The size of infinite-dimensional representations I

David Vogan

Takagi Lectures, 5 November, 2016

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

Outline

Introduction

Representions of GL(V)

Eigenvalue asymptotics

GK dimension and characters

Other real reductive groups

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

Something to do during the talk

$$\begin{split} &k_{\nu} \text{ local field, } G_{\nu} = G(k_{\nu}) \text{ reductive, } \mathfrak{g}_{\nu} = \text{Lie}(G_{\nu}). \\ &\mathfrak{g}_{\nu}^{*} = \text{lin fnls on } \mathfrak{g}_{\nu}, \mathcal{O}_{\nu} = G_{\nu} \cdot x_{\nu} \text{ coadjt orbit.} \\ &N(\mathcal{O}_{\nu}) =_{\text{def}} \overline{k_{\nu} \cdot \mathcal{O}_{\nu}} \cap \mathcal{N}_{\nu}^{*} \text{ asymp nilp cone of } \mathcal{O}_{\nu}. \end{split}$$

k global, $\pi = \bigotimes_{V} \pi_{V}$ automorphic rep of *G* reductive.

Conjecture (global coherence of WF sets)

1. \exists coadjt orbit $G(k) \cdot x \subset \mathfrak{g}(k)^*$, $N(G_v \cdot x) = WF(\pi_v)$.

2. \exists global version of local char expansions for π_v .

Says $G(k) \cdot x \rightsquigarrow$ asymp of *K*-types at each place. $\mathcal{O}_{\overline{k}} =_{def} G(\overline{k}) \cdot x \rightsquigarrow \mathcal{N}(\mathcal{O}_{\overline{k}}) = \overline{\overline{k} \cdot \mathcal{O}_{\overline{k}}} \cap \mathcal{N}_{\overline{k}}^{*}$ $\mathcal{N}(\mathcal{O}_{\overline{k}}) = \text{closure of one nilp orbit } \mathcal{M}.$ $\mathcal{N}(G_{v} \cdot x) \subset \mathcal{N}(\mathcal{O}_{\overline{k}}), \text{ but possibly } \mathcal{N}(G_{v} \cdot x) \cap \mathcal{M} = \emptyset.$ The size of infinitedimensional representations I

David Vogan

ntroduction

Representions of *GL(V)*

Eigenvalue asymptotics

GK dimension and characters

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X. **Step 1.** Attach to X Hilbert space \mathcal{H} (e.g. $L^2(X)$). Questions about $X \rightsquigarrow$ questions about \mathcal{H} . **Step 2.** Find finest *G*-eqvt decomp $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$. Questions about $\mathcal{H} \rightsquigarrow$ questions about each \mathcal{H}_{α} . Each \mathcal{H}_{α} is irreducible unitary representation of G: indecomposable action of G on a Hilbert space. **Step 3.** Understand \hat{G}_{μ} = all irreducible unitary representations of G: unitary dual problem. **Step 4.** Answers about irr reps \rightarrow answers about X. Topic of lectures: what's an irreducible unitary representation look like?

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

Gelfand-Kirillov dimension

G topological group, $\pi: G \to \mathcal{H}_{\pi}$ irreducible unitary. Study what's π look like? via how large is π ? interesting, hard duller, possible Goal: $\pi \rightsquigarrow \text{Dim}(\pi) = \text{Gelfand-Kirillov dimension.}$ Desiderata:

- 1. $\text{Dim}(\pi)$ integer, $0 \leq \text{Dim}(\pi) \leq (\dim G)/2$;
- 2. π finite-diml \iff Dim $(\pi) = 0;$

3. $\pi \simeq$ secs of bundle on $X \implies \text{Dim}(\pi) = \text{dim}(X)$.

So far vague about what *G* is. But (1) makes sense only if *G* is Lie group, or algebraic over local field *k*. Good news: (3) makes sense if X = mfld, alg var/*k*. Bad news: (3) is not possible. The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

Why Dim π can't be dim X.

Most important representation in the world is oscillator representation ω .

Defined on Hilbert space $\mathcal{H}^1 = L^2(\mathbb{R})$.

Three groups of unitary operators on $L^2(\mathbb{R})$:

translation multiplication phase shift

These generate three-dimensional Heisenberg group H; elements X, Y, Z span Lie algebra.

 ω lives on secs of bdle on homog space $X = \mathbb{R}$.

