Understanding restriction to K

David Vogan

Department of Mathematics Massachusetts Institute of Technology

Wilfried Schmid Birthday Conference, May 2013

Understanding restriction to K

David Vogan

Outline

Introduction

Discrete series

Standard representations

Standard representations restricted to K

Associated varieties

Geometric restriction to K

Understanding restriction to K

David Vogan

Why restrict to K?

 $G \operatorname{cplx} \supset G(\mathbb{R})$ real reductive $\supset K(\mathbb{R})$ maxl compact Reps (π, \mathcal{H}_{π}) of $G(\mathbb{R})$ are complicated and difficult. Reps of $K(\mathbb{R})$ are easy, so try two things: understand $\pi|_{K(\mathbb{R})}$; and use understanding to answer questions about π .

 $K(\mathbb{R}) \subset G(\mathbb{R}) \iff T \subset U$, max torus in cpt Lie. $\mu \in \widehat{U}$ characterized by largest $\xi(\mu)$ in $\mu|_{\mathcal{T}}$ (Cartan-Weyl). Can compute $\mu|_{\mathcal{T}}$ completely (Kostant).

When $\pi|_{\mathcal{K}(\mathbb{R})}$ inf diml, can't ask for *largest* piece... ... can define $\mu(\pi)$ as a smallest piece of $\pi|_{\mathcal{K}(\mathbb{R})}$. (sometimes) π characterized by $\mu(\pi)$ (Schmid) In those cases, can compute $\pi|_{\mathcal{K}(\mathbb{R})}$ (Schmid) Understanding restriction to K

David Vogan

Introduction

Outline of talk

 $\begin{aligned} G(\mathbb{R}) \text{ real reductive } \supset K(\mathbb{R}) \text{ max compact subgp.} \\ \text{Ex: } G(\mathbb{R}) &= GL(n, \mathbb{C}) = \{ \text{invertible linear transf of } \mathbb{C}^n \} \\ K(\mathbb{R}) &= U(n) = \{ \text{linear transf respecting } \langle, \rangle \}. \end{aligned}$

Ex: $G(\mathbb{R}) = GL(n, \mathbb{R}) = \{$ invertible linear transf of $\mathbb{R}^n \}$ $K(\mathbb{R}) = O(n) = \{$ linear transf respecting $\langle, \rangle \}.$

Ex: $G(\mathbb{R}) = Sp(2n, \mathbb{R}) = \{\mathbb{R}\text{-lin transf of } \mathbb{C}^n \text{ resp. } Im(\langle, \rangle)\}$ $K(\mathbb{R}) = U(n) = \{\mathbb{C}\text{-linear maps in } Sp(2n, \mathbb{R})\}.$

Plan for this talk:

- 1. Recall standard reps $I(\gamma)$ of $G(\mathbb{R})$ (Harish-Chandra)
- 2. Recall multiplicity calculation of $I(\gamma)|_{\mathcal{K}(\mathbb{R})}$ (Schmid)
- 3. Recall (irred) = int comb (std reps) (Kazhdan-Lusztig)
- 4. geometric expression for irr reps restricted to $\mathcal{K}(\mathbb{R})$
- 5. Open problems relating 1)–3) to 4).

Understanding restriction to K

David Vogan

Introduction

Discrete series Standard reps Standard reps $|_K$ Assoc varieties Geom restr to *K*

Setting

G cplx conn reductive alg grp def over $\mathbb{R} \to G(\mathbb{R})$ σ_0 cpt form s.t. $\sigma\sigma_0 = \sigma_0\sigma \to \theta =_{def} \sigma\sigma_0$ Cartan inv $K = G^{\theta}$ cplx reductive alg, $K(\mathbb{R})$ max cpt in $G(\mathbb{R})$.

cplx conj action σ

 $\Pi_u(G(\mathbb{R})) = \text{ irr unitary reps/equiv: atoms of harm analysis}$ \bigcup $\Pi(G(\mathbb{R})) = \text{ irr quasisimple reps/infl equiv: analytic cont}$

 $\Gamma(G(\mathbb{R})) = \operatorname{Irr}$ quasisimple reps/init equiv: analytic con

 $\Pi(\mathfrak{g}, K) =$ irr HC modules: Taylor series for qsimple reps

 $\Pi(\mathcal{K}(\mathbb{R})) = \Pi(\mathcal{K}) = \widehat{\mathcal{K}} = \text{irr reps of } \mathcal{K}(\mathbb{R}) = \text{irr alg of } \mathcal{K}$ $\pi \in \Pi(\mathcal{G}(\mathbb{R})) \rightsquigarrow m_{\pi} : \widehat{\mathcal{K}} \rightarrow \mathbb{N}, \ m_{\pi}(\mu) = \text{mult of } \mu \text{ in } \pi|_{\mathcal{K}}.$

Problem: compute and understand functions m_{π} .

