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Introduction

G(R) = real points of complex connected reductive alg G
Problem: find Ĝ(R)u = irr unitary reps of G(R).
Harish-Chandra: Ĝ(R)u ⊂ Ĝ(R) = quasisimple irr reps.

Unitary reps = quasisimple reps with pos def invt form.
Example: G(R) compact⇒ Ĝ(R)u = Ĝ(R) = discrete set.

Example: G(R) = R;

Ĝ(R) =
{
χz(t) = ezt (z ∈ C)

}
' C

Ĝ(R)u = {χiξ (ξ ∈ R)} ' iR

Suggests: Ĝ(R)u = real pts of cplx var Ĝ(R). Almost. . .

Ĝ(R)h = reps with invt form: Ĝ(R)u ⊂ Ĝ(R)h ⊂ Ĝ(R).

Approximately (Knapp): Ĝ(R) = cplx alg var, real pts
Ĝ(R)h; subset Ĝ(R)u cut out by real algebraic ineqs.

Today: algorithm making inequalities computable.
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Example: SL(2,R) spherical reps

G(R) = SL(2,R)acts on upper half plane H repn
E(ν) on ν2 − 1 eigenspace of Laplacian ∆H.
Unique SO(2)-invt eigenfunction φν equal 1 at i .

Even for ν ∈ iR, E(ν) too fat to carry invt Herm form.
Better: I(ν) = C∞c (H)/(image of ∆H − (ν2 − 1)).

Have G-eqvt linear map I(ν)
A(ν)−→ E(ν),

A(ν)f (y) =

∫
H

f (x)φν(x−1y) dy .

Proposition
For ν2 − 1 real, I(ν) admits non-zero invt Herm form

〈f1, f2〉 =

∫
H

(A(ν)f1(y))f2(y) dy

radical of form = ker A(ν) = max proper submod of I(ν).

Define J(ν) = I(ν)/ ker A(ν) (all ν ∈ C).
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SL(2,R) spherical hermitian dual

I(ν) = C∞c (H)/(im ∆H − (ν2 − 1)), J(ν) = I(ν)/ ker A(ν)

J(ν) ' J(ν′)⇔ ν = ±ν′ ⇒ Ĝ(R)sph = {J(ν)} ' C/±1.

Cplx conj for real form of Ĝ(R)sph is ν 7→ −ν; real pts

Ĝ(R)sph,h ' (iR ∪ R) /±1 ⊂ C/±1

These are sph Herm reps. Which are unitary?

Need “signature” of Herm form on inf-diml space I(ν).

Harish-Chandra idea: K = SO(2) 1-diml subspaces

I(ν)2m = {f ∈ I(ν) |
„

cos θ sin θ
− sin θ cos θ

«
· f = e2imθf}.

I(ν) ⊃
X

m

I(ν)2m, (dense subspace)

Decomp is orthogonal for any invariant Herm form.

Signature + or − or 0 for each m. Form analytic in ν, so

changes in signature! orders of vanishing.
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Deforming signatures for SL(2,R)
Here’s how signatures of the reps I(ν) change with ν.

ν ∈ iR, I(ν) “⊂” L2(H): unitary, signature positive.

0 < ν < 1, I(ν) irr: signature remains positive.

ν = 1, form pos on quotient J(1)� I(1)! SO(2) rep 0.

ν = 1, form has simple zero, pos “residue” on ker A(1).

1 < ν < 3, across zero at ν = 1, signature changes.

ν = 3, form −+− on J(3)� I(3).

ν = 3, form has simple zero, neg “residue” on ker A(3).

3 < ν < 5, across zero at ν = 3, signature changes. ETC.

Conclude: J(ν) unitary, ν ∈ [0, 1]; nonunitary, ν ∈ (1,∞).

· · · −6 −4 −2 0 +2 +4 +6 · · · SO(2) reps

· · · + + + + + + + · · · ν = 0
· · · + + + + + + + · · · 0 < ν < 1
· · · + + + + + + + · · · ν = 1
· · · − − − + − − − · · · 1 < ν < 3
· · · − − − + − − − · · · ν = 3
· · · + + − + − + + · · · 3 < ν < 5
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Spherical unitary dual for SL(2,R). . .
. . . and a preview of more general groups.

