Signatures of Hermitian forms and unitary representations

Jeffrey Adams Marc van Leeuwen Peter Trapa David Vogan Wai Ling Yee

Taipei Conference on Representation Theory, December 20, 2010

Outline

Introduction

Character formulas

Hermitian forms

Character formulas for invariant forms

Computing easy Hermitian KL polynomials

Unitarity algorithm

Introduction

$G(\mathbb{R})=$ real points of complex connected reductive alg G
Problem: find $\widehat{G(\mathbb{R})_{u}}=$ irr unitary reps of $G(\mathbb{R})$.
Harish-Chandra: $\widehat{G(\mathbb{R})_{u}} \subset \widehat{G(\mathbb{R})}=$ quasisimple irr reps.
Unitary reps = quasisimple reps with pos def invt form.
Example: $G(\mathbb{R})$ compact $\Rightarrow \widehat{G(\mathbb{R})_{u}}=\widehat{G(\mathbb{R})}=$ discrete set.
Example: $G(\mathbb{R})=\mathbb{R}$;

$$
\begin{gathered}
\widehat{G(\mathbb{R})}=\left\{\chi_{z}(t)=e^{z t} \quad(z \in \mathbb{C})\right\} \simeq \mathbb{C} \\
\widehat{G(\mathbb{R})_{u}}=\left\{\chi_{i \xi} \quad(\xi \in \mathbb{R})\right\} \simeq i \mathbb{R}
\end{gathered}
$$

Suggests: $\widehat{G(\mathbb{R})_{u}}=$ real pts of cplx var $\widehat{G(\mathbb{R})}$. Almost...
$\widehat{G(\mathbb{R})_{h}}=$ reps with invt form: $\widehat{G(\mathbb{R})_{u}} \subset \widehat{G(\mathbb{R})_{h}} \subset \widehat{G(\mathbb{R})}$.
Approximately (Knapp): $\widehat{G(\mathbb{R})}=$ cplx alg var, real pts $\widehat{G(\mathbb{R})_{h}}$; subset $\widehat{G(\mathbb{R})_{u}}$ cut out by real algebraic ineqs.
Today: algorithm making inequalities computable.

Example: $S L(2, \mathbb{R})$ spherical reps

$G(\mathbb{R})=S L(2, \mathbb{R})$ acts on upper half plane $\mathbb{H} \rightsquigarrow$ repn $E(\nu)$ on $\nu^{2}-1$ eigenspace of Laplacian $\Delta_{\mathbb{H}}$.
Unique $S O(2)$-invt eigenfunction ϕ_{ν} equal 1 at i.
Even for $\nu \in \mathbb{R}, E(\nu)$ too fat to carry invt Herm form.
Better: $I(\nu)=C_{C}^{\infty}(\mathbb{H}) /\left(\right.$ image of $\left.\Delta_{\mathbb{H}}-\left(\nu^{2}-1\right)\right)$.
Have G-eqvt linear map $I(\nu) \xrightarrow{A(\nu)} E(\nu)$,

$$
A(\nu) f(y)=\int_{\mathbb{H}} f(x) \phi_{\nu}\left(x^{-1} y\right) d y
$$

Proposition
For $\nu^{2}-1$ real, $I(\nu)$ admits non-zero invt Herm form

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{\mathbb{H}}\left(A(\nu) f_{1}(y)\right) \overline{f_{2}(y)} d y
$$

radical of form $=\operatorname{ker} A(\nu)=$ max proper submod of $I(\nu)$.
Define $\quad J(\nu)=I(\nu) / \operatorname{ker} A(\nu) \quad($ all $\nu \in \mathbb{C})$.

