Associated varieties and geometric quantization

David Vogan

Geometric Quantization and Applications
CIRM, October 12, 2018

Outline

First introduction: classical limits and orbit method

Second introduction: solving differential eqns
Third introduction: Lie group representations

Howe's wavefront set and the size of representations

Associated varieties and the size of representations

Turning on your computer

Advertisement for Eva Miranda

There is a tentative plan to organize a conference in Corsica next year, but NOT in June, July, or August.
I am instructed to tell you all that I know of the wonders of Corsica.

What's geometric quantization about?

You have been paying attention this week, haven't you? Seek construction QUANTIZATION. HARD.
coadjt orbit $X \subset \mathfrak{g}^{*} \rightsquigarrow$ unitary irr repn of G
Seek guidance from EASY classical limit unitary irr repn of $G \rightsquigarrow$ coadjt orbit
This talk: define, compute classical limit(unitary rep). What's wrong with this pic: EASY classical limit only computes orbit at infinity...
Classical limit of rep π should mean Howe's WF $(\pi) \subset \mathfrak{g}^{*}$.
But proofs will use instead $\mathrm{AV}\left(\pi_{K}\right) \subset\left(\mathfrak{g}_{\mathbb{C}} / \mathfrak{k}\right)_{\mathbb{C}}^{*}$
And it rained Monday, and Wednesday, and Thursday.
Tu vas pas nous sortir les violons?

Cones

Some coadjoint orbits for $S L(2, R)$.

Blue, green hyperboloids are two coadjoint orbits.
Dark green cone describes both orbits at infinity.
$S \subset V$ fin diml $\rightsquigarrow \operatorname{Cone}_{\mathbb{R}}(S)=\left\{\lim _{i \rightarrow \infty} \epsilon_{i} S_{i}\right\} \quad\left(\epsilon_{i} \rightarrow 0^{+}, s_{i} \in S\right)$.

Quantization, classical limits, and cones

Here's what classical limits tell us about quantization.
\qquad

Desideratum for quantization: diagram commutes.
Cone $_{\mathbb{R}}($ nilp coadjt orbit $)=\overline{\text { nilp coadjt orbit }} \Longrightarrow$
quantization of nilpotent X must be π with

$$
\text { classical } \operatorname{limit}(\pi)=\bar{X}
$$

compute classical $\operatorname{limit}(\pi) \rightsquigarrow$ candidates for quantization(nilp orbit).

Something to do during the talk

G reductive/number field $k, \pi=\otimes_{v} \pi_{v}$ automorphic rep.
k_{v} local field, $G\left(k_{v}\right)$ reductive, $\mathfrak{g}\left(k_{v}\right)=\operatorname{Lie}\left(G\left(k_{v}\right)\right)$.
Howe: $\pi_{v} \rightsquigarrow \mathrm{WF}\left(\pi_{v}\right) \subset \mathfrak{g}\left(k_{v}\right)^{*}$ nilp orbit closure[s].
Conjecture (global coherence of WF sets)

1. $\exists x(\pi) \in \mathfrak{g}(k)^{*}, \quad \operatorname{Cone}_{k_{v}}\left(G\left(k_{v}\right) \cdot x(\pi)\right)=\mathrm{WF}\left(\pi_{v}\right)$.
2. \exists global version of local char expansions for π_{v}.

Says $G\left(k_{v}\right) \cdot x(\pi)$ controls asymptotics of $\pi_{v} \mid K_{v}$.
Orbit of $x(\pi) \rightsquigarrow$ algebraic cone over \bar{k}

$$
N(\pi)=\operatorname{Cone}_{\bar{k}}(G(\bar{k}) \cdot x(\pi)) \subset \mathcal{N}_{\bar{k}}^{*}
$$

closure of one $G(\bar{k})$ nilpotent orbit $N(\pi)^{0}$.
$\operatorname{WF}\left(\pi_{v}\right) \subset N(\pi)_{k_{v}}$, but possibly $\operatorname{WF}\left(\pi_{v}\right) \cap N(\pi)_{k_{v}}^{0}=\emptyset$.
All π_{v} same size EXCEPT for finite arithm set of v.