Bargmann picture for SL(2,R)

i∞−i∞

r 1

r−1

SL(2,R) G(R)

I(ν), ν ∈ C I(ν), ν ∈ a∗C
I(ν), ν ∈ iR I(ν), ν ∈ ia∗R
I(ν)� J(ν) I(ν)� J(ν)
[−1,1] polytope in a∗R

Will deform Herm forms
unitary axis ia∗R  

real axis a∗R.

Deformed form pos 
unitary rep.

Reps appear in families, param by ν in cplx vec space a∗.

Pure imag params! L2 harm analysis! unitary.

Each rep in family has distinguished irr quotient J(ν).

Difficult unitary reps↔ deformation in real param
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Categories of representations

G cplx reductive alg ⊃ G(R) real form ⊃ K (R) max cpt.

Rep theory of G(R) modeled on Verma modules. . .

H ⊂ B ⊂ G maximal torus in Borel subgp,

h∗ ↔ highest weight reps

M(λ) Verma of hwt λ ∈ h∗, L(λ) irr quot

Put cplxification of K (R) = K ⊂ G, reductive algebraic.

(g,K )-mod: cplx rep V of g, compatible alg rep of K .

Harish-Chandra: irr (g,K )-mod! “arb rep of G(R).”

X parameter set for irr (g,K )-mods

I(x) std (g,K )-mod↔ x ∈ X J(x) irr quot

Set X described by Langlands, Knapp-Zuckerman:
countable union (subspace of h∗)/(subgroup of W ).
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Character formulas

Can decompose Verma module into irreducibles

M(λ) =
∑
µ≤λ

mµ,λL(µ) (mµ,λ ∈ N)

or write a formal character for an irreducible

L(λ) =
∑
µ≤λ

Mµ,λM(µ) (Mµ,λ ∈ Z)

Can decompose standard HC module into irreducibles

I(x) =
∑
y≤x

my,xJ(y) (my,x ∈ N)

or write a formal character for an irreducible

J(x) =
∑
y≤x

My,x I(y) (My,x ∈ Z)

Matrices m and M upper triang, ones on diag, mutual
inverses. Entries are KL polynomials eval at 1.
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Forms and dual spaces
V cplx vec space (or alg rep of K , or (g,K )-mod).

Hermitian dual of V
V h = {ξ : V → C additive | ξ(zv) = zξ(v)}

(If V is K -rep, also require ξ is K -finite.)

Sesquilinear pairings between V and W
Sesq(V ,W ) = {〈, 〉 : V ×W → C, lin in V , conj-lin in W}

Sesq(V ,W ) ' Hom(V ,W h), 〈v ,w〉T = (Tv)(w).

Cplx conj of forms is (conj linear) isom
Sesq(V ,W ) ' Sesq(W ,V ).

Corr (conj linear) isom is Hermitian transpose

Hom(V ,W h) ' Hom(W ,V h), (T hw)(v) = (Tv)(w).

Sesq form 〈, 〉T Hermitian if
〈v , v ′〉T = 〈v ′, v〉T ⇔ T h = T .
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Defining a rep on V h

Suppose V is a (g,K )-module. Write π for repn map.
Want to construct functor

cplx linear rep (π,V ) cplx linear rep (πh,V h)

using Hermitian transpose map of operators. REQUIRES
twisting by conjugate linear automorphism of g.

Assume
σ : G→ G antiholom aut, σ(K ) = K .

Define (g,K )-module πh,σ on V h,
πh,σ(X ) · ξ = [π(−σ(X ))]h · ξ (X ∈ g, ξ ∈ V h).

πh,σ(k) · ξ = [π(σ(k)−1)]h · ξ (k ∈ K , ξ ∈ V h).

Traditionally use

σ0 = real form with complexified maximal compact K .

We need also

σc = compact real form of G preserving K .
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Invariant Hermitian forms

V = (g,K )-module, σ antihol aut of G preserving K .
A σ-invt sesq form on V is sesq pairing 〈, 〉 such that

〈X · v ,w〉 = 〈v ,−σ(X ) · w〉, 〈k · v ,w〉 = 〈v , σ(k−1) · w〉

(X ∈ g; k ∈ K ; v ,w ∈ V ).

Proposition
σ-invt sesq form on V ! (g,K )-map T : V → V h,σ:

〈v ,w〉T = (Tv)(w).