Understanding restriction to K

David Vogan

ntroduction

Schmid's construction of discrete series

Discrete series reps $\Pi_{ds}(G(\mathbb{R})) \subset \Pi_{u}(G(\mathbb{R}))$ Discrete series are irr summands of $L^2(G(\mathbb{R}))$. Harish-Chandra: exist iff $G(\mathbb{R}) \supset T(\mathbb{R}) \subset K(\mathbb{R})$, cpt Cartan Harish-Chandra: $\widehat{\mathcal{T}(\mathbb{R})}_{red} / W(\mathbb{R}) \stackrel{\approx}{\longleftrightarrow} \Pi_{ds}(G(\mathbb{R})), \quad \lambda \to I(\lambda)$ $\mathcal{B} =$ complete flag variety of Borel subalgs $\mathfrak{b} \subset \mathfrak{g}$. $\lambda \rightsquigarrow \mathfrak{b}(\lambda) \supset \mathfrak{t} \rightsquigarrow X(\lambda) = G(\mathbb{R}) \cdot \mathfrak{b}(\lambda) \simeq G(\mathbb{R})/T(\mathbb{R}) \subset \mathcal{B}$ UI $Z(\lambda) = K(\mathbb{R}) \cdot \mathfrak{b}(\lambda) \simeq K(\mathbb{R})/T(\mathbb{R})$ $\mathcal{L}(\lambda + \rho) \to X(\lambda)$ holomorphic line bundle induced by $\lambda + \rho$.

Understanding

restriction to K David Vogan

Discrete series

Kostant-Langlands: $I(\lambda) \stackrel{?}{\approx} H^{s}(X(\lambda), \mathcal{L}(\lambda + \rho))$ ($s = \dim Z(\lambda)$). **Probs:** $X(\lambda)$ noncpt; cohom not Hilbert space.

Schmid: Taylor exp of cohom along cpt subvar $Z(\lambda)$.

$$I(\lambda)|_{\mathcal{K}(\mathbb{R})} \approx H^{s}(Z(\lambda), \mathcal{L}(\lambda + \rho) \otimes S(\underbrace{\mathfrak{g}/(\mathfrak{k} + \mathfrak{b}(\lambda))}_{\text{conorm to } Z \text{ in } X})^{*})$$

Understanding Blattner

 $G(\mathbb{R}) \supset K(\mathbb{R}) \supset T(\mathbb{R}), \quad \mathcal{B} =$ variety of Borel subalgs. $\lambda \in \mathcal{T}(\mathbb{R})_{reg} \rightsquigarrow \mathfrak{b}^{-}(\lambda) \supset \mathfrak{t}$ Borel subalgebra. $X(\lambda) = G(\mathbb{R}) \cdot \mathfrak{b}^{-}(\lambda) \simeq G(\mathbb{R})/T(\mathbb{R})$ open $G(\mathbb{R})$ orbit. \rightsquigarrow finitely many $G(\mathbb{R})$ orbits on $\mathcal{B} \rightsquigarrow$ reps by geom quant. $I(\lambda)|_{\mathcal{K}(\mathbb{R})} \approx H^{s}(Z(\lambda), \mathcal{L}(\lambda + \rho) \otimes S(\mathfrak{g}/(\mathfrak{k} + \mathfrak{b}(\lambda)))^{*}).$ Starts with lowest K-type $H^{s}(K/(B \cap K), \mathcal{L}(\lambda + \rho))$. This is irr of highest weight $\mu(\lambda) = \lambda + \rho - 2\rho_c$ sum cpt pos

Borel-Weil-Bott-Kostant \rightsquigarrow entire restriction $I(\lambda)|_{\mathcal{K}(\mathbb{R})}$.

Thm (Schmid, Hecht-Schmid) Discrete series $I(\lambda)$ contains lowest *K*-type $\mu(\lambda)$ with mult 1; all others are $\mu(\lambda) + (\text{sum ncpt pos})$. These props characterize $I(\lambda)$.

