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FOR SPLIT REAL GROUPS
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Abstract. We find a relationship between certain complementary series rep-
resentations for nonlinear coverings of split simple groups, and spherical com-
plementary series for (different) linear groups. The main technique is Bar-
basch’s method of calculating some intertwining operators purely in terms of
the Weyl group.

1. Introduction

Let G be the split real form of a connected reductive algebraic group G. Let
θ be a Cartan involution of G and K = Gθ the corresponding maximal compact
subgroup. Let B be a Borel subgroup of G with unipotent radical N . Then

A = B ∩ θB

is a θ-stable split Cartan subgroup of G. Notice the departure from standard
notation for real reductive groups, in which A often refers to the identity component
of a maximal split torus. We will write this identity component as A0. In our
notation, the Iwasawa decomposition is G = KA0N . Write

M = B ∩K = A ∩K ' Zn
2 ;

then

B = AN = MA0N.

Let a = Lie(A). For ν ∈ a∗C = HomR(a,C), the character eν of A0 extends naturally
to a character of B trivial on MN . Let

IG(ν) = IndG
B(eν)

(normalized induction) be the corresponding induced representation, a (possibly
non-unitary) spherical principal series representation. Let JG(ν) be the irreducible
spherical composition factor of IG(ν), i.e., the unique irreducible composition factor
containing the trivial representation K. Define the spherical complementary series
of G:

CS(G) = {ν ∈ a∗C | JG(ν) is unitary} ⊂ a∗C.
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(More precisely, we require that JG(ν) be infinitesimally equivalent to a unitary
representation.) This is a closed, Weyl group-invariant subset of the complex vector
space a∗C.

Apart from the exceptional groups of Type E, CS(G) has been explicitly com-
puted ([V2], [V3], [Ba1], [Ci]).

The goal of this paper is to consider a natural analogue of the spherical com-
plementary series for certain nonlinear groups, and to relate them to spherical
complementary series for linear groups. We begin by introducing the nonlinear
groups in question.

Definition 1.1. Assume that G is simple and simply connected. In this case the
split real form G is a connected Lie group. It turns out that G admits a unique

nontrivial two–fold cover G̃. That is, we have a short exact sequence of Lie groups

1 → {±1} → G̃ → G→ 1

with G̃ connected. (Such coverings have been studied by many people for a long
time. There are general results about coverings of algebraic groups in [St]. A
detailed description of coverings of real algebraic groups may be found in [A].) The

group G̃ is the nonlinear group we wish to study.

Write H̃ for the inverse image in G̃ of a subgroup H of G. A representation π

of H̃ is called genuine if π(−1) = −I . If π is irreducible, then π is genuine if and
only if π does not factor to H .

The subgroups A0 and N of B are connected and simply connected and hence

lift to subgroups of G̃. We therefore have a semidirect product decomposition

B̃ = ÃN = M̃A0N

with N normal. Fix an irreducible genuine representation δ̃ of M̃ . We also assume
that δ̃ is pseudospherical (Definition 4.9); this additional assumption is automatic

except for Sp(2n,R) and Spin(2n+ 1, 2n). For any ν ∈ a∗, δ̃ ⊗ eν defines a repre-

sentation of B̃. The pseudospherical principal series representation is

I eG(δ̃, ν) = Ind
eG
eB
(δ̃ ⊗ eν).

Just as in the spherical case, this principal series representation has a distinguished

irreducible composition factor J eG(δ̃, ν) containing a certain K̃–type (Proposition

5.2). Define the pseudospherical complementary series of G̃:

CS(δ̃, G̃) = {ν ∈ a∗C | J eG(δ̃, ν) is unitary}.

Again this is a closed Weyl group-invariant subset of the vector space a∗
C. It is

independent of the choice of pseudospherical representation δ̃ (cf. Lemma 5.4).

We are interested in comparing CS(δ̃, G̃) to the spherical complementary series
of a linear group G`. For example if G = SL(2,R) then (if we identify a∗

C with C
in such a way that the roots are ±2)

CS(G) = iR ∪ [−1, 1].

Here the imaginary axis corresponds to unitarily induced spherical principal se-
ries representations, the open interval (−1, 1) to Bargmann’s complementary series
representations, and the endpoints ±1 to the trivial representation. Similarly,

CS(δ̃, G̃) = iR ∪ [−1/2, 1/2].
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In this case the endpoints correspond to a summand of a metaplectic representation

of S̃L(2,R). The two sets CS(G) and CS(δ̃, G̃) are identical except for a scale factor
of 1/2.

In order to formulate such a comparison in general, we must first describe the
linear group G`. What we seek to achieve is that representation theory on the

nonlinear group G̃ should be formally similar to representation theory on the linear
group G`. (The most important point will be to relate the reducibility hyperplanes

for the pseudospherical principal series I eG(δ̃, ν) to the reducibility hyperplanes of

the spherical principal series IG`(ν`).) We therefore refer to G` as a linear reincar-

nation of G̃. It will be a split real form of a simple algebraic group G`, with a split
Borel subgroup and maximal torus B` ⊃ A`.

Write B`, A`,M `, and δ` (an arbitrary character of M `) for the objects on G`

corresponding to B, A, M , and δ on G. We say a principal series representa-
tion IG`(δ`, ν`) of G` is pseudospherical if its restriction to the identity component
(G`)0 of G` is spherical. The corresponding complementary series CS(δ`, G`) is
independent of δ`, and is equal to the spherical complementary series CS((G`)0).

The construction of G` will provide a natural covering homomorphism

(1.2) Ψ: A` → A.

The differential dΨ is an isomorphism which carries each coroot of G` to a multiple
(usually two) of a coroot of G. In particular, dΨ identifies the Weyl groups W and
W `.

The group G` and the homomorphism Ψ are analogues of the construction of
[Sa] and [Sa2] in the p-adic case. See Remark 7.3.

Here is our main conjecture.

Conjecture 1.3. Suppose G̃ is a double cover of a split real form of a simply
connected complex algebraic group (Definition 1.1). Let G` be the split linear group
described in Definitions 1.6 and 1.7. Fix a pseudospherical representation δ` of M `,

and a genuine pseudospherical representation δ̃ of M̃ . Then dΨt (cf. (1.2)) induces
a bijection

CS(δ̃, G̃) → CS(δ`, G`).

In the case of one root length or G2, G
` is locally isomorphic to G and dΨ is

multiplication by 2. If we replace G` with G (which does not affect Conjecture 1.3),

then the correspondence takes I eG(δ̃, ν) to IG(2ν). In this case the conjecture says

J eG(δ̃, ν) is unitary ⇔ JG(2ν) is unitary (G simply laced or G2).

This is known a posteriori for SL(n) [Hu1], [V2] and G2 [V3]; the case of SL(2)
follows from the classical description of complementary series given above. In the
case of two root lengths differing by a factor of two, G` is locally isomorphic to the
dual group of G.

Theorem 1.4. If G is a classical group then dΨt induces an injection

CS(δ̃, G̃) ↪→ CS(δ`, G`)

The case of G = Sp(2n,R) is particularly interesting. In this case G` = SO(n+
1, n); Ψ : A` ' A is an isomorphism, given by the identity map in the usual
coordinates. (One can find in Chapitre 6 of [Bo] an embedding of each simple
root system in a Euclidean space Rn. It is these embeddings that we call “usual
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coordinates.”) The correspondence J(δ̃, ν) → J(ν`) agrees with the Howe dual
pair correspondence. In this case we can prove Conjecture 1.3, which takes the
following form. Recall that the maximal compact subgroup K of Sp(2n,R) is

U(n). Its preimage K̃ in S̃p(2n,R) has a genuine character det1/2 whose square

is the determinant character of U(n). This character of K̃ is the representation
mentioned in Definition 1.1 as characterizing the distinguished composition factor

J(δ̃, ν) of I(δ̃, ν). That is, the irreducible representations of S̃p(2n,R) containing

det1/2 are precisely the various J(δ̃, ν).

Theorem 1.5. Suppose π is an irreducible representation of S̃p(2n,R) containing

the K̃-type det1/2. Let θ(π) denote the representation of SO(n+1, n) corresponding
to π via the Howe correspondence. Then π is unitary if and only if θ(π) is unitary.

This paper uses many of the ideas of [Ba1], and uses the main result of that
paper in the proof of Theorem 1.4. The main technique is to reduce the question of
unitarity of a representation π to the computation of the signature of its Hermitian
form restricted to the K-isotypic subspaces for certain “petite” representations of
K (Definition 4.9). On these K-types the Hermitian form is given by a formal
computation involving representations of Weyl groups. The resulting Weyl group

calculations for G̃ and G` are closely related, and this is enough to give the injection

of Theorem 1.4. This is all discussed in Section 13. For S̃p(2n) we use the dual
pair correspondence to obtain the reverse inclusions (Section 14).

We conclude this introduction with a little more information about the definition
of G`. Here is a precise description in case G is simply laced: that is, in case the
roots of G all have the same length. The description applies equally to groups of
type G2.

Definition 1.6. Suppose G is simple and simply connected, with maximal torus
A having Lie algebra a. The cocharacter lattice of A is

X∗(A) = R∨ ⊂ a,

the lattice of coroots. The character lattice is

X∗(A) = P ⊂ a∗,

the lattice of integral weights. The root lattice R is a sublattice in P of finite index,
and the integral coweight lattice P∨ contains R∨ with finite index.

An algebraic group covered by the simply connected group G is specified precisely
by its cocharacter lattice L. This can be any lattice between R∨ and P∨:

R∨ ⊂ L ⊂ P∨

When G is simply laced or of type G2, we define G` to be the group covered by G
and having cocharacter lattice

L =
1

2
R∨ ∩ P∨.

Clearly L contains R∨ (since R∨ is contained in both 1
2R

∨ and P∨), and L is con-

tained in P∨. Write A` for the torus of G` with cocharacter lattice L. Multiplication
by 2 defines a W -equivariant inclusion

Ψ: L→ R∨,
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and therefore by functoriality an algebraic map of tori

Ψ: A` → A.

This is the map of (1.2). Write G` for a split real form of G`, containing the split
real form A` of A`. The mapping Ψ defines

Ψ: A` → A,

which carries M ` into M and (A`)0 isomorphically onto A0, in a W -equivariant
way. Composition with the differntial dΨ defines a map on characters in the other
direction:

dΨt : a∗ → (a`)∗.

If we identify a with a` (as we may, since the corresponding groups are locally
isomorphic) then dΨt is just multiplication by 2.

In the same way, we have a map on characters

Ψt : {characters of M} → {characters of M `}.

We will see in Lemma 6.4 below that Ψt induces a natural simply transitive action of
the group of pseudospherical characters of M ` on the set of pseudospherical genuine

representations of M̃ . If we fix a single pseudospherical genuine representation of

M̃ , this means that we get a bijection

{genuine pseudosph. chars. of M̃} ↔ {pseudosph. chars. of M `}.

This bijection can be incorporated into Conjecture 1.3; it adds nothing to the
difficulty of proving the conjecture, but makes the statement more attractive. (One
may hope that the bijection will also be relevant to global statements relating
automorphic forms on linear and nonlinear groups.)

The description of G` in the remaining cases (Definition 6.1 below) is more
complicated; here are some of the main points.

Definition 1.7. Suppose G is a simply connected simple group not of type G2;
that is, that any two root lengths differ by a factor of one or two. We will define
in Section 6 a connected simple algebraic group G` with root system dual to that
of G. We let G` be a split real form. Because G` has the dual root system to that
of G, the Weyl groups W and W ` may be identified. The construction of G` will
provide a natural Weyl group-equivariant covering map

Ψ: A` → A.

Just as in the simply laced case, Ψt induces a natural simply transitive action
(explained in Lemma 6.4) of the group of pseudospherical representations of M ` on

the set of pseudospherical genuine representations of M̃ .

2. Representations of Covers of Abelian Groups

In this section H is an abelian Lie group with finite component group H/H0.

We consider the representation theory of a (possibly nonabelian) two-fold cover H̃
of G. This means that there is a short exact sequence

(2.1) 1 → {±1} → H̃
p
→ H → 1.
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A representation π of H̃ is called genuine if π(−1) = −I . Write Πg(H̃) and

Πg(Z(H̃)) for the set of equivalence classes of irreducible genuine representations

of H̃ and Z(H̃) respectively.

Proposition 2.2. For every χ ∈ Πg(Z(H̃)) there is a unique representation π ∈

Πg(H̃) for which π|Z( eH) is a multiple of χ. Denote this representation π(χ).

The map χ → π(χ) defines a bijection Πg(Z(H̃)) → Πg(H̃). The dimension of

π(χ) is n, and Ind
eH
Z( eH)

(χ) = nπ, where n = |H̃/Z(H̃)|
1
2 .

Proof. The key point is that if π is a genuine representation of H̃ then the character

θπ of π is supported on Z(H̃), as we now show. Suppose g ∈ H̃ − Z(H̃). Choose

h ∈ H̃ so that hgh−1 6= g. Since H is abelian p(hgh−1) = p(h)p(g)p(h)−1 = p(g),
so hgh−1 = −g. Computing θπ of both sides we have θπ(hgh−1) = θπ(g) =
χ(−1)θπ(g). Since χ is genuine χ(−1) = −1, so θπ(g) = 0.

Therefore every irreducible genuine representation of H̃ is determined by its

restriction to Z(H̃), and any two irreducible representations with the same central

character are isomorphic. Fix χ ∈ Πg(Z(H̃)). Let I(χ) = Ind
eH
Z( eH)

(χ). This

has central character χ, so there exists an irreducible representation π(χ), and

I(χ) = cπ(χ) for some integer c. The dimension of I(χ) is |H̃/Z(H̃)|, so

I(χ)|Z( eH) = |H̃/Z(H̃)|χ, dimπ(χ) = |H̃/Z(H̃)|/c.

By Frobenius reciprocity, it follows that

dim Hom eH(I(χ), I(χ)) = dim HomZ( eH)(I(χ)|Z( eH), χ) = |H̃/Z(H̃)|.

On the other hand, I(χ) is a direct sum of c copies of one irreducible representa-
tion (the complete reducibility following from finiteness of H/H0). Schur’s lemma
therefore implies that

dim Hom eH(I(χ), I(χ)) = c2.

Comparing these two formulas gives c = n, and the remaining claims are immediate.
�

For x, y ∈ H let x̃, ỹ be inverse images of x, y in H̃, and let {x, y} = x̃ỹx̃−1ỹ−1.
This is independent of the choices of x̃, ỹ, and is contained in ker(p) = {±1}. The

center of H̃ is the inverse image of the radical of this form: if we define

Z0(H) = p(Z(H̃))

then it follows that

(2.3) Z0(H) = {x ∈ H | {x, y} = 1 for all y ∈ H}.

3. The center of Ã

We return now to the setting of Definition 1.1: G is a connected, simple, simply

connected, algebraic group, with split real form G and nontrivial two-fold cover G̃.

The split torus Ã = M̃A0 of G̃ is a two-fold cover of A. To study principal series

of G̃ we need to understand the irreducible representations of Ã. By Proposition

2.2, we need to compute the center of Ã. Because the identity component A0 of Ã

is automatically central, it suffices to compute the center of M̃ . By (2.3) we need
to compute the radical of the commutator pairing (defined in Section 2).
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Let R∨ be the coroot lattice of A, and

P = HomZ(R∨,Z)

the dual lattice of integral weights. Write 〈, 〉 for the canonical pairing P ×R∨ → Z.
Since G is simply connected, the character and cocharacter lattices of A are

P = X∗(A), R∨ = X∗(A).

Consequently

(3.1) A = R∨ ⊗Z C×, A = R∨ ⊗Z R×

via the homomorphism λ∨ ⊗ x 7→ λ∨(x). In particular, the subgroup M of A
(consisting of all elements of order 2) may be identified as

(3.2) M = R∨/2R∨

via the homomorphism λ∨ 7→ λ∨(−1).
We recall the definition of the Hilbert symbol over R: for x, y ∈ R× we have

(x, y)R =

{
−1 x < 0, y < 0

1 else.

The rational vector space R∨⊗ZQ carries a Weyl group-invariant positive definite
quadratic form (·, ·), unique up to a positive scalar multiple (which we will fix in
a moment). By duality this form induces a positive quadratic form (still written
(·, ·)) on P ⊗Z Q, which contains the roots. In this dual form, the roots have at
most two (squared) lengths. Roots of the greater (or only) root length are called
long, and the other roots (if any) are called short. We normalize the quadratic form
so that the greater (or only) root length is 2:

(α, α) = 2 if α is a long root.

Because the natural pairing of a root with its coroot is equal to 2, this requirement
is equivalent to

(α∨, α∨) = 2 if α is a long root.

The other root length is equal to 1 in types Bn, Cn, and F4, and equal to 2/3 in
type G2. Short coroots have (squared) length 2; the other coroot length is 6 for G2

and 4 in types Bn, Cn, and F4.
We emphasize that in the simply laced case, all roots are called long.
With this normalization, the quadratic form takes integer values on the coroot

lattice R∨. By [Ma] the commutator for Ã is given on A by

(3.3) {γ∨ ⊗ x, λ∨ ⊗ y} = (x, y)
(γ∨,λ∨)
R (γ∨, λ∨ ∈ R∨;x, y ∈ R×).

The quadratic form (, ) is positive definite, and in particular non-degenerate. It
therefore induces an isomorphism (from left to right)

R∨ ⊗ Q ' HomQ(R∨ ⊗ Q,Q).

Since P ' HomZ(R∨,Z) we obtain an isomorphism (in the opposite direction)

(3.4)(a) Γ: P ⊗ Q ' R∨ ⊗ Q.

