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The talk in one slide

Three topics. . .
1. GROUPS: abstract way to think about symmetry.
2. CONJUGACY CLASSES: organizing group elements.
3. REPRESENTATIONS: linear algebra and group theory.

Representations of G
crude
! conjugacy classes in G.

Better: relation is like duality for vector spaces.

dim(reps), size(conj classes)! noncommutativity.

dim(representation)
??
! (size)1/2(conjugacy class).

Talk is about examples of all these things.
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Two cheers for linear algebra

My favorite mathematics is linear algebra.

Complicated enough to describe interesting stuff.

Simple enough to calculate with.

Linear map T : V → V  eigenvalues, eigenvectors.

First example: V = fns on R, S = chg vars x 7→ −x.

Eigvals: ±1. Eigenspace for +1: even fns (like cos(x)).
Eigenspace for −1: odd functions (like sin(x)).

Linear algebra says: to study sign changes in x, write
fns using even and odd fns.

Second example: V = functions on R, T = d
dx .

Eigenvals: λ ∈ C. Eigenspace for λ: multiples of eλx .

Linear algebra says: to study d
dx , write functions using

exponentials eλx .
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The third cheer for linear algebra

Best part about linear algebra is noncommutativity. . .

Third example: V = fns on R, S = (x 7→ −x), T = d
dx .

S and T don’t commute; can’t diagonalize both.

Only common eigenvectors are constant fns.

Representation theory idea: look at smallest subspaces
preserved by both S and T .

W±λ = 〈 eλx , e−λx︸    ︷︷    ︸
eigenfns of d/dt

〉 = 〈cosh(λx)︸     ︷︷     ︸
even

, sinh(λx)︸    ︷︷    ︸
odd

〉.

These two bases of W±λ are good for different things.

First for solving diff eqs, second for describing bridge cable.

No one basis is good for everything.
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Six symmetries of a triangle
Basic idea in mathematics is symmetry.
A symmetry of something is a way of rearranging it so
that nothing you care about changes.
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Composing symmetries

What you can do with symmetries is compose them.

If g and h are symmetries, so is

g ◦ h =def first do h, then do g

4 example: if r240 = rotate 240◦, r120 = rotate 120◦,

r240 ◦ r120 = rotate (240◦ + 120◦) = do nothing = r0.

Harder: if r240 = rotate 240◦, sA = reflection fixing A ,

r240 ◦ sA = exchange B and C, then A → B → C → A

= (A → B , B → A , C → C) = sC .
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Composition law for triangle symmetries

We saw that the triangle has six symmetries:

r0 r120 r240 rotations

sA sB sC reflections.

Here is how you compose them.

◦ r0 r120 r240 sA sB sC

r0 r0 r120 r240 sA sB sC

r120 r120 r240 r0 sB sC sA

r240 r240 r0 r120 sC sA sB

sA sA sC sB r0 r240 r120

sB sB sA sC r120 r0 r240

sC sC sB sA r240 r120 r0

This is the multiplication table for triangle symmetries.
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Abstract groups

An abstract group is a multiplication table: a set G with
a product ◦ taking g, h ∈ G and giving g ◦ h ∈ G.
Product ◦ is required to have some properties (that are
automatic for composition of symmetries. . . )

1. ASSOCIATIVITY: g ◦ (h ◦ k) = (g ◦ h) ◦ k (g, h, k ∈ G);
2. there’s an IDENTITY e ∈ G: e ◦ g = g (g ∈ G);
3. each g ∈ G has INVERSE g−1 ∈ G, g−1 ◦ g = e.

For symmetries, these properties are always true:
1. first doing (k then h), then doing g, is the same as first

doing k , then doing (h then g);
2. doing g then doing nothing is the same as just doing g;
3. undoing a symmetry (putting things back where you

found them) is also a symmetry.

Here’s an example of a group with ◦ e s
just two elements e and s. In fact e e s
it’s the only example. s s e
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Approaching symmetry

Normal person’s approach to symmetry:
1. look at something interesting;
2. find the symmetries.

This approach standard model in physics.

Explains everything that you can see without LIGO.
Mathematician’s approach to symmetry:

1. find all multiplication tables for abstract groups;
2. pick an interesting abstract group;
3. find something it’s the symmetry group of;
4. decide that something must be interesting.

This approach Conway group (which has
8,315,553,613,086,720,000 elements) and Leech lattice
(critical for packing 24-dimensional cannonballs).

Anyway, I’m a mathematician. . .
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Which symmetries are really different?
Here are some of the symmetries of a triangle:
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sA = flip (B ,C)
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sB = flip (A ,C)

sA and sB are “same thing” from different points of view.

Can accomplish sB in three steps: (A ,B ,C)

1. flip (A ,B) (apply sC ); (B ,A ,C)
2. flip (B ,C) (apply sA ); (C ,A ,B)
3. unflip (A ,B) (apply s−1

C ). (C ,B ,A)

Summary: sB = s−1
C sA sC .