Wavefront set of distribution (locally on \mathbb{R}^{n})

If ϕ integrable function of $x \in \mathbb{R}^{n}$, Fourier transform is

$$
\widehat{\phi}(\xi)=\int e^{2 \pi i\langle x, \xi\rangle} \phi(x) d x
$$

Still makes sense if ϕ is compactly supported distribution on \mathbb{R}^{n} : apply ϕ to $x \mapsto e^{2 \pi i\langle x, \xi\rangle}$
ϕ msre of cpt support $\Longrightarrow \widehat{\phi}$ bounded fn of ξ.
Take m derivs of $\phi \rightsquigarrow$ multiply $\widehat{\phi}$ by degree m poly. m th derivs $(\phi)=\mathrm{cpt}$ supp msres $\Longrightarrow \widehat{\phi}(\xi) \leq C_{m} /(1+|\xi|)^{m}$.
Cptly supp ϕ is smooth $\Longleftrightarrow \widehat{\phi}(\xi) \leq C_{m} /(1+|\xi|)^{m}(m \geq 0)$.
$\mathrm{WF}(\phi)=$ directions ξ where $\widehat{\phi}(t \xi)$ fails to decay.

Wavefront set (globally on manifold)

Function f on manifold M has support:

$$
\operatorname{supp}(f)=\text { closure of }\{m \in M \mid f(m) \neq 0\} .
$$

Generalized $\mathrm{fn} \phi$ is continuous linear fnl on test densities.
Can multiply ϕ by bump f_{0} at m_{0} to study " ϕ near m_{0}." Singular support of ϕ is where it isn't smooth:

$$
M-\operatorname{sing} \operatorname{supp}(\phi)=\left\{m_{0} \mid \exists \text { bump } f_{0} \text { at } m_{0}, f_{0} \phi \text { smooth }\right\} .
$$

Wavefront set of ϕ is closed cone $\operatorname{WF}(\phi) \subset T^{*}(M)$: directions in $T^{*}(M)$ where $\mathrm{FT}(\phi)$ fails to decay.
Refines sing supp: sing $\operatorname{supp}(\phi)=\left\{m \in M \mid\right.$ WF $\left._{m}(\phi) \neq 0\right\}$.
Summary: $\mathrm{WF}(\phi) \subset T^{*}(M) \rightsquigarrow$ points $m \in M$ where ϕ not smooth, directions $\xi \in T_{m}^{*}(M)$ causing non-smoothness.

Behavior of solutions of PDEs

Suppose D is order k diff op on M.
varieties and geometric quantization
D has symbol $\sigma_{k}(D)$: fn on $T^{*} M$, hom poly on $T_{m}^{*}(M)$.
\rightsquigarrow characteristic variety of D

$$
\begin{gathered}
\operatorname{Ch}(D)=\operatorname{def}\left\{(m, \xi) \in T^{*}(M) \mid \sigma_{k}(D)(m, \xi)=0\right\} \\
D \phi=\psi \Longrightarrow \mathrm{WF}(\phi) \subset \mathrm{WF}(\psi) \cup \operatorname{Ch}(D):
\end{gathered}
$$

solving D adds singularities only in $\mathrm{Ch}(D)$.
D_{1}, \ldots, D_{m} diff ops on $M \rightsquigarrow$ char var of system

$$
\operatorname{Ch}\left(D_{1}, \ldots, D_{m}\right)=_{\text {def }} \operatorname{Ch}\left(D_{1}\right) \cap \cdots \cap \operatorname{Ch}\left(D_{m}\right)
$$

Solns of systems: if $D_{j} \phi=0$, all j, then

$$
D_{j} \phi=0, \forall j \Longrightarrow \operatorname{WF}(\phi) \subset \operatorname{Ch}\left(D_{1}, \ldots, D_{m}\right):
$$

solving system adds singularities only in $\operatorname{Ch}\left(D_{1}, \ldots, D_{m}\right)$.