Tracing through the definitions we see that

(3.4)(b) 〈λ, γ∨〉 = (Γ(λ), γ∨) (λ ∈ P, γ∨ ∈ R∨).
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In particular we conclude

(3.4)(c) Γ(P ) = {γ∨ ∈ R∨ ⊗ Q | (γ∨, α∨) ∈ Z for all α∨ ∈ R∨}.

Except in the case of Cn or G2, Γ is the identity in the usual coordinates ([Bo],
Chapitre 6). For Cn (respectively G2) we have Γ = 1/2 (respectively 1/3).

Let

c = maxα,β
(α, α)

(β, β)
∈ {1, 2, 3}.

Let t(α) = 1 if α is long, and c if α is short.

Lemma 3.5. For all roots α

Γ(α) =
1

t(α)
α∨

=
2α∨

(α∨, α∨)
.

Proof. Fix a long root β, so ||β∨||2 = 2. That Γ commutes with the simple reflection
sα is equivalent to Γ(α) = τ(α)α for some τ(α) ∈ Q. By (3.4)(b) we have

2 = 〈α, α∨〉 = (τ(α)α∨ , α∨)

= τ(α)(||α∨||2/||β∨||2)||β∨||2

= 2τ(α)||β||2/||α||2

so τ(α) = ||α||2/||β||2. For the final equality note that

||α||2/||β||2 = ||β∨||2/||α∨||2 = 2/||α∨||2.

�

From (3.4)(b) and Lemma 3.5 we have the following useful formulas (for α any
root).

t(α)〈α,Γ(λ)〉 = 〈λ, α∨〉 (λ ∈ P ⊗Z Q)(3.6)(a)

t(α)〈α, γ∨〉 = (α∨, γ∨) (γ∨ ∈ R∨).(3.6)(b)

Note that (3.6)(a) implies that for λ ∈ P ⊗Z Q, 〈α,Γ(λ)〉 ∈ Z if and only if
1

t(α) 〈λ, α
∨〉 ∈ Z. In particular if G is simply laced we conclude

(3.7) Γ(R) = R∨, Γ(P ) = P∨.

Another convenient formula for the commutator is Lemma 4.8 below.
The following lemma is similar to [Sa, Section 2.2] and [Sa2, page 117].

Lemma 3.8. In the identification (3.2) of M with R∨/2R∨, the preimage of the

center of M̃ is

(3.9) Z0(M) ' [2Γ(P ) ∩R∨]/2R∨.

Proof. By (3.3) the commutator on M is given by

{γ∨(−1), λ∨(−1)} = (−1)(γ
∨,λ∨) (γ∨, λ∨ ∈ R∨).

By (3.4)(c) we conclude γ∨(−1) ∈ Z0(M) ⇔ γ∨ ∈ 2Γ(P ) which gives (3.9).
�

It is sometimes convenient to use the following commutator formula.
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Lemma 3.10. Suppose g ∈ A, α∨ is a coroot, and x ∈ R×. Then

(3.11) {g, α∨(x)} = (α(g), x)
t(α)
R

where t(α) = 1 if α is long, and c if it is short.

Proof. It is enough to check this for g = β∨(y) for β∨ ∈ R∨. The left hand side is

then (y, x)
(β∨,α∨)
R . The right hand side is

(α(β∨(y)), x)
t(α)
R = (y〈α,β∨〉, x)

t(α)
R = (x, y)

t(α)〈α,β∨〉
R

The result follows from (3.6)(b). �

In the simply laced case the result is particularly simple.

Lemma 3.12. If G is simply laced or of type G2, then Z(M̃) = Z(G̃) and Z(Ã) =

Z(G̃)A0.

Proof. The hypothesis means that t(α) is always odd, and therefore it can be
dropped from (3.11) (since the values of the Hilbert symbol are ±1). It follows
immediately that Z0(M) = {m ∈ M |α(m) = 1 for all α} = Z(G). Similarly
Z0(A) = {g ∈ A |α(g) > 0 for all α}. It is easy to see this is precisely Z(G)A0. �

Using Lemmas 3.8 and 3.12 it is easy to compute Z0(M) in each case. Its

cardinality (equal to the number of irreducible genuine representations of M̃) is
given in Table 1 in Section 6.

Example 3.13. Let G = Spin(n, n) or Spin(n + 1, n). In the usual coordinates
P = Zn∪(Z+ 1

2 )n and R∨ = Zn
e (elements of Zn for which the sum of the coordinates

is even). We conclude

2Γ(P ) ∩ R∨ =

{
2Zn ∪ (2Z + 1)n n even

2Zn n odd

and |Z0(M)| = 4 or 2 respectively.
Let λ∨ = (2, 0, . . . , 0) in R∨, and γ∨± = (1, 1, . . . ,±1) (which is in R∨ if n is

even). Then Z0(M) contains λ∨(−1), and also γ∨±(−1) if n is even.

Example 3.14. Let G be the split group of type F4. Then in the usual coordinates,
representatives for 2Γ(P ) ∩ R∨/2R∨ are 0, (2, 0, 0, 0), (±1, 1, 1, 1).

4. Pseudospherical Principal Series

In this section we recall some additional structure for split real groups. In order

to treat at the same time the nonlinear group G̃ of Definition 1.1 and the linear
group G` (whose definition will be completed in Section 6), it is convenient for this
section to weaken our assumptions on G and to work in the following setting.

Definition 4.1. Assume that G is a split real form of a connected reductive al-
gebraic group, with Cartan involution θ, Borel subgroup B, and split maximal
torus

A = B ∩ θB ⊂ B.

Assume that G̃ is a (possibly trivial) two-fold cover of G; that is, that we have a
short exact sequence of Lie groups

1 → {±1} → G̃→ G → 1.
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In general we write H̃ for the preimage in G̃ of any subgroup H of G. A represen-

tation π of H̃ is called genuine if π(−1) = −I . Write N for the unipotent radical
of B and A0 for the identity component of A. Because these groups are simply
connected, their coverings must split. We identify

N = identity component of Ñ ,

and similarly for A0.

If we choose G̃ to be the trivial cover G×{±1}, then genuine representations of

G̃ may be identified with representations of G. Therefore a discussion of “genuine

representations of G̃” in the setting of Definition 4.1 covers both split linear groups
and the nonlinear groups of Definition 1.1.

Let N(Ã) be the normalizer of Ã in G̃, and let W = N(Ã)/Ã (the Weyl group

of Ã in G̃). This group is independent of the covering, and may be identified
(through its action on the Lie algebra a) with the Weyl group of the root system

of G. Because Ã may be nonabelian, the action of N(Ã) on Ã may not factor to

an action of W ; but we do obtain an action of W on Z(Ã). In any case N(Ã) acts

on Πg(Ã) (the set of genuine irreducible representations of Ã) by

(4.2) (g · π)(a) = π(g−1ag) (π ∈ Πg(Ã), g ∈ N(Ã), a ∈ Ã).

This factors to an action of W on Πg(Ã) in all cases: if g ∈ Ã then π ' g · π, with

intertwining operator π(g−1). For w ∈ W and χ a genuine character of Z(Ã) we
have (in the notation of Proposition 2.2)

π(χ)w ' π(χw).

Corresponding statements hold with M̃ in place of Ã.
We denote (real) Lie algebras by the corresponding Gothic letter g, k, a, etc.
Let α be a root of a in g. Choose a Lie algebra homomorphism

φα : sl(2,R) −→ g

and define

(4.3) Zα = φα

(
0 1
−1 0

)
∈ k

as in [V4, 4.3.6]. (This means that φα carries the diagonal torus in sl(2,R) into
a, the upper triangular matrices into the root space gα, and so(2) into k.) The
homomorphism φα is unique up to conjugation of sl(2,R) by the diagonal matrix
with entries i and −i. In particular, this means that the Lie algebra element Zα is
defined only up to sign.

Exponentiating we obtain homomorphisms

Φ̃α : S̃L(2,R) → G̃, Φα : SL(2,R) → G.

Here S̃L(2,R) is the unique nontrivial two-fold cover of SL(2,R). If G̃ is linear then

Φ̃α factors through SL(2,R); otherwise this may or may not be the case.

Definition 4.4. A root α is said to be metaplectic if Φ̃α does not factor to SL(2,R).
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Lemma 4.5 (for example, [A, Theorem 1.6]). Suppose G̃ is the nontrivial double
cover of the group of real points of a simply connected simple split group. If G is
not of type G2, then α is metaplectic if and only if α is long. If G is of type G2,
then all roots are metaplectic.

Let

(4.6) m̃α = exp eG(πZα) ∈ M̃.

Changing the choice of φα replaces Zα by −Zα, and so replaces m̃α by m̃−1
α . The

image of m̃α in G is
mα = expG(πZα) ∈M.

If α is not metaplectic—for example if G̃ is linear—then m̃α has order 2 and is
independent of the choice of Φα, as in [V4, 4.3.6]. Almost as the definition of the
coroot α∨, we have

Φα

(
t 0
0 t−1

)
= α∨(t).

In particular,

(4.7) mα = α∨(−1) ∈ A.

If α is metaplectic, then m̃α does depend on the choice of Φα; changing the
choice replaces m̃α by m̃−1

α . More explicitly, recall that {±1} is the kernel of the

covering map from G̃ to the linear group G. Then m̃α has order 4, m̃2
α = −1 and

m̃−1
α = −m̃α. Let

h1 = exp

(
0 π
−π 0

)
, h2 = exp

(
0 −π
π 0

)

be the two elements of S̃L(2,R) lying over −I ∈ SL(2,R). Then

m̃α = Φ̃α(h1).

We have h4
i = 1 and h2 = h−1

1 .
The following formula is an immediate consequence of (3.3), Lemma 3.5, and

(4.7).

Lemma 4.8. Suppose G̃ is the nontrivial double cover of the group of real points
of a simply connected simple split group. For all roots α, β,

{mα,mβ} =

{
(−1)〈α,β∨〉 α, β metaplectic

1 else.

Definition 4.9. Suppose G̃ is a split group as in Definition 4.1.

(1) An irreducible representation δ̃ of M̃ is pseudospherical if −1 is not an

eigenvalue of δ̃(m̃α) for any α.

(2) An irreducible representation µ of K̃ is




pseudospherical

fine

petite

if |γ| ≤





1
2

1

2

respectively, for every root α and every eigenvalue γ of dµ(iZα). More
generally, we say a K-type µ is level k if |γ| ≤ k for every α and every
eigenvalue γ of dµ(iZα).
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(3) A representation of G̃ is pseudospherical if it contains a pseudospherical

K̃-type.

Because Zα is defined using a generator for the Lie algebra of SO(2) or its double
cover, every eigenvalue γ of dµ(iZα) belongs to 1

2Z (if α is metaplectic) or to Z (if
not).

Remark 4.10. Suppose δ̃ is genuine. If α is metaplectic then condition (1) in

Definition 4.9 is automatic: m̃2
α = −1 and the only possible eigenvalues of δ̃(m̃α)

are ±i, independent of the choice of m̃α. In particular if G̃ is simply laced or of

type G2 then every irreducible genuine representation of M̃ is pseudospherical.
Suppose α is not metaplectic. Because m̃2

α = 1, δ̃(m̃α) has eigenvalues ±1. Note

that the inverse image in G̃ of mα ∈ G consists of ±m̃α. If δ̃ is genuine then
δ̃(−m̃α) = −δ̃(m̃α). Thus the definition of pseudospherical depends on the fact
that we have specified m̃α to be the unique inverse image of mα that is in the
image of Φα.

Lemma 4.11. Suppose that G̃ is as in Definition 4.1, and δ̃ is an irreducible

genuine representation of M̃ .

(1) Suppose β is a root of A in G that is not metaplectic (Definition 4.4), so

that Φ̃β : SL(2,R) → G̃. Then the element m̃β of (4.6) has order at most

2, and belongs to Z(M̃).

(2) The representation δ̃ is pseudospherical if and only if δ̃(m̃β) = 1 for all non-

metaplectic roots β. This is a condition on the central character δ̃|
Z(fM)

.

(3) The action of the Weyl group W on irreducible genuine representations of

M̃ fixes each pseudospherical representation.

(4) Define Z0(M) to be the preimage in M of Z(M̃), and Z0(M) its quotient by
the subgroup generated by elements mβ for β not metaplectic. Then there

is natural simply transitive action of the group of characters of Z0(M) on

genuine pseudospherical representations of M̃ . The character χ acts on

δ̃ by tensoring the central character of δ̃ with the pullback of χ to Z(M̃).
Equivalently, one can choose any extension of χ to a character χ of M ,

and tensor δ̃ with the pullback of χ to M̃ .

Proof. In (1), that m̃β has order at most 2 is immediate from the definition of

metaplectic (see (4.6)). If m̃ ∈ M̃ , then

(4.12) Ad(m̃)(Zα) = α(m̃)Zα = ±Zα.

Multiplying by π and exponentiating gives

(4.13) m̃m̃αm̃
−1 = m̃α( em)

α .

If m̃β has order at most 2, then this reads

m̃m̃βm̃
−1 = m̃±1

β = m̃β,

proving that m̃β is central in M̃ .
For (2), Remark 4.10 shows that the condition of being pseudospherical depends

only on the non-metaplectic roots β; the rest of the statement follows from (1).
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For (3), suppose that χ ∈ Πg(Z(M̃)) is the central character of a pseudospherical

representation of M̃ . By Proposition 2.2, it is enough to show that sαχ = χ for
every simple reflection sα ∈W . To see this, define

(4.14) σ̃α = exp eG(πZα/2).

The image of σ̃α in G is

σα = expG(πZα/2) = Φα

(
0 1
−1 0

)
,

a representative for the reflection sα in the Weyl group. We wish to show that

(4.15) χ(σ̃−1
α m̃σ̃α) = χ(m̃)

for all m̃ ∈ Z(M̃).
Multiplying (4.12) by π/2 and exponentiating gives

m̃σ̃αm̃
−1 = σ̃α( em)

α =

{
σ̃α if α(m̃) = 1

σ̃αm̃
−1
α if α(m̃) = −1.

We multiply this equation by σ̃−1
α on the left and by m̃ on the right, obtaining

σ̃−1
α m̃σ̃α =

{
m̃ if α(m̃) = 1

m̃−1
α m̃ if α(m̃) = −1.

The left side of (4.15) is therefore

(4.16) χ(σ̃−1
α m̃σ̃α) =

{
χ(m̃) if α(m̃) = 1

χ(m̃−1
α m̃) if α(m̃) = −1.

We now consider two possibilities. If α is not metaplectic, then χ(m̃α) = 1 by (2),
so both cases of (4.16) are equal to χ(m̃), as we wished to show.

If α is metaplectic, then m̃−1
α = −m̃α (see the discussion after (4.7)). Now (4.13)

and the assumption that m̃ is central in M̃ imply that α(m̃) = 1. We are therefore
in the first case of (4.16), so we have χ(m̃), as we wished to show.

Part (4) follows from the description of genuine representations of M̃ in Propo-
sition 2.2. �

Remark 4.17. For a discussion of fine K-types for linear groups see [V4, 4.3].
Petite K-types are discussed in Section 12.

Here is a characterization of petite representations of K̃ in terms of their highest

weights. Because the group K̃ may be disconnected, a little care is required in

talking about highest weights. If G̃ is nonlinear, then K̃ is connected, and the

group TK in the following lemma is a maximal torus. If G̃ is linear, then its Cartan
subgroups are abelian; so TK is an abelian subgroup of K containing a maximal
torus. We write X∗(TK) for the abelian group of characters of TK ; this maps
by restriction onto the lattice X∗(T 0

K) of characters of the maximal torus. Each
imaginary root β gives rise to a three-dimensional root subalgebra of g, which is
isomorphic either to sl(2,R) (if β is noncompact) or to su(2) (if β is compact).
These isomorphisms ψβ may be chosen to satisfy

ψβ(so(2)) ⊂ tK
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in both cases, and we may calculate the coroot as

β∨ = ψβ

(
0 i
−i 0

)
∈ itK .

If β is noncompact, the map ψβ may exponentiate only to the double cover S̃L(2,R),
and so the coroot β∨ may take half integer values on the differential of a character
of TK . This explains how half integers can arise in the lemma.

Lemma 4.18. Suppose G̃ is a split group as in Definition 4.1, and suppose µ is

an irreducible representation of K̃. Choose a fundamental θ-stable Cartan subgroup

Tf of G̃. Thus TK = Tf ∩ K̃ contains a maximal torus of K̃. Let λ ∈ X∗(TK) be
a highest weight of µ (with respect to some choice of positive roots). If G is of type
B2n+1 or G2, let

C = {noncompact imaginary roots β of Tf in G}.

Otherwise let

C = {imaginary roots β of Tf in G | β is noncompact long, or compact short}.

If β ∈ C then 〈λ, β∨〉 ∈ 1
2Z is defined. The representation µ is level k (Definition

4.9) if and only if

〈λ, β∨〉 ≤ k for all β ∈ C.

Proof. If α is a root of a, then Zα ∈ tK for some fundamental Cartan subalgebra
tf . The definition of level is in terms of the eigenvalues of the elements iZα; so we
need to identify these elements in terms of the coroots of imaginary roots. This can
be done using the theory of Cayley transforms ([Sc], Proposition 2.16; [Kn], pages
417–420; [V4, 4.3.6]).

A Cayley transform c from a to tf may be defined by a maximal set S of strongly
orthogonal roots of a. For each root α in this set, the definition of c identifies iZα

with a noncompact imaginary coroot (of the same length). If α is a long root of
a then we may choose S containing α, and it follows that iZα is conjugate to the
coroot for a long noncompact imaginary root. If α is short the same argument
applies in type B2n+1 or G2.