$S L(2, \mathbb{R})$ spherical hermitian dual

$$
\begin{gathered}
I(\nu)=C_{c}^{\infty}(\mathbb{H}) /\left(\operatorname{im} \Delta_{\mathbb{H}}-\left(\nu^{2}-1\right)\right), J(\nu)=I(\nu) / \operatorname{ker} A(\nu) \\
\left.J(\nu) \simeq J\left(\nu^{\prime}\right) \Leftrightarrow \nu= \pm \nu^{\prime} \Rightarrow \widehat{G(\mathbb{R}}\right)_{\text {sph }}=\{J(\nu)\} \simeq \mathbb{C} / \pm 1 .
\end{gathered}
$$

Cplx conj for real form of $\widehat{G(\mathbb{R})_{\text {sph }}}$ is $\nu \mapsto-\bar{\nu}$; real pts

$$
\widehat{G(\mathbb{R}}_{s p h, h} \simeq(i \mathbb{R} \cup \mathbb{R}) / \pm 1 \subset \mathbb{C} / \pm 1
$$

These are sph Herm reps. Which are unitary?
Need "signature" of Herm form on inf-diml space $I(\nu)$. Harish-Chandra idea: $K=S O(2) \rightsquigarrow 1$-diml subspaces

$$
\begin{gathered}
I(\nu)_{2 m}=\left\{f \in I(\nu) \left\lvert\,\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \cdot f=e^{2 i m \theta} f\right.\right\} . \\
I(\nu) \supset \sum_{m} I(\nu)_{2 m}, \quad \text { (dense subspace) }
\end{gathered}
$$

Decomp is orthogonal for any invariant Herm form.
Signature + or - or 0 for each m. Form analytic in ν, so changes in signature $\rightsquigarrow>$ orders of vanishing.

Deforming signatures for $S L(2, \mathbb{R})$

Here's how signatures of the reps $I(\nu)$ change with ν.
$\nu \in \mathbb{R}, I(\nu)$ " \subset " $L^{2}(\mathbb{H})$: unitary, signature positive.
$0<\nu<1$, I (ν) irr: signature remains positive.
$\nu=1$, form pos on quotient $J(1) \longleftarrow I(1) \longleftrightarrow S O(2)$ rep 0 .
$\nu=1$, form has simple zero, pos "residue" on $\operatorname{ker} A(1)$.
$1<\nu<3$, across zero at $\nu=1$, signature changes.
$\nu=3$, form -+- on $J(3) \leftarrow I(3)$.
$\nu=3$, form has simple zero, neg "residue" on $\operatorname{ker} A(3)$.
$3<\nu<5$, across zero at $\nu=3$, signature changes. ETC.
Conclude: $J(\nu)$ unitary, $\nu \in[0,1]$; nonunitary, $\nu \in(1, \infty)$.

\cdots	-6	-4	-2	0	+2	+4	+6	\cdots	SO(2) reps
\cdots	+	+	+	+	+	+	+	\cdots	$\nu=0$
\cdots	+	+	+	+	+	+	+	\cdots	$0<\nu<1$
\cdots	+	+	+	+	+	+	+	\cdots	$\nu=1$
\cdots	-	-	-	+	-	-	-	\cdots	$1<\nu<3$
\cdots	-	-	-	+	-	-	-	\cdots	$\nu=3$
\cdots	+	+	-	+	-	+	+	\cdots	$3<\nu<5$

Spherical unitary dual for $S L(2, \mathbb{R}) \ldots$

... and a preview of more general groups.

$\begin{array}{llc}S L(2, \mathbb{R}) & G(\mathbb{R}) & \text { Will deform Herm forms } \\ I(\nu), \nu \in \mathbb{C} & I(\nu), \nu \in \mathfrak{a}_{\mathbb{C}}^{*} & \text { unitary axis } i \mathfrak{a}_{\mathbb{R}}^{*} \rightsquigarrow \\ I(\nu), \nu \in i \mathbb{R} & I(\nu), \nu \in i \mathfrak{a}_{\mathbb{R}}^{*} & \text { real axis } \mathfrak{a}_{\mathbb{R}}^{*} . \\ I(\nu) \rightarrow J(\nu) & I(\nu) \rightarrow J(\nu) & \text { Deformed form pos } \rightsquigarrow \\ {[-1,1]} & \text { polytope in } \mathfrak{a}_{\mathbb{R}}^{*} & \text { unitary rep. }\end{array}$
Reps appear in families, param by ν in cplx vec space \mathfrak{a}^{*}.
Pure imag params $\leadsto \rightarrow L^{2}$ harm analysis $\leadsto \rightarrow$ unitary.
Each rep in family has distinguished irr quotient $J(\nu)$.
Difficult unitary reps \leftrightarrow deformation in real param