Defn. g, h conjugate if there’s k ∈ G so h = k−1gk .

Three conjugacy classes of symmetries of triangle:
three reflections sA , sB , sC (exchange two vertices);
two rotations r120, r240 (cyclically permute vertices);
one trivial symmetry r0 (do nothing).
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Conjugacy classes

G any group; elements g and h in G are conjugate if
there’s k in G so h = k−1gk .

Conjugacy class in G is an equivalence class.

G = disjoint union of conjugacy classes

Example: 4 symms︸     ︷︷     ︸
6 elts

= {refls}︸︷︷︸
3 elts

∪ {rotns}︸ ︷︷ ︸
2 elts

∪ {identity}︸    ︷︷    ︸
1 elt

.

6 = 3 + 2 + 1 is class eqn for triangle symms.

G is abelian if gh = hg (g, h ∈ G).

G is abelian! each conjugacy class is one element.

Size of conjugacy classes! how non-abelian G is.
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Conjugacy classes in Sn

Sn =def all (n!) rearrangements of {1, 2, . . . , n}.

= Symmetries of (n − 1)-simplex: join n equidistant pts.

S3 = 6 symms of triangle; S4 = 24 symms of reg tetrahedron.

Typical rearrangement for n = 5: g =
(

1 2 3 4 5
3 5 4 1 2

)
.

What g does: (1→ 3→ 4→ 1)(2→ 5→ 2).

Shorthand: g = (134)(25): cycle (134) and (25)

This g is conjugate to h = (125)(34) =
(

1 2 3 4 5
2 5 4 3 1

)
.

Theorem Any elt of Sn is a product of disjt cycles of
sizes p1 ≥ p2 ≥ · · · ≥ pr ,

∑
pj = n. Two elts are

conjugate! have same cycle sizes.

Definition Partition of n is p1 ≥ p2 ≥ · · · ≥ pr ,
∑

pj = n.

Corollary Conj classes in Sn ! partitions of n.
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Gelfand program. . .

. . . for using groups to do other math.

Say G is a group of symmetries of X .

Step 1: LINEARIZE. X  V(X) vec space of fns on X .
Now G acts by linear maps.

Step 2: DIAGONALIZE. Decompose V(X) into minimal
G-invariant subspaces.

Step 3: REPRESENTATION THEORY. Understand all
ways that G can act by linear maps.

Step 4: PRETENDING TO BE SMART. Use
understanding of V(X) to answer questions about X .

One hard step is 3: how can G act by linear maps?
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Definition of representation

G group; representation of G is
1. (complex) vector space V , and
2. collection of linear maps {π(g) : V → V | g ∈ G}

subject to π(g)π(h) = π(gh), π(e) = identity.

Subrepresentation is subspace W ⊂ V such that
π(g)W = W (all g ∈ G).

Rep is irreducible if only subreps are {0} , V .

Irreducible subrepresentations are minimal nonzero
subspaces of V preserved by all π(g).

This is a group-theory version of eigenspaces.

There’s a theorem like eigenspace decomp. . .
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Diagonalizing groups

Theorem Suppose G is a finite group.
1. There are finitely many irr reps τ1, . . . , τ` of G.
2. Number ` of irr reps = number of conj classes in G.
3. Any rep π of G is sum of copies of irr reps:

π = n1(π)τ1 + n2(π)τ2 + · · ·+ n`(π)τ`.

4. Nonnegative integers nj(π) uniquely determined by π.
5. |G| = (dim τ1)2 + · · ·+ (dim τ`)

2.
6. G is abelian if and only if dim τj = 1, all j.

Dims of irr reps! how non-abelian G is.

Two formulas for |G|:∑
conj classes

size of conj class = |G| =
∑

irr reps τ

(dim τ)2.

Same # terms each side; so try to match them up. . .
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Partitions, conjugacy classes, representations

Recall Sn = perms of {1, . . . , n} symmetric group.

Recall π = (p1, . . . , pr) decr,
∑

pi = n partition of n.

Partition! array of boxes: ! 9 = 4 + 3 + 1 + 1.

Recall conjugacy class Cπ! partition π

Columns of π = cycle sizes of Cπ.

Theorem. There is another bijection

(irr representations of Sn)! (partitions of n)

S2 S3 S4

|Cπ| π (dim τπ)
2 |Cπ| π (dim τπ)

2 |Cπ| π (dim τπ)
2

1 1 1 1 1 1
1 1 3 4 6 9

2 1 3 4

8 9

6 1
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Lessons learned

Conclusion: For Sn there is a natural bijection

(conj classes)! (irr repns), Cπ! τπ.

But |Cπ| not very close to (dim τπ)2.