Desideratum says $\operatorname{Dim} \omega \stackrel{?}{=} \dim \mathbb{R} = 1$.

Notice $\mathcal{H}^{1,\infty} = \mathcal{S}(\mathbb{R})$, Schwartz space of \mathbb{R} .

So far so good. But \exists other realizations of ω ...

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

Another realization of ω

On two-diml torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ define line bundle \mathcal{L} : Sections of \mathcal{L} defined to be

 $\{F \colon \mathbb{R}^2 \to \mathbb{C} \mid F(x + p, y + q) = e^{-2\pi i q x} F(x, y)\}.$ Three gps of unitary ops on $\mathcal{H}^2 = L^2(\mathbb{T}^2, \mathcal{L})$:

x trans	$(T_t^2 F)(x, y) = e^{-2\pi i t y} F(x - t, y)$	$X^2 = \partial/\partial x + 2\pi i y$
y trans	$(M_{\xi}^2 F)(x,y) = F(x,y+\xi)$	$Y^2 = \partial/\partial y$
phase	$(P_{\theta}^{2}F)(x,y)=e^{-2\pi i\theta}F(x,y)$	$Z^2 = 2\pi i$

There's isomorphism $\mathcal{S}(\mathbb{R}) \to C^{\infty}(\mathbb{T}^2, \mathcal{L})$,

$$f\mapsto F, \qquad F(x,y)=\sum_{n\in\mathbb{Z}}f(x+n)e^{-2\pi i(x+n)y}.$$

Extends to Hilb space isom $L^2(\mathbb{R}) \to L^2(\mathbb{T}^2, \mathcal{L})$ Second realization suggests $\text{Dim } \omega \stackrel{?}{=} \dim \mathbb{T}^2 = 2$. The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

One representation of GL(V)

Dim(secs over X) $\stackrel{?}{=}$ dim X OK for G reductive... Begin with G = GL(V(k)) invertible linear transformations of *n*-diml vector space V(k). Stay vague about (locally compact) ground field *k*. Ex. G acts on (n - 1)-diml (over *k*) proj variety

 $X_{1,n-1}(k) = \{1 \text{-diml subspaces of } V(k)\}$

→ *G* acts by irr rep $\rho_{1,n-1}$ on Hilbert space $\mathcal{H}_{1,n-1}(k) = \{L^2 \text{ half-densities on } X_{1,n-1}(k)\}$

Dim $\rho_{1,n-1} = \dim X_{1,n-1} = n-1$.

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of GL(V)

Eigenvalue asymptotics

GK dimension and characters

More general reps of GL(V)

Continue with *n*-diml *V*/ loc cpt *k*, G = GL(V) $p = (p_1, ..., p_m), \sum_j p_j = n; G \text{ acts on}$

 $X_p = \{0 = S_0 \subset S_1 \subset \cdots S_m = V(k), \$ subspace chains, dim $(S_j/S_{j-1}) = p_j\}$

G acts on proj variety X_p/k ,

dim
$$X_p = (n^2 - \sum p_i^2)/2.$$

 \rightsquigarrow rep $\rho_p(\mathcal{E})$ on secs of bdle $\mathcal{E} \to X_p$ has

$$\mathsf{Dim}(\rho_p(\mathcal{E})) = (n^2 - \sum p_i^2)/2.$$

So big repns $\leftrightarrow partitions p$ with small parts. To define $\text{Dim } \pi$ for general π , need repn-theoretic

$$ho_{p}(\mathcal{E}) \stackrel{?}{\leadsto} (n^{2} - \sum p_{i}^{2})/2$$

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of GL(V)

Eigenvalue asymptotics

GK dimension and characters

Lessons from real analysis

X compact *d*-diml Riemannian, Δ_X Laplacian

 $\mathcal{H}^{X} = L^{2}(X), \qquad \mathcal{H}^{X}_{\lambda} = \lambda$ -eigenspace of Δ_{X} . Theorem (Weyl)

If $\mathcal{H}^{X}(N) = \sum_{\lambda \leq N^{2}} \mathcal{H}_{\lambda}$, then dim $\mathcal{H}^{X}(N) \sim c_{X} N^{d}$.

Same conclusion for secs of vector bdle $\mathcal{E} \to X$.