Categories of representations

G cplx reductive alg $\supset G(\mathbb{R})$ real form $\supset K(\mathbb{R})$ max cpt.
Rep theory of $G(\mathbb{R})$ modeled on Verma modules...
$\mathfrak{h}^{*} \leftrightarrow$ highest weight reps
$M(\lambda)$ Verma of hwt $\lambda \in \mathfrak{h}^{*}, \quad L(\lambda)$ irr quot
Put cplxification of $K(\mathbb{R})=K \subset G$, reductive algebraic.
(\mathfrak{g}, K)-mod: cplx rep V of \mathfrak{g}, compatible alg rep of K.
Harish-Chandra: irr (\mathfrak{g}, K)-mod \rightarrow "arb rep of $G(\mathbb{R})$."
X parameter set for irr (\mathfrak{g}, K)-mods

$$
I(x) \operatorname{std}(\mathfrak{g}, K)-\bmod \leftrightarrow x \in X \quad J(x) \text { irr quot }
$$

Set X described by Langlands, Knapp-Zuckerman: countable union (subspace of $\left.\mathfrak{h}^{*}\right) /($ subgroup of W).

Character formulas

Can decompose Verma module into irreducibles

$$
M(\lambda)=\sum_{\mu \leq \lambda} m_{\mu, \lambda} L(\mu) \quad\left(m_{\mu, \lambda} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
L(\lambda)=\sum_{\mu \leq \lambda} M_{\mu, \lambda} M(\mu) \quad\left(M_{\mu, \lambda} \in \mathbb{Z}\right)
$$

Can decompose standard HC module into irreducibles

$$
I(x)=\sum_{y \leq x} m_{y, x} J(y) \quad\left(m_{y, x} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
J(x)=\sum_{y \leq x} M_{y, x} I(y) \quad\left(M_{y, x} \in \mathbb{Z}\right)
$$

Matrices m and M upper triang, ones on diag, mutual inverses. Entries are KL polynomials eval at 1.

Forms and dual spaces

 V cplx vec space (or alg rep of K, or ((\mathfrak{g}, K)-mod).Hermitian dual of V

$$
V^{h}=\{\xi: V \rightarrow \mathbb{C} \text { additive } \mid \xi(z v)=\bar{z} \xi(v)\}
$$

(If V is K-rep, also require ξ is K-finite.)
Sesquilinear pairings between V and W
$\operatorname{Sesq}(V, W)=\{\langle\rangle:, V \times W \rightarrow \mathbb{C}$, lin in V, conj-lin in $W\}$

$$
\operatorname{Sesq}(V, W) \simeq \operatorname{Hom}\left(V, W^{h}\right), \quad\langle v, w\rangle_{T}=(T v)(w)
$$

Cplx conj of forms is (conj linear) isom

$$
\operatorname{Sesq}(V, W) \simeq \operatorname{Sesq}(W, V)
$$

Corr (conj linear) isom is Hermitian transpose

$$
\operatorname{Hom}\left(V, W^{h}\right) \simeq \operatorname{Hom}\left(W, V^{h}\right), \quad\left(T^{h} w\right)(v)=(T v)(w)
$$

Sesq form \langle,\rangle_{T} Hermitian if

$$
\left\langle v, v^{\prime}\right\rangle_{T}={\overline{\left\langle v^{\prime}, v\right\rangle_{T}}}_{\theta} \Leftrightarrow T^{h}=T .
$$

Defining a rep on V^{h}

Suppose V is a (\mathfrak{g}, K)-module. Write π for repn map.
Want to construct functor

$$
\text { cplx linear rep }(\pi, V) \rightsquigarrow \text { cplx linear rep }\left(\pi^{h}, V^{h}\right)
$$

using Hermitian transpose map of operators. REQUIRES twisting by conjugate linear automorphism of \mathfrak{g}.