The remaining cases are groups of type B2n, Cn, or F4, in which a maximal
strongly orthogonal set of roots must consist entirely of long roots. In this case
one can also construct tf from a using a different maximal set S ′ of orthogonal
roots, including exactly two short roots α and α′. In this case, a calculation in type
B2 shows that iZα is conjugate to the coroot corresponding to a short compact
imaginary root.

So we may suppose that iZα is equal to an imaginary coroot β∨. The eigenvalue
of iZα on the γ-weight space of µ is 〈γ, β∨〉. If in addition β is K-dominant (as
we may as well assume, since S is invariant under the compact Weyl group), then
〈γ, β∨〉 ≤ 〈λ, β∨〉. The result follows. �

Lemma 4.19. Suppose G is a split linear group as in Definition 4.1. Let δ be a
character of M , and let µ be an irreducible representation of K.

(1) The character δ is pseudospherical if and only if δ(mα) = 1 for every root
α (cf. (4.6)); equivalently, if and only if δ restricted to M ∩G0 is trivial.

(2) The representation µ is pseudospherical if and only if its restriction to K ∩
G0 = K0 is trivial.



UNITARY SHIMURA CORRESPONDENCES 15

(3) The natural surjections

M � G/G0, K � G/G0

identify the characters of the component group of G with the pseudospherical
representations of M and K.

Proof. The first condition in (1) is clear from the definition of pseudospherical; or
it is a special case of Lemma 4.11. Since M ∩ G0 is generated by the elements
{mα}, the second condition in (1) follows. Computing in SO(2) (mapped into K
by the homomorphism Φα of (4.3)), we see that dµ(iZα) can have only integer
eigenvalues. Therefore µ pseudospherical implies dµ(iZα) = 0. The root space
decomposition of g shows that the various {Zα} span the Lie algebra of K, and (2)
follows. Statement (3) is an elementary consequence of (1) and (2).

�

From the point of view of unitarity, studying pseudospherical representations of
a linear group is equivalent to studying spherical representations, as the next lemma
shows. We have included pseudospherical (and not just spherical) representations
of linear groups primarily because of the bijection of Lemma 6.4.

Lemma 4.20. (1) Suppose G is a Type I group, and H ⊂ G is a subgroup of
finite index. Then an irreducible representation π of G is unitary if and
only if any, equivalently every, summand of π restricted to H is unitary.

(2) Suppose G is a split linear group. Then for all pseudospherical characters
δ of M and ν ∈ a∗, IG(δ, ν)|G0 ' IG0(ν), and JG(δ, ν)|G0 ' JG0(ν). In
particular CS(δ,G) = CS(G0) (notation as in Definition 1.1).

(3) Suppose G,G′ are split linear groups with a finite number of connected com-
ponents, which are locally isomorphic, and δ, δ′ are pseudospherical. Then
(if we identify a and a′ by the local isomorphism) CS(δ,G) = CS(δ′, G′).

Proof. Statement (1) is elementary, and (2) follows from the fact that G = G0A. A
spherical representation of G factors to G/Z for any finite subgroup Z of the center
of G, since Z is contained in K, and (3) follows easily. �

A description of the pseudospherical representations for certain disconnected
groups is found in Table 3. The pseudospherical representations of nonlinear groups
will be discussed in Section 5.

5. Pseudospherical representations of nonlinear groups

In this section G is simple, simply connected, with split real form G, and G̃ is the
nontrivial two-fold cover of G. Our goal is to describe precisely the pseudospher-

ical representations of M̃ and of K̃. More general results (applicable to arbitrary
coverings of arbitrary real reductive groups) may be found in [W, 11.A.2]. In our
special setting it is possible to get some additional explicit information about the
representations, which we will use in the proof of Theorem 1.4. For this reason we
give proofs of the results.

We first compute the pseudospherical representations of M̃ . Recall (Proposition

2.2) that the irreducible genuine representations of M̃ are parametrized by genuine

characters of Z(M̃).
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Lemma 5.1. (1) Suppose G 6' Spin(2n + 1, 2n) or Sp(4n,R). Restriction to

Z(G̃) defines a canonical bijection between the genuine pseudospherical rep-

resentations of M̃ and the genuine characters of Z(G̃).

(2) If G = Spin(2n + 1, 2n) or Sp(4n,R) then M̃ has exactly two genuine

pseudospherical representations. These have the same restriction to Z(G̃).

The pseudospherical representations of M̃ are listed in Table 1.

Proof. Suppose G is simply laced or of type G2. Then every root is is metaplectic

and therefore (Remark 4.10) every irreducible genuine representation of M̃ is pseu-

dospherical. On the other hand Z(G̃) = Z(M̃) in this case (Lemma 3.12), and the
result follows.

The case of Sp(2n,R) is well-known; see Section 12.2. There are two pseudo-

spherical one-dimensional representations det±1/2 of K̃, whose restrictions δ̃± are

the pseudospherical representations of M̃ . These satisfy δ̃∗+ ' δ̃−. If n is odd then

Z(G̃) ' Z/4Z and δ̃± have distinct characters when restricted to Z(G̃). If n is even

then Z(G̃) ' Z/2Z × Z/2Z and δ̃± have the same central character.
Let G = Spin(n + 1, n), n ≥ 2. See Example 3.13. For all short roots α, mα is

the unique nontrivial central element of G. Because α is not metaplectic, it follows
that

Z(G̃) = {1,−1, m̃α,−m̃α} ' (Z/2Z)2.

Therefore every genuine pseudospherical representation of M̃ has the same char-

acter when restricted to Z(G̃) (trivial on m̃α, and −1 on −1); in fact a genuine

representation of M̃ is pseudospherical if and only if it has this restriction. Let χ be
a character of Z0(M) such that χ(mα) = −1; regard χ as a (non-genuine) character

of Z(M̃). Then for any genuine character ξ̃ of Z(M̃), precisely one of ξ̃ and χ⊗ ξ̃

is pseudospherical. From Table 1 we conclude G̃ has two genuine pseudospherical
representations if n is even, and one if n is odd. The result follows in this case.

Suppose G is of type F4. In this case Z(G) is trivial and Z0(M) is generated

by {mα |α short} (cf. Example 3.14). It follows that Z(M̃) is an elementary two-
group, and has exactly one genuine pseudospherical representation. �

Proposition 5.2. Let (δ̃, Fδ̃) be a pseudospherical representation of M̃ . There is

a unique pseudospherical representation (µ(δ̃), Fδ̃) of K̃ such that µ(δ̃)|fM
= δ̃. The

map δ̃ → µ(δ̃) is a bijection between the pseudospherical representations of M̃ and

K̃.

Proof. Essentially this may be found in Section 6 of [V0], but we repeat the ar-

gument for completeness. If δ̃ is not genuine, this is Lemma 4.19; so assume δ̃ is
genuine.

Fix a root α. Since m̃4
α = 1, the possible eigenvalues of δ̃(m̃α) are {±1,±i}.

Since δ̃ is pseudospherical, −1 does not occur. Therefore Fδ̃ is the sum of the
three eigenspaces Fδ̃(α, 1) and Fδ̃(α,±i). Let log be the principal branch of the
logarithm; recall that

log(1) = 0, log(i) = iπ/2, log(−i) = −iπ/2.

Recall (4.6) m̃α = exp(πZα), so (if µ exists) dµ(Zα) must preserve the γ eigenspace
Fδ̃(α, γ), and must act there with eigenvalues λ ∈ 1

π log(γ) + 2iZ. The requirement
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that µ be pseudospherical means that |iλ| ≤ 1/2. This means that we are forced
to define

(5.3) dµ(Zα)v =
log(γ)

π
v (v ∈ Fδ̃(α, γ)).

A little more informally,

dµ(Zα) =
log(δ̃(m̃α))

π
.

This defines dµ(Zα) ∈ Aut(Fδ̃). Note that the eigenvalues of dµ(iZα) are equal to
0 or ±1/2, so µ is pseudospherical if it is a representation.

The root space decomposition of g shows that the Zα are a basis of k, so dµ is a
well-defined map k → Aut(Fδ̃).

Uniqueness of µ is now clear: if µ is pseudospherical this is the only possible
choice of dµ. For existence, we must show first that the linear map dµ is a repre-
sentation of k. That is, for any two roots α and β, we must show that

dµ([Zα, Zβ]) = [dµ(Zα), dµ(Zβ)].

This reduces to a rank two calculation, as follows. Let H be the subgroup of

G generated by the root subgroups for ±α and ±β, and H̃ its inverse image in

G̃. The pseudospherical representation δ̃ of M̃ is the sum of irreducible genuine

pseudospherical representations δ̃H of M̃H = M̃ ∩ H̃. If we can prove our claim for

H̃—that is, show that each δ̃H defines a representation dµH of h∩ k by the formula
(5.3)—then the commutation relation we want for Zα and Zβ follows. Evidently
H is a connected split semisimple group of type A1 × A1, A2, B2, or G2. In the
first case the claim is obvious. In the remaining cases, the assumption that G is
simply connected implies that H must also be simply connected; so H is SL(3,R),
Sp(4,R), or the split real form of G2.

If the covering H̃ is trivial, then none of the roots of H can be metaplectic, so
δ̃H is trivial on all m̃γ . It follows that dµH is trivial on h∩ k, and in particular dµH

is a representation.

We may therefore assume that the covering H̃ is not trivial; so it is the covering
of Definition 1.1. We need to consider each genuine pseudospherical representations

δ̃H of M̃H , and show that dµH is a Lie algebra representation. If µ′ is any irreducible

genuine pseudospherical representation of K̃H = H̃ ∩ K̃, then the arguments above
show that µ′ restricts to an irreducible genuine pseudospherical representation δ′

of M̃H , and that dµ′ is the linear map defined by δ′. This establishes our claim
for all such δ′. It therefore suffices to show that the number of irreducible genuine

pseudospherical representations of K̃H is equal to the number of irreducible genuine

pseudospherical representations of M̃H . These numbers (one, two, and one in the
cases A2, B2, and G2) may be found in Tables 1 and 2. (They are computed using
Lemma 4.18 and Lemma 6.3 below.)

This proves that dµ is indeed a representation of the Lie algebra k. To check that

dµ exponentiates to the group K̃, the simplest approach is to use the fact that K̃ is
simply connected except in type Cn. We will give a different argument, which can
be generalized to show (for any reductive groupG) that “(k,M)-modules” satisfying
some simple compatibility conditions must always exponentiate to K.

It is enough to restrict attention to a maximal torus in K̃. We can construct
such a torus using a maximal strongly orthogonal set of roots α1, . . . , αn. These



18 J. ADAMS, D. BARBASCH, A. PAUL, P. TRAPA, AND D. A. VOGAN, JR.

roots define by (4.3) a group homomorphism

Φ̃ = Φ̃α1
× · · · × Φ̃αn

: S̃O(2)n → K̃.

The group

T̃ = Φ̃(S̃O(2)n)

is a maximal torus in K̃. By construction (because the eigenvalues involved were

half integers) it is clear that dµ exponentiates to a representation µfSO
of S̃O(2)n.

Write xi for an element of order 4 in S̃O(2)i; that is,

Φ̃(xi) = m̃αi
.

Because αi is a well-defined character of T̃ , corresponding to the character 2 of
SO(2)i, it follows that

ker Φ̃ = Q ⊂ 〈xi | 1 ≤ i ≤ n〉 = (Z/4Z)n.

In order to show that µfSO
descends to T̃ , we must show that it is trivial on Q. But

we also have a short exact sequence

1 → Q→ 〈xi〉 → 〈m̃αi
〉 → 1.

Since µfSO
(xi) = δ̃(m̃αi

), it follows that µfSO
descends to δ̃ on 〈m̃αi

〉, and therefore

must be trivial on Q. Therefore µ exponentiates to T̃ and consequently to K̃.
�

Suppose g ∈ G(C) normalizes G. Because the covering G̃ is canonical, the action

of g on G lifts uniquely to an action on G̃.

Lemma 5.4. NormG(C)(G) acts transitively on the irreducible genuine pseudo-

spherical representations of M̃ and K̃.

Proof. The simplest proof is to check in each case that NormG(C)(G) acts transi-

tively on the irreducible genuine pseudospherical K̃-types (cf. Table 2). For example
if G = SL(2n) then the action of element diag(−ζ, ζ, . . . , ζ), where ζ2n = −1, in-
terchanges Spin+ and Spin−. (It is easier to realize this automorphism of SL(2n)
as conjugation by diag(−1, 1, . . . , 1) ∈ GL(2n)). It is helpful to keep in mind that

the map µ→ µ∗ (sending a representation of K̃ to its dual) may be realized as the
action of an element of G(C). �

The significance of this result is that it implies CS(δ̃, G̃), for δ̃ pseudospherical,

is independent of δ̃. Compare Lemma 4.20.
Finally we can complete the definition of the representations J(δ̃, ν) appearing

in the introduction.

Definition 5.5. Suppose δ̃ is an irreducible genuine pseudospherical representation

of M̃ . Let µ(δ̃) be the irreducible representation of K̃ given by Lemma 4.19 and

Proposition 5.2. Notice that Frobenius reciprocity implies that µ(δ̃) occurs with

multiplicity one in I(δ̃, ν). We let J(δ̃, ν) be the unique irreducible constituent of

I(δ̃, ν) containing µ(δ̃).
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It can be shown (compare [V4, 6.6.15]) that J(δ̃, ν) coincides with the (unique)

Langlands subquotient of I(δ̃, ν).
As a consequence of Proposition 5.2, Lemma 4.11, and Harish-Chandra’s sub-

quotient theorem, the representation J(δ̃, ν) is the unique irreducible representation

of G̃ containing the K-type µ(δ̃) and having infinitesimal character ν. We will use
this observation to calculate theta correspondences in Section 14.

The following proposition summarizes the conclusions of this section.

Proposition 5.6. There are canonical bijections between the following sets:

(1) irreducible genuine pseudospherical representations of M̃ ;

(2) irreducible genuine pseudospherical representations of K̃; and

(3) genuine pseudospherical principal series representations of G̃ with fixed in-
finitesimal character.

If G 6' Sp(4n,R) or Spin(2n + 1, 2n) (n ≥ 1) these sets are also in canonical
bijection with

(4) genuine characters of Z(G̃).

6. The group G`

We continue with the notation of the preceding section.

Definition 6.1. In order to describe G`, we begin with its root system ∆`:

∆` =

{
∆ G simply laced or type G2

∆∨ G not of type G2

Of course the simply laced groups fall into both cases; but then ∆ is naturally
isomorphic to ∆∨ by the map Γ (cf. (3.7)). Notice that there is a natural bijection
α↔ α` between ∆ and ∆`, defined by

α` =

{
α G simply laced or type G2

α∨ G not of type G2

This bijection provides an identification of Weyl groups

W (∆) 'W (∆`), sα ↔ sα` .

Write
R` ⊂ P ` ⊂ (a`)∗

for the root lattice, integral weight lattice, and ambient vector space of ∆`; similarly
we write

(R`)∨ ⊂ (P `)∨ ⊂ a`

for the coroot and integral coweight lattices.
To complete the definition of G`, we must describe its coweight lattice L,

(R`)∨ ⊂ L ⊂ (P `)∨.

The definition is

L =

{
{γ ∈ P∨ | 2γ ∈ R∨} G simply laced or type G2

{γ ∈ P | 2Γ(γ) ∈ R∨} G not of type G2

Notice first of all that (P `)∨ is equal to P∨ in the first case and to P in the second
case, so L is actually a sublattice of (P `)∨. Next, the two definitions agree in the
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simply laced case, since we are using Γ to identify P with P ∨ then. Finally, the
fact that L ⊃ (R`)∨ is obvious in the first case, and is a consequence of Lemma 3.5
in the second.

We can now define a linear reincarnation of G̃ as a complex simple algebraic
group G` with root system ∆` and coweight lattice L. There is in particular a
maximal torus

A` = C× ⊗Z L.

We fix a split real form G` of G` with split maximal torus

A` = R× ⊗Z L.

Define a W -equivariant lattice homomorphism

Ψ: L→ R∨

by

Ψ(γ) =

{
2γ G simply laced or type G2

2Γ(γ) G not of type G2

On the level of coroots, we can calculate from Lemma 3.5 that

(6.2) Ψ((α`)∨) =

{
2α∨ if α is metaplectic

α∨ if α is not metaplectic.

This map induces by functoriality a W -equivariant group homomorphism

Ψ: A` → A.

Lemma 6.3. The image of the group homomorphism

Ψ: A` → A

(Definition 6.1) is equal to Z0(A). The map Ψ restricts to a surjection

Ψ: M `
� Z0(M).

Proof. Exactly as in (3.2), we have M ` = L/2L. It follows that the image Ψ(M `)
is

2L/2R∨ ⊂ R∨/2R∨ = M.

The second assertion is now just a reformulation of Lemma 3.8 if G is not of type
G2. When G is of type G2, L = R∨, Ψ is squaring, and the image Ψ(M `) is trivial.
Since Z0(M) is also trivial in this case (Lemma 3.12), the second assertion is proved
in general. The first is an immediate consequence. �

Choose a maximal compact subgroup K` of G`, so that A` = M `(A`)0 with
M ` = A` ∩K` as usual. We count the pseudospherical representations of M ` (and
therefore of K` and of the component group of G`, by Lemma 4.19) in Table 3.

