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Where we (should have) ended yesterday
G = GL(n,R), θ(g) = tg−1 Cartan involution.
K = GL(n,R)θ = O(n) (compact, easy).
∆G = 2ΩK − ΩG ∈ U2(g) difference of Casimir ops.

(π,Hπ) ∈ Ĝ; eigval aymptotics of π∞(∆G) Dim(π).
Start today by modifying point of view:

Hπ =
∑

µ∈Ô(n)

Hπ(µ) '
∑

mπ(µ)µ (mπ(µ) ∈ N ).

Since π∞(ΩG) = c(π) ∈ R,

eigval asymp of ∆G = asymp of restr to K .

If Hπ(N) =def
∑

µ(ΩK )≤N2 Hπ(µ), then

dimHπ(N) ∼ a(π)NDim(π).

Understanding size means understanding π|K .
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Stating the question and changing notation
Two goals today:

1. describe possibilities for π|O(n) (π ∈ ̂GL(n,R));
2. compute which possibility occurs for which π.

Big tools: algebraic geometry, commutative algebra.
Helps to change notation.
Thm. Cpt Lie group K  complexification K (C):

cont reps of K ' alg reps of K (C).

New notation convenient for using K (C):

old notation new notation
K = O(n) K (R) = O(n)

K (C) = O(n,C) K = O(n,C)
g = Lie(G) = gl(n,R) g(R) = gl(n,R)
g(C) = Lie(G)⊗R C g = gl(n,C)

All works for any real reductive group with cplxified Lie alg
g, cplxified max cpt K .
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New notation suggests new questions

Old interest: Hπ = irr unitary of GL(n,R).

New interest: V = HK ,∞
π = O(n,C)-finite vecs.

(g,K )-module is vector space V with
1. alg repn πK of algebraic group K = O(n,C):

V =
∑
µ∈K̂ mV (µ)µ

2. repn πg of cplx Lie algebra g
3. dπK = πg|k, πK (k)πg(X )πK (k−1) = πg(Ad(k)X ).

In module notation, cond (3) reads k · (X · v) = (Ad(k)X ) · (k · v).
Two new goals today:

1. describe possibilities for V |K ;
2. compute V |K in interesting terms.

Bad answer: mV (µ) = (formula with signs and partition fns).

Good answer: V |K ' (alg fns on variety with K action).
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Finding varieties with K action

O(n,C) = K reductive alg gp y gl(n,C) = g cplx
reduc Lie alg.
g = k + s skew symm ⊕ symm matrices
N ∗ = cone of nilp elts in g∗ cplx nilp matrices.
N ∗θ = N ∗ ∩ s∗, nilpotent symmetric matrices
N ∗θ = finite # nilpotent K orbits O.
[Irr (g,K )-mod V ] |K ≈ alg fns on some O.
In this language, our goals are

1. Attach nilp orbits to (g,K )-mods in theory.
2. Compute them in practice.

“In theory there is no difference between theory and practice. In
practice there is.” Jan L. A. van de Snepscheut (or not).
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Classical limits for representations

Rep of g is module for noncomm U(g): QUANTUM.
CLASSICAL ANALOGUE is module for comm S(g).
Fundamental link is PBW:

U(g) = ∪n≥0Un(g), Up · Uq ⊂ Up+q

gr U(g) =def

∑
n≥0

Un/Un−1, gr U(g) ' S(g).

V fin gen/U(g), V0 fin diml generating; set

Vn = Un(g) · V0, gr V =def

∑
n≥0

Vn/Vn−1

finitely generated graded S(g)-module.
V (g,K )-module, V0 K -stable gr V (S(g/k),K )-module.

V |K ' (gr V ) |K : res to K lives in classical world.
Thm. If V finite length (g,K )-module, then
(S(g/k),K )-module gr V supported on N ∗θ ⊂ s∗.
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Associated varieties
F(g,K ) = finite length (g,K )-modules. . .

noncommutative world we care about.