Assume

$$
\sigma: G \rightarrow G \text { antiholom aut, } \quad \sigma(K)=K
$$

Define (\mathfrak{g}, K)-module $\pi^{h, \sigma}$ on V^{h},

$$
\begin{array}{ll}
\pi^{h, \sigma}(X) \cdot \xi=[\pi(-\sigma(X))]^{h} \cdot \xi & \left(X \in \mathfrak{g}, \xi \in V^{h}\right) . \\
\pi^{h, \sigma}(k) \cdot \xi=\left[\pi\left(\sigma(k)^{-1}\right)\right]^{h} \cdot \xi & \left(k \in K, \xi \in V^{h}\right) .
\end{array}
$$

Traditionally use

$$
\sigma_{0}=\text { real form with complexified maximal compact } K .
$$

We need also

$$
\sigma_{c}=\text { compact real form of } G \text { preserving } K
$$

Invariant Hermitian forms

$V=(\mathfrak{g}, K)$-module, σ antihol aut of G preserving K.
A σ-invt sesq form on V is sesq pairing \langle,$\rangle such that$

$$
\begin{array}{r}
\langle X \cdot v, w\rangle=\langle v,-\sigma(X) \cdot w\rangle, \quad\langle k \cdot v, w\rangle=\left\langle v, \sigma\left(k^{-1}\right) \cdot w\right\rangle \\
(X \in \mathfrak{g} ; k \in K ; v, w \in V) .
\end{array}
$$

Proposition

σ-invt sesq form on $V \leadsto(\mathfrak{g}, K)$-map $T: V \rightarrow V^{h, \sigma}:$

$$
\langle v, w\rangle_{T}=(T v)(w) .
$$

Form is Hermitian iff $T^{h}=T$.
Assume V is irreducible.
$V \simeq V^{h, \sigma} \Leftrightarrow \exists$ invt sesq form $\Leftrightarrow \exists$ invt Herm form
A σ-invt Herm form on V is unique up to real scalar.
$T \rightarrow T^{h} \longleftrightarrow$ real form of $c p l x$ line $\operatorname{Hom}_{\mathfrak{g}, K}\left(V, V^{h, \sigma}\right)$.

Invariant forms on standard reps

Recall multiplicity formula

$$
I(x)=\sum_{y \leq x} m_{y, x} J(y) \quad\left(m_{y, x} \in \mathbb{N}\right)
$$

for standard $(\mathfrak{g}, K)-\bmod I(x)$.
Want parallel formulas for σ-invt Hermitian forms.
Need forms on standard modules.
Form on irr $J(x) \xrightarrow{\text { deformation }}$ Jantzen filt $I_{n}(x)$ on std, nondeg forms \langle,\rangle_{n} on I_{n} / I_{n+1}.
Details (proved by Beilinson-Bernstein):

$$
\begin{gathered}
I(x)=I_{0} \supset I_{1} \supset I_{2} \supset \cdots, \quad I_{0} / I_{1}=J(x) \\
I_{n} / I_{n+1} \text { completely reducible } \\
{\left[J(y): I_{n} / I_{n+1}\right]=\text { coeff of } q^{(\ell(x)-\ell(y)-n) / 2} \text { in KL poly } Q_{y, x}}
\end{gathered}
$$

Hence $\langle,\rangle_{I(x)} \stackrel{\text { def }}{=} \sum_{n}\langle,\rangle_{n}$, nondeg form on $\operatorname{gr} I(x)$.
Restricts to original form on irr $J(x)$.