Conclude: dim $X \leftrightarrow asymp$ distn of Δ_X eigenvalues Example: $X = \mathbb{RP}^{n-1}$, $C^{\infty}(X) =$ homog even fns on \mathbb{R}^n .

$$\dim \mathcal{H}_{2k(2k+(n-1))}^{X} = \frac{[(2k+1)(2k+2)\cdots(2k+n-3)][4k+n-2]}{(n-2)!}$$

polynomial in k of degree n-2.

$$\mathcal{H}^{X}\left(2k\sqrt{1+\frac{n-1}{2k}}\right) \simeq S^{2k}(\mathbb{R}^{n})$$
$$\dim \mathcal{H}^{X}\left(2k\sqrt{1+\frac{n-1}{2k}}\right) = \binom{n+2k-1}{n-1},$$

polynomial in k of degree n-1.

Rep-theoretic desc of eigenvalue asymptotics \rightsquigarrow general def of $Dim(\pi)$.

The size of infinitedimensional representations I

David Vogan

ntroduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

Eigenvalue asymptotics in representations

G Lie group, $\langle \cdot, \cdot \rangle$ neg def on \mathfrak{g} , A_i onb of \mathfrak{g} ,

 $\Delta_G = \sum A_i^2 \in U(\mathfrak{g}).$

G acts on $\mathcal{E} \to X$ bdle on cpt homog $X \rightsquigarrow$ action of Δ_G on $\mathcal{C}^{\infty}(X, \mathcal{E})$ satisfies Weyl asymptotics. Conclusion: can hope to define Dim π using eigval asymptotics of Δ_G on $\mathcal{H}^{\infty}_{\pi}$.

Ex. If G is the Heisenberg group, can choose

$$\begin{split} \Delta_G &= -X^2 - Y^2 - Z^2 \quad \text{in } U(\mathfrak{g}) \\ & \longrightarrow -d^2/dx^2 + 4\pi^2 x^2 + 4\pi^2 \quad \text{in } L^2(\mathbb{R}) \\ & \longrightarrow -\partial^2/\partial x^2 - \partial^2/\partial y^2 - 4\pi i y \partial/\partial x + 4\pi^2 \quad \text{in } L^2(\mathbb{T}^2, \mathcal{L}). \end{split}$$

Eigvals in ω are $4\pi(k + 1 + \pi)$ for nonneg int k. Number to N^2 is $(N^2/4\pi) - \pi$.

Eigvals suggest (true) that ω lives on two-diml compact X, and (false) that $Dim(\omega) = 2$.

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

Asymptotics to infinity and beyond

Lie gp *G*, neg def inner prod on $\mathfrak{g} \rightsquigarrow \Delta_G = \sum A_i^2 \in U(\mathfrak{g})$.

Problem: Δ_G has disc spec in $\mathcal{H}^{\infty}_{\pi}$, any irr unitary π ? If true, eigval asymptotics $\stackrel{?}{\rightsquigarrow}$ Dim π .

Ex: G = GL(V), V n-diml real vector space.

g has G-invt symm bilinear

 $B(X, Y) =_{def} tr(XY)$:

pos def on $\mathfrak{s} =_{def}$ symm matrices,

neg def on $\mathfrak{k} =_{def}$ skew symm matrices.

Define $\theta(g) = {}^tg^{-1}$ $(g \in G), \, \theta X = -{}^tX \quad (X \in \mathfrak{g}).$

 $\langle X, Y \rangle =_{def} tr(X\theta(Y))$ negative definite on g.

Thm. $\Delta_{GL(V)}$ has discrete spectrum on any $\mathcal{H}^{\infty}_{\pi}$; eigvals $\leq N^2 \sim N^d$, nonneg int $d =_{def} \text{Dim}(\pi)$. The size of infinitedimensional representations I

David Vogan

ntroduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

General representations over \mathbb{R}

 (π, \mathcal{H}_{π}) arbitrary irr rep of $G(\mathbb{R}) \simeq GL(n, \mathbb{R})$. Restriction to cpt subgp O(n) decomposes

 $\mathcal{H}_{\pi} \simeq \sum_{\mu \in \widehat{O(n)}} m_{\pi}(\mu) \mu$ $(m_{\pi}(\mu) \text{ non-neg integer}).$ $\mathcal{H}_{\pi} = L^2(X_p) \ (p = (p_1, \dots, p_r), \ \sum p_i = n) \text{ suggests}$ defining

$$\mathcal{H}_{\pi}(N) =_{\mathsf{def}} \sum_{\mu(\Omega) \leq N^2} m_{\rho}(\mu) \mu.$$

Theorem

There is partition $p(\pi)$ of *n*, pos const $a(\pi)$ so that

dim $\mathcal{H}(N) \sim a(\pi) N^{p(\pi)}$.