Summary of the PDE story

PDE on M module for diff op alg $D(M)$.
Noncomm alg $D(M) \approx \operatorname{comm}$ alg $\operatorname{Poly}\left(T^{*}(M)\right)$.
$=$ Smooth fns that are polys along each $T_{m}^{*}(M)$.
Solns of PDE \approx (graded) modules for $\operatorname{Poly}\left(T^{*}(M)\right)$. (graded) Poly $\left(T^{*}(M)\right.$)-module u alg cone in $T^{*}(M)$.
Cone is common zeros of all symbols of diff eqs.
Cone controls where solutions can have WF.

Summary of the representation theory story

I know I didn't tell you the story yet, but I get excited. . .
Representation of $G \leftrightarrow m$ module for algebra $U\left(\mathfrak{g}_{\mathbb{C}}\right)$.
Noncomm alg $U\left(\mathfrak{g}_{\mathbb{C}}\right) \approx$ comm alg Poly $\left(\mathfrak{g}_{\mathbb{C}}^{*}\right)$.
Polynomial functions on $\operatorname{Lie}(G)_{\mathbb{C}}^{*}$.
Repn of $G \approx$ (graded) module for algebra Poly $\left(\mathfrak{g}_{\mathbb{C}}^{*}\right)$. (graded) Poly $\left(\mathfrak{g}_{\mathbb{C}}^{*}\right)$-module $u m$ alg cone in $\mathfrak{g}_{\mathbb{C}}^{*}$.
Cone is zeros of symbols of $U\left(g_{\mathbb{C}}\right)$ elts "killing" repn.
Representation \approx algebraic functions on cone.

What groups?

$G=G(\mathbb{R}, \sigma)$ real points of complex connected reductive algebraic group G, σ_{c} compact real form of G commuting with $\sigma, K=G(\mathbb{R}, \sigma) \cap G\left(\mathbb{R}, \sigma_{c}\right)$ maximal compact subgroup of G.
(That's for postdocs. They should sweat a little.)
$G \subset G L(n, \mathbb{R})$ closed, transpose-stable, $K=O(n) \cap G$.
(That's for the PDE people. Thank you for showing up!)
Also keep in mind $G=G L(m, \mathbb{H}), G=S O(p, q)$.
$G=G L(n, \mathbb{R}), K=O(n)$.
(That's what senior professors should think about.)

What representations?

Secs of $K(\mathbb{C})$-eqvt reg holonomic \mathcal{D}-mod on flag variety.
Example: Normal derivs of Borel-Weil-Bott realization of $K(\mathbb{C})$-rep on $K(\mathbb{C}) / B \cap K(\mathbb{C}) \subset G(\mathbb{C}) / B$.
(That's for postdocs. Sweat a medium amount.)
Finite length quasisimple Fréchet rep of moderate growth.
Example: Smooth secs of eqvt vec bdle on $\operatorname{Gr}(k, n)$.
(That's for PDE people. Although demise of language requirements means only the French will know whether the accent on "Fréchet" is correct.)

Trig polys on the circle, as module for

$$
\operatorname{Span}(d / d \theta, \cos (2 \theta) d / d \theta, \sin (2 \theta) d / d \theta) \simeq \mathfrak{s l}(2, \mathbb{R})
$$

(Senior professors should think about that. By now they are asleep, so question is purely theoretical.)

What I'm aiming to do

varieties and geometric quantization
system of PDE $D_{j} \phi=0$ on $M \rightsquigarrow \operatorname{Ch}\left(D_{1}, \ldots, D_{m}\right) \subset T^{*}(M)$ controlling singularities of solns.

Want analogue of $\mathrm{Ch}\left(D_{1}, \ldots, D_{m}\right)$ for repn (π, V) of G :

$$
\mathrm{WF}_{\mathrm{big}}(\pi) \subset T^{*}(G) \simeq G \times \mathfrak{g}^{*}
$$

Desideratum: $\mathrm{WF}_{\text {big }}(\pi)$ closed cone, left and right G-invt.
Left invt $\Longrightarrow \mathrm{WF}_{\text {big }}(\pi)$ determined by real closed cone

$$
\mathrm{WF}(\pi)=\operatorname{def}^{\mathrm{WF}} \mathrm{~F}_{\mathrm{big}}(\pi) \cap T_{e}^{*}(G) \simeq \mathfrak{g}^{*}
$$

Right invt $\Longrightarrow \mathrm{WF}(\pi)$ is $\operatorname{Ad}(G)$-invt: union of orbits.
Next goal: Howe's def of WF (π).