Lemma 6.4. (1) Suppose that G is simply laced or of type G2. Then the kernel
of the group homomorphism

Ψ: M `
� Z0(M)

(Lemma 6.3) is the subgroup generated by the various mα` (defined in
(4.6)); equivalently, the intersection M ` ∩ (G`)0. Consequently the trans-
pose map

Ψt : {characters of Z0(M)} ↪→ {characters of M `}
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has as image precisely the pseudospherical characters of M ` (Definition
4.9).

(2) Suppose that G is not of type G2. Then the kernel of the group homomor-
phism

Ψ: M `
� Z0(M)

is the subgroup generated by the various mα` with α long. If β is short,
then

Ψ(mβ`) = mβ .

Consequently the transpose map

Ψt : {characters of Z0(M)} ↪→ {characters of M `}

has as image precisely the characters of M ` trivial on mα` with α long. In
particular,

Ψt : {characters of Z0(M) trivial on mβ for β short} ↪→ {characters of M `}

has as image precisely the pseudospherical characters of M `.
(3) For any G, define Z0(M) to be the quotient of Z0(M) by the subgroup

generated by the elements mβ with β not metaplectic (Lemma 4.11). Then
the transpose map

Ψt : {characters of Z0(M)} ↪→ {characters of M `}

has as image precisely the pseudospherical characters of M `.
(4) There is a natural simply transitive action of the group of pseudospherical

characters of M ` on the set of genuine pseudospherical representations of

M̃ , as follows. Given a pseudospherical character δ` of M `, choose a char-
acter δ of M so that Ψt(δ) = δ`. Regard δ as a (non-genuine) character

of M̃ . Then if δ̃ is any genuine pseudospherical representation of M̃ , we
define

δ` · δ̃ = δ ⊗ δ̃.

Proof. Parts (1) and (2) are a straightforward consequence of the calculation of Γ
in Lemma 3.5 and of Definition 6.1; we leave the details to the reader. Parts (3)
and (4) then follow immediately from Lemma 4.11. �

In Table 1, the column |Πg(M̃)| counts irreducible genuine representations of

M̃ ; |Πgs(M̃)| counts irreducible genuine pseudospherical representations of M̃ ; and

Dim is the dimension of an irreducible genuine representation of M̃ . In Table 3,
the column |Πs(M

`)| counts the irreducible pseudospherical representations of M `.

7. A conjectural shimura correspondence

Retain the notation of Definition 1.1 and Section 4. Fix an irreducible genuine

pseudospherical representation δ̃ of M̃ and let µ(δ̃) denote its pseudospherical ex-

tension to K̃ (Proposition 5.2). Recall from Definition 5.5 that J(δ̃, ν) is defined

to be the composition factor of I(δ̃, ν) containing µ(δ̃). Let

CS(δ̃, G̃) = {ν ∈ a∗C | J(δ̃, ν) is unitary},

the pseudospherical complementary series of G̃. Lemma 4.11(3) implies that

J(δ̃, ν) ' J(δ̃, ν′)
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Table 1. Genuine representations of M̃

Type G |Πg(M̃)| |Πgs(M̃)| Dim

A2m−1 SL(2m) 2 2 2m−1

A2m SL(2m+ 1) 1 1 2m

B2m Spin(2m+ 1, 2m) 4 2 2m−1

B2m−1 Spin(2m, 2m− 1) 2 1 2m−1

Cn Sp(2n) 2n 2 1
D2m Spin(2m, 2m) 4 4 2m−1

D2m+1 Spin(2m+ 1, 2m+ 1) 2 2 2m

E6 E6(C4) 1 1 8
E7 E7(A7) 2 2 8
E8 E7(D8) 1 1 16
F4 F4(A1 × C3) 4 1 2
G2 G2(A1 ×A1) 1 1 2

Table 2. Pseudospherical representations of K̃

G K̃ µ̃ Dim(µ̃)

SL(2m) Spin(2m) Spin± 2m−1

SL(2m+ 1) Spin(2m+ 1) Spin 2m

Spin(2m+ 1, 2m) Spin(2m+ 1) × Spin(2m) 1 ⊗ Spin± 2m−1

Spin(2m, 2m− 1) Spin(2m) × Spin(2m− 1) 1 ⊗ Spin 2m−1

Sp(2n) Ũ(n) det±
1
2 1

Spin(2m, 2m) Spin(2m) × Spin(2m) 1 ⊗ Spin±,
Spin± ⊗ 1 2m−1

Spin(2m+ 1, 2m+ 1) Spin(2m+ 1) × Spin(2m+ 1) 1 ⊗ Spin,
Spin ⊗ 1 2m

E6 Sp(8) C8 8
E7 SU(8) C8, (C8)∗ 8
E8 Spin(16) C16 16
F4 Sp(6) × Spin(3) 1 ⊗ Spin 2
G2 Spin(3) × Spin(3) Spin ⊗ 1 2

if and only if there exists w ∈ W such that ν ′ = w · ν. Consequently CS(G̃, δ̃) is a
closed W -invariant set.

Conjecture 7.1. Let G` be given as in Section 6. Let Ψ: A` → A be given by
Lemma 6.3, with adjoint dΨt : a∗C → (a`)∗C. Fix a pseudospherical representation δ`

of M `. Then dΨt defines a bijection:

CS(δ̃, G̃) → CS(δ`, G`)

That is, J eG(δ̃, ν) is unitary if and only if JG`(δ`, dΨt(ν)) is unitary.

By Lemma 4.20, CS(δ`, G`) is independent of δ`, and is equal to the spherical
complementary series of the identity component CS((G′)0) of any linear group G′

locally isomorphic to G`.
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Table 3. The linear reincarnation G`

G G` |Πs(M
`)|

SL(n) PGL(n) 2 n even
SL(n) 1 n odd

Spin(n+ 1, n) PSp(2n) 2 n even
Sp(2n) 1 n odd

Sp(2n) SO(n+ 1, n) 2
Spin(n, n) PSO(n, n) 4 n even

SO(n, n) 2 n odd
Esc

6 Esc
6 1

Esc
7 Ead

7 2
E8 E8 1
F4 F4 1
G2 G2 1

If G is simply laced or G2 then Conjecture 7.1 is equivalent to: J eG(δ̃, ν) is unitary
if and only if the spherical representation JG(2ν) is unitary, i.e.,

2CS(δ̃, G̃) = CS(G).

Example 7.2. Let G = Sp(2n,R) and G` = SO(n + 1, n). As discussed in the
introduction Ψ: A` ' A is an isomorphism in this case, given by the identity map
in the usual coordinates. See Section 12.2.

Note that ρ (one-half the sum of the positive roots) for SO(n + 1, n), i.e.,
(n− 1

2 , . . . ,
3
2 ,

1
2 ), is the image under dΨt of the Harish-Chandra parameter of the

infinitesimal character of the oscillator representation of S̃p(2n,R). The trivial rep-
resentation, which is an isolated point in the unitary dual of SO(n+1, n) (for n ≥ 2)
corresponds to one of the components of the oscillator representation.

For example if n = 2, the complementary series CS(δ̃, S̃p(4,R)) = CS(SO(3, 2))
look like this:
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Figure 1. Spherical complementary series for SO(3, 2)

If G is a classical group we will prove the inclusion

dΨt
(
CS(δ̃, G̃)

)
⊂ CS(δ`, G∨)

of Conjecture 7.1 (Theorem 13.24), and equality for G̃ = S̃p(2n) (Theorem 14.2).
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Remark 7.3. We conclude this section with a discussion of the p-adic analog of
Conjecture 7.1. Let F be a p-adic field with ring of integers R, and let G be a split
simple algebraic group defined over R. Fix an integer n relatively prime to p such
that µn(F ), the nth roots of unity in F , has order n. It follows from [Ma] that there

is a “metaplectic” extension G̃ of G by µn(F ) (see, for example, [Sa, 2.1]). Let I

denote an Iwahori subgroup of G, and Ĩ its preimage in G̃. The extension splits

canonically over I , and we use this splitting to regard I as a subgroup of G̃. The
category of smooth representations of G generated by their I-fixed vectors is equiv-
alent to the category of representation of the Hecke algebra H(G) of I bi-invariant
compactly supported functions on G. Likewise, the category of smooth (suitably

genuine) representation of G̃ generated by their I-fixed vectors is equivalent to the

category of representations of H(G̃), the (suitably genuine) I-invariant compactly

supported functions on G̃. Savin has predicted and investigated the existence of an

isomorphism between H(G`) and H(G̃). This is very subtle; the arguments offered
in [Sa] may not be complete. When G is simply laced, the situation is simpler and

Savin has proved in [Sa2, Theorem 7.8] that H(G`) ' H(G̃). The conclusion in
these cases is that there is an equivalence between the category of (suitably genuine)

smooth representations of G̃ generated by their I-fixed vectors and the category of
smooth representations of G` generated by their I`-fixed vectors. The p-adic analog
of Conjecture 7.1 is that this equivalence should preserve unitarity (cf. [Hu2]).

8. Reduction to real infinitesimal character

We continue in the setting of Conjecture 7.1. Recall from [Kn, Section 14.4]
the notion of representations with real infinitesimal character. In our setting this
is extremely straightforward: J(δ̃, ν) has real infinitesimal character if and only if
ν ∈ a∗ ⊂ a∗C; equivalently, if 〈ν, α∨〉 ∈ R for all roots α. In this case we say ν is
real. Similarly, we say ν is purely imaginary if ν ∈ ia∗; that is, if iν is real. Many
questions about the classification of unitary representations can be reduced to the
case of real infinitesimal character. Our purpose in this section is to do that for
Conjecture 7.1. Here is the statement.

Proposition 8.4. Suppose G is a simply connected split real group as in Definition
1.1. For any connected subset E of the Dynkin diagram of G, let GE be the subgroup
of G corresponding to the roots spanned by E; this is a simply connected split real
group, with split torus AE ⊂ A. Assume that Conjecture 7.1 holds for each group
GE and real νE ∈ a∗. Then Conjecture 7.1 holds for G.

Proof. That each GE is split is clear. That GE is simply connected follows from the
fact that each fundamental weight for GE (corresponding to a vertex of its Dynkin
diagram) is the restriction to AE of the corresponding fundamental weight for G.

We write (G`)E for the corresponding algebraic subgroup of G`, and G̃E for the

preimage of GE in G̃. The group G̃E is a two-fold cover of GE as in Definition 4.1,
so it is either trivial or equal to the distinguished non-trivial cover of Definition 1.1.
Similarly, the group (G`)E has the same Weyl group as GE , but it may or may not
be the group (GE)` constructed in Definition 6.1. We will say more about these
questions at the end of the proof.
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We first describe how to relate the unitarity of pseudospherical representations

of G̃ to unitarity of pseudospherical representations of the groups G̃E with real
infinitesimal character.

Fix ν ∈ a∗C and write ν = νR +iνI with νR, νI real. After conjugating ν by W , we
may assume that νI is dominant. Let L be the Levi subgroup of G corresponding
to the roots {α | 〈ν`

I , α
∨〉 = 0}, and let P be the corresponding standard parabolic

subgroup. Then the spherical representations IeL(δ̃, ν) and JeL(δ̃, ν) are defined, and

I eG(δ̃, ν) = Ind
eG
eP
(IeL(δ̃, ν)).

Furthermore

J eG(δ̃, ν) = Ind
eG
eP
(JeL(δ̃, ν))

and

(8.5)(a) J eG(δ̃, ν) is unitary if and only if JeL(δ̃, ν) is unitary.

This is contained [Kn, Theorem 16.10]; the assumption there that the group is
linear is not important.

Now let E be the subset of the Dynkin diagram corresponding to L (consisting
of the simple roots vanishing on νI). Write this set as the disjoint union of its
connected components:

E = E1 ∪ · · · ∪ Er.

Let Z ⊂ A be the center of L. Then the identity component of L̃ is finitely covered

by the identity component of the product group Z ×
∏r

i=1 G̃Ei
. We have

a ' z ⊕

r∑

i=1

aEi
, ν = νZ +

r∑

i=1

νi,

with νZ ∈ z∗C and νi ∈ (aEi
)∗C. Fix some irreducible constituent δ̃i of the restriction

of δ̃ to M̃ ∩ G̃Ei
. Standard facts about unitary representations of product groups

show that

(8.5)(b) JeL(δ̃, ν) unitary ⇔ νZ imaginary and each J eGEi

(δ̃i, νi) unitary.

The construction of L shows also that

each νi is real.

Equations (8.5) provide a reduction of the classification of unitary pseudospher-

ical representations of G̃ to parallel problems for simple Levi subgroups and real
infinitesimal character. We turn next to a similar reduction for G`.

As in Conjecture 7.1, we fix a pseudospherical character δ` of M `, and define
ν` = dΨt(ν) ∈ (a`)∗C. Note that dΨt(νR) = ν`

R and dΨt(νI) = ν`
I . The fundamen-

tal fact is that dΨ carries each coroot (α`)∨ for G` to a positive multiple of the
corresponding coroot α∨ for G. This means first of all that ν`

I is dominant, and
that the Levi subgroup L` defined by ν`

I corresponds to the subset {α` | α ∈ E}
of the Dynkin diagram for G`. The pseudospherical representations IL`(δ`, ν`) and
JL`(δ`, ν`) are defined, and

IG`(δ`, ν`) = IndG`

P `(IL`(δ`, ν`)), JG`(δ`, ν`) = IndG`

P `(JL`(δ`, ν`)).

We have

(8.6)(a) JG`(ν`) is unitary if and only if JL`(ν`) is unitary.
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Again this is [Kn, Theorem 16.10]; this time what is unimportant is the assumption
there that G is connected.

Because the Dynkin diagrams of G and G` are the same except for the orientation
of arrows, the connected components of E in the Dynkin diagram of G` are precisely
the various Ei. Let Z` be the center of L`. Then L` is finitely covered by Z` ×∏r

i=1(G
`)Ei

, and we have

a` ' z` ⊕

r∑

i=1

a`
Ei
.

The map Ψ: A` → A of Definition 6.1 restricts to

ΨZ : Z` → Z, Ψi : A
`
Ei

→ AEi
.

Accordingly we can write

ν` = ν`
Z +

r∑

i=1

ν`
i , ν`

Z = dΨt
Z(νZ) ∈ z∗C, ν`

i = dΨt
i(νi) ∈ (a`

Ei
)∗C.

Just as in (8.5)(b),

(8.6)(b) JL`(δ`, ν`) unitary ⇔ ν`
Z imaginary and each J(G`)Ei

(δ`
i , ν

`
i ) unitary;

here δ`
i is the restriction of the character δ` to M ` ∩ (G`)Ei

.
Equations (8.6) reduce the classification of unitary pseudospherical representa-

tions of G` to parallel problems for simple Levi subgroups and real infinitesimal
character.

In order to complete the proof of Proposition 8.4, we must show that the unitarity
criteria in (8.5) and (8.6) agree. Because dΨ preserves real and imaginary parts,
we have immediately that

(8.7)(a) νZ is imaginary ⇔ ν`
Z is imaginary.

Next, fix one of the Ei. There are two possibilities. If no root in Ei is metaplectic,

then the covering G̃Ei
is trivial, so J( eG)Ei

(δ̃i, νi) is unitary if and only if the spherical

representation JGEi
(νi) is unitary. According to (6.2), the map Ψi carries the

coroots of G`
Ei

onto those of GEi
. Consequently GEi

finitely covers the identity

component of G`
Ei

, and this covering identifies νi with ν`
i . It follows immediately

that

(8.7)(b) J eGEi

(δ̃i, νi) is unitary ⇔ J(G`)Ei
(δ`

i , ν
`
i ) is unitary.

Finally, assume that some root of Ei is metaplectic. It follows that the covering

G̃Ei
is nontrivial, so it must be the covering of Definition 1.1. The map Ψi inherits

the critical properties (6.2) from Ψ, and it follows easily that (G`)Ei
is locally

isomorphic to the linear group (GEi
)` constructed in Definition 6.1. The assertion

(8.7)(c) J eGEi

(δ̃i, νi) is unitary ⇔ J(G`)Ei
(δ`

i , ν
`
i ) is unitary.

in this case is equivalent to Conjecture 7.1 for the group GEi
and the real parameter

νi. The hypothesis of the proposition is that this statement holds.

Equations (8.7) show that the unitarity criteria for ν in G̃ and ν` in G` match
perfectly. The proposition follows. �
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9. Petite Representations of the Weyl Group

Suppose R is a root system, with Weyl group W . Suppose α, β are adjacent
roots. The subgroup 〈sα, sβ〉 of W generated by sα, sβ is isomorphic to the Weyl
group of type A2, B2 or G2, and so has a one-dimensional sign representation.

Definition 9.1. Let σ be a representation of W . We say σ is petite if

(1) for all pairs α, β of adjacent simple roots, the restriction of σ to 〈sα, sβ〉
does not contain the sgn representation; and

(2) if α and β are adjacent long roots inside a subsystem of type G2, then the
restriction of σ to 〈sα, sβ〉 does not contain the sgn representation.

Condition (2) excludes the one-dimensional character of W (G2) acting on the prod-
uct of a set of long positive roots. The one-dimensional character of W (G2) on the
product of a set of short positive roots is allowed; it would have been excluded if
we omitted the word “simple” in (1). For root systems not containing factors of
type G2, the word “simple” in (1) has no effect, since any pair of adjacent roots is
(up to sign) conjugate by W to a pair of simple roots.

The motivation for this terminology will be given in Section 10 (cf. Lemma 10.9).

9.1. Petite Representations of Classical Weyl Groups. We recall some nota-
tion from [Ba1]. The classical Weyl groups are all realized as linear transformations
of a ' Rn. The hyperoctahedral group W (Bn) = W (Cn) includes all 2n · n! such
transformations. The symmetric group W (An−1) ' Sn changes no signs, and
W (Dn) is the subgroup of W (Bn) changing an even number of signs.

