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|ntrOdUCt|On signatures
Adams et al.

G(R) = real points of complex connected reductive alg G
Problem: find G(R), = irr unitary reps of G(R).
Harish-Chandra: G(R), € G(R) = quasisimple irr reps.

Introduction

Unitary reps = quasisimple reps with @s\def invt form.
Example: G(R) compact = G( ), = G(R) = discrete set.
Example: G(R) R;

G(R) { t)=e" (zeC)} =C

G(R), {x/s ((€R)} ~iR
Suggests: G/(\R)u = real pts of cplx var 5(@) Almost. ..
5(@),7 = reps with invt fome{(ﬁ)u C C?(@)h C 5(@)
A/pgoximately (ﬁrEpp): G(R) = cplx alg var, real pts
G(R),,; subset G(R), cut out by real algebraic inegs.

Today: algorithm making inequalities computable.
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Example: SL(2,R) spherical reps Snatires

Adams et al.
G(R) = SL(2,R)acts on upper half plane H ~- repn
E(v) on v? — 1 eigenspace of Laplacian Ag.
Unique SO(2)-invt eigenfunction ¢, equal 1 at /.
Even for v € iR, E(v) too fat to carry invt Herm form.
Better: /(v) = C°(H)/(image of Ay — (v? —1)).

Introduction

Have G-equt linear map /(v) — AY) (v),

— [ 1600,0x”"
Proposition o
Forv? — 1 real, I(v) admits non-zero invt Herm form
(i) = [ (AR)ED) o

radical of form = ker A(v) = max proper submod of I(v).

Define J(v) = I(v)/kerA(v) (allv e C).



SL(2,R) spherical hermitian dual e
I(v) = C(H)/(im Ag — (12 — 1)), J(v) = I(v)/ ker A(v) e
J) = () & v =1 = GR),,, = {J()} ~ C/=1.

—

Cplx conj for real form of G(R)

Introduction

sph 18 vV —V; real pts
G(R) ooy ~ (RUR) /41 C C/£1
These are sph Herm reps. Which are unitary?

Need “signature” of Herm form on inf-diml space /(v).
Harish-Chandra idea: K = SO(2) ~~ 1-diml subspaces

cosf sind ;
1(v)om = {f € I(v) | (_ o cos9> o gmipy,

I(v) > > I(¥)em,  (dense subspace)
Decomp is orthogonal for any invariant Herm form.
Signature + or — or 0 for each m. Form analytic in v, so

changes in signature «~ orders of vanishing.



Deforming signatures for SL(2, R) e
Here’s how signatures of the reps /(v) change with v. Adams et al.
v € iR, I(v) “C” L3(H): unitary, signature positive. Introduction
0 < v < 1, I(v) irr: signature remains positive.
v =1, form pos on quotient J(1) < /(1) «~ SO(2) rep 0.
v =1, form has simple zero, pos “residue” on ker A(1).
1 < v < 8, across zero at v = 1, signature changes.
v =23, form — + —on J(38) « /(8).
v = 3, form has simple zero, neg “residue” on ker A(3).
3 < v < 5, across zero at v = 3, signature changes. ETC.
Conclude: J(v) unitary, v € [0, 1]; nonunitary, v € (1, c0).

-6 -4 -2 0 +2 +4 +6 --- SO(2)reps
+ + + + + 4+ 4+ v=0
+ + + + + 4+ 4+ 0<wv<i
+ + 4+ 4+ + + o+ v=1
- - - 4+ - - = - 1<v<838
_ — — + — — — v=23
- + - 4+ 4+ -+ 3<v<5b



Spherical unitary dual for SL(2, R). .. e
...and a preview of more general groups. Adams et al.

Introduction

Bargmann picture for SL(2,R)
1

—Joc I ioo

-

SL(2’ R) G(R) Will deform Herm forms
I(v),veC I(v),v € af. unitary axis i ~ |
I(v), veiR I(v), v e ia real axis az.
() — J(v)  I(v) = J(v) Deformed form pos ~~
[—1,1] polytope in aj unitary rep.

Reps appear in families, param by v in cplx vec space a*.
Pure imag params «~ L? harm analysis «~ unitary.
Each rep in family has distinguished irr quotient J(v).

Difficult unitary reps < deformation in real param
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Categories of representations s

Adams et al.

G cplx reductive alg > G(R) real form > K(R) max cpt.

Rep theory of G(R) modeled on Verma modules. . . Character formulas
Hc Bc G maximal torus in Borel subgp,
h* < highest weight reps
M(X) Vermaof hwt A € h*, L(\) irr quot
Put cplxification of K(R) = K C G, reductive algebraic.
(g, K)-mod: cplx rep V of g, compatible alg rep of K.
Harish-Chandra: irr (g, K)-mod «~ “arb rep of G(R).

X parameter set for irr (g, K)-mods
I(x) std (g, K)-mod < x € X J(x) irr quot

Set X described by Langlands, Knapp-Zuckerman:
countable union (subspace of h*)/(subgroup of W).



Character formulas e

Adams et al.