Characters and sizes

Info about lin op A on n-diml V encoded by char poly:

$$
\operatorname{det}(t I-A)=t^{n}-t^{n-1} \operatorname{tr}(A)+\cdots+(-1)^{n} \operatorname{det}(A)
$$

Lower order coeffs are poly fns of $\operatorname{tr}(A), \operatorname{tr}\left(A^{2}\right), \cdots, \operatorname{tr}\left(A^{n}\right)$. Info about n-diml rep (π, V) encoded by character:

$$
\Theta_{\pi}: G \rightarrow \mathbb{C}, \quad \Theta_{\pi}(g)=\operatorname{tr}(\pi(g))
$$

$$
\text { Size of } \pi=n=\Theta_{\pi}(e)
$$

If V inf-diml, $\pi(g)$ isn't trace class, so Θ_{π} isn't function.
But Θ_{π} is often a generalized function: if μ is test density on G, then linear operator

$$
\pi(\mu)=\int_{G} \pi(g) d \mu(g)
$$

is a smoothing of π, and often is trace class.
Can often define generalized fn $\Theta_{\pi}(\mu)=\operatorname{tr}(\pi(\mu))$.
Size of $\pi \leadsto$ singularity of Θ_{π} at e.

Howe's wavefront set

varieties and
geometric quantization
(π, V) nice repn of nice Lie group G.

$$
\mathrm{WF}(\pi)=\operatorname{def} \mathrm{WF}_{e}\left(\Theta_{\pi}\right) \subset \mathfrak{g}^{*}=T_{e}^{*}(G) .
$$

How do you control that?
$U(\mathfrak{g})=$ def left-invt diff ops on $G ; V$ is $U(\mathfrak{g})$-module.
Rt transl preserves $U(\mathfrak{g}), \rightsquigarrow$ alg auts $\operatorname{Ad}(g)$.
Symbols $=$ left-invt polys on $T^{*} G$, or polys on \mathfrak{g}^{*}.
$\mathcal{Z}(\mathfrak{g})={ }_{\operatorname{def}} U(\mathfrak{g})^{\text {Ad }(G)}=$ left and right invt diff ops.
Symbols of $\mathfrak{Z}(\mathfrak{g})=\operatorname{Ad}(G)$-invt polys on \mathfrak{g}^{*}.
Schur's lemma: $\mathfrak{Z}(\mathfrak{g})$ acts by scalars on V.
\Longrightarrow diff eqs for $\Theta_{\pi}: z \cdot \Theta_{\pi}=\lambda(z) \Theta_{\pi}(z \in \mathfrak{Z}(\mathfrak{g}))$.
$\Longrightarrow \mathrm{WF}(\pi) \subset$ zeros of symbol of z.

Real nilpotent cone

$$
\mathcal{N}_{\mathbb{R}}^{*}=\text { def } z e r o s \text { of } \operatorname{Ad}(G) \text {-invt homog polys } \subset \mathfrak{g}^{*} .
$$

Proved: $\operatorname{WF}(\pi) \subset \mathcal{N}_{\mathbb{R}}^{*}, \operatorname{Ad}(G)$-invt.
Howe's wavefront set defines
(irr of $G L(n, \mathbb{R})) \underset{\sim}{\underset{W}{W}}$ (conj class of nilp mats).
(irr of $G) \xrightarrow{W F}\left(G\right.$ orbit on $\left.\mathcal{N}_{\mathbb{R}}^{*}\right)$.
Size of $\pi=$ one half real dimension of orbit.
Howe's WF (π) is the perfect classical limit: group representation $\stackrel{\text { WF }}{\rightsquigarrow}$ symplectic manifold
in a simple, natural, and meaningful way.
But after forty years, it's still a royal pain to compute.
Next: (computable) algebraic analogue of $\mathrm{WF}(\pi)$.