For (a, b) a partition of n we let (a, b) denote the corresponding irreducible rep-
resentation of W (An−1) ' Sn, of dimension

(
n
a

)
(n−2a+1)/(n−a+1). (Represen-

tations attached to partititions into more than two parts contain the sign character
of S3, and so are not petite.) The representation (n) is the trivial representation of
Sn, and (n− 1, 1) is the (n− 1)-dimensional reflection representation. We use the
same notation to denote (a, b) pulled back to W (Bn) = W (Cn) or W (Dn) via the
natural surjections to Sn.

Let χn denote the character of W (Bn) satisfying χ(sα) = 1 (resp. −1) if α is
long (resp. short). The Weyl group W (Dn) is the kernel of χn.

Fix non-negative integers a, b satisfying a+ b = n. We embed W (Ba) ×W (Bb)

in W (Bn) as usual. Let (a)× (b) = Ind
W (Bn)
W (Ba)×W (Bb)

(1⊗χb). These representations

are irreducible and distinct, and (a) × (b) ' χn ⊗ ((b) × (a)). The dimension of
(a) × (b) is

(
n
a

)
.

We also write (a)×(b) for the restriction of (a)×(b) toW (Dn). As representations
of W (Dn), (a)× (b) ' (b)× (a), and this representation is irreducible unless a = b.
If n is even the representation (n/2) × (n/2) of W (Bn) restricts to the direct sum
of two irreducible representations (n/2) × (n/2)± of W (Dn), each of dimension(

n
n/2

)
/2.

Proposition 9.2. Every irreducible petite representation of a classical Weyl group
is isomorphic to (a, b), (a) × (b) or (n/2) × (n/2)±.

We omit a proof of this proposition. Our only application of petite Weyl group
representations is in the proof of Theorem 13.24 (cf. Proposition 12.11). For these
purposes it is enough to use the condition of Proposition 9.2 as the definition of
petite.
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10. Action of the Weyl group

We work in the setting of Definition 4.1, so G̃ is a linear or nonlinear group. Fix

a genuine pseudospherical representation (δ̃, Fδ̃) of M̃ and let (µ0, Fδ̃) be its unique

pseudospherical extension to K̃ (Lemma 4.19 and Proposition 5.2).

Let M̃ ′ be the normalizer of Ã in K̃. We have an exact sequence

(10.1) 1 → M̃ → M̃ ′ →W → 1

The following Proposition is a basic result in Clifford theory; for example see [CR,
Theorem 51.7].

Lemma 10.2. There is a bijection between the irreducible representations of W

and the irreducible representations of M̃ ′ whose restriction to M̃ contains δ̃. The
bijection may be constructed as follows.

If (σ,Eσ) is an irreducible representation of W , let Eτ = Eσ ⊗ Fδ̃, and define

τ(g)(v ⊗ w) = σ(g)(v) ⊗ µ0(g)(w) (v ∈ Fδ̃ , w ∈ Eσ , g ∈ M̃ ′).

Conversely, suppose (τ, Eτ ) is an irreducible representation of M̃ ′ containing δ̃.

Define a representation σ of M̃ ′ on HomfM
(Fδ̃ , Eτ ) by

σ(n)(φ) = τ(n) ◦ φ ◦ µ0(n
−1) (n ∈ M̃ ′, φ ∈ HomfM

(Fδ̃ , Eτ )).

Then σ factors to a representation of W , and

HomfM
(Fδ̃ , Eτ ) ⊗ Fδ̃ ' Eτ

as representations of M̃ ′, via the map φ⊗ v → φ(v).

Remark 10.3. If we begin only with the exact sequence (10.1) and an irreducible

representation δ̃ of M̃ , then the bijection of the lemma depends on the existence

and choice of a representation of M̃ ′ extending δ̃. In our setting we can use the

canonically defined extension µ0 of δ̃ to K̃. This is what makes the bijection of the
theorem canonical.

Now consider the principal series representation I(δ̃, ν). The µ-isotypic compo-

nent of I(δ̃, ν) is given by

(10.4)(a) Hom eK(Vµ, I(δ̃, ν)) ⊗ Vµ

which by Frobenius reciprocity is isomorphic to

(10.4)(b) HomfM
(Vµ, Fδ̃) ⊗ Vµ.

Definition 10.5. Suppose µ is a representation of K̃. Write

Vµ[δ̃] = HomfM
(Vµ, Fδ̃) ' Hom eK(Vµ, I(δ̃, ν)).

The Weyl group representation σ(µ) attached to µ and δ̃ is defined on this space as
in Lemma 10.2:

(10.6) σ(n)(φ) = µ0(n) ◦ φ ◦ µ(n−1) (n ∈ M̃ ′, φ ∈ Vµ[δ̃]).

The representation σ is trivial on M̃ , and therefore factors to a representation of
W on Vµ[δ̃].
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The Weyl group representation σ(µ) need not be irreducible. According to

Lemma 10.2, it is irreducible if and only if the representation of M̃ ′ on the δ̃-
isotypic subspace of µ is irreducible.

We are interested in the representations of W attached to petite representations

of K̃.

Definition 10.7. Let Σ eK(G̃, δ̃) be the set of irreducible petite representations of

K̃ containing the pseudospherical M̃ representation δ̃. Let

(10.8) ΣW (G̃, δ̃) = {σ ∈ Ŵ |σ ⊂ Vµ[δ̃] for some µ ∈ Σ eK(G̃, δ̃)}.

Lemma 10.9 ([Ba1]). Suppose G is a linear classical group, and δ a pseudospher-
ical character of M . Then ΣW (G, δ) is the set of petite representations of W .

(In fact if µ is an irreducible petite representation of K containing the pseudo-
spherical M representation δ, then Vµ[δ] is an irreducible petite representation of
W .)

Remark 10.10. The same result holds for exceptional groups (with a slight mod-
ification in type G2), but the calculations necessary to prove this are too long to
include here.

We discuss nonlinear groups in the next two sections.

11. Construction of petite K̃-types: simply laced case

We continue with the setting of the previous section, where now G̃ is a non-

linear group. We find a relationship between genuine petite representations of K̃,

pseudospherical representations of M̃ , and petite representations of W .

Proposition 11.1. Assume G is simply laced, and that G̃ is the nonlinear cover of
Definition 1.1. Let S = {(δ̃, σ)} where δ̃ is a genuine pseudospherical representation

of M̃ and σ is a petite representation of W . There is a bijection between S and the

genuine irreducible petite representations of K̃.

Explicitly, suppose µ is such a representation of K̃. Necessarily the restriction

of µ to M̃ is a multiple of a genuine pseudospherical representation δ̃ of M̃ . Let
σ(µ) be the Weyl group representation attached to µ and δ̃ (Definition 10.5). Then

σ(µ) is irreducible, and µ corresponds to the pair (δ̃, σ(µ)).

Conversely, given a pair (δ̃, σ) ∈ S, construct an irreducible representation τ

of M̃ ′ by Lemma 10.2. Then τ extends uniquely to a genuine irreducible petite

representation µ of K̃.

Remark 11.2. A weaker version of Proposition 11.1 holds in the case of two root
lengths, although the construction of µ is more complicated. (To begin with, µ

need not restrict to a multiple of an irreducible representation of M̃). We give
arguments for types Bn and Cn in Section 12 below.

Example 11.3. If σ is trivial then we recover the bijection between pseudospherical

representations of M̃ and K̃ (Proposition 5.2).

Example 11.4. Let G = SL(3), G̃ = S̃L(3), so K ' SO(3) and K̃ ' SU(2). The

groups M̃, M̃ ′ and W in (10.1) are the quaternion group of order 8 (cf. Proposition
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5.2), the binary octahedral group of order 48, and the symmetric group S3, respec-
tively. The binary octahedral group has three genuine irreducible representations
τ+, τ−, and τ ′, of dimensions 2, 2, and 4 respectively. Here τ+ is the restriction to

M̃ ′ of the two-dimensional representation of K̃. The corresponding representation
of W is trivial (Lemma 10.2). The irreducible four-dimensional representation of

K̃ restricts to τ ′, and corresponds to the reflection representation of W . The rep-

resentation τ− of M̃ ′ corresponds to the sgn representation of W . Note that τ− is

not the restriction of an irreducible representation of K̃.

Proof. First we show that the two maps are inverses of each other on the level of

representations of M̃ ′. For one direction, suppose (µ, Vµ) is a genuine representa-

tion of K̃. By Lemma 5.1, µ restricts to a multiple of a genuine pseudospherical

representation δ̃ of M̃ , and

(11.5) Vµ ' HomfM
(Fδ̃ , Vµ) ⊗ Fδ̃ ' Vµ[δ̃]∗ ⊗ Fδ̃

as representations of M̃ ′.
On the other hand, given (δ̃, σ) and defining Vµ = Fδ̃ ⊗Eσ , we have

Vµ[δ̃]∗ ' HomfM
(Fδ̃ , Fδ̃ ⊗Eσ) ' Eσ .

We are left with two things to show. First, given (δ̃, σ) ∈ S, let τ be the

irreducible representation of M̃ ′ from Lemma 10.2. We must show that τ extends

uniquely to an irreducible petite representation µ of K̃. Second, given an irreducible
genuine petite representation µ of K, we must show that the representation σ(µ)
of W is petite.

For the first assertion, recall from (4.14) the element σ̃α = exp(πZα/2) ∈ M̃ ′.

We have σ̃2
α = m̃α, and σ̃α is a representative in M̃ ′ for the reflection sα. Because

α is metaplectic and δ̃ is genuine, the possible eigenvalues of τ(m̃α) are ±i. Hence
the possible eigenvalues of τ(σα) are exp(imπ/2), with m = ±1/2 or ±3/2. As

in the proof of Proposition 5.2, if an extension µ of τ to K̃ exists, then dµ(Zα)
must act on the exp(imπ/4) eigenspace of τ with eigenvalues i(m + 4k), with k
integral. If in addition µ is petite, then (Definition 4.9) necessarily |m + 4k| ≤ 2.
This last requirement forces the integer k to be zero. That is, dµ(Zα) must act on
the exp(imπ/2) eigenspace of τ(σ̃α) by the scalar im. Informally,

(11.6) dµ(Zα) = 2 log(τ(σ̃α))/π.

This proves uniqueness. It remains to show that dµ is actually a representation of k

that exponentiates to K̃. As in the proof of Proposition 5.2 this reduces to a rank
two calculation. If 〈α, β∨〉 = 0 then the corresponding three-dimensional subgroups
commute with each other, so [Zα, Zβ ] = 0, σ̃α and σ̃β commute, and the result is
immediate.

Assume therefore that 〈α, β∨〉 = ±1. In this case the group H defined in the
proof of Proposition 5.2 is SL(3,R). This case was treated in Example 11.4. The
petite hypothesis on σ means that the restriction of σ to the Weyl group of H does
not contain the sign representation. Therefore the restriction of τ to the binary

octahedral group M̃ ∩ H̃ does not contain σ−. The example therefore shows that τ

extends uniquely to a petite representation of K̃ ∩ H̃ = SU(2), a sum of two- and
four- dimensional representations.
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This completes the proof that dµ is a representation of k. That it exponentiates
to K can be proved as in Proposition 5.2.

For the second assertion, suppose µ is a genuine petite K̃-type. Then µ restricted

to any rank 2 subgroup H̃ ∩ K̃ as above is a direct sum of the irreducible 2-
and 4-dimensional representations of SU(2). These correspond to the trivial and
reflection representations of S3 by Example 11.4); so the sign representation of S3

does not appear. Therefore σ(µ) is a petite representation of W . This completes
the proof. �

12. Construction of petite K̃-types: Classical Groups

In this section we enumerate petite representations for classical groups. A tilde

over a simply connected split classical group (like S̃pin(n+1, n)) means the nonlinear
double cover of Definition 1.1.

12.1. Petite K̃-types for SL(n) and S̃L(n). Let G = S̃L(n), so K̃ = Spin(n). We
parametrize the irreducible representations of Spin(n) by highest weights as usual.
A typical highest weight is µ = (a1, . . . , ar), with a1 ≥ · · · ≥ ar−1 ≥ |ar|, with
r = [n/2], and ai ∈ Z for all i, or ai ∈ Z + 1/2 for all i. If n is odd then ar ≥ 0.

For ar ≥ 0 and ε = ±, write (a1, . . . , ar)ε for the highest weight (a1, . . . , ar−1, εar)
with the understanding that ε = + if n is odd.

Let Spinε be the irreducible representation with highest weight (1/2, . . . , 1/2)ε.
If n is odd only ε = + is allowed, and we write Spin = Spin+.

Lemma 12.1 ([Ba1]). Let G = SL(n,R). For 1 ≤ k ≤ n/2, the K-type µk,ε with
highest weight

(2, . . . , 2︸ ︷︷ ︸
k

, 0, . . .)ε

is petite. (Here ε = − is allowed only if n is even, and µk,+ = µk,− unless k =
n/2.) The corresponding W -representation (in the notation of Section 9.1 and
Definition 10.5) is given by

Vµk,ε
[1] = (n− k, k).

Moreoever, the K-types {µk,ε | 1 ≤ k ≤ [k/2]} detect spherical unitarity in the sense
of Definition 13.11 below.

Now we consider S̃L(n).

Lemma 12.2. Let G = S̃L(n,R).

(1) Assume that n is odd. Write δ̃ for the unique genuine pseudospherical

representation of M̃ arising as the restriction of the the spin representations

of K̃; see Table 1. For k ≤ (n− 1)/2, the K̃-types with highest weights

µk = (3/2, . . . , 3/2︸ ︷︷ ︸
k

, 1/2, . . . , 1/2)

exhaust the set Σ eK(G̃, δ̃) of δ̃-petite K̃-types in the sense of Definition 10.7.
In the notation of Definition 10.5,

Vµk
[δ̃] = (n− k, k).
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(2) Assue that n is even. According to Table 1, there are two genuine pseudo-

spherical representations δ̃±; they are obtained (respectively) by restricting

the two representations Spin± to M̃ . For k ≤ n/2, the K̃-types with highest
weights

µk,ε = (3/2, . . . , 3/2︸ ︷︷ ︸
k

, 1/2, . . . , 1/2)(−1)kε

exhaust the set Σ eK(G̃, δ̃ε) of δ̃ε-petite K̃-types in the sense of Definition
10.7. In the notation of Definition 10.5,

Vµk,ε
[δ̃ε] = (n− k, k).

Proof. The bijection between genuine petite K̃-types and petite Weyl group rep-
resentations is given by Proposition 11.1. The explicit calculation of this bijection
follows from the methods of [Ba1]. Except in a few cases the correspondence is
determined by the dimensions. �

Remark 12.3. Because we will encounter increasingly detailed statements of the
form of Lemmas 12.1 and 12.2, it is useful to introduce some notation to make their
statements more compact. We summarize the statement of Lemma 12.1 by saying
that the following K-types are petite and detect spherical unitarity for SL(n,R).

µ Vµ[1]

(2, . . . , 2︸ ︷︷ ︸
k

, 0, . . .)ε (n− k, k) k ≤ n/2

Meanwhile, we summarize the statement of Lemma 12.2 by saying that the petite

K̃-types for S̃L(n,R) and corresponding Weyl group representations are as follows.

µ δ̃ Vµ[δ̃]

(3/2, . . .︸ ︷︷ ︸
k

, 1/2, . . .)ε δ̃(−1)kε (n− k, k) k ≤ n/2 n even

(3/2, . . .︸ ︷︷ ︸
k

, 1/2, . . .)+ δ̃+ (n− k, k) k ≤ (n− 1)/2 n odd

12.2. Petite K̃-types for Sp(2n,R) and S̃p(2n,R). Assuming the results of [Ba1]

it is straightforward to prove the analogue of Proposition 11.1 for S̃p(2n).

Let K be a maximal compact subgroup of Sp(2n,R), with inverse image K̃

in S̃p(2n,R). We identify the irreducible representations of K̃ and K with their
highest weights. A highest weight may be written (a1, . . . , an) with a1 ≥ · · · ≥ an.

Exponentiating to a weight for the torus in K̃ means that either ai ∈ Z for all i,
or ai ∈ Z + 1

2 for all i. The weight (1, . . . , 1) corresponds to the one-dimensional
determinant character det of K.

Let µ± be the genuine character of K̃ with highest weight ±(1/2, . . . , 1/2), or

equivalently satisfying µ2
± = det±. Let δ̃± be the restriction of µ± to M̃ .

By Lemma 4.18, a K̃-type µ = (a1, . . . , an) is petite if and only if a1 ≤ 2,
an ≥ −2, and a1 − an ≤ 2.

Lemma 12.4 ([Ba1]). Retain the notation oulined in Remark 12.3. The following
K-types for Sp(2n,R) are petite and detect spherical unitarity.
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µ Vµ[1]

(2, . . . , 2︸ ︷︷ ︸
k

, 0, . . . , 0) (n− k) × (k) k ≤ n

(0, . . . , 0,−2, . . . ,−2︸ ︷︷ ︸
k

) (n− k) × (k) k ≤ n

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

) (n− k, k) k ≤ n/2

Lemma 12.5. Retain the notation oulined in Remark 12.3. Let G̃ = S̃p(2n,R).

