Regular polyhedra in *n* dimensions

David Vogan

Department of Mathematics Massachusetts Institute of Technology

Tsinghua University, December 11, 2014

Regular polyhedra in *n* dimensions

David Vogan

Outline

Introduction

Ideas from linear algebra

Flags in polyhedra

Reflections and relations

Relations satisfied by reflection symmetries

Presentation and classification

Regular polyhedra in *n* dimensions

David Vogan

The talk in one line

Want to understand the possibilities for a regular polyhedron P_n of dimension n.

Schläfli symbol is string $\{m_1, \ldots, m_{n-1}\}$.

Meaning of m_1 : two-dimensional faces are regular m_1 -gons.

Equivalent: m_1 edges ("1-faces") in a fixed 2-face.

Meaning of m_2 : fixed vertex $\subset m_2$ 2-faces \subset fixed 3-face.

fixed k - 1-face $\subset m_{k+1} k + 1$ -faces \subset fixed k + 2-face.

What are the possible Schläfli symbols, and why do they characterize P_n ?

Regular polyhedra in *n* dimensions

David Vogan

Dimension two

One regular *m*-gon for every $m \ge 3$ m = 3: equilateral triangle

Schläfli symbol {3}

Regular polyhedra in *n* dimensions David Vogan

Introduction Linear algebra Flags Reflections Relations Classification

m = 7: regular heptagon

Schläfli symbol {7}

Dimension three

Five regular polyhedra.

Regular polyhedra in *n* dimensions

David Vogan

Dimensions one and zero

Symmetry group: two elements $\{1, s\}$

There is also just one regular 0-gon:

• Schläfli symbol undefined

Symmetry group trivial (zero gens of order 2).

Regular polyhedra in *n* dimensions

David Vogan

What's a regular polyhedron?

Something really symmetrical...like a square

FIX one vertex inside one edge inside square.

Two building block symmetries.

 s_0 takes red vertex to adj vertex along red edge;

 s_1 takes red edge to adj edge at red vertex.

Regular polyhedra in *n* dimensions David Vogan Introduction Linear algebra

Linear algebra Flags Reflections Relations

More symmetries from building blocks

Regular polyhedra

in *n* dimensions David Vogan

Introduction

Understanding all regular polyhedra

Define a flag as a chain of faces like vertex \subset edge.

Introduce basic symmetries like s_0 , s_1 which change a flag as little as possible.

Find a presentation of the symmetry group.

Reconstruct the polyhedron from this presentation.

Decide which presentations are possible.

Regular polyhedra in *n* dimensions

David Vogan

Most of linear algebra

V *n*-diml vec space $\sim GL(V)$ invertible linear maps.

complete flag in V is chain of subspaces \mathcal{F}

$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_{n-1} \subset V_n = V, \quad \dim V_i = i.$$

Stabilizer $B(\mathcal{F})$ called Borel subgroup of GL(V).

Example

$$V = k^n, V_i = \{(x_1, \ldots, x_i, 0, \ldots, 0) \mid x_i \in k\} \simeq k^i.$$

Stabilizer of this flag is upper triangular matrices. Theorem

- 1. GL(V) acts transitively on flags.
- 2. Stabilizer of one flag is isomorphic to group of invertible upper triangular matrices.

Regular polyhedra in *n* dimensions

David Vogan

Introduction Linear algebra Flags Reflections

Classification

Rest of linear algebra

Fix integers $\mathbf{d} = (0 = d_0 < d_1 < \cdots < d_r = n)$

Partial flag of type **d** is chain of subspaces \mathcal{G}

$$W_0 \subset W_1 \subset \cdots \subset V_{r-1} \subset W_r, \quad \text{dim } W_j = d_j.$$

Stabilizer $P(\mathcal{G})$ is a parabolic subgroup of GL(V).

Theorem

Fix a complete flag ($0 = V_0 \subset \cdots \subset V_n = V$), and consider the n - 1 partial flags

 $\mathcal{G}_p = (V_0 \subset \cdots \subset \widehat{V}_p \subset \cdots \subset V_n) \quad 1 \le p \le n-1$

obtained by omitting one proper subspace.

1. GL(V) is generated by the n-1 subgroups $P(\mathcal{G}_p)$.

2. $P(\mathcal{G}_p)$ is isomorphic to block upper-triangular matrices with a single 2 × 2 block.