Understanding restriction to *K*

David Vogan

ntroduction

Standard representations

 $G(\mathbb{R}) \supset H(\mathbb{R})$, Cartan subgp. After conj $\rightsquigarrow \theta$ -stable. $H(\mathbb{R}) = \underline{T(\mathbb{R})} \times \underline{A}$, cplxfication $T = H^{\theta} = H \cap K$. vec gp cpt $\widehat{T(\mathbb{R})} = X^*(T) = \underbrace{X^*(H)/(1-\theta)X^*(H))}_{A=0}, \quad \widehat{A} = \underbrace{\mathfrak{a}^*}_{A=0}$ big if H ncpt small if H ncpt Harish-Chandra: $H(\mathbb{R})/W(\mathbb{R}) \rightsquigarrow \prod_{std}(G(\mathbb{R})), \gamma \rightarrow I(\gamma)$ Need also $\Psi = pos imag roots$ making λdom . $\gamma = (\lambda, \nu) \in \widehat{T(\mathbb{R})} \times \widehat{A}$ 1. $I(\gamma, \Psi)$ tempered $\iff \gamma$ unitary $\iff \nu \in i\mathfrak{a}_{0}^{*}$ 2. $I(\gamma, \Psi)|_{\mathcal{K}}$ depends only on $\lambda \in X^*(T)$

 $I(\gamma, \Psi)|_{\mathcal{K}} =_{\mathsf{def}} I(\lambda, \Psi)$ known: hard case disc series.

Understanding restriction to K

David Vogan

Basis for virtual reps

 $H(\mathbb{R}) = T(\mathbb{R}) imes A, \gamma = (\lambda, \nu) \in \widehat{H(\mathbb{R})}, \Psi$ pos imag.

All $I(\gamma, \Psi)$ lin ind unless $\langle \gamma, \alpha^{\vee} \rangle = 0$ ($\alpha \in \Psi$ simple)...

- ... Hecht-Schmid character identities
 - 1. α noncompact: $\underbrace{I(\gamma, \Psi)}_{split \ H_{\alpha} \subset SL(2)_{\alpha}} = \begin{cases} I(\gamma, \Psi) + I(\gamma, s_{\alpha}\Psi) & s_{\alpha} \notin W(\mathbb{R}) \\ I(\gamma, \Psi) & s_{\alpha} \in W(\mathbb{R}). \end{cases}$
 - 2. α compact: $I(\gamma, \Psi) = 0.$

 (γ, Ψ) *final* if not on left of a Hecht-Schmid identity.

 $\iff \nexists \alpha \text{ real, } \langle \nu, \alpha^{\vee} \rangle = 0, \ \lambda(m_{\alpha}) = -1, \text{ and} \\ \nexists \alpha \text{ compact simple in } \Psi, \ \langle \lambda, \alpha^{\vee} \rangle = 0.$

Thm (Langlands, Knapp-Zuckerman, Hecht-Schmid)

- 1. $\{I(\gamma, \Psi) \mid (\gamma, \Psi) \text{ final}\}$ basis for virtual reps of $G(\mathbb{R})$.
- 2. $\{I(\gamma, \Psi) \mid (\gamma, \Psi) \text{ final, unitary}\} = \prod_{temp} (G(\mathbb{R})).$
- 3. $I(\gamma, \Psi)$ has quotient rep $J(\gamma, \Psi)$; irr if (γ, Ψ) final.

Understanding restriction to K

David Vogan

Irreducibles and standards

 $\mathcal{P}(\mathcal{G}(\mathbb{R})) = \{(\gamma, \Psi) \text{ final } | \gamma \in \widehat{H}(\mathbb{R}), \Psi \text{ pos imag} \}$ Langlands parameters; write $\mathbf{x} \in \mathcal{P}$ for (γ, Ψ) . I(x) standard rep $\rightarrow J(x)$ irr Langlands quotient. $\mathcal{P}(G(\mathbb{R}))$ basis/ $\mathbb{Z}[q, q^{-1}]$ for Hecke alg module. KL analysis \rightsquigarrow Two kinds of KL polys in $\mathbb{N}[q]$... 1. $Q_{z,y}(1) =$ mult of J(z) in I(y) $I(y) = \sum_{z < y} Q_{z,y}(1) J(z).$ 2. $P_{yx}(1) = (-1)^{\ell(x)-\ell(y)}$ (coeff of I(y) in char of J(x)) $J(x) = \sum (-1)^{\ell(x) - \ell(y)} P_{y,x}(1) I(y).$ y≤x $(x, y, z \text{ in } \mathcal{P}(G(\mathbb{R})).$

Consequence: computable branching law

$$J(x)|_{\mathcal{K}} = \sum_{y \leq x} (-1)^{\ell(x) - \ell(y)} P_{y,x}(1) I(y)|_{\mathcal{K}}.$$

Understanding restriction to *K*

David Vogan

Basis for restrictions to K

 $\{I((\lambda, \nu), \Psi)\}$ are all the standard reps. Restriction to *K* independent of continuous param ν . **Thm** (How standard reps restrict to *K*.)