The genuine petite K̃-types and the associated Weyl group representations are as
follows:

µ δ̃ Vµ[δ̃]

(1/2, . . . , 1/2︸ ︷︷ ︸
k

,−3/2, . . . ,−3/2) δ̃+ (n− k) × (k)

(3/2, . . . , 3/2,−1/2, . . . ,−1/2︸ ︷︷ ︸
k

) δ̃− (n− k) × (k)

(3/2, . . . , 3/2︸ ︷︷ ︸
k

, 1/2, . . . , 1/2,−1/2, . . . ,−1/2︸ ︷︷ ︸
k

) δ̃+ (n− k, k)

(1/2, . . . , 1/2︸ ︷︷ ︸
k

,−1/2, . . . ,−1/2,−3/2, . . . ,−3/2︸ ︷︷ ︸
k

) δ̃− (n− k, k)

Proof. Fix a genuine irreducible representation µ of K̃. Then µ⊗ δ̃± factors to an
irreducible representation of K, and

HomfM
(µ, δ̃±) ' HomM (µ⊗ δ̃∓, δ̃± ⊗ δ̃∓) ' Vµ⊗δ̃∓[1]

The result follows immediately from the preceding lemma. �

Remark 12.6. In spite of the simplicity of this proof, note that the pseudospherical

unitary dual of S̃p(2n,R) is related to the spherical unitary dual of Spin(n+ 1, n),
and not to that of Sp(2n,R). See Section 14.

12.3. Petite K̃-types for Spin and S̃pin. Let G̃ = S̃pin(n, n), so K̃ ' Spin(n)×
Spin(n). See Section 12.1 for a discussion of highest weights for Spin(n).

A K̃-type is given by a highest weight (a1, . . . , ar)⊗ (b1, . . . , br), with r = [n/2].
This is genuine if ai − bj ∈ Z + 1

2 for all i, j.
Let µ(R,±) = 1⊗ Spin±, and µ(L,±) = Spin± ⊗ 1; if n is odd write µ(R,±) =

1 ⊗ Spin. (The letters R and L stand for “right” and “left.”) Let δ̃(R,±) and

δ̃(L,±) be the restriction of µ(R,±) and µ(L,±) to M̃ . These are the genuine

pseudospherical representations of K̃ and M̃ .

Lemma 12.7 ([Ba1]). Retain the notation oulined in Remark 12.3. The K-types
for Spin(n, n) listed in Table 4 are petite and detect spherical unitarity.

Lemma 12.8. Retain the notation oulined in Remark 12.3. Let G̃ = S̃pin(n, n).

The genuine petite K̃-types and the associated Weyl group representations are as
listed in Table 5.

Proof. See the proof of Lemma 12.2. �
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Table 4. Petite K-types for Spin(n, n)

µ Vµ[1]

(1, . . .︸ ︷︷ ︸
k

, 0, . . .)ε1 ⊗ (1, . . .︸ ︷︷ ︸
k

, 0, . . .)ε2 (n− k) × (k)ε1ε2 k ≤ n/2

1⊗ (2, . . .︸ ︷︷ ︸
k

, 0, . . .)ε (k, n− k) k ≤ n/2

(2, . . .︸ ︷︷ ︸
k

, 0, . . .)ε ⊗ 1 (k, n− k) k ≤ n/2

Table 5. Genuine petite K̃-types for S̃pin(n, n)

µ δ̃ Vµ[δ̃]

(1, . . .︸ ︷︷ ︸
k

, 0, . . .)σ ⊗ Spinε δ̃(R, (−1)kε) (k) × (n− k)εσ k ≤ n/2

Spinε ⊗ (1, . . .︸ ︷︷ ︸
k

, 0, . . .)σ δ̃(L, (−1)kε) (k) × (n− k)εσ k ≤ n/2

1⊗ (3/2, . . .︸ ︷︷ ︸
k

, 1/2, . . . )ε δ̃(R, (−1)kε) (n− k, k) k ≤ n/2

(3/2, . . .︸ ︷︷ ︸
k

, 1/2, . . . )ε ⊗ 1 δ̃(L, (−1)kε) (n− k, k) k ≤ n/2

Lemma 12.9 ([Ba1]). Retain the notation oulined in Remark 12.3. The following
K-types for Spin(n+ 1, n) are petite and detect spherical unitarity.

µ Vµ[1]

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) ⊗ (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0)ε (n− k) × (k) k ≤ n/2

(1, . . . , 1︸ ︷︷ ︸
n+1−k

, 0, . . . , 0)ε ⊗ (1, . . . , 1︸ ︷︷ ︸
n−k

, 0, . . . , 0) (n− k) × (k) (n+ 1)/2 ≤ k ≤ n

1⊗ (2, . . . , 2︸ ︷︷ ︸
k

, 0, . . . , 0)ε (n− k, k) k ≤ n/2

Now let G̃ = S̃pin(n + 1, n), so K̃ = Spin(n + 1) × Spin(n). If n is even let

µ± = 1⊗Spin± and let δ̃± be the restriction of µ± to M̃ . If n is odd let µ = 1⊗Spin

and let δ̃ be the restriction of µ to M̃ . These are the genuine pseudospherical

representations of K̃ and M̃ (Table 2).

Lemma 12.10. Retain the notation oulined in Remark 12.3. Let G̃ = S̃pin(n +

1, n). The genuine petite K̃-types and the associated Weyl group representations
are as listed in Table 6.

Proof. If n is odd the restriction of any genuine K̃-type to M̃ is a multiple of δ̃
by Proposition 5.6. If n is even δ̃± have the same central character, so µ is not

necessarily isotypic for M̃ .
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Table 6. Genuine petite K̃-types for S̃pin(n+ 1, n)

µ δ̃ Vµ[δ̃]

1⊗ (3/2, . . . ,︸ ︷︷ ︸
k

1/2, . . .)ε δ̃(−1)kε (n− k, k)

(1, . . . ,︸ ︷︷ ︸
k

0, . . .) ⊗ Spinε δ̃(−1)kε (n− k) × (k)
n even, k ≤ n/2

(1, . . . ,︸ ︷︷ ︸
k

0, . . .) ⊗ Spinε δ̃(−1)k+1ε (k − 1) × (n− k + 1)
n even, k ≤ n/2

(1, . . . ,︸ ︷︷ ︸
k

0, . . .) ⊗ Spin δ̃ (n− k) × (k) ⊕ (k − 1) × (n− k + 1)
n odd, k ≤ (n− 1)/2

(1, . . . ,±1)⊗ Spin δ̃ ((n− 1)/2)× ((n+ 1)/2)
n odd

(1) µ = 1 ⊗ (3/2, . . . ,︸ ︷︷ ︸
k

1/2, . . .)ε, n even. In this case µ restricts irreducibly to

Spin(n)×Spin(n). By Lemma 12.8, Vµ[δ̃] is an irreducible representation of W (Bn)

whose restriction to W (Dn) is (n−k, k). The fact that δ̃ is as stated can be deduced
by tensoring µ with the pseudospherical representation µ± and comparing the result
with the list of petite representations of Spin(n + 1, n) in Lemma 12.9; the details
are as in case (4) below.

(2) µ = (1, . . . ,︸ ︷︷ ︸
k

0, . . .)⊗ Spin, n odd, k ≤ (n− 1)/2. In order to compute Vµ[δ̃] as a

W representation, write µL = (1, . . . , 0, . . .) (with k ones), and use the isomorphism

HomfM
(δ̃, µL ⊗ Spin) ' HomM (1, µL ⊗ (Spin ⊗ Spin∗)) .

It is well known and easy to check that

Spin ⊗ Spin =
∑

0≤m<n/2

∧m
(Cn).

The highest weights of these representations are
∧m

(Cn) ↔ (1, . . . ,︸ ︷︷ ︸
m

0, . . .) (m < n/2).

The conclusion from these calculations is that

Vµ[δ̃] '
∑

m<n/2

(1, . . . ,︸ ︷︷ ︸
k

0, . . .) ⊗ (1, . . . ,︸ ︷︷ ︸
m

0, . . .)[1].

The summand on the right side has been computed in Lemma 12.9 in case m =
k or m = k − 1; these give the Weyl group representations (n − k) × (k) and

(k− 1)× (n− k+1). The dimensions of these two representations add up to
(
n+1

k

)
,

which is easily computed to be the dimension of Vµ[δ̃]; so the other summands must
be zero.

(3) (1, . . . ,±1)⊗ Spin, n odd. This is almost identical to case (2).
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(4) (1, . . . ,︸ ︷︷ ︸
k

0, . . .) ⊗ Spinε, n even. We begin as in (2), computing

HomfM
(δ̃γ , µL ⊗ Spinε) ' HomM (1, µL ⊗ Spinε ⊗ Spin∗

γ)

It is straightforward to see

Spinε ⊗ Spin∗
γ ' E ⊕

∑ ∧k
(Cn)

where the sum is taken over 0 ≤ m < n/2, k ≡ εγ (mod 2). The “error term” E
appears if and only if n/2 ≡ εγ (mod 2); in that case it is one of the two summands

of
∧n/2

Cn, and has highest weight of the form (1, . . . , 1)φ. The argument from this
point is as in (2), using Lemma 12.9.

This completes the proof. �

From Proposition 11.1 and the tables we conclude:

Proposition 12.11. Suppose G is a classical group or is simply laced, and δ̃ is an

irreducible pseudospherical representation of M̃ . Then ΣW (G̃, δ̃) (Definition 10.7)
is the set of all petite representations of W .

13. Intertwining operator methods

We begin with a formal construction. Recall that ∆ is the root system of G, R
the root lattice, and ∆+ the set of positive roots corresponding to B. Write S for
the set of simple roots.

Recall Definition 4.4. We define a map τ : ∆ → {1, 2} by

τ(α) =

{
2 if α is metaplectic in G̃

1 if α is not metaplectic in G̃.

We now fix

(13.1)(a) ν ∈ a∗C, ν` = dΨt(ν) ∈ (a`)∗C.

The characteristic property (6.2) of Ψ implies that

(13.1)(b) τ(α)〈ν, α∨〉 = 〈ν`, (α`)∨〉 (α ∈ ∆).

We now introduce a series of linear operators related to intertwining operators.
For the first, suppose (σ,E) is a representation of the Weyl group W , and α ∈ ∆.
The reflection sα has order 2, so it acts in E with eigenvalues +1 and −1. We write

E = E(+, α) ⊕E(−, α)

accordingly. We now define

(13.2)(a) A(sα, σ, ν
`) = (1 + 〈ν` , α∨〉)−1

(
I + 〈ν`, α∨〉σ(sα)

)

This makes sense as long as 〈ν`, α∨〉 6= −1. A little more explicitly,

A(sα, σ, ν
`)v =

1 + ε〈ν, α∨〉

1 + 〈ν, α∨〉
v (v ∈ E(ε, α)).

Similarly, define

(13.2)(b) Ã(sα, σ, ν) = (1 + τ(α)〈ν, α∨〉)−1 (I + τ(α)〈ν, α∨〉σ(sα))
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This makes sense as long as τ(α)〈ν, α∨〉 6= −1. Explicitly,

Ã(sα, σ, ν)v =
1 + ετ(α)〈ν, α∨〉

1 + τ(α)〈ν, α∨〉
v (v ∈ E(ε, α)).

Suppose now that w ∈ W is any element. Choose a reduced decomposition

(13.3)(a) w = sαn
sαn−1

· · · sα1

where each αi ∈ S. For 1 ≤ i ≤ n define w(i) = sαi
sαi−1

· · · sα1
, and set w(0) = 1.

Define

(13.3)(b) A(w, σ, ν`) =
n∏

i=1

A(sαi
, σ, w(i−1)ν`)

and

(13.3)(c) Ã(w, σ, ν) =

n∏

i=1

Ã(sαi
, σ, w(i−1)ν)

These linear operators are defined for ν` and ν not belonging to n hyperplanes.
Explicitly, write

∆+(w) = {β ∈ ∆+ | w−1(β) ∈ ∆−}.

This is a set of n positive roots, and it turns out that

∆+(w) = {(w(i−1))−1(αi) | 1 ≤ i ≤ n}.

It follows that A(w, σ, ν`) is defined as long as

(13.4)(a) 〈ν`, β∨〉 6= −1, β ∈ ∆+(w).

Similarly, Ã(w, σ, ν) is defined as long as

(13.4)(b) τ(β)〈ν, β∨〉 6= −1, β ∈ ∆+(w).

In particular, the operators are defined whenever ν` and ν have dominant real part.
If w0 is the long element of W , we will be particularly interested in the operators

(13.5) A(σ, ν`) = A(w0, σ, ν
`), Ã(σ, ν) = Ã(w0, σ, ν).

Our notation implies that A(w, σ, ν`) is independent of the choice of reduced
decomposition of w in (13.3)(a). This is true, and not very difficult to prove; but
since we will make no use of the fact, we omit the argument. We are interested in
these operators because of their relationship to intertwining operators, and we are
interested in intertwining operators because they can be used to construct invariant
Hermitian forms on representations. A matrix like A(σ, ν`) will turn out to be part
of the matrix of an invariant Hermitian form. To see that this makes sense, we
need to know that A(σ, ν`) is (sometimes) a self-adjoint operator. (Because E is
the space of the unitary Weyl group representation σ, it carries a natural Hilbert
space structure; this is what defines adjoints for operators on E.) Because

σ(sα)∗ = σ(sα)−1 = σ(sα),

we get immediately

A(sα, σ, ν
`)∗ = A(sα, σ, ν

`) = A(sα, σ,−sα(ν`)),

and similarly for Ã. An easy calculation with (13.3) gives

(13.6) A(w, σ, ν`)∗ = A(w−1, σ,−w(ν`)), Ã(w, σ, ν)∗ = Ã(w−1, σ,−w(ν)).
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In particular, A(σ, ν`) is self-adjoint if w0(ν
`) = −ν`.

Lemma 13.7. Suppose ν ∈ a∗C and ν` = dΨt(ν) ∈ (a`)∗C. Then for every represen-
tation σ of W , and every element w ∈W , we have

Ã(w, σ, ν) = A(w, σ, ν`).

Proof. This is immediate from (13.1), (13.2), and (13.3). �

We turn now to a description of standard intertwining operators for pseudospher-
ical principal series representations. We need these both for the linear group G`

and for the nonlinear group G̃. It is therefore convenient to generalize for a moment

to the setting of Definition 4.1, so that G̃ is a (possibly trivial) two-fold cover of a

linear group G. Fix a pseudospherical representation δ̃ of M̃ , and a weight ν ∈ a∗C.
For each w ∈ W there is a meromorphic family of standard intertwining operators

T (w, δ̃, ν) : I(δ̃, ν) → I(wδ̃, wν),

which we normalize by requiring that they act as the identity on the unique pseu-

dospherical K̃-type µ0. Because δ̃ is pseudospherical, wδ̃ is equivalent to δ̃ (Lemma
4.11); but writing the codomain in this form is convenient for thinking about gen-
eralizations to non-pseudospherical principal series. These operators are analytic
at least for ν having dominant real part; the precise location of the poles will be
clear from Lemma 13.13. We will be particularly interested in the long intertwining
operator

T (δ̃, ν) = T (w0, δ̃, ν),

whose image (when the real part of ν is dominant) is J(δ̃, ν). Fix a K̃-type µ. By
(10.4)(a), the intertwining operators induce maps

T (w, µ, δ̃, ν) ∈ Hom(Vµ[δ̃], Vµ[wδ̃]).

Since we are realizing δ̃ on the space of the pseudospherical K̃-type µ0, we get
natural identifications

Vµ[δ̃] = HomfM
(Vµ, Vµ0

) = Vµ[wδ̃].

These identifications give

(13.8) T (w, µ, δ̃, ν) ∈ End(Vµ[δ̃]).

This space inherits a Hilbert space structure from Vµ and Vµ0
. In analogy with

(13.6), one can calculate easily that

(13.9) T (w, µ, δ̃, ν)∗ = T (w−1, µ, wδ̃,−ν).

If w0ν = −ν, it follows that T (µ, δ̃, ν) is self-adjoint. These self-adjoint operators
define the invariant Hermitian forms on the spherical representations, giving the
following classical and fundamental result.

Theorem 13.10. Suppose that ν ∈ a∗ is real and dominant. Then J(δ̃, ν) admits
a non-zero invariant Hermitian form if and only if w0ν = −ν. When the form

exists, it is definite if and only if T (µ, δ̃, ν) is positive semi-definite for all K̃-types
µ.

If G is a linear group this is standard; see for example [Kn, Chapter VII] or
[Ba1]. The same proof holds in the nonlinear case with minor modifications.

Suppose now that Σ is a collection of irreducible representations of K̃.
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Definition 13.11. Suppose that J(δ, ν) is an irreducible Hermitian pseudospher-

ical representation of G̃; normalize its invariant Hermitian form to be positive on

the pseudospherical K̃-type µ0. We say J(δ̃, ν) is unitary on Σ if its invariant form

is positive semi-definite on the µ-isotypic component of J(δ̃, ν) for all µ ∈ Σ.

We say Σ detects unitarity for δ̃ if each Hermitian pseudospherical representation
J(δ̃, ν) is unitary if and only if it is unitary on Σ. We say Σ detects spherical

unitarity if it detects unitarity for the trivial character δ̃ = 1.

To say that Σ detects unitarity for δ̃ means that for each non-unitary but Her-
mitian representation J(δ̃, ν) (with ν dominant real), there is a µ ∈ Σ so that the

operator T (µ, δ̃, ν) has a strictly negative eigenvalue.

The operator T (w, δ̃, ν) has a factorization analogous to (13.3)(b):

(13.12) T (w, δ̃, ν) =

n∏

i=1

T (sαi
, w(i−1)δ̃, w(i−1)ν);

here we are using a reduced decomposition of w exactly as in (13.3)(b). This induces
a factorization

T (w, δ̃, µ, ν) =

n∏

i=1

T (sαi
, µ, w(i−1)δ̃, w(i−1)ν).