So build all linear transformations from two by two matrices and upper triangular matrices.

Regular polyhedra in *n* dimensions

David Vogan

Flags

Two flags in two-diml P. Symmetry group (generated by reflections in x and y axes) is transitive on edges, not transitive on flags.

Definition

P regular if symmetry group acts transitively on flags.

Regular polyhedra in *n* dimensions

David Vogan

Adjacent flags

$$\mathcal{F} = (P_0 \subset P_1 \subset \cdots \subset P_n), \quad \dim P_i = i$$

complete flag in *n*-diml compact convex polyhedron.

A flag $\mathcal{F}' = (P'_0 \subset P'_1 \subset \cdots \subset P'_n)$ is *i*-adjacent to \mathcal{F} if $P_j = P'_j$ for all $j \neq i$, and $P_i \neq P'_i$.

Three flags adjacent to \mathcal{F} , i = 0, 1, 2.

 \mathcal{F}'_0 : move vertex P_0 only. \mathcal{F}'_1 : move edge P_1 only.

 \mathcal{F}'_2 : move face P_2 only.

There is exactly one \mathcal{F}' *i*-adjacent to \mathcal{F} (each i = 0, 1, ..., n-1).

Symmetry doesn't matter for this!

Regular polyhedra in *n* dimensions

David Vogan

Stabilizing a flag

Lemma

Suppose $\mathcal{F} = (P_0 \subset P_1 \subset \cdots)$ is a complete flag in *n*-dimensional compact convex polyhedron P_n . Any affine map *T* preserving \mathcal{F} acts trivially on P_n .

Proof. Induction on *n*. If n = -1, $P_n = \emptyset$ and result is true.

Suppose $n \ge 0$ and the the result is known for n - 1.

Write p_n = center of mass of P_n . Since center of mass is preserved by affine transformations, $Tp_n = p_n$.

By inductive hypothesis, *T* acts trivially on n - 1-diml affine span(P_{n-1}) spanned by P_{n-1} .

Easy to see that $p_n \notin \text{span}(P_{n-1})$, so p_n and (n-1)-diml span (P_{n-1}) must generate *n*-diml span (P_n) .

Since T trivial on gens, trivial on span(P_n). Q.E.D.

Compactness matters; result fails for $P_1 = [0, \infty)$.

Regular polyhedra in *n* dimensions

David Vogan

Symmetries and flags

From now on P_n is a compact convex regular polyhedron with fixed flag

 $\mathcal{F} = (P_0 \subset P_1 \subset \cdots \subset P_n), \quad \text{dim } P_i = i$

Write p_i = center of mass of P_i .

Theorem

There is exactly one symmetry w of P_n for each complete flag \mathcal{G} , characterized by $w\mathcal{F} = \mathcal{G}$.

Corollary

Define $\mathcal{F}'_i =$ unique flag (i)-adj to \mathcal{F} ($0 \le i < n$). There is a unique symmetry s_i of P_n characterized by $s_i(\mathcal{F}) = \mathcal{F}'_i$. It satisfies

1.
$$s_i(\mathcal{F}'_i) = \mathcal{F}, s_i^2 = 1.$$

2. s_i fixes the (n-1)-diml hyperplane through the n points $\{p_0, \ldots, p_{i-1}, \hat{p}_i, p_{i+1}, \ldots, p_n\}$.

Regular polyhedra in *n* dimensions

David Vogan

Examples of basic symmetries s_i

This is s_0 , which changes \mathcal{F} only in P_0 , so acts trivially on the line through p_1 and p_2 .

This is s_1 , which changes \mathcal{F} only in P_1 , so acts trivially on the line through p_0 and p_2 .

Regular polyhedra in *n* dimensions

David Vogan

What's a reflection?

On vector space *V* (characteristic not 2), a linear map *s* with $s^2 = 1$, dim(-1 eigenspace) = 1. -1 eigenspace $L_s = \text{span of nonzero vector } \alpha^{\vee} \in V$

$$L_{s} = \{ \mathbf{v} \in \mathbf{V} \mid s\mathbf{v} = -\mathbf{v} \} = \operatorname{span}(\alpha^{\vee}).$$

+1 eigenspace $H_s =$ kernel of nonzero $\alpha \in V^*$

$$H_{s} = \{ v \in V \mid sv = v \} = \ker(\alpha).$$

$$sv = s_{(\alpha, \alpha^{\vee})}(v) = v - 2 \frac{\langle \alpha, v \rangle}{\langle \alpha, \alpha^{\vee} \rangle} \alpha^{\vee}.$$

Definition of reflection does not mention "orthogonal." If *V* has quadratic form \langle,\rangle identifying $V \simeq V^*$, then

s is orthogonal $\iff \alpha$ is proportional to α^{\vee} .

