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representations |
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ky local field, G, = G(ky) reductive, g, = Lie(Gy).
gy =linfnls on g,, O, = Gy - x, coadjt orbit.
N(Oy) =qget kv - Oy N N5 asymp nilp cone of O,.

k global, = = ®,m, automorphic rep of G reductive.
Conjecture (global coherence of WF sets)

1. 3 coadjt orbit G(k) - x C g(k)*, N(Gy - x) = WF(m,).
2. d global version of local char expansions for .

Says G(k) - x ~ asymp of K-types at each place.
OF =def G(R) s X N(O?) = k- OF N NF*

N(Og) = closure of one nilp orbit M.

N(Gy - x) C N(Ox), but possibly N(G, - x) " M = 0.




Gelfand’s abstract harmonic analysis

Topological grp G acts on X, have questions about X.

Step 1. Attach to X Hilbert space # (e.g. L2(X)).
Questions about X ~~ questions about #.

Step 2. Find finest G-eqvt decomp H = o Ha.
Questions about H ~~ questions about each H,,.

Each H,, is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.

Step 3. Understand Z;u = all irreducible unitary
representations of G: unitary dual problem.

Step 4. Answers about irr reps ~~ answers about X.

Topic of lectures: what’s an irreducible unitary
representation look like?
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G topological group, 7: G — H irreducible unitary. Iitiockiction
Study what'’s 7 look like? via how large is 7?
interesting, hard W
Goal: m ~~ Dim(7) = Gelfand-Kirillov dimension.
Desiderata:

1. Dim(n) integer, 0 < Dim(7) < (dim G)/2;
2. 7 finite-diml < Dim(w) = 0;
3. m ~ secs of bundle on X = Dim(x) = dim(X).

So far vague about what G is. But (1) makes sense
only if Gis Lie group, or algebraic over local field k.

Good news: (3) makes sense if X = mfld, alg var/k.
Bad news: (3) is not possible.



Why Dim 7 can’t be dim X.

Most important representation in the world is
oscillator representation w.

Defined on Hilbert space H' = L2(R).

Three groups of unitary operators on L2(R):
translation (T} f)( ) =f(x 1) X' =d/dx
multiplication (M$1 ) = e 2" f(x) Y =2rix
phase shift Pif)(x) = e~2™0f(x)  Z' =2ni

These generate three-dimensional Heisenberg group H;
elements X, Y, Z span Lie algebra.

w lives on secs of bdle on homog space X = R.
Desideratum says Dimw L dimR = 1.

Notice #'>° = S(R), Schwartz space of R.

So far so good. But 3 other realizations of w. ..
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Another realization of w

On two-diml torus T? = R?/Z? define line bundle £:
Sections of £ defined to be
{F:R® > C|F(x+p,y+Qq)=e""F(x,y)}.

Three gps of unitary ops on H2 = L2(T?, £):

xtrans (TEF)(x,y) = e ™F(x —t,y) X*=0/0x + 2riy

ytrans  (MEF)(x,y) = F(x,y + &) Y2 =09/dy

phase  (P3F)(x,y) = e 2™"F(x,y) Z2 = 2ri
There’s isomorphism S(R) — C>®(T?, £),

fs F, F(x.y) =Y f(x+ n)e 2mxtny,
neZ
Extends to Hilb space isom L?(R) — L2(T?, L)

Second realization suggests Dimw L dimT? = 2.
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One representation of GL(V)

Dim(secs over X) ~ dim X OK for G reductive. . .

Begin with G = GL(V/(k)) invertible linear
transformations of n-diml vector space V/(k).

Stay vague about (locally compact) ground field k.
Ex. G acts on (n— 1)-diml (over k) proj variety

X1 n—1(k) = {1-diml subspaces of V(k)}

~ G acts by irr rep py ,—1 on Hilbert space
Hi.n_1(k) = {L? half-densities on Xi ,_1(k)}

Dim Pi.n—1 = dim X1,n71 =n-—1.
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MOre general repS Of GL( V) dimensional |
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Continue with n-diml V// loc cpt k, G = GL(V) David Vogan
p=(pP1;...,Pm), >2;pj = n; Gacts on
X,D = {0 = SO C S1 C .- Sm — V(k)’ gi;()(;z)sentionsof

subspace chains, dim(S;/S;_1) = p;}
G acts on proj variety Xp/k,
dim X, = (" =Y pf)/2.
~ rep pp(€) on secs of bdle £ — X, has
Dim(pp(€)) = (? — " p?)/2.

So big repns «~ partitions p with small parts.
To define Dim 7 for general 7, need repn-theoretic

pp(€) ~ (M =Y p?)/2.