Each factor T (sαi
, w(i−1)δ̃, w(i−1)ν) is induced from an operator on a principal series

representation of (essentially) SL(2,R) or S̃L(2,R); so we calculate that operator
first.

Recall from (4.12) that

Ad(m̃)Zα = ±Zα for all m̃ ∈ M̃.

For k ∈ 1
2Z, define

Vµ(k) = {v ∈ Vµ | dµ(iZα)(v) = kv}.

For k ≥ 0, we will also use

Vµ(±k) = Vµ(k) + Vµ(−k).

Recall m̃α = exp(πZα). Its square m̃2
α is equal to the central element −1 if α is

metaplectic, and to 1 if α is not metaplectic (see the discussion after (4.6)). It
follows that Vµ(±k) is zero unless k ∈ Z+ 1

2 if α is metaplectic, or k ∈ Z otherwise.

Thus (writing 1
2Z+ = {0, 1/2, 1, . . .}) we have

Vµ =
∑

k∈ 1
2

Z+

Vµ(±k),

an M̃-invariant decomposition of Vµ. Recalling that we are realizing δ̃ on the

pseudospherical K̃-type µ0, this gives

Vµ[δ] ' ⊕k∈ 1
2

Z+
HomfM

(Vµ(±k), Vµ0
).

The summands satisfy

HomfM
(Vµ(±k), Vµ0

) = 0

{
if α is metaplectic and k /∈ Z + 1

2 , or

if α is not metaplectic and k /∈ 2Z.
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Lemma 13.13. The intertwining operator T (sα, µ, δ̃, ν) acts on

HomfM
(Vµ(±k), Vµ0

) (k ≥ 0)

by 1 if k = 0 or k = 1/2, and for k ≥ 3/2 by the scalar:

(13.14)
∏

0≤j≤[(k−1)/2]

(k − 1 − 2j) − 〈ν, α∨〉

(k − 1 − 2j) + 〈ν, α∨〉
,

with the product running over integer values of j. In more detail,

(13.15)(a)
1 − 〈ν, α∨〉

1 + 〈ν, α∨〉
·
3− 〈ν, α∨〉

3 + 〈ν, α∨〉
· · ·

(k − 1) − 〈ν, α∨〉

(k − 1) + 〈ν, α∨〉
k ≥ 2 even

(13.15)(b)
1/2− 〈ν, α∨〉

1/2 + 〈ν, α∨〉
·
5/2− 〈ν, α∨〉

5/2 + 〈ν, α∨〉
· · ·

(k − 1) − 〈ν, α∨〉

(k − 1) + 〈ν, α∨〉
k ∈

3

2
+ 2Z+

(13.15)(c)
3/2− 〈ν, α∨〉

3/2 + 〈ν, α∨〉
·
7/2− 〈ν, α∨〉

7/2 + 〈ν, α∨〉
· · ·

(k − 1) − 〈ν, α∨〉

(k − 1) + 〈ν, α∨〉
k ∈

5

2
+ 2Z+

The lemma is proved by a calculation in SL(2), which we omit.
We can decompose Vµ0

according to eigenspaces of Zα just as we did Vµ. The
assumption that Vµ0

is pseudospherical means that only Vµ0
(0) and Vµ0

(±1/2) can
be non-zero. Then

(13.16) Vµ[δ] =
∑

k,`∈ 1
2

Z+

HomfM
(Vµ(±k), Vµ0

(±`)).

The element mα acts by the scalar i2k on Vµ(k) and on Vµ0
(k). Therefore an

element φ of HomfM
(Vµ, Vµ0

) must satisfy

φ(Vµ(k)) ⊂
∑

k−`∈2Z

Vµ0
(`).

Since exp(πZα/2) is a representative of sα ∈ W , we can now calculate that in the
representation σ of W on Vµ[δ], σ(sα) acts on HomfM

(Vµ(±k), Vµ0
) by the scalar

(13.17)(a) σ(sα) =





(−1)k/2 (k ∈ 2Z)

(−1)(k−1/2)/2 (k ∈ 1
2 + 2Z+)

(−1)(k+1/2)/2 (k ∈ 3
2 + 2Z+

More explicitly,

(13.17)(b) σ(sα) =





+1 on HomfM
(Vµ(0), Vµ0

)

−1 on HomfM
(Vµ(±2), Vµ0

)

+1 on HomfM
(Vµ(±1/2), Vµ0

)

−1 on HomfM
(Vµ(±3/2), Vµ0

)
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Proposition 13.18. Suppose δ̃ is pseudospherical, µ is petite, and

φ ∈ HomfM
(Vµ, Vµ0

)

is an eigenvector of σ(sα). Then

T (sα, µ, δ̃, ν)φ =





φ σ(sα)(φ) = φ
1 − 〈ν, α∨〉

1 + 〈ν, α∨〉
φ σ(sα)(φ) = −φ, α not metaplectic

1/2− 〈ν, α∨〉

1/2 + 〈ν, α∨〉
φ σ(sα)(φ) = −φ, α metaplectic

In particular, the action of T (sα, µ, δ̃, ν) on Vµ[δ] is determined by the Weyl group
representation σ.

Proof. This follows from (13.17)(b) and Lemma 13.13.
�

Corollary 13.19. Suppose δ̃ is a pseudospherical representation of M̃ , and µ is a

petite representation of K̃. Let σ be the representation of W on Vµ[δ̃], and suppose

w ∈ W . If G̃ is the trivial cover of the linear group G, then

(13.20)(a) T (w, µ, δ̃, ν) = A(w, σ, ν).

If G̃ is the nonlinear double cover of a simply connected group, and δ̃ is a genuine

pseudospherical representation of M̃ , then

(13.20)(b) T (w, µ, δ̃, ν) = Ã(w, σ, ν).

Proof. This follows from corresponding identities for T (sα, µ, δ̃, ν) and A(sα, σ, ν)
(cf. (13.2)(a) and Proposition 13.18) and the factorizations (13.3)(b) and (13.12).

�

Now suppose we are in the setting of Conjecture 7.1. In particular we have

fixed a pseudospherical representation δ̃ for G̃. We write K`, A`, etc. for objects
associated to G`. We restrict consideration to real infinitesimal character, so fix
ν ∈ a∗0 and let ν` = dΨt(ν).

Proposition 13.21. Suppose ΣW (G̃, δ̃) = ΣW (G`,1) (Definition 10.7). Then

J(δ̃, ν) is unitary on Σ eK(G̃, δ̃) (Definition 13.11) if and only if J(ν`) is unitary on

ΣK`(G`,1).

Proof. Suppose J(δ̃, ν) is unitary on Σ eK(G̃, δ̃). Then Ã(σ, ν) is positive semi-

definite for all σ ∈ ΣW (G̃) by (13.20)(a). By Lemma 13.7, A(σ, ν`) is positive

semi-definite for all σ ∈ ΣW (G̃) = ΣW (G`). By (13.20)(b), J(ν`) is unitary on
ΣK`(G`,1). The reverse direction is identical. �

Corollary 13.22. Recall the notation of Conjecture 7.1. Assume that ΣW (G̃, δ̃) =
ΣW (G`) (Definition 10.7).

If ΣK`(G`,1) detects spherical unitarity for G` (Definition 13.11), then

dΨt
(
CS(δ̃, G̃)

)
⊂ CS(G`).
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If Σ eK(G̃, δ̃) detects unitarity for δ̃, then

CS(G`) ⊂ dΨt
(
CS(δ, G̃)

)
.

Proof. Assume ΣK`(G`,1) detects spherical unitarity for G`, and suppose J(δ̃, ν) is
unitary. By the Proposition J(ν`) is unitary on ΣK`(G`,1), and therefore unitary
since ΣK`(G`,1) detects spherical unitarity. The other direction is identical. �

Here is the deep result that gives substance to these elementary calculations.

Theorem 13.23 ([Ba1]). If G is a classical linear group, then ΣK(G,1) detects
spherical unitarity.

By Lemma 10.9 and Proposition 12.11, ΣW (G̃, δ̃) = ΣW (G`,1), so by Corollary
13.22 and Theorem 13.23 we conclude:

Theorem 13.24. Retain the notation of Conjecture 7.1 and assume G is a classical
group. Then

dΨt
(
CS(δ̃, G̃)

)
⊂ CS(G`).

If G = Sp(2n) we will prove equality in the next Section.

14. CS(Spin(n, n+ 1)) = CS(δ̃, S̃p(2n,R))

In this section we use the theta correspondence to study the pseudospheri-

cal complementary series of S̃p(2n,R). To better understand the limitations of
this technique, first suppose that (G1, G

′
1) is an irreducible reductive dual pair in

Sp(2N,R). Write G̃1 and G̃′
1 for the respective preimages in S̃p(2N,R). Then G̃1

and G̃′
1 are both linear except when (up to reordering) G1 = O(p, q) with p + q

odd and G′
1 = Sp(2n,R). In this case G̃1 = Õ(p, q) is a linear cover of O(p, q), but

G̃′
1 = S̃p(2n,R). Unfortunately, as mentioned above, S̃p(2n,R) is the only nonlin-

ear group arising this way, and the theta correspondence cannot be used to make
conclusions about the other nonlinear groups in Conjecture 7.1.

With this in mind, fix a choice ω of one of the two oscillators for S̃p(2N,R),

and let Irr(Õ(p, q)) and Irr(S̃p(2n,R)) denote the set of irreducible genuine rep-
resentations of the indicated groups. The theta correspondence for the dual pair
(O(p, q), Sp(2n,R)) may be interpreted as defining maps (depending on the choice
of ω)

θ(p,q)
n : Irr(S̃p(2n,R)) −→ Irr(Õ(p, q)) ∪ {0}

θn
(p,q) : Irr(Õ(p, q)) −→ Irr(S̃p(2n,R)) ∪ {0}.

Here θ
(p,q)
n (π) = 0 if π does not occur in the correspondence, and likewise for θn

(p,q).

When restricted to those representations that do occur, these maps are inverses of
each other. The basic reference for these facts is [H2].

For our purposes, it will be convenient to work directly with O(p, q) instead

of Õ(p, q). Fix a genuine character of ξ of Õ(p, q) as in (1.2g) of [AB]. Then
π 7→ π ⊗ ξ is a bijection from irreducible representations of O(p, q) to irreducible

genuine representations of Õ(p, q). The inverse is given by tensoring with ξ−1: if
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π is a genuine irreducible representation of Õ(p, q), then π ⊗ ξ−1 is irreducible and
factors to O(p, q). Define

θ̄(p,q)
n : Irr(S̃p(2n,R)) −→ Irr(O(p, q)) ∪ {0}

by

θ̄(p,q)
n (π) = θ(p,q)

n ⊗ ξ−1.

Likewise define

θ̄n
(p,q) : Irr(O(p, q)) −→ Irr(S̃p(2n,R)) ∪ {0}

by

θ̄n
(p,q)(π) = θn

(p,q)(π ⊗ ξ).

Now fix a pseudospherical representation δ̃ for S̃p(2n,R). (The notation δ̃n
would be better, but we suppress the subscript.) If follows easily from the corre-

spondence of joint harmonics that for any M the oscillator defining θ̄
(M+1,M)
n may

be chosen so that θ̄
(M+1,M)
n takes δ̃-pseudospherical representations of S̃p(2n,R) to

spherical representations of O(M + 1, 1), and likewise that θ̄n
(M+1,M) takes spher-

ical representations to pseudospherical ones. (The relevant calculation, together
with appropriate reference to the theory of joint harmonics, is recalled in Section
2, and especially Proposition 2.1, of [AB].) In the setting of Definition 1.1, a pseu-

dospherical representation of G̃ is characterized by its pseudospherical K-type and
its infinitesimal character (see the comments after Definition 5.5). The following
result is now a consequence of Theorem 5.1 of [AB].

Lemma 14.1. Retain the notation as above. Then

θ̄n
(n+1,n)

(
JO(n+1,n)(ν)

)
= JfSp(2n,R)

(
δ̃, ν

)
;

here ν may be interpreted as a parameter for both O(n + 1, n) and S̃p(2n,R) by
identifying the dual Cartan subspaces a∗ by the map dΨt as in Conjecture 7.1.

Theorem 14.2. The theta correspondence restricts to a bijection

θ̄n
(n+1,n) : CS(O(n+ 1, n)) −→ CS(δ̃, S̃p(2n,R)).

Since Lemma 4.20 shows that CS(O(n+ 1, 1)) = CS(Spin(n+ 1, n)), this es-
tablishes Conjecture 7.1 for G = Sp(2n,R).

Proof. We need to introduce some auxiliary notation. Given an infinitesimal char-
acter ν for O(n+1, n), let (ν | ρm) denote the infinitesimal character for O(m+n+
1,m+n) obtained by augmenting the coordinates of ν by (1/2, 3/2, . . . , (2m−1)/2).
Let JO(m+n+1,m+n)(ν | ρm) denote the corresponding spherical representation of
O(m+ n+ 1,m+ n). The following facts are crucial.

Fact 0(a). If JO(n+1,n)(ν) is unitary, then each real coordinate of ν (in absolute
value) is less than or equal to (2n− 1)/2.

Fact 0(b). If JfSp(2n,R)
(δ̃, ν) is unitary, then each real coordinate of ν (in abso-

lute value) is less than or equal to (2n− 1)/2.
Fact 1. If m ≥ n, then JO(m+n+1,m+n)(ν | ρm) is unitary if and only if

JO(n+1,n)(ν) is unitary.
Fact 2. If m ≥ n+ 2, then JO(m+n+1,m+n)(ν | ρm) is a low-rank representation

in the sense of [H1] (see also [Li2]).
For the moment accept these facts; the proofs will be given below.
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Consider the iterated lift θ̄
(n+m+1,n+m)
n

(
θ̄n
(n+1,n)

(
JO(n+1,n)(ν)

))
, a representa-

tion of the group O(n+m+1, n+m). Theorem 8.4 of [AB] (the induction principle)
and the correspondence of joint harmonics imply

(14.3) θ̄(n+m+1,n+m)
n

(
θ̄n
(n+1,n)

(
JO(n+1,n)(ν)

))
= JO(m+n+1,m+n)(ν | ρm).

Fix ν ∈ CS(O(n+ 1, n)). We now show that JfSp(2n,R)(δ̃, ν) is unitary, and

thus establish one half of the theorem. Choose m ≥ n + 2. Consider π :=
JO(m+n+1,m+n)(ν | ρm). By Facts 1 and 2, π is a low-rank unitary representa-
tion of O(n + m + 1, n + m). The main theorem of [Li2] thus asserts that there
exists a character χ of O(n+m+1, n+m) and an irreducible unitary representation

τ of some S̃p(2l,R) with l ≤ (m+ n)/2 such that

(14.4) θ̄
(n+m+1,n+m)
l (τ) = π ⊗ χ.

Our aim is to show that l = n and that τ equals JfSp(2n,R)(δ̃, ν). Since τ is unitary,

this gives the desired unitarity of JfSp(2n,R)(δ̃, ν).

Since π is spherical, the correspondence of joint harmonics implies that the
character χ in (14.4) must be trivial, and τ must be δ̃-pseudospherical.

Next we argue that the infinitesimal character correspondence dictates that l =
n. To see this note that if τ has infinitesimal character λ, then (see for example

[Pr]) θ̄
(n+m+1,n+m)
l (τ) has infinitesimal character (λ | ρn+m−l). (Here, as above, λ

is playing a dual role as an infinitesimal character for O and S̃p; we will no longer
remark on this explicitly.) So, as infinitesimal characters

(14.5) (λ | ρn+m−l) = (ν | ρm).

Using the Weyl group, we may assume each real coordinate above is positive, and
we may also view the equality in (14.5) as an equality of (n+m)-tuples of complex
numbers. First we prove that l ≥ n. Suppose instead that l < n; so n+m− l > m,
and the largest coordinate ρn+m−l is strictly larger than the largest coordinate of
ρm. Equation (14.5) thus implies that the largest coordinate of ρn+m−l must be
a coordinate of ν. Since we have supposed l < n and are assuming m ≥ n + 2
(in particular, m ≥ n), the largest coordinate of ρn+m−l is strictly larger that the
largest coordinate of ρn, i.e., (2n− 1)/2. But ν ∈ CS(O(n+ 1, n)), and thus Fact
0(a) gives a contradiction. So indeed l ≥ n.

Next we suppose l > n and derive a contradiction. If l > n, the largest coordinate
of ρm is greater than the largest coordinate of ρn+m−l and Equation (14.5) implies
that λ must thus contain the largest coordinate of ρm. Recall that the theorem
of [Li2] implies that l ≤ (m + n)/2; so the assumption l > n implies l < m, and
the largest coordinate of ρm is strictly larger than the largest coordinate of ρl. So
λ contains a coordinate strictly larger than (2l − 1)/2. But τ is pseudospherical,
contradicting Fact 0(b). Thus l ≤ n.