Analytic roots of algebraic rep theory

Typical $G L(n, \mathbb{R})$ rep is $C^{\infty}(\operatorname{Gr}(p, n))$, smooth fns on Grassmann variety of p-diml planes in \mathbb{R}^{n}.
Compact subgroup $O(n)$ acts transitively on $\operatorname{Gr}(p, n)$: smooth functions have nice Fourier expansions.
(Remember that I asked the senior professors to think about trigonometric polynomials on the circle?)
Harish-Chandra understood that this works for all reps of all reductive G, with $K=\max \mathrm{cpt}$ subgp.
(π, V) any smooth rep of $G \rightsquigarrow$

$$
\begin{aligned}
V_{K} & =\operatorname{def}\{v \in V \mid \operatorname{dim}\langle\pi(K) v\rangle<\infty\} \quad K \text {-finite vecs } \\
& \approx \text { spherical harmonics. }
\end{aligned}
$$

Action of $U\left(\mathfrak{g}_{\mathrm{C}}\right)$ preserves V_{K}.
Fourier $_{K}$, easy diff eqns \rightsquigarrow recover G action on V.

$\left(\mathfrak{g}_{\mathbb{C}}, K_{\mathbb{C}}\right)$-mod: making rep theory algebraic

Last slide suggested $V_{K}=K$-finite vectors in V as algebraic substitute for smooth G rep V. Definition $\mathrm{A}\left(\mathfrak{g}_{\mathbb{C}}, K_{\mathbb{C}}\right)$-module is cplx vec space with $U\left(\mathfrak{g}_{\mathbb{C}}\right)$ action, and alg rep of $K_{\mathbb{C}}$, so that

1. deriv of $K_{\mathbb{C}}$ action equal to \mathfrak{k} action (from $U\left(\mathfrak{g}_{\mathbb{C}}\right)$); and
2. Actions compatible: $k \cdot(u \cdot v)=\operatorname{Ad}(k)(u) \cdot(k \cdot v)$.

Thm (Harish-Chandra) (π, V) irr smooth quasisimple rep of $G \Longrightarrow V_{K}$ irr $\left(\mathfrak{g}_{\mathbb{C}}, K_{\mathbb{C}}\right)$-mod.
Conversely, every irr ($\mathfrak{g}_{\mathbb{C}}, K_{\mathbb{C}}$)-mod is a V_{K}.
Quasisimple $=$ Schur's lemma true for π : avoid pathology.
Irreducible for (π, V) mocs closed subspaces. Irreducible for V_{K} tms pure algebra.

Making the algebra commutative

Recall idea of WFs and PDE:

$$
D=\operatorname{diff} \text { ops on } M \approx \operatorname{Poly}\left(T^{*}(M)\right)
$$

system of PDEs $=D$-module $\approx \operatorname{Poly}\left(T^{*}(M)\right)$-module

$$
\operatorname{Poly}\left(T^{*}(M)\right) \text {-module } \rightsquigarrow \text { cone in } T^{*}(M)
$$

varieties and geometric quantization

Precisely: $U\left(\mathfrak{g}_{\mathrm{C}}\right)$ filtered by deg, $\operatorname{gr} U\left(\mathfrak{g}_{\mathbb{C}}\right) \simeq \operatorname{Poly}\left(\mathfrak{g}_{\mathbb{C}}^{*}\right)$. fin length $\left(g_{\mathbb{C}}, K_{\mathbb{C}}\right)-\bmod X$ has $K_{\mathbb{C}}$-stable good filt,
$\operatorname{gr} X=$ fin. gen. graded (Poly $\left.\left(\mathfrak{g}_{\mathbb{C}}^{*} / \mathfrak{k}_{\mathbb{C}}^{*}\right), K_{\mathbb{C}}\right)$-module $=K_{\mathbb{C}}$-eqvt coherent sheaf on $\mathfrak{g}_{\mathbb{C}}^{*} / \mathfrak{k}_{\mathbb{C}}^{*}$

$$
\operatorname{AV}(X)==_{\operatorname{def}} \operatorname{supp} g r X,
$$

a $K_{\mathbb{C}}$-stable algebraic cone in $\mathfrak{g}_{\mathbb{C}}^{*} / \mathcal{E}_{\mathbb{C}}^{*}$.

What sort of invariant is that?