Virtual Hermitian forms

$$
\mathbb{Z}=\text { Groth group of vec spaces. }
$$

These are mults of irr reps in virtual reps.

$$
\mathbb{Z}[X]=\text { Groth grp of finite length reps. }
$$

For invariant forms...
$\mathbb{W}=\mathbb{Z} \oplus \mathbb{Z}=$ Groth grp of fin diml forms.
Ring structure

$$
(p, q)\left(p^{\prime}, q^{\prime}\right)=\left(p p^{\prime}+q q^{\prime}, p q^{\prime}+q^{\prime} p\right)
$$

Mult of irr-with-forms in virtual-with-forms is in \mathbb{W} :
$\mathbb{W}[X] \approx$ Groth grp of fin Igth reps with invt forms.
Two problems: invt form \langle,\rangle_{J} may not exist for irr J; and \langle,\rangle_{J} may not be preferable to $-\langle,\rangle_{J}$.

Hermitian KL polynomials: multiplicities

Fix σ-invt Hermitian form $\langle,\rangle_{J(x)}$ on each irr admitting one; recall Jantzen form \langle,\rangle_{n} on $I(x)_{n} / I(x)_{n+1}$. MODULO problem of irrs with no invt form, write

$$
\left(I_{n} / I_{n-1},\langle,\rangle_{n}\right)=\sum_{y \leq x} w_{y, x}(n)\left(J(y),\langle,\rangle_{J(y)}\right)
$$

coeffs $w(n)=(p(n), q(n)) \in \mathbb{W}$; summand means

$$
p(n)\left(J(y),\langle,\rangle_{J(y)}\right) \oplus q(n)\left(J(y),-\langle,\rangle_{J(y)}\right)
$$

Define Hermitian KL polynomials

$$
Q_{y, x}^{\sigma}=\sum_{n} w_{y, x}(n) q^{(I(x)-I(y)-n) / 2} \in \mathbb{W}[q]
$$

Eval in \mathbb{W} at $q=1 \leftrightarrow$ form $\langle,\rangle_{I(x)}$ on std.
Reduction to $\mathbb{Z}[q]$ by $\mathbb{W} \rightarrow \mathbb{Z} \leftrightarrow \mathrm{KL}$ poly $Q_{y, x}$.

Hermitian KL polynomials: characters

Matrix $Q_{y, x}^{\sigma}$ is upper tri, 1s on diag: INVERTIBLE.

$$
P_{x, y}^{\sigma} \stackrel{\text { def }}{=}(-1)^{I(x)-l(y)}((x, y) \text { entry of inverse }) \in \mathbb{W}[q]
$$

Definition of $Q_{x, y}^{\sigma}$ says

$$
\left(\operatorname{gr} I(x),\langle,\rangle_{I(x)}\right)=\sum_{y \leq x} Q_{x, y}^{\sigma}(1)\left(J(y),\langle,\rangle_{J(y)}\right)
$$

inverting this gives

$$
\left(J(x),\langle,\rangle_{J(x)}\right)=\sum_{y \leq x}(-1)^{I(x)-I(y)} P_{x, y}^{\sigma}(1)\left(\operatorname{gr} I(y),\langle,\rangle_{I(y)}\right)
$$

Next question: how do you compute $P_{x, y}^{\sigma}$?

Herm KL polys for σ_{c}

$\sigma_{c}=\mathrm{cplx}$ conj for cpt form of $G, \sigma_{c}(K)=K$.
Plan: study σ_{C}-invt forms, relate to σ_{0}-invt forms.

Proposition

Suppose $J(x)$ irr (\mathfrak{g}, K)-module, real infl char. Then $J(x)$ has σ_{c}-invt Herm form $\langle,\rangle_{J_{(x)}}^{c}$, characterized by
$\langle,\rangle_{J(x)}^{c}$ is pos def on the lowest K-types of $J(x)$.
Proposition \Longrightarrow Herm KL polys $Q_{x, y}^{\sigma_{c}}, P_{x, y}^{\sigma_{c}}$ well-def.
Coeffs in $\mathbb{W}=\mathbb{Z} \oplus s \mathbb{Z} ; s=(0,1) \leftrightarrow$ one-diml neg def form.
Conj: $Q_{x, y}^{\sigma_{c}}(q)=s^{\frac{\ell_{0}(x)-\ell_{0}(y)}{2}} Q_{x, y}(q s), \quad P_{x, y}^{\sigma_{c}}(q)=s^{\frac{\ell_{0}(x)-\ell_{0}(y)}{2}} P_{x, y}(q s)$.
Equiv: if $J(y)$ appears at level n of Jantzen filt of $I(x)$, then Jantzen form is $(-1)^{(/(x)-/(y)-n) / 2}$ times $\langle,\rangle_{J(y)}$.
Conjecture is false... but not seriously so. Need an extra power of s on the right side.