Lessons from real analysis
X compact d-diml Riemannian, Ax Laplacian
HX = [2(X),  HX = reigenspace of Ax.
Theorem (Weyl)
IFHX(N) = 3", <pe Ha, then dim HX(N) ~ cxN°.
Same conclusion for secs of vector bdle £ — X.
Conclude: dim X «~ asymp distn of Ax eigenvalues
Example: X = RP"~!, C>~(X) = homog even fns on R".

i 2k4-1)(2k+2)---(2k+n—3)1[4k-+n—2
dim H ks (1)) = LEHN +)(n(72—)¢—!n Nidk+n-2)

polynomial in k of degree n — 2.

H <2k,/1 + "2—k1> ~ S (R")
X [i . 1)  [(n+2k-—1
dimH <2k 1+n2k)—< n—1 )

polynomial in k of degree n— 1.
Rep-theoretic desc of eigenvalue asymptotics ~~
general def of Dim(x).
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Eigenvalue asymptotics in representations
G Lie group, (-, -) neg def on g, A; onb of g,

Ag=) A€ U(g).

G acts on & — X bdle on cpt homog X ~~ action of
Agon C>(X, &) satisfies Weyl asymptotics.
Conclusion: can hope to define Dim 7 using eigval
asymptotics of Ag on H°.

Ex. If G is the Heisenberg group, can choose
Ag=-X2-Y2_-2Z% inU(g)

~ —d?/dx? + 472x% 4+ 472 in L3(R)

s =02 )OX® — 9% )Dy? — Ariyd/Ox + 4r® in L3(T?, L).
Eigvals in w are 4w(k 4+ 1 4 ) for nonneg int k. Number to
NZis (N?/47) — .

Eigvals suggest (irue) that w lives on two-diml compact X,
and (false) that Dim(w) = 2.
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Asymptotics to infinity and beyond

Lie gp G, neg def inner prod on g ~ Ag = 3 A? € U(g).
Problem: Ag has disc spec in H2°, any irr unitary 7?

If true, eigval asymptotics % Dim .

Ex: G = GL(V), V n-diml real vector space.

g has G-invt symm bilinear
B(X,Y) =qet tr(XY) :
pos def on s =g Symm matrices,
neg def on & =g Skew symm matrices.

Define (g) =g~"' (g€ G), 90X =—-'X (X ¢€yg).
(X, Y) =qges tr(XO(Y)) negative definite on g.

Thm. Agy vy has discrete spectrum on any H2°;
eigvals < N2 ~ N9, nonneg int d =4t Dim(7).
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General representations over R T“%?Af;‘ifi;”nf;'r“f'
representations
(m, H) arbitrary irr rep of G(R) ~ GL(n,R). David Vogan
Restriction to cpt subgp O(n) decomposes

Hy >~ 2%6@ N mm (mz(n) non-neg integer).

Hy = L2(Xp) (o= (p1,---,Pr), >, pi = n) suggests asympotis
defining
Ha(N) =det 2_,0)<nz MoK
Theorem

There is partition p() of n, pos const a(r) so that
dim H(N) ~ a(x)NP(™.

Recall that dim #.(N) ~ a(r)N9(P),

Definition

For 7 irr rep of G(R), the Gelfand-Kirillov dimension of 7
is the non-neg integer Dim(7) = d(p()); measures
asymp distn of eigenvalues of Casimir Qo) in 7.



(First) moral of the real story

G(R) = GL(V(R)) has compact subgroup O(n).
irr rep of G(R) ~~ partition 7(p) of n ~ X, = flags of type =

irr rep on H ~ functions on X;(R), cpt homog space
for G(R) and for O(n). Precisely:

asymp distn of eigenvalues of Casimir Qo) in p ~
eigenvals of Laplacian on X;(R).

Problems: what partition is attached to each irr rep?
what else does partition tell you about irr rep?
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Other real reductive groups
G(R) real reductive group, K(R) maximal compact
subgroup, Qk(r) Casimir operator for K(R).
Example: Sp(2n, R), R-linear transf of C" preserving
symplectic form
w(v,w) =Im(v, w)
(imag part of std Herm form); K(R) = U(n).
Example: O(p, q) linear transf of R x RY9 preserving
symmetric form
((v1, v2), (W1, W2))p.q = (v1, W1) — (V2, Wa);

K(R) = O(p) x O(q)-
(Al)most general example: G(R) ¢ GL(N,R) closed
subgp preserved by transpose, K(R) = G
Big idea:

G(R) rep “size” «~~ restriction to K(R) asymptotics

(R)N O(N).
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GK dimension for other real reductive

G(R) real reductive group, K(R) maximal compact
subgroup, Q) Casimir operator for K(R).

(p, H) irr rep of G(R); then (Harish-Chandra)

H ZMEK/@ My (1), (m,(x) non-neg integer).
As for GL(n), can define
HN) =cet Z/"(QK(R))SNZ My ().

Theorem
There is a non-negative integer d(p) and a positive
constant b(p) so that

dim H(N) ~ b(p)N),

Call d(p) the Gelfand-Kirillov dimension of p.
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