$\mathcal{N}_{\theta}^{*}=$ def zeros of $\operatorname{Ad}(G)$-invt homog polys $\subset \mathfrak{g}_{\mathbb{C}}^{*} / \mathfrak{k}_{\mathbb{C}}^{*}$.
$\mathrm{WF}(\pi)$ proof $\rightsquigarrow \mathrm{AV}\left(\pi_{K}\right) \subset \mathcal{N}_{\theta}^{*}, \operatorname{Ad}\left(K_{\mathbb{C}}\right)$-invt.
Associated variety defines
(irr $\left(\mathfrak{g}_{\mathbb{C}}, K_{\mathbb{C}}\right)$-module $\left.X\right) \stackrel{A \vee}{\rightsquigarrow} K_{\mathbb{C}}$-orbits on \mathcal{N}_{θ}^{*}).

$$
\text { Size of } X=\text { complex dim of orbit. }
$$

$\mathrm{AV}(X)$ is the perfect algebraic classical limit:

$$
\left(\mathfrak{g}_{\mathbb{C}}, K_{\mathbb{C}}\right) \text {-module } \stackrel{A V}{\rightsquigarrow} \text { algebraic cone }
$$

in a simple, natural, and meaningful way.
One way to understand the meaning:

$$
\begin{aligned}
\left.X\right|_{\kappa_{\mathrm{C}}} & \left.\simeq(\operatorname{gr} X)\right|_{\kappa_{\mathrm{C}}} \\
& =\left.(\text { coherent sheaf on } \operatorname{AV}(X))\right|_{\kappa_{\mathrm{C}}} .
\end{aligned}
$$

How to calculate AV

X finite length ($\mathfrak{g}_{\mathbb{C}}, K_{\mathbb{C}}$)-module...
$\rightsquigarrow \operatorname{gr} X K_{\mathbb{C}}$-eqvt coherent sheaf on $\mathcal{N}_{\theta}^{*} \ldots$
$\rightsquigarrow \operatorname{AV}(X)$ algebraic cone in \mathcal{N}_{θ}^{*}.
Key property: $\left.\left.X\right|_{K_{\mathrm{C}}} \simeq($ coherent sheaf on $\operatorname{AV}(X))\right|_{K_{\mathrm{C}}}$.
KNOW how to calculate $\left.X\right|_{K_{\mathrm{C}}}$. So...
FIND eqvt sheaf M on \mathcal{N}_{θ}^{*} such that $\left.X\right|_{K_{\mathcal{C}}}=\left.M\right|_{K_{\mathbb{C}}}$.
KNOW how to do that as well. Pet computers are awesome.
$\operatorname{CONCLUDE~AV}(X)=\operatorname{supp}(M)$.
Restate: $A V(X)=$ what can carry the K-types of X.
Such thms \rightsquigarrow Kashiwara \& Vergne (Luminy 1978). Connect 1978 Such relation \rightsquigarrow Vergne(1995).

How that looks for $S L(2, \mathbb{R})$

$G=S L(2, \mathbb{R}), K=S O(2), \widehat{K}=\mathbb{Z}$.
Standard representations are
varieties and geometric quantization

1. holomorphic (lims of) disc series $I^{+}(m)(m \geq 0)$,

$$
\left.I^{+}(m)\right|_{K}=\{m+1, m+3, m+5, \ldots\}
$$

2. antihol (lims of) disc series $I^{-}(m)(m \geq 0)$,

$$
\left.I^{-}(m)\right|_{K}=\{-m-1,-m-3,-m-5, \ldots\}
$$

3. spher princ series $I^{\text {even }}(\nu)$,

$$
\left.\rho^{\circ} \mathrm{dd}(\nu)\right|_{K}=\{0, \pm 2, \pm 4 \ldots\}
$$

4. nonspher princ series $\rho^{\circ} \mathrm{dd}(\nu), \nu \neq 0$,

$$
\left.\operatorname{lodd}^{\text {od }} \nu\right)\left.\right|_{K}=\{ \pm 1, \pm 3, \pm 5 \ldots\}
$$

N.B. $I^{\text {odd }}(0)=I^{+}(0)+I^{-}(0)$.