This is math.

If what you want isn’t true, change the universe.
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Conjugacy classes in GL(V): examples

V n-dimensional vector space over field F

Symms of V = rearrs of V resp +, scalar mult. . .

. . . = (invertible) linear transformations = GL(V).

After choice of basis, these are invertible n × n matrices.

Say g and h are similar if there’s invertible k so h = k−1gk .

Means: g and h are “the same” up to change of basis.

{Similarity classes of matrices} = {conj classes in GL(V)}.

Examples for n = 2, F = C or R:(
λ1 0
0 λ2

) (
λ1 0
0 λ1

) (
λ1 1
0 λ1

)
(λ1, λ2 ∈ F×)

Additional examples for n = 2, F = R:(
a −b
b a

)
(a + bi ∈ R, b , 0)
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Conjugacy classes in GL(V): general theory

If F = F , conj class ≈ set of n eigvals in F× = F − {0}.

Better: conj class ≈ multi-set of size n in F×︸                          ︷︷                          ︸
count multiplicities

Best: conj class = function π : F× → partitions,
∑
λ |π(λ)| = n

(
λ1 0
0 λ2

)
! π(λ1) = , π(λ2) =

(
λ1 1
0 λ1

)
! π(λ1) =

F , F : conj class = π : Galois orbits Λ ⊂ F
×
→ partitions,

∑
Λ |π(Λ)||Λ| = n(

a −b
b a

)
! π({a + bi, a − bi}) = (b , 0)


a −b 1 0
b a 0 1
0 0 a −b
0 0 b a

! π({a + bi, a − bi}) = (b , 0)
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Conjugacy classes in GLn(Fq)

Seek (conj classes)
?
←→ (irr reps) for other groups.

Try next GLn(Fq), invertible n × n matrices /Fq.

|GLn(Fq)| = (qn − 1)(qn − q) · · · (qn − qn−1)

= (qn−1 − 1)(qn−2 − 1) · · · (q − 1) · 1 · q · · · qn−1

= (1 + q + · · ·+ qn−1)(1 + q + · · ·+ qn−2) · · · (1)︸                                                            ︷︷                                                            ︸
q-analog of n!

· (q − 1)n · qn(n−1)/2

GLn(Fq) is q-analogue of Sn.

Conj class in GLn(Fq) = partition-valued function π on
Galois orbits Λ ⊂ Fq

×
such that∑

Λ

| Λ︸︷︷︸
eigval

| · |π(Λ)|︸︷︷︸
mult(Λ)

= n.

(π(Λ) = ∅ for most Λ.)



Conjugacy classes
and group

representations

David Vogan

Introduction

Groups

Conj classes

Repn theory

Symmetric groups

Groups of matrices

Conclusion

What’s that mean for GL2(Fq)?

Suppose q is an odd prime power.

Fix non-square d ∈ Fq; Fq2 = {a + b
√

d | a, b ∈ Fq}.

Here are the conjugacy classes in GL2(Fq):

1. Diagonalizable, two eigvals:
(
λ1 0
0 λ2

)
(λ1 , λ2 ∈ F

×
q )

2. Nondiagonalizable, two eigvals:
(
a bd
b a

)
(0 , b ∈ Fq)

3. Nondiagonalizable, one eigval:
(
λ 1
0 λ

)
(λ ∈ F×q )

4. Diagonalizable, one eigval:
(
λ 0
0 λ

)
(λ ∈ F×q ).
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GLn(Fq): representations

Saw that conj class in GLn(Fq) is partition-valued function on
Galois orbits on

⋃
d≥1 F

×

qd (19th century linear algebra).

Similarly irr rep of GLn(Fq) is partition-valued function on
Galois orbits on

⋃
d≥1 F̂

×

qd (Green 1955).

GL2(Fq)
conj class C # classes |C |

diag, 2 ev (q − 1)(q − 2)/2 q(q + 1)
nondiag, 2 ev q(q − 1)/2 q(q − 1)

q − 1 (q + 1)(q − 1)

q − 1 1

repn V # repns dim τ

princ series (q − 1)(q − 2)/2 q + 1
disc series q(q − 1)/2 q − 1

q − 1 q
q − 1 1

Conclude (conj classes)↔ (irr reps).

Bijection has |Cπ| ≈ (dim Vπ)2.
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The rest of mathematics in one slide

There are similar ideas and questions for infinite groups.

Typical example is GL(n,R), invertible real matrices.

Finding conjugacy classes is fairly easy.

Finding irreducible representations is harder (unsolved).

Finite group question

dim(representation)
??
! (size)1/2(conjugacy class)

becomes Lie group problem given conjugacy class C (a
manifold) find a manifold X that’s a “square root” of C:

C
??
' X × X .

Same problem shows up in quantum mechanics.

So there’s a reason to stay friendly with physicists.
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