Orientation number

Conjecture \leftrightarrow KL polys \leftrightarrow integral roots.
Simple form of Conjecture \Rightarrow Jantzen-Zuckerman translation across non-integral root walls preserves signatures of (σ_{c}-invariant) Hermitian forms.
It ain't necessarily so.
$S L(2, \mathbb{R})$: translating spherical principal series from (real non-integral positive) ν to (negative) $\nu-2 m$ changes sign of form iff $\nu \in(0,1)+2 \mathbb{Z}$.

Orientation number $\ell_{0}(x)$ is

1. \# pairs $(\alpha,-\theta(\alpha))$ cplx nonint, pos on x; PLUS
2. \# real β s.t. $\left\langle x, \beta^{\vee}\right\rangle \in(0,1)+\epsilon(\beta, x)+2 \mathbb{N}$.
$\epsilon(\beta, x)=0$ spherical, 1 non-spherical.

Deforming to $\nu=0$

 Have computable formula (omitting ℓ_{0})$$
\left(J(x),\langle,\rangle_{J(x)}^{c}\right)=\sum_{y \leq x}(-1)^{\prime(x)-I(y)} P_{x, y}(s)\left(\operatorname{gr} I(y),\langle,\rangle_{l(y)}^{c}\right)
$$

for σ^{c}-invt forms in terms of forms on stds, same inf char.
Polys $P_{x, y}$ are KL polys, computed by at las software.
Std rep $I=I(\nu)$ deps on cont param ν. Put $I(t)=I(t \nu), t \geq 0$. If std rep $I=I(\nu)$ has σ-invt form so does $I(t)(t \geq 0)$.
(signature for $I(t))=($ signature on $I(t+\epsilon)), \quad \epsilon \geq 0$ suff small.
Sig on $I(t)$ differs from $I(t-\epsilon)$ on odd levels of Jantzen filt:

$$
\langle,\rangle_{\operatorname{gr} /(t-\epsilon)}=\langle,\rangle_{\operatorname{gr} /(t)}+(s-1) \sum_{m}\langle,\rangle_{(t)_{2 m+1} / /(t)_{2 m+2}} .
$$

Each summand after first on right is known comb of stds, all with cont param strictly smaller than $t \nu$. ITERATE. . .

$$
\langle,\rangle_{J}^{c}=\sum_{l^{\prime}(0) \text { std at } \nu^{\prime}=0} v_{J, \prime^{\prime}}\langle,\rangle_{\prime^{\prime}(0)}^{c} \quad\left(v_{J, \prime^{\prime}} \in \mathbb{W}\right)
$$

From σ_{c} to σ_{0}

Cplx conjs σ_{c} (compact form) and σ_{0} (our real form) differ by Cartan involution $\theta: \sigma_{0}=\theta \circ \sigma_{c}$.
$\operatorname{Irr}(\mathfrak{g}, K)$-mod $J \rightsquigarrow J^{\theta}$ (same space, rep twisted by θ).

Proposition

J admits σ_{0}-invt Herm form if and only if $\mathrm{J}^{\theta} \simeq \mathrm{J}$. If $T_{0}: J \xrightarrow{\sim} \boldsymbol{J}^{\theta}$, and $T_{0}^{2}=\mathrm{Id}$, then

$$
\langle v, w\rangle_{J}^{0}=\left\langle v, T_{0} w\right\rangle_{J}^{c} .
$$

$T: J \xrightarrow{\sim} J^{\theta} \Rightarrow T^{2}=z \in \mathbb{C} \Rightarrow T_{0}=z^{-1 / 2} T \rightsquigarrow \sigma$-invt Herm form.
To convert formulas for σ_{C} invt forms \rightsquigarrow formulas for σ_{0}-invt forms need intertwining ops $T_{J}: J \xrightarrow{\sim} \boldsymbol{J}^{\theta}$, consistent with decomp of std reps.

