \xi}$ so

$$[\widetilde{\mathcal{E}}(\tau)] = \pm [\operatorname{gr} I(\lambda(\xi,\tau))] + \sum_{\gamma < \lambda(\xi,\tau)} n_{\gamma}(\xi,\tau) [\operatorname{gr} I(\gamma)].$$

Upper triangularity characterizes Lusztig bijection.

K-theory & repns

Lusztig conjecture

Proceed by upward induction on nilpotent orbit.

Start with
$$(\xi, \tau)$$
, $\xi \in \mathcal{N}^*$, $\tau \in \widehat{G^{\xi}}$.

JM parabolic
$$Q = LU$$
, $\xi \in (g/q)^*$; $G^{\xi} = Q^{\xi} = L^{\xi}U^{\xi}$.

Choose virt rep $[\sigma(\tau)] \in R(L)$ extension of τ .

Write formula for corr ext of $\mathcal{E}(\tau)$ to $\overline{G \cdot \xi}$:

$$\begin{split} [\overline{\mathcal{F}(\sigma(\tau))}] &= \sum_{\lambda} \textit{m}_{\sigma(\tau)}(\lambda) \sum_{\textit{B} \subset \Delta^{+}(\textbf{I}, \mathfrak{h})} (-1)^{|\Delta^{+}(\textbf{I}, \mathfrak{h})| - |\textit{B}|} \sum_{\textit{A} \subset \Delta(\mathfrak{g}[\textbf{1}], \mathfrak{h})} (-1)^{|\textit{A}|} \\ & [\textit{gr I}(\lambda + 2\rho_{\textit{L}} - 2\rho(\textit{A}) - 2\rho(\textit{B}))]. \end{split}$$

Rewrite with $[\operatorname{gr} I(\lambda')]$, λ' dominant.

Loop: find largest λ' .

If
$$\lambda' \leftrightarrow (\xi', \tau')$$
 for smaller $G \cdot \xi'$, subtract

$$m_{\sigma(\tau)}(\lambda') \times \text{formula for } (\xi', \tau');$$

 \rightsquigarrow new formula for (ξ, τ) with smaller leading term.

When loop ends, $\lambda' = \lambda(\xi, \tau)$.

Sketched effective algorithms for computing assoc cycles for HC modules. Lusztig bijection.

What should we (this means you) do now?

Software implementations of these?

Pramod Achar \rightsquigarrow gap script for Lusztig bij in type A. Marc van Leeuwen \rightsquigarrow atlas software for (std rep)|_K.

Real group version of Lusztig bijection?

Algorithm still works, but bijection not quite true. Failure partitions \widehat{K} into small finite sets.

Closed form information about algorithms? formula for smallest $\lambda \leftrightarrow$ (one orbit, any τ); Would bound below inflichar of HC-mod ↔ orbit.