The previous two paragraphs imply l = n and that the infinitesimal character
of τ equals ν. Already we have seen that τ is pseudospherical, and hence (see after
Definition 5.5) is characterized by its infinitesimal character. We conclude

τ = JfSp(2n,R)
(δ̃, ν),

as claimed. This proves one half of the theorem.
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The other half of the the theorem is easier and does not rely on Facts 0 or 2. Fix
ν /∈ CS(O(n+ 1, n)); we show that θ̄n

(n+1,n)

(
JO(n+1,n)(ν) is non-unitary. By Fact

1,

θ̄(n+m+1,n+m)
n

(
θ̄n
(n+1,n)

(
JO(n+1,n)(ν)

))
= JO(m+n+1,m+n)(ν | ρm)

is non-unitary for m ≥ n. But since m ≥ n (the so-called stable range case [Li1]),

θ̄
(n+m+1,n+m)
n takes unitary representations to unitary representations. So, indeed,

θ̄n
(n+1,n)

(
JO(n+1,n)(ν)

)
= JfSp(2n,R)

(δ̃, ν)

cannot be unitary.
This completes the proof of Theorem 14.2 up to the proofs of Facts 0, 1, and

2. Fact 0 is standard and we begin there. After acting on ν by the Weyl group,
we may suppose that the real coordinates of ν are the first m (for some m with
0 ≤ m ≤ n), and that

ν1 ≥ ν2 ≥ · · · ≥ νm ≥ 0.

We will prove the contrapositive of Fact 0: that if ν1 ≥ n − 1/2, then the cor-
responding pseudospherical representation is not unitary. In fact we will prove
non-unitarity under an even weaker condition. Here is the strengthened version of
Fact 0(a).

Lemma 14.6. Under the assumptions above on ν, suppose that either

(1) νm > 1/2, or
(2) for some a with 1 ≤ a ≤ m− 1, we have νa − νa+1 > 1.

Then the spherical principal series representation JO(n+1,n)(ν) is not unitary.

Clearly the assumption that ν1 > n − 1/2 implies that at least one of the two
conditions in the lemma is satisfied.

Proof. In the first case, set a equal to m. Define

νt = (t, . . . , t, 0, . . . , 0) + ν,

with the first a coordinates equal to t. We consider the family of spherical represen-
tations JO(n+1,n)(νt) for t ≥ 0. What we are trying to show is that JO(n+1,n)(ν0) =
JO(n+1,n)(ν) is not unitary. If this representation admits no non-zero invariant Her-
mitian form, we are done; so we may assume that such a form exists, and normalize
it to be positive on the K-fixed vector. Knapp’s “formal symmetry condition” for
the existence of such a form is inherited by all νt; so we may endow all the repre-
sentations JO(n+1,n)(νt) (for t ≥ 0) with non-degenerate invariant Hermitian forms
positive on the spherical vectors. We will investigate this family of forms on the “p

K-type”: the representation of O(n+ 1) × O(n) on Cn+1 ⊗ Cn, which we will call
µ1. This is a petite K-type, corresponding to k = 1 in the first case of Lemma 12.7.
It is the adjoint representation of K on pC in the Cartan decomposition g = k + p.
According to Lemma 12.7, the representation of W on the space Vµ1

(1) of M -fixed
vectors is σ1 = (n−1)× (1), which is the reflection representation of W . According
to Corollary 13.19, the Hermitian form for JO(n+1,n)(νt) on the K-type µ1 is given
by the matrix A(σ1, νt). What we will show is that for all t ≥ 0, A(σ1, νt) fails to
be positive definite; this will prove in particular that JO(n+1,n)(ν) is not unitary.

The proof that A(σ1, νt) fails to be positive definite has two steps. First, we will
show that the signature of A(σ, νt) is constant for all t ≥ 0, for any Weyl group
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representation σ. It therefore suffices to prove that A(σ1, νt) is indefinite for large
t. This we will do by inspection of the Casimir operator for G.

For the first step, let

L = GL(a,R) ×O(n− a+ 1, n− a)

be the maximal Levi subgroup of G defined by the weight (1, . . . , 1, 0, . . . , 0) (with
a terms equal to one). Let P = LU be the corresponding standard parabolic
subgroup. The roots in U are

ei ± ej , ei (1 ≤ i ≤ a, a+ 1 ≤ j ≤ n)

What follows from the hypothesis on a in the lemma is that

(14.7) 〈ν, α∨〉 is strictly greater than 1 or non-real

for all roots α in U . (The first possibility occurs if j is less than or equal to m or
absent, and the second if j is greater than m.)

In the factorization (13.3)(b), each factor is invertible operator 〈ν, α∨〉 = ±1.
This is a consequence of the definition of the factors in Proposition (13.2)(a). Now
it follows from (14.7) that the rank of A(σ, t) is independent of t (for t ≥ 0); in
fact it is equal to the rank of the corresponding operator for the Weyl group of
L. Because the positive and negative parts of the signature are semicontinuous in
t, the constancy of the rank (equal to the sum of the positive and negative parts)
implies that the signature is constant as well.

It remains to show that A(σ1, t) is not positive definite for large positive t. For
this we can invoke [Sal, Lemma 6.3]; since the argument in our case is very simple,
we will give a proof. It is most convenient to work with the group representation.
Let v0(t) be a non-zero K-fixed unit vector in JO(n+1,n)(νt). We use the invariant
bilinear form on g extending our chosen inner product on a, and let Ω be the
corresponding Casimir operator. In a representation π with infinitesimal character
λ, we have

π(Ω) = 〈λ, λ〉 − 〈ρ, ρ〉

(with ρ the half sum of a set of positive roots). In particular, Ω must act on J(νt)
by the scalar

〈νt, νt〉 − 〈ρ, ρ〉.

This is a quadratic polynomial in t with leading term at2, so it certainly has positive
real part for t sufficiently large.

Now assume that the invariant Hermitian form 〈·, ·〉 is positive on the p K-
type µ1. We will compute the Casimir eigenvalue in a different way and get a
contradiction. Choose an orthonormal basis {Xi} for p, and an orthogonal basis
{Yj} of k consisting of vectors of length −1. This is possible, since the invariant
form on g is positive on p and negative on k. Then

Ω =
∑

i

X2
i −

∑

j

Y 2
j .

Since v0(t) is a unit vector in J(νt), the Casimir eigenvalue is

〈Ω · v0(t), v0(t)〉t =
∑

i

〈X2
i · v0(t), v0(t)〉t +

∑

j

〈Y 2
j · v0(t), v0(t)〉t.



UNITARY SHIMURA CORRESPONDENCES 47

Since v0(t) is K-fixed, all terms in the second sum are zero. In the first sum, we
can use the invariance of the inner product to move one Xi to the right with a sign
change, getting ∑

i

−〈Xi · v0(t), Xi · v0(t)〉t.

Now v0(t) is K-fixed and the Xi transform by the representation µ1; so all of the
vectorsXi ·v0(t) must belong to the µ1 K-type of J(νt). By hypothesis the invariant
Hermitian form is positive on this K-type, so each vector Xi ·v0(t) has non-negative
length. The conclusion is that the eigenvalue of the Casimir must be non-positive,
contradicting our earlier calculation that the eigenvalue has positive real part for
large t. This contradiction proves the invariant form must be non-positive on µ1

for large t. �

Here is the strengthened version of Fact 0(b).

Lemma 14.8. Suppose that the real coordinates of ν are the first m, and that

ν1 ≥ ν2 ≥ · · · ≥ νm ≥ 0.

Assume that either

(1) νm > 1/2, or
(2) for some a with 1 ≤ a ≤ m− 1, we have νa − νa+1 > 1.

Then the pseudospherical principal series representation JfSp(2n,R)
(ν) is not unitary.

Proof. We follow as closely as possible the proof of Lemma 14.6. We define νt

exactly as in the preceding proof, and consider the family of pseudospherical rep-
resentations JfSp(2n,R)

(νt). As before we may assume that JfSp(2n,R)
(ν0) admits an

invariant Hermitian form. Suppose for definiteness that δ̃ = δ̃+, so that all these

representations contain the K̃-type det1/2. We normalize the forms 〈·, ·〉t to be

positive on the pseudospherical K̃-type det1/2. We investigate the forms on the

K̃-type µ̃1 of highest weight

(1/2, . . . , 1/2,−3/2).

This is a petite K̃-type, corresponding to k = 1 in the first case of Lemma 12.5.
The corresponding representation of W is again σ1 = (n − 1) × (1), the reflection
representation. According to Corollary 13.19, the Hermitian form for JfSp(2n,R)

(νt)

on the K̃-type µ̃1 is given by the matrix Ã(σ1, νt). According to Lemma 13.7, this
is equal to A(σ1, νt). The fact that this matrix is not positive definite was already
proved in Lemma 14.6, so we are done. �

There is a small subtlety here. The proof given for failure of positivity of the
matrix A(σ1, νt) in Lemma 14.6 does not trivially work in the setting of Lemma

14.8. The main difficulty is that the tensor product of det1/2 with the representation

pC of K̃ contains not only µ̃1, but also the non-petite representation of K̃ of highest
weight (5/2, 1/2, . . . , 1/2). (One can deal with this difficulty with a little more care
in the argument.) But the point is that we do not need a new representation-
theoretic argument to prove that A(σ1, νt) is not positive, since it is exactly the
same matrix appearing in the linear case.

Facts 1 and 2 are consequences of the shape of the main results of [Ba1]; here
we simply supply a few details.
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We begin with a brief summary of [Ba1]. For notational ease, we assume G =
O(n+ 1, n), O(n, n) or Sp(2n,R). (Of course, the first case is the one relevant for
Facts 1 and 2, but it is conceptually easier to work in this slightly more general
setting.) It is convenient also to use a possibly disconnected version of the complex
dual group, writing

(14.9) G∨
C =





Sp(2n,C) if G = O(n+ 1, n),

O(2n,C) if G = O(n, n), and

O(2n+ 1,C) if G = Sp(2n,R).

As usual, the duality relationship between g and g∨
C identifies a∗C as a Cartan sub-

algebra of g∨C , in a way that is canonical up to the action of W . In the usual
coordinates for these classical groups, the identification comes from the identifica-
tion of each space with Cn.

To each spherical representation J(ν) of G, [Ba1] first attaches a nilpotent orbit
O∨ in the complex dual Lie algebra g∨C . Explicitly, O∨ is the unique dense orbit in
the G∨

C saturation of the 1-eigenspace of ad(ν) on g∨
C.) Let p∨ = p(O∨) = {p∨1 ≥

p∨2 ≥ · · · } denote the partition obtained from the Jordan normal form of an element
of O∨. We break the partition into two pieces p∨ = p∨unip ∪ p∨GL as follows:

p∨unip = one copy of each part of p∨ having odd multiplicity,

and p∨GL consists of the remaining parts (each therefore appearing with even mul-
tiplicity). The partition p∨unip parametrizes a distinguished nilpotent orbit O∨

unip in

a classical Lie algebra g(k)∨C of a complex Lie algebra g(k)C of rank k and the same
type as g∨C . (For classical groups outside of Type A, an orbit is distinguished if
and only if the partition corresponding to its Jordan normal form has no repeated
entries.) The partition p∨GL may be written

p∨GL = {n1, n1 ≥ n2, n2 ≥ · · · ≥ nr, nr}.

We now define a Levi subgroup

L = G(k) × GL(n1,R) × · · · × GL(nr,R) ⊂ G;

here G(k) is a split classical group of rank k and the same type as G. Let πunip

denote the spherical representation of G(k) whose infinitesimal character νunip is
one-half the semisimple element of a Jacobson-Morozov triple for O∨

unip. (A dis-

tinguished nilpotent orbit is even, and νunip is therefore integral.) In the course of
describing how to calculate the partition p∨ from ν, [Ba1] defines characters χi of
each GL(ni) factor of L. These characters are chosen so that J(ν) is a composition

factor of IndG
L (πunip ⊗ χ1 ⊗ · · · ⊗ χr). (Here we really mean parabolic induction of

course, but we are being a little sloppy and not specifying the nilradical.)
Write Z(O∨)∨C for the centralizer in G∨

C of a Jacobson-Morozov triple for O∨.
Because G∨ is a symplectic or orthogonal group, this centralizer is is a product of
symplectic and orthogonal groups ([CMc]):

Z(O∨)∨C =
∏

i

Sp(2ai,C) ×
∏

j

O(2bj ,C) ×
∏

k

O(2ck + 1,C).

(The numbers 2ai, 2bj , and 2ck + 1 are the multiplicities of parts of p∨.) Define
Z(O∨) to be the split real form of the dual group,

Z(O∨) =
∏

i

O(ai + 1, ai) ×
∏

j

O(bj , bj) ×
∏

k

Sp(2ck,R).
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From the characters χi, [Ba1] defines an infinitesimal character νZ for Z(O∨).
Since Z(O∨) is a product of orthogonal and symplectic groups, one may run the
algorithms just described and extract from νZ a Levi subgroup, an orbit in the
dual, et cetera, with Z(O∨) now playing the role of G in the previous paragraph.
Let O∨

Z denote the nilpotent orbit in the dual z(O∨)∨C described by the procedure
above. One version of the main theorem of [Ba1] is that
(14.10)
JG(ν) is unitary if and only if JZ(O∨)(νZ) is unitary and O∨

Z is the zero orbit.

We will deduce Facts 1 and 2 by examining how the data described above change
when we pass from JO(n+1,n)(ν) to JO(n+m+1,n+m)(ν | ρm) for m ≥ n. We retain
the notation above for the data attached to ν and add primes for the data attached
to ν′ = (ν | ρm). It is not difficult to show that

(p∨)′ = p∨ augmented by the part 2m.

Since m ≥ n by assumption (and this assumption is crucial), the part 2m is larger
than any in p∨unip and the partition (p∨unip)

′ consists of distinct parts and thus

parametrizes a distinguished orbit unless both m = n and p∨ = p∨unip = {2n}. We
return to this situation below; for now assume we are not in this case. It follows
that if L = G(k)×GL(n1)× · · ·GL(nr) is the Levi factor factor for ν, the L′ for ν′

is simply G(k +m) × GL(n1) × · · ·GL(nr). The construction in [Ba1] shows that
the characters χ′

i coincide with the χi. Because there is a single distinct extra part
in (p∨)′, the centralizer subgroup Z ′

(
(O∨)′

)
is O(1, 0) × Z(O∨); the infinitesimal

character ν′Z coincides with νZ . Thus determining the unitarity of JO(n+1,n)(ν) and
determining the unitarity of JO(n+m+1,n+m)(ν | ρm) reduces via Equation (14.10)
to determining the unitarity of the same representation of Z(O∨). (The extra factor
of O(1, 0) = Z/2Z has no effect on unitarity.) This establishes Fact 1.

Return to the case wherem = n and p∨ = p∨unip = {2n}. Then JO(n+1,n)(ν) is the

trivial representation and of course unitary. On the other hand, JO(2n+1,2n)(ν | ρn)
is clearly contained in the representation unitarily induced from the trivial character
on the Siegel GL(2n,R) Levi factor, and hence is unitary. So Fact 1 holds in this
case as well.

We now turn to Fact 2, beginning with some preliminaries about low rank repre-
sentations. Given a representation π, let WF(π) denote Howe’s wavefront set of π;
for a definition and some basic properties, see [H0] and [BV0]. Define the rank of a
set of S of nilpotent matrices in a classical Lie algebra to be max{rank(X) | X ∈ S};
here rank(X) is the rank of X as a matrix. Set

r(N + 1, N) =

{
N − 1 if N is odd;

N if N is even.

A representation π of O(N + 1, N) is said to be of low rank if

rank
(
WF(π)

)
< r(N + 1, N).

(This is not the original definition of rank given by Howe [H1]. That this definition
coincides with Howe’s is an unpublished theorem of Howe (one direction) and Li (the
other); see [Li3]. The corresponding theorem for the symplectic group is stated and
proved in [Li4], where it is stated that analogous theorems hold for other classical
groups. That the formulation given here is the right one for orthogonal groups
follows from [Li2, (14)].) In terms of the partition classification of nilpotent orbits,
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the rank of a nilpotent matrix is equal to the dimension of the vector space minus
the number of parts of the partition; that is, the dimension minus the length of the
first column. We conclude that a representation π of O(N + 1, N) has low rank if
and only if
(14.11)

there is a column in a partition for WF(π) of length ≥

{
N + 3 N odd;

N + 2 N even.

In order to establish Fact 2, we must therefore show that

there is a column in WF(JO(m+n+1,m+n)(ν | ρm) of length at least m+ n+ 3.

Consider the Levi subgroup

L′ = O(m+ 1,m) × GL(1,R)n ⊂ O(m+ n+ 1,m+ n).

Because ρm is the infinitesimal character of the trivial representation of O(m+1,m),
we have

JO(m+n+1,m+n)(ν | ρm) is a comp. factor of Ind
O(m+n+1,m+n)
L′ (one-diml. char.).

It follows that

WF(JO(m+n+1,m+n)(ν | ρm)) ⊂ closure of Richardson orbit for L′.

Because the length of the longest column in the partition can only increase in an
orbit closure, what we want to show comes down to

there is a column in the Richardson orbit for L′ of length at least m+ n+ 3.

This Richardson orbit is easy to compute: the corresponding partition is (2n +
1)(1)2m. Its longest column has length 2m + 1, which is at least m + n + 3 since
m ≥ n+ 2. This establishes Fact 2. �

Corollary 14.12. The K̃ types appearing in the proof of Theorem 13.24 detect

pseudospherical unitarity for S̃p(2n,R) (Definition 13.11).

Proof. This follows from Theorem 14.2 and Proposition 13.21. �

Remark 14.13. Half of Theorem 14.2 follows from Theorem 13.24; this corre-
sponds to the part of the argument that we gave second, which used only Fact
1. Because the spherical unitary dual of a split real group is the “same” as the
spherical unitary dual of split p-adic groups ([Ba1]) and since the results of [Li2]
are valid over any local field of characteristic not 2, the proof of Theorem 14.2
(with suitable but essentially obvious modifications) is valid for p-adic orthogo-
nal and symplectic groups (of characteristic not 2). The resulting correspondence
of unitary representations should be a special case of the conjecture discussed in
Remark 7.3.
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