Regular polyhedra in *n* dimensions

David Vogan

Two reflections

$$sv = v - 2 \frac{\langle \alpha_s, v \rangle}{\langle \alpha_s, \alpha_s^{\vee} \rangle} \alpha_s^{\vee}, \qquad tv = v - 2 \frac{\langle \alpha_t, v \rangle}{\langle \alpha_t, \alpha_t^{\vee} \rangle} \alpha_t^{\vee}.$$

Assume $V = L_s \oplus L_t \oplus (H_s \cap H_t)$.

Subspace $L_s \oplus L_t$ has basis $\{\alpha_s^{\lor}, \alpha_t^{\lor}\}$, $c_{st} = 2\langle \alpha_s, \alpha_t^{\lor} \rangle / \langle \alpha_s, \alpha_s^{\lor} \rangle$;

$$s = \begin{pmatrix} -1 & c_{st} \\ 0 & 1 \end{pmatrix}, t = \begin{pmatrix} 1 & 0 \\ c_{ts} & -1 \end{pmatrix}, st = \begin{pmatrix} -1 + c_{st}c_{ts} & c_{st} \\ c_{ts} & -1 \end{pmatrix}.$$

 $\det(st) = 1, \qquad \operatorname{tr}(st) = -2 + c_{st}c_{ts},$

st has eigenvalues $z, z^{-1}, z + z^{-1} = c_{st}c_{ts} - 2$.

$$z, z^{-1} = e^{\pm i\theta}, \qquad \theta = \cos^{-1}(-1 + c_{st}c_{ts}/2)).$$

Proposition

Suppose $-1 + c_{st}c_{ts}/2 = \zeta + \zeta^{-1}$ for a primitive m^{th} root ζ . Then st is a rotation of order m in the plane $L_s \oplus L_t$. Otherwise st has infinite order. So

1.
$$m = 2$$
 if and only if $c_{st} = c_{ts} = 0$
2. $m = 3$ if and only if $c_{st}c_{ts} = 1$;
3. $m = 4$ if and only if $c_{st}c_{ts} = 2$;
4. $m = 6$ if and only if $c_{st}c_{ts} = 3$;

Regular polyhedra in *n* dimensions

David Vogan

Reflection symmetries

 P_n cpt cvx reg polyhedron in \mathbb{R}^n , flag

 $\mathcal{F} = (P_0 \subset P_1 \subset \cdots \subset P_n), \quad \dim P_k = k, \quad p_k = \operatorname{ctr} of mass(P_k).$

 $s_k =$ symmetry preserving all P_j except P_k ($0 \le k < n$).

 s_k must be orthogonal reflection in hyperplane

$$H_k = \operatorname{span}(p_0, p_1, \ldots, p_{k-1}, \widehat{p_k}, p_{k+1}, \ldots, p_n)$$

(unique affine hyperplane through these *n* points). Write equation of H_k

$$H_k = \{ \mathbf{v} \in \mathbb{R}^n \mid \langle \alpha_k, \mathbf{v} \rangle = \mathbf{c}_k \}.$$

 α_k characterized up to positive scalar multiple by

Regular polyhedra in *n* dimensions

David Vogan

Two reflection symmetries

 P_n cpt cvx reg polyhedron in \mathbb{R}^n , flag

 $\mathcal{F} = (P_0 \subset P_1 \subset \cdots \subset P_n), \quad \dim P_k = k, \quad p_k = \operatorname{ctr} of \operatorname{mass}(P_k).$

 s_k = orthogonal reflection in hyperplane H_k = span($p_0, p_1, \dots, p_{k-1}, \widehat{p_k}, p_{k+1}, \dots, p_n$)

For $0 \le k \le n-2$, have seen that $s_k s_{k+1}$ must be rotation of some order m_{k+1} in a plane inside span(P_{k+2}), fixing P_{k-1} .

Proposition

Suppose P_n is an n-dimensional regular polyhedron. Then the rotation $s_k s_{k+1}$ acts transitively on the k-dimensional faces of P_n that are contained between P_{k-1} and P_{k+2} . Therefore the Schläfli symbol of P_n is $\{m_1, m_2, ..., m_{n-1}\}$.