C(g,K ) = f.g. (S(g/k),K )-modules, support ⊂ N ∗θ . . .

commutative world where geometry can help.

F(g,K )
gr
 C(g,K )

Prop. gr induces surjection of Grothendieck groups
KF(g,K )

gr−→ KC(g,K );

image records restriction to K of HC module.
So restrictions to K of HC modules sit in equivariant
coherent sheaves on nilpotent cone in (g/k)∗

KC(g,K ) =def K K (N ∗θ ),

equivariant K -theory of the K -nilpotent cone.
Goal 2: compute K K (N ∗θ ) and the map Prop.
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Equivariant K -theory

Setting: (complex) algebraic group K acts on
(complex) algebraic variety X .
CohK (X ) = abelian categ of coh sheaves on X with K action.

K K (X ) =def Grothendieck group of CohK (X ).

Example: CohK (pt) = Rep(K ) (fin-diml reps of K ).

K K (pt) = R(K ) = rep ring of K ; free Z-module, basis K̂ .

Example: X = K/H; CohK (K/H) ' Rep(H)

E ∈ Rep(H) E =def K ×H E eqvt vector bdle on K/H

K K (K/H) = R(H).
Example: X = V vector space (repn of K ).
E ∈ Rep(K ) proj module
OV (E) =def OV ⊗ E ∈ CohK (X )

proj resolutions =⇒ K K (V ) ' R(K ), basis {OV (τ)}.
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Doing nothing carefully
Suppose K y X with finitely many orbits:

X = Y1 ∪ · · · ∪ Yr , Yi = K · yi ' K/K yi .

Orbits partially ordered by Yi ≥ Yj if Yj ⊂ Yi .

(τ,E) ∈ K̂ yi  E(τ) ∈ CohK (Yi ).

Choose (always possible) K -eqvt coherent extension

Ẽ(τ) ∈ CohK (Yi ) [Ẽ ] ∈ K K (Yi ).

Class [Ẽ] on Y i unique modulo K K (∂Yi).

Set of all [Ẽ(τ)] (as Yi and τ vary) is basis of K K (X ).

Suppose M ∈ CohK (X ); write class of M in this basis

[M] =
r∑

i=1

∑
τ∈K̂ yi

nτ (M)[Ẽ(τ)].

Maxl orbits in Supp(M) = maxl Yi with some nτ (M) 6= 0.

Coeffs nτ (M) on maxl Yi ind of choices of exts Ẽ(τ).
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Our story so far
We have found

1. homomorphism

virt G(R) reps KF(g,K )
gr−→ K K (N ∗θ ) eqvt K -theory

2. geometric basis
{

[Ẽ(τ)]
}

for K K (N ∗θ ), indexed by irr
reps of isotropy gps

3. expression of [gr(π)] in geom basis AC(π).

Problem is computing such expressions. . .
Teaser for the next section: Kazhdan and Lusztig
taught us how to express π using std reps I(γ):

[π] =
∑
γ

mγ(π)[I(γ)], mγ(π) ∈ Z.

{[gr I(γ)]} is another basis of K K (N ∗θ ).
Last goal is compute chg of basis matrix: to write

[Ẽ(τ)] =
∑
γ

nγ(τ)[gr I(γ)].
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The last goal (last slide of actual lecture)

Studying cone N ∗θ = nilp lin functionals on g/k.

Found (for free) basis
{

[Ẽ(τ)]
}

for K K (N ∗θ ), indexed

by orbit K/K i and irr rep τ of K i .
Found (by rep theory) second basis {[gr I(γ)]},
indexed by (parameters for) std reps of G(R).
To compute associated cycles, enough to write

[gr I(γ)] =
∑
orbits

∑
τ irr for
isotropy

Nτ (γ)[Ẽ(τ)].

Equivalent to compute inverse matrix

[Ẽ(τ)] =
∑
γ

nγ(τ)[gr I(γ)].