Recall that dim $\mathcal{H}_{\pi}(N) \sim a(\pi) N^{d(p)}$.

Definition

For π irr rep of $G(\mathbb{R})$, the Gelfand-Kirillov dimension of π is the non-neg integer $\text{Dim}(\pi) = d(p(\pi))$; measures asymp distn of eigenvalues of Casimir $\Omega_{O(n)}$ in π .

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of *GL(V)*

Eigenvalue asymptotics

GK dimension and characters

(First) moral of the real story

 $G(\mathbb{R}) = GL(V(\mathbb{R}))$ has compact subgroup O(n). irr rep of $G(\mathbb{R}) \rightsquigarrow$ partition $\pi(\rho)$ of $n \rightsquigarrow X_{\pi}$ = flags of type π irr rep on $\mathcal{H} \approx$ functions on $X_{\pi}(\mathbb{R})$, cpt homog space for $G(\mathbb{R})$ and for O(n). Precisely: asymp distn of eigenvalues of Casimir $\Omega_{O(n)}$ in $\rho \rightsquigarrow$ eigenvals of Laplacian on $X_{\pi}(\mathbb{R})$.

Problems: what partition is attached to each irr rep? what else does partition tell you about irr rep?

The size of infinitedimensional representations I

David Vogan

Introduction

Representions of GL(V)

Eigenvalue asymptotics

GK dimension and characters

Other real reductive groups

 $G(\mathbb{R})$ real reductive group, $K(\mathbb{R})$ maximal compact subgroup, $\Omega_{K(\mathbb{R})}$ Casimir operator for $K(\mathbb{R})$. Example: $Sp(2n, \mathbb{R})$, \mathbb{R} -linear transf of \mathbb{C}^n preserving

symplectic form

 $\omega(\mathbf{v},\mathbf{w}) = \mathrm{Im} \langle \mathbf{v},\mathbf{w} \rangle$

(imag part of std Herm form); $K(\mathbb{R}) = U(n)$.

Example: O(p,q) linear transf of $\mathbb{R} \times \mathbb{R}^q$ preserving symmetric form

 $\langle (v_1, v_2), (w_1, w_2) \rangle_{\rho,q} = \langle v_1, w_1 \rangle - \langle v_2, w_2 \rangle;$ $\mathcal{K}(\mathbb{R}) = \mathcal{O}(\rho) \times \mathcal{O}(q).$

(Al)most general example: $G(\mathbb{R}) \subset GL(N, \mathbb{R})$ closed subgp preserved by transpose, $K(\mathbb{R}) = G(\mathbb{R}) \cap O(N)$. Big idea:

 $G(\mathbb{R})$ rep "size" $\leftrightarrow \rightarrow$ restriction to $K(\mathbb{R})$ asymptotics

The size of infinitedimensional representations I

David Vogan

ntroduction

Representions of *GL*(*V*)

Eigenvalue asymptotics

GK dimension and characters

GK dimension for other real reductive

 $G(\mathbb{R})$ real reductive group, $K(\mathbb{R})$ maximal compact subgroup, $\Omega_{K(\mathbb{R})}$ Casimir operator for $K(\mathbb{R})$. (ρ, \mathcal{H}) irr rep of $G(\mathbb{R})$; then (Harish-Chandra)

 $\mathcal{H} \simeq \sum_{\mu \in \widehat{\mathcal{K}(\mathbb{R})}} m_{\rho}(\mu)\mu, \qquad (m_{\rho}(\mu) \text{ non-neg integer}).$ As for GL(n), can define $\mathcal{H}(N) =_{\mathsf{def}} \sum_{\mu(\Omega_{\mathcal{K}(\mathbb{R})}) \leq N^2} m_{\rho}(\mu)\mu.$

Theorem

There is a non-negative integer $d(\rho)$ and a positive constant $b(\rho)$ so that

 $\dim \mathcal{H}(N) \sim b(\rho) N^{d(\rho)}.$

Call $d(\rho)$ the Gelfand-Kirillov dimension of ρ .

The size of infinitedimensional representations I

David Vogan

ntroduction

Representions of *GL(V)*

Eigenvalue asymptotics

GK dimension and characters