- 1. $\{I(\lambda, \Psi) \mid \lambda \in X^*(T) \text{ final}\}$ basis for (virtual reps) $|_{\mathcal{K}}$.
- 2. $I(\lambda, \Psi)$ has unique lowest K-type $\mu(\lambda, \Psi)$.
- 3. {temp, real infl char} \leftrightarrow { $I(\lambda, \Psi) \mid \lambda \in X^*(T)$ final} $\leftrightarrow \widehat{K}$

Ex: $G = SL(2) \times SL(2), K = SL(2)_{\Delta}$, torus $= H \times H$ $T = H_{\Delta} \rightsquigarrow$ final params (temp reps $SL(2, \mathbb{C})$, real infl)... $\{n \mid n \geq 0\}, \quad I(n)|_{SL(2)_{A}} = \{E(n), E(n+2), E(n+4) \cdots \}$ **Ex:** $G = SL(2), K = SO(2), H_c = K, H_s = (diag torus)$ $T_c = K$, Ψ^{hol} , Ψ^{ahol} ; $T_s = \{\pm I\} \rightsquigarrow$ final params... $\{(n, \Psi^{hol}) \mid n > 0\}$ on T_c ; $\{m, \Psi^{ahol} \mid m < 0\}$ on T_c ; (triv) on T_s . $I(n, \Psi^{hol})|_{SO(2)} = \{n+1, n+3, n+5\cdots\}$ $I(m, \Psi^{ahol})|_{SO(2)} = \{m-1, m-3, m-5\cdots\}$ $I(triv)|_{SO(2)} = \{0, \pm 2, \pm 4 \cdots \}$

Understanding restriction to K

David Vogan

Associated varieties

$$\begin{split} \mathcal{F}(\mathfrak{g}, K) & \text{category of finite length } (\mathfrak{g}, K) \text{-modules:} \\ U(\mathfrak{g}) \text{-module, alg action of } K = G^{\theta}. \\ \stackrel{\text{gr}}{\longrightarrow} \mathcal{C}(\mathfrak{g}, K) & \text{f.g. } (S(\mathfrak{g}/\mathfrak{k}), K) \text{-mods, supp} \subset \mathcal{N}_{\theta}^* \subset (\mathfrak{g}/\mathfrak{k})^* \\ \mathcal{N}^* &= \{\lambda \in \mathfrak{g}^* \mid p(\lambda) = 0 \ (p \in [\mathfrak{g}S(\mathfrak{g})]^G)\} \text{ nilp cone} \\ \mathcal{N}_{\theta}^* &= \mathcal{N}^* \cap (\mathfrak{g}/\mathfrak{k})^*, \qquad \mathcal{N}_{\mathbb{R}}^* = \mathcal{N}^* \cap i\mathfrak{g}(\mathbb{R})^*. \\ \textbf{Prop (Kostant-Rallis, Sekiguchi)} \end{split}$$

- 1. *K* acts on \mathcal{N}_{θ}^* , fin # orbs, cplx Lag in *G* orbit.
- 2. $G(\mathbb{R})$ acts on \mathcal{N}_{θ}^* , fin # orbs, real Lag in G orbit.
- 3. Bij $\mathcal{N}^*_{\theta}/K \leftrightarrow \mathcal{N}^*_{\mathbb{R}}/G(\mathbb{R})$, resp *G* orbit, diffeo type.

Prop gr induces surjection of Groth groups

 $K\mathcal{F}(\mathfrak{g}, K) \stackrel{\mathrm{gr}}{\longrightarrow} K\mathcal{C}(\mathfrak{g}, K);$

image records restriction to K of HC module.

So restrictions to *K* of HC modules sit in interesting category: coherent sheaves on nilp cone in $(g/\mathfrak{k})^*$.

Understanding restriction to K

David Vogan

gr for discrete series

Recall constr of *disc ser reps* starts with maxl torus $T \subset K$ (cplx alg), reg char $\lambda \in X^*(T)/W(K, T)$. $\mathcal{B} =$ complete flag variety of Borel subalgs $\mathfrak{b} \subset \mathfrak{g}$. $\lambda \rightsquigarrow \mathfrak{b}(\lambda) \supset \mathfrak{t} \rightsquigarrow Z(\lambda) = K \cdot \mathfrak{b}(\lambda) \simeq K/K \cap B(\lambda) \subset B$ $\mathcal{L}(\lambda + \rho) \rightarrow \mathcal{B}$ algebraic line bundle induced by $\lambda + \rho$. \mathcal{D} -module picture: $I(\lambda) =$ formal conormal derivatives of hol secs of $\mathcal{L}(\lambda + \rho)$ on closed K-orbit $Z(\lambda) \subset \mathcal{B}$ Recall Schmid: Taylor exp along cpt subvar $Z(\lambda)$: $I(\lambda)|_{K} \approx H^{s}(Z(\lambda), \mathcal{L}(\lambda + \rho) \otimes S(\mathfrak{g}/[\mathfrak{k} + \mathfrak{b}(\lambda)])^{*}).$ conorm to Z in X Serre duality, etc. ~~