Can decompose Verma module into irreducibles

M(/\) = Z mli:/\L(/l’) (mu,k € N) Character formulas
n<A

or write a formal character for an irreducible
L) =Y MuaM(p)  (Myx €Z)

B

Can decompose standard HC module into irreducibles
I(x)=>"my,J(y) (myx€eN)
y<x
or write a formal character for an irreducible
JX) = My l(y)  (Myx€Z)

y<x

Matrices m and M upper triang, ones on diag, mutual
inverses. Entries are KL polynomials eval at 1.



Forms and dual spaces Sanatores
V cplx vec space (or alg rep of K, or (g, K)-mod). Adams et al.

Hermitian dual of V
VI = {¢: V — C additive | £(zv) = Z&(v)}

(If Vis K-rep, also require ¢ is K-finite.) geiptaglionns

Sesquilinear pairings between V and W
Sesq(V, W) ={(,): Vx W — C,linin V, conj-linin W}

Sesq(V, W) ~ Hom(V, W"), (v,w)r = (Tv)(w).
Cplx conj of forms is (conj linear) isom
Sesq(V, W) ~ Sesq(W, V).
Corr (conj linear) isom is Hermitian transpose

Hom(V, W") ~ Hom(W, V"), (T'w)(v) = (Tv)(w).

Sesq form (,)r Hermitian if
vV)r=(V Ve T =T



Defining a rep on V"
Suppose Vis a (g, K)-module. Write 7 for repn map.
Want to construct functor

cplx linear rep (m, V) ~ cplx linear rep (=, V)
using Hermitian transpose map of operators. REQUIRES
twisting by conjugate linear automorphism of g.

Assume
o: G— G antiholomaut, o(K) =K.

Define (g, K)-module 7/ on V*,
(X)) €= [n(=o(X))"-¢  (Xeg e V).
(k)&= [n(o(k) " & (ke K. Ee V).

Traditionally use
oo = real form with complexified maximal compact K.
We need also
oc. = compact real form of G preserving K.

Calculating
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Hermitian forms



Invariant Hermitian forms

V = (g, K)-module, o antihol aut of G preserving K.
A o-invt sesq form on V' is sesq pairing (,) such that

(X-v,w) = (v,—a(X)-w), (k-v,w)=(v,o(k™")-w)

(Xegi ke K;v,weV).

Proposition
o-invt sesq formon V « (g, K)-map T: V — VMo
(v,w)r = (Tv)(w).
Form is Hermitian iff T" = T.
Assume V is irreducible.
V ~ VM o Jinvt sesq form < 3 invt Herm form
A o-invt Herm form on V is unique up to real scalar.

T — T" e real form of cplx line Hom, x(V, V).
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Invariant forms on standard reps e rai

Adams et al.

Recall multiplicity formula
I(x) = Z my xJ(y) (myx €N)

y<x
for standard (g, K)-mod /(x). Char formulas for

invt forms
Want parallel formulas for o-invt Hermitian forms.
Need forms on standard modules.
Form on irr J(x) €240,  jantzen filt I,(x) on std,
nondeg forms (, ), on I/l 1.
Details (proved by Beilinson-Bernstein):
I(X):IQDHD/QD"', Io//1:J(X)
In/ In+1 completely reducible
[J(¥): In/In+1] = coeff of g V=772 in KL poly Qy.«

Hence (,)/(x) «f >~ ,(,)n, nondeg form on gr /(x).
Restricts to original form on irr J(x).



Virtual Hermitian forms

7 = Groth group of vec spaces.

These are mults of irr reps in virtual reps.

Z[X] = Groth grp of finite length reps.
For invariant forms. ..

W = Z @ Z = Groth grp of fin diml forms.

Ring structure

(P, q)(P',q") = (pP' +qd',pd + d'p).
Mult of irr-with-forms in virtual-with-forms is in W:

W[X] ~ Groth grp of fin Igth reps with invt forms.

Two problems: invt form (, ), may not exist for irr J;
and (, )y may not be preferable to —(, ).

Calculating
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Hermitian KL polynomials: multiplicities

Fix o-invt Hermitian form (, ) ) on each irr admitting
one; recall Jantzen form (, ), on I(x)n/1(X)ps1-

MODULO problem of irrs with no invt form, write

(/n/ln—17 <7 >n) = Z Wy,X(n)(J(Y)v <7 >J(y))a

y<x

coeffs w(n) = (p(n), q(n)) € W; summand means

pP(MIY): (uy) © a(n)(JI(¥): = uy))

Define Hermitian KL polynomials

Z Wy q(I(X) I(y)—n)/ E W[q]

Evalin Wat g =1 « form (, ), on std.
Reduction to Z[q] by W — Z < KL poly Qy x.

Calculating
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Hermitian KL polynomials: characters

Matrix Q7 , is upper tri, 1s on diag: INVERTIBLE.
Py, % (—1)/0=10)((x, y) entry of inverse) € W]g].

Definition of Qﬁ? y says
(@r1(x), : )ix) Z @, (1) (uw)):

y<x

inverting this gives

(X, (o) = (=1 IPg (D)(ar i(y), (, )iy

y<x

Next question: how do you compute P§ ?