Form is Hermitian iff T h = T .
Assume V is irreducible.
V ' V h,σ ⇔ ∃ invt sesq form⇔ ∃ invt Herm form
A σ-invt Herm form on V is unique up to real scalar.

T → T h ! real form of cplx line Homg,K (V ,V h,σ).
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Invariant forms on standard reps

Recall multiplicity formula
I(x) =

∑
y≤x

my ,xJ(y) (my ,x ∈ N)

for standard (g,K )-mod I(x).
Want parallel formulas for σ-invt Hermitian forms.
Need forms on standard modules.
Form on irr J(x)

deformation−−−−−−−→ Jantzen filt In(x) on std,
nondeg forms 〈, 〉n on In/In+1.
Details (proved by Beilinson-Bernstein):

I(x) = I0 ⊃ I1 ⊃ I2 ⊃ · · · , I0/I1 = J(x)

In/In+1 completely reducible

[J(y) : In/In+1] = coeff of q(`(x)−`(y)−n)/2 in KL poly Qy,x

Hence 〈, 〉I(x)
def
=
∑

n〈, 〉n, nondeg form on gr I(x).
Restricts to original form on irr J(x).
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Virtual Hermitian forms

Z = Groth group of vec spaces.

These are mults of irr reps in virtual reps.
Z[X ] = Groth grp of finite length reps.

For invariant forms. . .
W = Z⊕ Z = Groth grp of fin diml forms.

Ring structure
(p,q)(p′,q′) = (pp′ + qq′,pq′ + q′p).

Mult of irr-with-forms in virtual-with-forms is in W:

W[X ] ≈ Groth grp of fin lgth reps with invt forms.

Two problems: invt form 〈, 〉J may not exist for irr J;
and 〈, 〉J may not be preferable to −〈, 〉J .
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Hermitian KL polynomials: multiplicities

Fix σ-invt Hermitian form 〈, 〉J(x) on each irr admitting
one; recall Jantzen form 〈, 〉n on I(x)n/I(x)n+1.
MODULO problem of irrs with no invt form, write

(In/In−1, 〈, 〉n) =
∑
y≤x

wy ,x (n)(J(y), 〈, 〉J(y)),

coeffs w(n) = (p(n),q(n)) ∈W; summand means

p(n)(J(y), 〈, 〉J(y))⊕ q(n)(J(y),−〈, 〉J(y))

Define Hermitian KL polynomials

Qσ
y ,x =

∑
n

wy ,x (n)q(l(x)−l(y)−n)/2 ∈W[q]

Eval in W at q = 1↔ form 〈, 〉I(x) on std.
Reduction to Z[q] by W→ Z↔ KL poly Qy ,x .
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Hermitian KL polynomials: characters

Matrix Qσ
y ,x is upper tri, 1s on diag: INVERTIBLE.

Pσ
x ,y

def
= (−1)l(x)−l(y)((x , y) entry of inverse) ∈W[q].

Definition of Qσ
x ,y says

(gr I(x), 〈, 〉I(x)) =
∑
y≤x

Qσ
x ,y (1)(J(y), 〈, 〉J(y));

inverting this gives

(J(x), 〈, 〉J(x)) =
∑
y≤x

(−1)l(x)−l(y)Pσ
x ,y (1)(gr I(y), 〈, 〉I(y))

Next question: how do you compute Pσ
x ,y?
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Herm KL polys for σc

σc = cplx conj for cpt form of G, σc(K ) = K .
Plan: study σc-invt forms, relate to σ0-invt forms.

Proposition
Suppose J(x) irr (g,K )-module, real infl char. Then J(x) has
σc-invt Herm form 〈, 〉cJ(x), characterized by

〈, 〉cJ(x) is pos def on the lowest K-types of J(x).

Proposition =⇒ Herm KL polys Qσc
x ,y , Pσc

x ,y well-def.
Coeffs in W = Z⊕ sZ; s = (0, 1)! one-diml neg def form.

Conj: Qσc
x,y (q) = s

`o (x)−`o (y)
2 Qx,y (qs), Pσc

x,y (q) = s
`o (x)−`o (y)

2 Px,y (qs).

Equiv: if J(y) appears at level n of Jantzen filt of I(x), then
Jantzen form is (−1)(l(x)−l(y)−n)/2 times 〈, 〉J(y).

Conjecture is false. . . but not seriously so. Need an extra power
of s on the right side.
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Orientation number

Conjecture↔ KL polys↔ integral roots.