We turn next to computing m_{k+1} .

Regular polyhedra in *n* dimensions

David Vogan

Good coordinates

 P_n cpt cvx reg polyhedron in \mathbb{R}^n , flag $\mathcal{F} = (P_0 \subset P_1 \subset \cdots \subset P_n), \quad \dim P_i = i, \quad p_i = \text{ctr of mass}(P_i).$

Seek to relate coordinates for P_n to geometry...

Translate so center of mass is at the origin: $p_n = 0$.

Rotate so center of mass of n - 1-face is on x-axis: $p_{n-1} = (a_n, 0, ...), \quad a_n > 0.$

Now P_{n-1} is perp. to *x*-axis: span $(P_{n-1}) = \{x_1 = a_n\}$.

Rotate around the *x* axis so center of mass of (n - 2)-face is in the x - y plane: $p_{n-2} = (a_n, a_{n-1}, 0...), a_{n-1} > 0.$

Now span(P_{n-2}) = { $x_1 = a_n, x_2 = a_{n-1}$ }.

 $p_{n-k} = (a_n, \ldots, a_{n-k+1}, 0 \ldots), \quad a_{n-k+1} > 0.$ $span(P_{n-k}) = \{x_1 = a_n, x_2 = a_{n-1} \ldots x_k = a_{n-k+1}\}.$ Regular polyhedra in *n* dimensions

David Vogan

Introduction Linear algebra Flags Reflections Relations

Reflections in good coordinates

 $\begin{array}{l} P_n \mbox{ cpt cvx reg polyhedron in } \mathbb{R}^n, \mbox{ flag} \\ \mathcal{F} = (P_0 \subset P_1 \subset \cdots \subset P_n), \quad \dim P_i = i, \quad p_i = \mbox{ ctr of mass}(P_i). \\ p_k = (a_n, \dots, a_{k+1}, 0 \dots), a_{k+1} > 0. \end{array}$

Reflection symmetry s_k ($0 \le k < n$) preserves all P_j except P_k , so fixes all p_j except p_k .

Fixes $p_n = 0$, so a reflection through the origin: $s_k = s_{\alpha_k}$, α_k orthogonal to all p_j except p_k .

Solve: $\alpha_k = (0, ..., 0, a_k, -a_{k+1}, 0, ..., 0)$ (entries in coordinates n - k and n - k + 1; $\alpha_0 = (0, ..., 0, 1)$.

$$s_{k_1}s_{k_2}=s_{k_2}s_{k_1}, \qquad |k_1-k_2|>1.$$

$$s_0 s_1 = ext{rotation by } \cos^{-1}\left(rac{-a_1^2 + a_2^2}{a_1^2 + a_2^2}
ight).$$

$$s_k s_{k+1} = ext{rot by } \cos^{-1} \left(rac{-a_{k+1}^4 - a_k^2 a_{k+1}^2 - a_{k+1}^2 a_{k+2}^2 + a_k^2 a_{k+2}^2}{a_{k+1}^4 + a_k^2 a_{k+1}^2 + a_k^2 a_{k+2}^2 + a_k^2 a_{k+2}^2}
ight).$$

Regular polyhedra in *n* dimensions

David Vogan

Introduction Linear algebra Flags Reflections Relations Example: n-cube

David Vogan $P_n = \{ x \in \mathbb{R}^n \mid -1 < x_i < 1 \quad (1 \le i \le n) \}.$ Choose flag $P_k = \{x \in P_n \mid x_1 = \cdots = x_{n-k} = 1\}$, ctr of mass $p_k = (1, ..., 1, 0, ..., 0)$ $(n - k \ 1s)$. $S_k = \text{refl in } \alpha_k = (0, \dots, 1, -1, \dots, 0) = e_{n-k} - e_{n-k+1}$ Relations = transpos of coords n - k, n - k + 1 ($1 \le k \le n$). $s_0 = \text{refl in } \alpha_0 = (0, \dots, 0, 1) = e_n$ = sign change of coord *n*. $s_k s_{k+1} = \text{rot by } \cos^{-1}\left(\frac{-1^4 - 1^4 - 1^4 + 1^4}{1^4 + 1^4 + 1^4 + 1^4}\right) = 2\pi/3 \quad (1 \le k)$ $s_0 s_1 = \text{rotation by } \cos^{-1}\left(\frac{-1^4 + 1^4}{1^4 + 1^4}\right) = 2\pi/4$