Calculating
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Char formulas for
invt forms



Herm KL polys for o, Savatres
Adams et al.
oc = cplx conj for cpt form of G, o¢(K) = K.
Plan: study oc-invt forms, relate to og-invt forms.

Proposition
Suppose J(x) irr (g, K)-module, real infl char. Then J(x) has Eaey Horm KL
oc-invt Herm form (,)5,,, characterized by polys

(, >5(X) is pos def on the lowest K-types of J(x).

Proposition = Herm KL polys Q¢5,, PyS, well-def.

CoeffsinW =2 @ SZ' s =(0,1) <~ one-diml neg def form.

. oc _ Lolx oc o) —to(y)
Conj: QZ5(q) =s "= Quy(as).  Pe5(@) =57 Pey(gs).
Equiv: if J(y) appears at level n of Jantzen filt of /(x), then
Jantzen form is (—1)UC)=/0)=1/2 times (,) ).
Conjecture is false. .. but not seriously so. Need an extra power
of s on the right side.




Orientation number e

Adams et al.

Conjecture < KL polys < integral roots.

Simple form of Conjecture = Jantzen-Zuckerman

translation across non-integral root walls preserves

signatures of (o¢-invariant) Hermitian forms. Easy Herm KL
., . polys

It ain’t necessarily so.

SL(2,R): translating spherical principal series from (real
non-integral positive) v to (negative) v — 2m changes sign
of formiff v € (0, 1) + 27Z.

Orientation number {,(X) is
1. # pairs («, —60(«)) cplx nonint, pos on x; PLUS
2. #real st (x,0Y) € (0,1)+ €(8, x) + 2N.
(8, x) = 0 spherical, 1 non-spherical.



Deforming to v = 0 Savatres
Have computable formula (omitting ¢,) Adams et al.
(JX); ()500) = D_(=D)OTWIP () (@r (), ()fy))
y<x

for o¢-invt forms in terms of forms on stds, same inf char.

Polys Py,, are KL polys, computed by at1las software.
Std rep I = I(v) deps on cont param v. Put I/(t) = I(tv), t > 0.
If std rep I = I(v) has o-invt form so does /(t) (t > 0). criarty slgoriim

(signature for I(t)) = (signature on /(t + €)), € > 0 suff small.
Sig on I(t) differs from I(t — €) on odd levels of Jantzen filt:

(, )gr I(t—e) = (, >gr It + (s— 1)Z<7 >/(f)zm+1//(f)2m+2’

m

Each summand after first on right is known comb of stds,
all with cont param strictly smaller than fv. ITERATE. ..

OV > Vor( )iy (Vo €W).

I'(0)stdatv’ =0
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Adams et al.

Cplx conjs o¢ (compact form) and oq (our real form)
differ by Cartan involution 0: o9 = 6 o 0.

Irr (g, K)-mod J ~~ J? (same space, rep twisted by 6).
Proposition
J admits oq-invt Herm form if and only if J° ~ J. If e
To: J 5 J? and T2 = Id, then

0
<V’ W>J = <V7 T0W>3
T3S =T?=2cC= Ty=2z"2T ~~ g-invt Herm form.
To convert formulas for o invt forms ~» formulas for
oo-invt forms need intertwining ops T,: J = J?,
consistent with decomp of std reps.
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Equal rank case Sionatures

Adams et al.

rk K = rk G = Cartan inv inner: 37 € K, Ad(7) = 6.
?=1=72=(ecZ(G)NK.
Study reps « with 7(¢) = z. Fix square root z'/2.

If ¢ acts by zon V, and (,){, is gc-invt form, then

(v, w)% € (v, 27127 . w)$ is go-invt form.
Unitarity algorithm
c c
(o= > Var{) iy (Vur €W).

I'(0)stdatv’ =0
translates to
<,>3: Z VJ,//<7>(IJ’(O) (VJ,// EW)
I'(0)stdatv’ =0
I'has LKT u' = (,)},) definite, sign z=1/2,/(7).
J unitary < each summand on right pos def.
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General case Signatres

Adams et al.

Fix “distinguished involution” §y of G inner to ¢

Define extended group G" = G x {1, ).

Can arrange 6 = Ad(7dp), some 7 € K.

Define KT = Centgr(769) = K x {1,460}

Study (g, K")-mods «~ (g, K)-mods V with

Dy: V = V50= Dg = Id. Unitarity algorithm
Beilinson-Bernstein localization: (g, K" )-mods «~ action of &, on

K-eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig
ideas. Not done yet!

Now translate oc-invt forms to o invt forms

0 def

<V7 W>V = <V,Z_1/2

7’50 : W>(\:/

on (g, K")-mods as in equal rank case.
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Possible unitarity algorithm s

Adams et al.

Hope to get from these ideas a computer program; enter
» real reductive Lie group G(R)
» general representation 7
and ask whether 7 is unitary.
Program would say either
» 7 has no invariant Hermitian form, or
7 has invt Herm form, indef on reps p1, u2 of K, or
m is unitary, or
I’'m sorry Dave, I'm afraid | can’t do that.
Answers to finitely many such questions ~~
complete description of unitary dual of G(R).

This would be a good thing.

Unitarity algorithm

v vy
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