Simple form of Conjecture⇒ Jantzen-Zuckerman
translation across non-integral root walls preserves
signatures of (σc-invariant) Hermitian forms.
It ain’t necessarily so.
SL(2,R): translating spherical principal series from (real
non-integral positive) ν to (negative) ν − 2m changes sign
of form iff ν ∈ (0,1) + 2Z.

Orientation number `o(x) is
1. # pairs (α,−θ(α)) cplx nonint, pos on x ; PLUS
2. # real β s.t. 〈x , β∨〉 ∈ (0,1) + ε(β, x) + 2N.

ε(β, x) = 0 spherical, 1 non-spherical.
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Deforming to ν = 0
Have computable formula (omitting `o)

(J(x), 〈, 〉cJ(x)) =
∑
y≤x

(−1)l(x)−l(y)Px,y (s)(gr I(y), 〈, 〉cI(y))

for σc-invt forms in terms of forms on stds, same inf char.

Polys Px,y are KL polys, computed by atlas software.

Std rep I = I(ν) deps on cont param ν. Put I(t) = I(tν), t ≥ 0.

If std rep I = I(ν) has σ-invt form so does I(t) (t ≥ 0).

(signature for I(t)) = (signature on I(t + ε)), ε ≥ 0 suff small.

Sig on I(t) differs from I(t − ε) on odd levels of Jantzen filt:

〈, 〉gr I(t−ε) = 〈, 〉gr I(t) + (s − 1)
X

m

〈, 〉I(t)2m+1/I(t)2m+2 .

Each summand after first on right is known comb of stds,
all with cont param strictly smaller than tν. ITERATE. . .

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).
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From σc to σ0

Cplx conjs σc (compact form) and σ0 (our real form)
differ by Cartan involution θ: σ0 = θ ◦ σc .
Irr (g,K )-mod J  Jθ (same space, rep twisted by θ).

Proposition
J admits σ0-invt Herm form if and only if Jθ ' J. If
T0 : J ∼→ Jθ, and T 2

0 = Id, then

〈v ,w〉0J = 〈v ,T0w〉cJ .

T : J ∼→ Jθ ⇒ T 2 = z ∈ C⇒ T0 = z−1/2T  σ-invt Herm form.

To convert formulas for σc invt forms formulas for
σ0-invt forms need intertwining ops TJ : J ∼→ Jθ,
consistent with decomp of std reps.
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Equal rank case

rk K = rk G⇒ Cartan inv inner: ∃τ ∈ K , Ad(τ) = θ.
θ2 = 1⇒ τ 2 = ζ ∈ Z (G) ∩ K .

Study reps π with π(ζ) = z. Fix square root z1/2.

If ζ acts by z on V , and 〈, 〉cV is σc-invt form, then
〈v ,w〉0V

def
= 〈v , z−1/2τ · w〉cV is σ0-invt form.

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).

translates to

〈, 〉0J =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉0I′(0) (vJ,I′ ∈W).

I′ has LKT µ′ ⇒ 〈, 〉0I′(0) definite, sign z−1/2µ′(τ).

J unitary⇔ each summand on right pos def.
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General case

Fix “distinguished involution” δ0 of G inner to θ
Define extended group GΓ = G o {1, δ0}.
Can arrange θ = Ad(τδ0), some τ ∈ K .
Define K Γ = CentGΓ(τδ0) = K o {1, δ0}.
Study (g,K Γ)-mods! (g,K )-mods V with
D0 : V ∼→ V δ0 , D2

0 = Id.
Beilinson-Bernstein localization: (g,K Γ)-mods! action of δ0 on
K -eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig
ideas. Not done yet!

Now translate σc-invt forms to σ0 invt forms

〈v ,w〉0V
def
= 〈v , z−1/2τδ0 · w〉cV

on (g,K Γ)-mods as in equal rank case.
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Possible unitarity algorithm

Hope to get from these ideas a computer program; enter
I real reductive Lie group G(R)
I general representation π

and ask whether π is unitary.
Program would say either

I π has no invariant Hermitian form, or
I π has invt Herm form, indef on reps µ1, µ2 of K, or
I π is unitary, or
I I’m sorry Dave, I’m afraid I can’t do that.

Answers to finitely many such questions 
complete description of unitary dual of G(R).
This would be a good thing.
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