Three nilp $S O(2, \mathbb{C})$ orbits on $\mathcal{N}_{\theta}^{*}: \mathcal{O}^{+}, \mathcal{O}^{-},\{0\}$.
$\underbrace{\text { Coherent sheaves }}_{\text {restriction to } K}$ on $\overline{\mathcal{O}^{+}}: ~ \underbrace{\left[I^{\text {even }}(0)\right]-\left[I^{-}(1)\right]}_{\{0,2,4, \ldots\}}, \underbrace{\left[I^{+}(0)\right]}_{\{1,3,5, \ldots\}}$.
Coherent sheaves on $\overline{\mathcal{O}^{-}}: \underbrace{\left[I^{\text {even }}(0)\right]-\left[I^{+}(1)\right]}_{\{0,-2,-4, \ldots\}}, \underbrace{\left[I^{-}(0)\right]}_{\{-1,-3, \ldots\}}$.
Coh on $\{0\}:$: $\underbrace{\left[I^{\text {even }}(0)-I^{+}(1)-I^{-}(1)\right]}_{\{0\}}, \underbrace{\left[I^{+}(m)-I^{+}(m+2)\right]}_{\{m+1\}}, \underbrace{\left.I^{-}(m)-I^{-}(m+2)\right]}_{\{-m-1\}}$.

Algorithm for $\mathrm{AV}(X)$

varieties and geometric quantization
0. Make formulas (Achar theory, at las practice)

$$
\left.\mathcal{S}_{j}=\text { coh shf on } \mathcal{O}_{j}\right)=\sum_{i} s_{j}^{k}\left[I_{k}\right] \quad\left(I_{k} \text { standard rep }\right)
$$

1. Write (KL theory, at las practice) char formula

$$
X=\sum_{i} m_{i} l_{i} \quad\left(I_{i} \text { standard rep }\right)
$$

2. Restrict to K : set cont parameters equal to zero.
3. Write (linear algebra)

$$
\left.\sum_{i} m_{i} I_{i}\right|_{K}=\sum n_{j} \mathcal{S}_{j}
$$

4. Biggest \mathcal{O}_{j} needed give $\operatorname{AV}(X)$.

Here's how that looks for $S L(2, \mathbb{R})$ (reprise)

 varieties and geometric quantizationLibrary of coherent sheaves on orbit closures:
$\underbrace{\text { Coherent sheaves }}_{\text {restriction to } K}$ on $\overline{\mathcal{O}^{+}}: \underbrace{\left[I^{\text {even }}(0)\right]-\left[I^{-}(1)\right]}_{\{0,2,4, \ldots\}}, \underbrace{\left[I^{+}(0)\right]}_{\{1,3,5, \ldots\}}$.
Coherent sheaves on $\overline{\mathcal{O}^{-}}: \underbrace{\left[I^{\text {even }}(0)\right]-\left[I^{+}(1)\right]}_{\{0,-2,-4, \ldots\}}, \underbrace{\left[I^{-}(0)\right]}_{\{-1,-3, \ldots\}}$.
Coh on $\{0\}: \underbrace{\left.: I^{\text {even }}(0)-I^{+}(1)-I^{-}(1)\right]}_{\{0\}}, \underbrace{\left[I^{+}(m)-I^{+}(m+2)\right]}_{\{m+1\}}, \underbrace{\left[I^{-}(m)-I^{-}(m+2)\right]}_{\{-m-1\}}$.
Here $\left[I^{+}(0)\right]$ means class in Groth grp of gr $I^{+}(0)$.
Try $X=$ three-diml adjoint rep, character formula

$$
\begin{aligned}
X= & I^{\text {even }}(3)-I^{+}(3)-I^{-}(3) \\
\left.X\right|_{K}= & I^{\text {even }}(0)-I^{+}(3)-I^{-}(3) \\
= & \left(I^{\text {even }}(0)-I^{+}(1)-I^{-}(1)\right) \\
& \quad+\left(I^{+}(1)-I^{+}(3)\right)+\left(I^{-}(1)-I^{-}(3)\right) .
\end{aligned}
$$

Three terms from orbit $\{0\}$, so $\operatorname{AV}(X)=\overline{\{0\}}$.