Regular polyhedra

in n dimensions

Symmetry grp = permutations, sign changes of coords

$$= \langle s_0, \dots s_{n-1} \rangle / \langle s_k^2 = 1, (s_k s_{k+1})^3 = 1, (s_0 s_1)^4 = 1 \rangle$$

(0 \le j < n, 1 \le k < n - 1)

Angles and coordinates

 $\mathcal{F} = (P_0 \subset P_1 \subset \cdots \subset P_n), \quad \dim P_i = i, \quad p_i = \operatorname{ctr} \text{ of } \operatorname{mass}(P_i).$ $p_k = (a_n, \dots, a_{k+1}, 0, \dots), \quad a_{k+1} > 0.$ Geom given by n - 1 (strictly) positive reals $r_k = (a_{k+1}/a_k)^2.$ $s_k s_{k+1} = \operatorname{rotation} \text{ by } \theta_{k+1} \in (0, \pi),$ $\cos(\theta_{k+1}) = \left(\frac{-1 + r_k - r_{k+1} - r_k r_{k+1}}{1 + r_k + r_{k+1} + r_k r_{k+1}}\right).$

When k = 0, some terms disappear:

 $\cos(\theta_1) = \frac{-1+r_1}{1+r_1}, \qquad r_1 = \frac{1+\cos(\theta_1)}{1-\cos(\theta_1)}.$

These recursion formulas give all r_k in terms of all θ_k .

Next formula is

$$r_2 = -\frac{\cos(\theta_1) + \cos(\theta_2)}{1 + \cos(\theta_2)}.$$

Formula makes sense (defines strictly positive r_2) iff $\cos(\theta_1) + \cos(\theta_2) < 0$.

Regular polyhedra in *n* dimensions

David Vogan

Coxeter graphs

Regular polyhedron given by n-1 pos ratios $r_k = (a_{k+1}/a_k)^2$. Symmetry group has n generators s_0, \ldots, s_{n-1} ,

$$s_k^2 = 1$$
, $s_k s_{k'} = s_{k'} s_k (|k - k'| > 1)$, $(s_k s_{k+1})^{m_{k+1}} = 1$.

Here $m_{k+1} \ge 3$. Rotation angle for $s_k s_{k+1}$ must be

$$\theta_{k+1} = 2\pi/m_{k+1} \in \{120^{\circ}, 90^{\circ}, 72^{\circ}, 60^{\circ} \ldots\},\$$

$$\cos(\theta_k) \in \left\{-\frac{1}{2}, \ 0, \ \frac{\sqrt{5}-1}{4}, \ \frac{1}{2}, \ldots\right\},$$

Group-theoretic information recorded in Coxeter graph

 $\bullet \underbrace{m_{n-1}}_{\bullet} \underbrace{m_{n-2}}_{\bullet} \underbrace{m_2}_{\bullet} \underbrace{m_1}_{\bullet} \bullet \underbrace{m_2}_{\bullet} \underbrace{m_2}_{\bullet}$

Recursion formulas give r_k from $\cos(\theta_k) = \cos(2\pi/m_k)$. Condition $\cos(\theta_2) + \cos(\theta_1) < 0$ says

one of m_{k+1} , m_k must be 3; other at most 5.

Regular polyhedra in *n* dimensions

David Vogan

Finite Coxeter groups with one line

Same ideas lead (Coxeter) to classification of all graphs for which recursion gives positive r_k .

type	diagram	G	G	reg poly	
An	•—•··•	symm gp S_{n+1}	<i>n</i> !	<i>n</i> -simplex	
BCn	•_•··• _ •	cube group	2 ^{<i>n</i>} · <i>n</i> !	hypercube hyperoctahedron	Classifica
$I_2(m)$	• <u></u> •	dihedral gp	2 <i>m</i>	<i>m</i> -gon	
H ₃	••	H ₃	120	icosahedron dodecahedron	
H_4	••••	H_4	14400	600-cell 120-cell	
F_4	4 ●—● = ● = ●	F ₄	1152	24-cell	

Regular polyhedra

in *n* dimensions David Vogan

For much more, see Bill Casselman's amazing website http://www.math.ubc.ca/~cass/coxeter/crm.html