$$\begin{split} & \text{gr } I(\lambda) \simeq H^0\big(Z(-\lambda), \mathcal{L}(\lambda + \rho - 2\rho_c) \otimes S\left(\mathfrak{g}/[\mathfrak{k} + \mathfrak{b}(-\lambda)]\right)\big) \\ & \simeq \text{pullback of } \mathcal{L}(\lambda + \rho - 2\rho_c) \text{ to } T^*_{Z(-\lambda)}\mathcal{B} \end{split}$$

Understanding restriction to *K* David Vogan

Conormal geometry

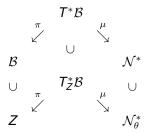
Recall $\mathcal{B} = \{ \text{Borel subalgebras } \mathfrak{b} \subset \mathfrak{g} \}$ *flag variety*.

Deduce $T^*\mathcal{B} = \{(\mathfrak{b}, \lambda) \mid \mathfrak{b} \in \mathcal{B}, \lambda \in [\mathfrak{g}/\mathfrak{b}]^*\}.$ Recall $\mathcal{N}^* = \{\lambda \in \mathfrak{g}^* \mid \lambda|_\mathfrak{b} = 0$, some $\mathfrak{b} \in \mathcal{B}\}$, *nilp cone*.

 $\begin{array}{c} \operatorname{Get} \begin{array}{c} \underset{\textit{Springer resol}}{\textit{moment map}} \mu \colon T^* \mathcal{B} \to \mathcal{N}^*, \quad \mu(\mathfrak{b}, \lambda) = \lambda. \\ & \operatorname{affine} & T^* \mathcal{B} & \operatorname{proper} \\ & \swarrow & & & \\ \mathcal{B} & & & \mathcal{N}^* \end{array} \end{array}$

Recall $\mathcal{N}_{\theta}^{*} = \mathcal{N}^{*} \cap (\mathfrak{g}/\mathfrak{k})^{*}$, *nilp cone in* $(\mathfrak{g}/\mathfrak{k})^{*}$.

Here Z = any K-orbit on \mathcal{B} . $\mu(T_Z^*\mathcal{B})$ is irr, *K*-stab in \mathcal{N}_{θ}^* , so dense in *K*-orb closure. Surjection $K \setminus \mathcal{B} \twoheadrightarrow K \setminus \mathcal{N}_{\theta}^*$. Problem: understand corr. GL(n): Robinson-Schensted.

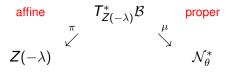


Understanding restriction to K

David Vogan

Assoc varieties for std reps

Recall gr $I(\lambda) \simeq$ pullback of $\mathcal{L}(\lambda + \rho - 2\rho_c)$ to $T^*_{Z(-\lambda)}\mathcal{B}$.



gr $I(\lambda) \simeq \mu_* \pi^* \mathcal{L}(\lambda + \rho - 2\rho_c)$, coh sheaf on $\mu(T^*_{Z(-\lambda)})$.

Similarly gr $I(\gamma, \Psi) \rightsquigarrow$ conorm geom $\rightsquigarrow K \setminus \mathcal{N}_{\theta}^*$. Two bases for $KC(\mathfrak{g}, K)$:

Langlands $[(\lambda, \Psi) \text{ final}, \lambda \text{ char of } H^{\theta}] / K \rightsquigarrow \text{gr } I(\lambda, \Psi)$ geometric orbit $K \cdot \xi \subset \mathcal{N}_{\theta}^*$, irr rep τ of $K^{\xi} \rightsquigarrow \Gamma[K \times_{K^{\xi}} E_{\tau}]$

Prob 1: *calculate* chg-bas-mtrx; KL → assoc var(irr).

Prob 2: *understand* chg-bas-mtrx; prove (nearly) triang, → (nearly) bijection between bases.

Problem 2 due to Lusztig in case $G(\mathbb{R})$ complex; resolved by Bezrukavnikov, Ostrik.

Understanding restriction to K

David Vogan

ntroduction Discrete series Standard reps Standard reps|_K Assoc varieties

Geom restr to K

Being guided through representation theory

Understanding restriction to *K*

David Vogan