Need to relate
geom of nilp cone! geom of std reps.

Use parabolic subgps and Springer resolution.
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Introducing Springer
g = k⊕ s Cartan decomp, N ∗θ ' Nθ =def N ∩ s nilp cone in s.
Kostant-Rallis, Jacobson-Morozov: nilp X ∈ s Y ∈ s, H ∈ k

[H,X ] = 2X , [H,Y ] = −2Y , [X ,Y ] = H,

g[k ] = k[k ]⊕ s[k ] (ad(H) eigenspace).
 g[≥ 0] =def q = l+ u θ-stable parabolic.

Theorem (Kostant-Rallis) Write O = K · X ⊂ Nθ.
1. µ : OQ =def K ×Q∩K s[≥2]→ O, (k ,Z ) 7→ Ad(k)Z is

proper birational map onto O.

2. K X = (Q ∩ K )X = (L ∩ K )X (U ∩ K )X is a Levi
decomp; so K̂ X = [(L ∩ K )X ]̂.

So have resolution of singularities of O:
K ×Q∩K s[≥2]

vec bdle↙ ↘ µ

K/Q ∩ K O

Use it (i.e., copy McGovern, Achar) to calculate
equivariant K -theory. . .
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Using Springer to calculate K -theory

X ∈ Nθ represents O = K · X .
µ : OQ =def K ×Q∩K s[≥2]→ O Springer resolution.

Theorem Recall K̂ X = [(L ∩ K )X ]̂ .

1. K K (OQ) has basis of eqvt vec bdles:
(σ,F ) ∈ Rep(L ∩ K ) F(σ).

2. Get extension of E(σ|(L∩K )X ) from O to O
[F(σ)] =def

∑
i

(−1)i [R iµ∗(F(σ))] ∈ K K (O).

3. Compute (very easily) [F(σ)] =
∑
γ nγ(σ)[gr I(γ)].

4. Each irr τ ∈ [(L ∩ K )X ]̂ extends to (virtual) rep σ(τ)
of L ∩ K ; can choose F(σ(τ)) as extension of E(τ).
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Now we can compute associated cycles

Recall X ∈ Nθ  O = K · X ; τ ∈ [(L ∩ K )X ]̂ .
We now have explicitly computable formulas

[Ẽ(τ)] = [F(σ(τ))] =
∑
γ

nγ(τ)[gr I(γ)].

Here’s why this does what we want:

1. inverting matrix nγ(τ) matrix Nτ (γ) writing [gr I(γ)]

in terms of [Ẽ(τ)].

2. multiplying Nτ (γ) by Kazhdan-Lusztig matrix mγ(π)

 matrix nτ (π) writing [grπ] in terms of [Ẽ(τ)].

3. Nonzero entries nτ (π) AC(π).

Side benefit: algorithm for G(R) cplx also computes
a bijection (conj Lusztig, proof Bezrukavnikov)

(dom wts)↔ (pairs (O, τ)). . .
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Complex groups regarded as real

G1 = cplx conn reductive alg gp! old G(R)).
σ1 = cplx conj for compact real form of G1.
G = G1 ×G1 complexification of G1. . .

1. σ(x , y) = (σ1(y), σ1(x)) cplx conj for real form G1:
G(R) = Gσ = {(x , σ1(x) | x ∈ G1} ' G1.

2. θ(x , y) = (y , x) Cartan inv: K = Gθ = (G1)∆.

K -nilp cone N ∗θ ⊂ g∗ ' G1-nilp cone N ∗1 ⊂ g∗1.
H1 ⊂ G1, H = H1 × H1 ⊂ G, T = (H1)∆ ⊂ K max tori.

a = h−θ = {(Z ,−Z ) | Z ∈ h1} Cartan subspace.
Param for princ series rep is γ = (λ, ν) ∈ X ∗(T )×a∗:

1. I(λ, ν)|K ' IndK
T (λ);

2. virt rep [I(w1 · λ,w1 · ν)] indep of w1 ∈W1;
3. [gr I(λ, ν)] ∈ K K (N ∗θ ) ' K G1 (N ∗1 ) indep of ν.