Equal rank case

rk $K=$ rk $G \Rightarrow$ Cartan inv inner: $\exists \tau \in K, \operatorname{Ad}(\tau)=\theta$.
$\theta^{2}=1 \Rightarrow \tau^{2}=\zeta \in Z(G) \cap K$.
Study reps π with $\pi(\zeta)=z$. Fix square root $z^{1 / 2}$.
If ζ acts by z on V, and $\langle,\rangle_{V}^{\mathcal{C}}$ is σ_{c}-invt form, then
$\langle v, w\rangle_{V}^{0} \stackrel{\text { def }}{=}\left\langle v, z^{-1 / 2} \tau \cdot w\right\rangle_{V}^{C}$ is σ_{0}-invt form.

$$
\langle,\rangle_{J}^{c}=\sum_{l^{\prime}(0) \text { std at } \nu^{\prime}=0} v_{J, \prime^{\prime}}\langle,\rangle_{\prime^{\prime}(0)}^{c} \quad\left(v_{J, \prime^{\prime}} \in \mathbb{W}\right) .
$$

translates to

$$
\langle,\rangle_{J}^{0}=\sum_{l^{\prime}(0) \text { std at } \nu^{\prime}=0} v_{J, \prime^{\prime}}\langle,\rangle_{\nu^{\prime}(0)}^{0} \quad\left(v_{J, \prime^{\prime}} \in \mathbb{W}\right) .
$$

I^{\prime} has LKT $\mu^{\prime} \Rightarrow\langle,\rangle_{\mu^{\prime}(0)}^{0}$ definite, $\operatorname{sign} z^{-1 / 2} \mu^{\prime}(\tau)$.
J unitary \Leftrightarrow each summand on right pos def.

General case

Fix "distinguished involution" δ_{0} of G inner to θ
Define extended group $G^{\Gamma}=G \rtimes\left\{1, \delta_{0}\right\}$.
Can arrange $\theta=\operatorname{Ad}\left(\tau \delta_{0}\right)$, some $\tau \in K$.
Define $K^{\Gamma}=\operatorname{Cent}_{G \Gamma}\left(\tau \delta_{0}\right)=K \rtimes\left\{1, \delta_{0}\right\}$.
Study $\left(\mathfrak{g}, K^{\Gamma}\right)$-mods $\leadsto \rightsquigarrow(\mathfrak{g}, K)$-mods V with
$D_{0}: V \xrightarrow{\sim} V^{\delta_{0}}, D_{0}^{2}=\mathrm{ld}$.
Beilinson-Bernstein localization: $\left(\mathfrak{g}, K^{\Gamma}\right)$-mods \rightarrow action of δ_{0} on K-eqvt perverse sheaves on G / B.
Should be computable by mild extension of Kazhdan-Lusztig ideas. Not done yet!
Now translate σ_{C}-invt forms to σ_{0} invt forms

$$
\langle v, w\rangle_{V}^{0} \stackrel{\text { def }}{=}\left\langle v, z^{-1 / 2} \tau \delta_{0} \cdot w\right\rangle_{V}^{c}
$$

on $\left(\mathfrak{g}, K^{\ulcorner }\right)$-mods as in equal rank case.

Possible unitarity algorithm

Hope to get from these ideas a computer program; enter

- real reductive Lie group $G(\mathbb{R})$
- general representation π
and ask whether π is unitary.
Program would say either
- π has no invariant Hermitian form, or
- π has invt Herm form, indef on reps μ_{1}, μ_{2} of K , or
- π is unitary, or
- I'm sorry Dave, I'm afraid I can't do that.

Answers to finitely many such questions complete description of unitary dual of $G(\mathbb{R})$.
This would be a good thing.