Conclusion: the set of all [gr I(λ)] ' IndK
T (λ)

(λ ∈ X ∗(T ) dom) is basis for (virt HC-mods of G1) |K .
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Connection with Weyl char formula
K ' G1 cplx conn reductive alg, T ' H1 max torus.

Asserted “
{

IndK
T (λ)

}
basis for (virt HC-mods of G1) |K .”

What’s that mean or tell you?

Fix (F , µ) ∈ K̂ of highest weight µ ∈ X dom(T ).

(F , µ) also irr (fin diml) HC-mod for G1; (F , µ)|K = (F , µ).

Assertion means F =
∑
γ∈X dom(T ) mγ(F ) IndK

T (γ).

Such a formula is a version of Weyl char formula:

(F , µ) =
∑

w∈W (K ,T )

(−1)`(w) IndK
T (µ+ ρ− wρ)

=
∑

B⊂∆+(k,t)

(−1)|∆
+|−|B| IndK

T (µ+ 2ρ− 2ρ(B)).

One meaning: if (E , γ) ∈ K̂ , then∑
w∈W

(−1)`(w)mE,γ(µ+ ρ− w · ρ) =

{
1 (γ = µ)

0 (γ 6= µ).
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Lusztig’s conjecture

G ⊃ B ⊃ H complex reductive algebraic.
X ∗(H) ⊃ X dom(H) dominant weights.
N ∗ = cone of nilpotent elements in g∗.
Lusztig conjecture: there’s a bijection

X dom ! pairs (ξ, τ)/G conjugation;

ξ ∈ N ∗, τ ∈ Ĝξ! eqvt vec bdle E(τ) = G ×Gξ τ

Thm (Bezrukavnikov). There is a preferred virt
extension Ẽ(τ) to G · ξ so

[Ẽ(τ)] = ±[gr I(λ(ξ, τ))] +
∑

γ≺λ(ξ,τ)

nγ(ξ, τ)[gr I(γ)].

Upper triangularity characterizes Lusztig bijection.
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Calculating Lusztig’s bijection
Proceed by upward induction on nilpotent orbit.

Start with (ξ, τ), ξ ∈ N ∗, τ ∈ Ĝξ.

JM parabolic Q = LU, ξ ∈ (g/q)∗; Gξ = Qξ = LξUξ.

Choose virt rep [σ(τ)] ∈ R(L) extension of τ .

Write formula for corr ext of E(τ) to G · ξ:

[F(σ(τ))] =
∑
λ

mσ(τ)(λ)
∑

B⊂∆+(l,h)

(−1)|∆
+(l,h)|−|B|

∑
A⊂∆(g[1],h)

(−1)|A|

[gr I(λ+ 2ρL − 2ρ(A)− 2ρ(B))].

Rewrite with [gr I(λ′)], λ′ dominant.

Loop: find largest λ′.
If λ′! (ξ′, τ ′) for smaller G · ξ′, subtract

mσ(τ)(λ
′)× formula for (ξ′, τ ′);

 new formula for (ξ, τ) with smaller leading term.

When loop ends, λ′ = λ(ξ, τ).
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What to do next

Sketched effective algorithms for computing
assoc cycles for HC modules, Lusztig bijection.
What should we (this means you) do now?
Software implementations of these?

Pramod Achar gap script for Lusztig bij in type A.
Marc van Leeuwen atlas software for (std rep)|K .

Real group version of Lusztig bijection?
Algorithm still works, but bijection not quite true.
Failure partitions K̂ into small finite sets.

Closed form information about algorithms?
formula for smallest λ! (one orbit, any τ );
Would bound below infl char of HC-mod! orbit.
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